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Abstract

The Wasserstein distance, rooted in optimal
transport (OT) theory, is a popular discrep-
ancy measure between probability distribu-
tions with various applications to statistics
and machine learning. Despite their rich struc-
ture and demonstrated utility, Wasserstein
distances are sensitive to outliers in the consid-
ered distributions, which hinders applicability
in practice. We propose a new outlier-robust
Wasserstein distance Wε

p which allows for ε
outlier mass to be removed from each contam-
inated distribution. Under standard moment
assumptions, Wε

p is shown to be minimax op-
timal for robust estimation under the Huber
ε-contamination model. Our formulation of
this robust distance amounts to a highly reg-
ular optimization problem that lends itself
better for analysis compared to previously
considered frameworks. Leveraging this, we
conduct a thorough theoretical study of Wε

p,
encompassing robustness guarantees, charac-
terization of optimal perturbations, regularity,
duality, and statistical estimation. In particu-
lar, by decoupling the optimization variables,
we arrive at a simple dual form for Wε

p that
can be implemented via an elementary modifi-
cation to standard, duality-based OT solvers.
We illustrate the virtues of our framework
via applications to generative modeling with
contaminated datasets.

1 INTRODUCTION

Discrepancy measures between probability distribu-
tions are a fundamental constituent of statistical infer-
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ence, machine learning, and information theory. Among
many such measures, Wasserstein distances (Villani,
2003) have recently emerged as a tool of choice for
many applications. Specifically, for p ∈ [1,∞) and a
pair of probability measures µ, ν on a metric space
(X , d), the p-Wasserstein distance between them is1

Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
X×X

d(x, y)p dπ(x, y)

)1/p

,

where Π(µ, ν) is the set of couplings for µ and ν. The
popularity of these metrics stems from a myriad of
desirable properties, including rich geometric structure,
metrization of the weak topology, robustness to sup-
port mismatch, and a convenient dual form. Modern
applications thereof include generative modeling (Ar-
jovsky et al., 2017; Gulrajani et al., 2017; Tolstikhin
et al., 2018), domain adaptation (Courty et al., 2014,
2016), and robust optimization (Esfahani and Kuhn,
2018; Blanchet et al., 2018; Gao and Kleywegt, 2016).

Despite their advantages, Wasserstein distances suffer
from sensitivity to outliers due to the strict marginal
constraints, as even a small outlier mass can contribute
greatly to the distance. This has inspired a recent
line of work into outlier-robust OT (Balaji et al., 2020;
Mukherjee et al., 2021; Le et al., 2021), which relaxes
the marginal constraints in various ways. These build
upon the theory of unbalanced OT (Piccoli and Rossi,
2014; Chizat et al., 2018a,b; Liero et al., 2018; Schmitzer
and Wirth, 2019) that quantifies the cost-optimal way
to transform one measure into another via a combina-
tion of mass variation and transportation. We propose
a new framework for outlier-robust OT that arises
as the solution to a principled robust approximation
problem. We conduct an in-depth theoretical study of
the proposed robust distance, encompassing formal ro-
bustness guarantees, duality, characterization of primal
minimizers / dual maximizers, regularity, and empirical
convergence rates.

1For p = ∞, we set W∞(µ, ν) := infπ∈Π(µ,ν) ‖d‖L∞(π).
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1.1 Contributions

We introduce and study the ε-outlier-robust Wasser-
stein distance defined by

Wε
p(µ, ν) := inf

µ′,ν′∈M+(X )
µ′≤µ, ‖µ−µ′‖TV≤ε
ν′≤ν, ‖ν−ν′‖TV≤ε

Wp

(
µ′

µ′(X )
,

ν′

ν′(X )

)
,

(1)

where µ′ and ν′ are positive measures, ‖·‖TV is the total
variation (TV) norm, and ≤ denotes setwise inequality
when appropriate. The minimization over µ′, ν′ allows
outliers occupying less than fraction ε of probability
mass to be omitted from consideration, after which
the perturbed measures are renormalized. Compared
to prior work employing TV constraints (Balaji et al.,
2020; Mukherjee et al., 2021), our definition has several
distinct features: (1) it is naturally derived as a robust
proxy for Wp under the Huber ε-contamination model;
(2) it can be reframed as an optimization problem over a
highly regular domain; and, consequently, (3) it admits
a simple and useful duality theory.

We show that when the clean distributions have
bounded qth moments for q > p, Wε

p achieves the
minimax optimal robust estimation error of ε1/p−1/q

under the Huber ε-contamination model. Moreover,
our dual formulation mirrors the classic Kantorovich
dual with an added penalty proportional to the range
of the potential function. This provides an elementary
robustification technique which can be applied to any
duality-based OT solver: one needs only to compute the
argmin and argmax of the discriminative potentials over
the batch samples, which can be done in conjunction
with existing gradient evaluations. We demonstrate
this the utility of this procedure with experiments for
generative modeling with contaminated datasets using
Wasserstein generative adversarial networks (WGANs)
(Arjovsky et al., 2017).

We also study structural properties of Wε
p, characteriz-

ing the minimizers of (1) and maximizers of its dual, de-
scribing the regularity of the problem in ε, and drawing
a connection between Wε

p and loss trimming (Shen and
Sanghavi, 2019). Finally, we study statistical aspects
of Wε

p, examining both one- and two-sample empirical
convergence rates and providing additional robustness
guarantees. The derived empirical convergence rates
are at least as fast as the regular n−1/d rate for stan-
dard Wp; however, faster rates may be possible if only
a small amount of high-dimensional mass is present.

1.2 Related Work

The robust Wasserstein distance2 in (1) is closely re-
lated to the notions considered in Balaji et al. (2020)

2Despite calling Wε
p a distance, we remark that the

metric structure of Wp is lost after robustification.

and Mukherjee et al. (2021). In Balaji et al. (2020),
similar constraints are imposed with respect to (w.r.t.)
general f -divergences, but the perturbed measures are
restricted to probability distributions. This results in a
more complex dual form (derived by invoking standard
Kantorovich duality on the Wasserstein distance be-
tween perturbations) and requires optimization over a
significantly larger domain. In Mukherjee et al. (2021),
robustness w.r.t. the TV distance is added via a regu-
larization term in the objective. This leads to a simple
modified primal problem but the corresponding dual re-
quires optimizing over two potentials, even when p = 1.
Additionally, Le et al. (2021) and Nath (2020) consider
robustness via Kullback-Leibler (KL) divergence and
integral probability metric (IPM) regularization terms,
respectively. The former focuses on Sinkhorn-based
primal algorithms and the latter introduces a dual form
that is distinct from ours and less compatible with ex-
isting duality-based OT computational methods. In
Staerman et al. (2021), a median of means approach
is used to tackle the dual Kantorovich problem from
a robust statistics perspective. None of these works
provide minimax error bounds for robust estimation.

The robust OT literature is intimately related to unbal-
anced OT theory, which addresses transport problems
between measures of different mass (Piccoli and Rossi,
2014; Chizat et al., 2018a; Liero et al., 2018; Schmitzer
and Wirth, 2019; Hanin, 1992). These formulations are
reminiscent of the problem (1) but with regularizers
added to the objective (KL being the most studied)
rather than incorporated as constraints. Sinkhorn-
based primal algorithms (Chizat et al., 2018b) are the
standard approach to computation, and these have
recently been extended to large-scale machine learn-
ing problems via minibatch methods (Fatras et al.,
2021). Fukunaga and Kasai (2021) introduces primal-
based algorithms for semi-relaxed OT, where marginal
constraints for a single measure are replaced with a
regularizer in the objective. Partial OT (Caffarelli and
McCann, 2010; Figalli, 2010), where only a fraction of
mass needs to be moved, is another related framework.
However, Caffarelli and McCann (2010) consider a dif-
ferent parameterization of the problem, arriving at a
distinct dual, and Figalli (2010) is mostly restricted
to quadratic costs with no discussion of duality. Re-
cently, Chapel et al. (2020) has explored partial OT for
positive-unlabeled learning, but dual-based algorithms
are not considered.

Notation and Preliminaries. Let (X , d) be a com-
plete, separable metric space, and denote the diameter
of a set A ⊂ X by diam(A) := supx,y∈A d(x, y). Take
Cb(X ) as the set of continuous, bounded real func-
tions on X , and let M(X ) denote the set of signed
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Radon measures on X equipped with the TV norm3

‖µ‖TV := |µ|(X ). Let M+(X ) denote the space of
finite, positive Radon measures on X . The Lebesgue
measure on Rd is designated by λ. For µ, ν ∈M+(X )
and p ∈ [1,∞], we consider the standard Lp(µ) space

with norm ‖f‖Lp(µ) =
(∫
|f |p dµ

)1/p
, and we write

µ ≤ ν when µ(B) ≤ ν(B) for every Borel set B ⊆ X .

Let P(X ) ⊂ M+(X ) denote the space of probabil-
ity measures on X , and take Pp(X ) := {µ ∈ P(X ) :∫
d(x, x0)p dµ(x) <∞} to be those with bounded pth

moment. We write P∞(X ) for probability measures
with bounded support. Given µ, ν ∈ P(X ), let Π(µ, ν)
denote the set of their couplings, i.e., π ∈ P(X × X )
such that π(B×X ) = µ(B) and π(X ×B) = ν(B), for
every Borel set B. When X = Rd, we write the covari-
ance matrix for µ ∈ P2(X ) as Σµ := E[(X−E[X])(X−
E[X])ᵀ] where X ∼ µ. For f : X → R, we define the
range Range(f) := supx∈X f(x) − infx∈X f(x). We
write a ∨ b = max{a, b} and use .,&,� to denote
inequalities/equality up to absolute constants.

Recall that Wp(µ, ν) <∞, for any µ, ν ∈ Pp(X ). For
any p ∈ [1,∞), Kantorovich duality states that

Wp(µ, ν)p = sup
f∈Cb(X )

∫
f dµ+

∫
f c dν, (2)

where the c-transform f c : X → R is defined by f c(y) =
infx∈X d(x, y)p−f(x) (with respect to the cost c(x, y) =
d(x, y)p).

2 ROBUST ESTIMATION OF Wp

Outlier-robust OT is designed to address the fact that
Wp

(
(1 − ε)µ + εδx, ν

)
explodes as d(x, x0) → ∞, no

matter how small ε might be. More generally, one
considers an adversary that seeks to dramatically alter
Wp by adding small pieces of mass to its arguments.
To formalize this, we fix p ∈ [1,∞) and consider the
Huber ε-contamination model popularized in robust
statistics (Huber, 1964), where a base measure µ ∈
P(X ) is perturbed to obtain a contaminated measure
µ̃ belonging to the ball

Bε(µ) := (1− ε)µ+ εP(X )

=
{

(1− ε)µ+ εα : α ∈ P(X )
}
.

(3)

The goal is to obtain a robust proxy Ŵ : P(X )2 → R
which, for any clean distributions µ, ν ∈ P(X ) with
contaminated versions µ̃ ∈ Bε(µ), ν̃ ∈ Bε(ν), achieves
low error

∣∣Ŵ (µ̃, ν̃)−Wp(µ, ν)
∣∣. In general, this error

can be unbounded, so we require that the base mea-
sures belong to some family D capturing distributional

3This definition will be convenient but omits a factor of
1/2 often present in machine learning literature.

assumptions, e.g., bounded moments of some order. For
any ε ∈ [0, 1] and D ⊆ P(X ), we define the minimax
robust estimation error by

E(D, ε) := inf
Ŵ :P(X )2→R

sup
µ,ν∈D
µ̃∈Bε(µ)
ν̃∈Bε(ν)

∣∣Ŵ (µ̃, ν̃)−Wp(µ, ν)
∣∣.

Our interest in the robust Wasserstein distance Wε
p, as

defined in (1), stems from the following theorem, char-
acterizing it as the minimax optimal robust proxy for
Wp under Huber contamination and standard moment
assumptions.

Theorem 1 (Robust estimation of Wp). Fix q >
p and let Dq := {µ ∈ Pq(X ) : ‖d(·, x)‖Lq(µ) ≤
M for some x ∈ X} denote the family of distributions
with centered qth moments uniformly bounded by an
absolute constant M . Then, for 0 ≤ ε ≤ 1/4, we have

E(Dq, ε) .Mε1/p−1/q. (4)

This error rate is obtained by Ŵ = Wε
p and is optimal so

long as X contains two points at distance Θ(Mε−1/q).

The distance assumption is quite mild and is satisfied,
e.g., when X has a path connected component with
diameter at least Mε−1/q. We outline the proof below,
with full details provided in Appendix A.2.

Proof Sketch. The upper bound relies crucially on

the fact that |Wε
p(µ̃, ν̃) −Wp(µ, ν)| ≤ |WO(ε)

p (µ, ν) −
Wp(µ, ν)|, allowing one to bound E(Dq, ε) uniformly
over contaminated measures. To control the up-
per bound, we use that Wp(µ, ν) ≤ ‖d(·, x0)‖Lq(µ) +
‖d(·, x1)‖Lq(ν) +d(x0, x1) for q ≥ p, which holds for any
x0, x1 ∈ X and connects Wp to the moment bounds
encoded by Dq. The lower bound follows by a standard
modulus of continuity argument which gives

E(D, ε) & sup
µ,µ̃∈D
µ̃∈Bε(µ)

Wp(µ, µ̃)

for any choice of D ⊆ P(X ). In the case of D = Dq,
a simple choice of µ and µ̃ supported on at most two
points gives a matching lower bound under the distance
assumption. Importantly, the hidden constants in this
result are absolute and independent of X (in particular,
they hold even when X is unbounded).

We next specialize Theorem 1 to the common case of
X = Rd with base measures whose covariance matrices
Σµ,Σν have bounded spectral norms. Such measures
also have bounded moments in the sense of Theorem 1,
so the previous upper bound applies. The lower bound
for this case (given in Appendix A.3) uses the same
technique as before but with a more careful choice of
measures involving a multivariate Gaussian.
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Corollary 1 (Bounded covariance). Fix X = Rd and
let Dcov

2 := {µ ∈ P2(X ) : Σµ � Id}. For p < 2 and
0 ≤ ε ≤ 1/4, we have

E(Dcov
2 , ε) �

√
d ε1/p−1/2,

and this optimal error rate is achieved by Ŵ = Wε
p.

Remark 1 (Comparison with robust mean estimation).
In the setting of mean estimation under assumptions
analogous to Corollary 1 (i.e., Σµ � Id, µ̃ ∈ Bε(µ)), the
optimal error rate of

√
ε is dimension-free (Chen et al.,

2018). We interpret the factor of
√
d present for our

Wp rate as reflecting the high-dimensional optimization
inherent to the Wasserstein distance.

Remark 2 (Breakdown point). We note that the
bound of 1/4 on ε in both results can be substituted
with any constant less than 1/3. We conjecture that
this breakdown point of 1/3 can be pushed to its
information-theoretic limit of 1/2.

Remark 3 (Asymmetric contamination). The robust
distance from (1) readily extends to an asymmetric dis-
tance W

εµ,εν
p with distinct robustness radii, so that

Wε
p = Wε,ε

p . Extensions of our main results (in-
cluding Theorem 1) to this setting are presented in
Appendix B.1. The one-sided version Wε

p(µ‖ν) :=
Wε,0
p (µ, ν) is well-suited for applications such as gener-

ative modeling (see Section 6).

Our precise error bounds exploit the unique structure of
Wε
p and do not translate clearly to existing robust prox-

ies for Wp. We note, however, that the TV-robustified
Wp presented in Balaji et al. (2020) can be controlled
and approximated to some extent by Wε

p, via bounds
presented in Appendix B.2.

3 DUALITY THEORY FOR Wε
p

In addition to its robustness properties, Wε
p enjoys

a simple optimization structure that enables a useful
duality theory. Unless stated otherwise, we henceforth
assume that X is compact. To begin, we reformulate
Wε
p(µ, ν) as a minimization problem over Huber balls

centered at µ and ν.

Proposition 1 (Mass addition). For all p ∈ [1,∞]
and µ, ν ∈ P(X ), we have

Wε
p(µ, ν) = (1− 2δ)−1/p inf

µ′∈Bδ(µ)
ν′∈Bδ(ν)

Wp(µ
′, ν′), (5)

where δ = ε/(1 + ε).

While the original definition (1) involves removing mass
from the base measures and rescaling, (5) is optimizing
over mass added to µ and ν (up to scaling). Our proof
in Appendix A.4 of this somewhat surprising result

Figure 1: Huber ε-contamination balls (green) and ε-TV
balls (blue), centered at distinct points (red) within the 2-
dimensional simplex. The Huber balls with different centers
are translates of each other, while the rightmost TV ball
interacts non-trivially with the simplex boundary.

relies on the symmetric nature of the OT distance
objective. Roughly, instead of removing a piece mass
from one measure, we may always add it to the other.

This reformulation is valuable because the updated
constraint sets are simple and do not interact with the
simplex boundary. Specifically, definition (3) reveals
that the Huber ball Bδ(µ) is always an affine shift of
P(X ), with scaling independent of µ. Hence, linear
optimization over Bδ(µ) is straightforward:

inf
µ′∈Bδ(µ)

∫
f dµ′ = (1− ε)

∫
f dµ+ δ inf

x∈X
f(x). (6)

The above stands in contrast to the TV balls (i.e.,
sets of the form {µ′ ∈ P(X ) : ‖µ′ − µ‖TV ≤ δ}) that
appear in existing robust OT formulations; these ex-
hibit non-trivial boundary interactions as depicted in
Fig. 1. Fortunately, Wp is closely tied to the linear form
µ 7→

∫
f dµ via Kantorovich duality—a cornerstone for

various theoretical derivations and practical implemen-
tations. Combining this with a minimax result, we
establish a related dual form for Wε

p.

Theorem 2 (Dual form). For p ∈ [1,∞), ε ∈ [0, 1],
and µ, ν ∈ P(X ), we have

(1−ε)Wε
p(µ, ν)p= sup

f∈Cb(X )

∫
f dµ+

∫
f c dν − 2ε‖f‖∞

= sup
f∈Cb(X )

∫
f dµ+

∫
f c dν − εRange(f), (7)

and the suprema are achieved by f ∈ Cb(X ) with f =
(f c)c.

This new formulation differs from the classic dual (2)
by a range penalty for the potential function. When
p = 1, we have f c = −f and f = (f c)c exactly when f
is 1-Lipschitz. The theorem is proven in Appendix A.5,
where we first apply Proposition 1 and then invoke
Kantorovich duality for Wp(µ

′, ν′), while verifying that
the conditions for Sion’s minimax theorem hold true.
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Applying minimax gives

inf
µ′∈Bδ(µ)
ν′∈Bδ(ν)

Wp(µ
′, ν′)

= sup
f∈Cb(X )

[
inf

µ′∈Bδ(µ)

∫
f dµ′ + inf

ν′∈Bδ(ν)

∫
f c dν′

]
,

where δ = ε/(1+ε). At this point, we employ (6), along
with properties of the c-transform, to obtain the desired
dual. We stress that if µ′ and ν′ instead varied within
TV balls, the inner minimization problems would not
admit closed forms due to boundary interactions.

Theorem 2 reveals an elementary procedure for ro-
bustifying the Wasserstein distance against outliers:
regularize its standard Kantorovich dual w.r.t. the sup-
norm of the potential function. The simplicity of this
modification is its main strength. As demonstrated in
Section 6, this enables adjusting popular duality-based
OT solvers, e.g., Arjovsky et al. (2017), to the ro-
bust framework and opens the door for applications to
generative modeling with contaminated datasets. We
provide an interpretation for the maximizing potentials
in Section 4. Some concrete examples for computing
Wε
p are found in Appendix B.3.

Remark 4 (TV as a dual norm). Recall that ‖ · ‖TV
is the dual norm corresponding to the Banach space of
measurable functions on X equipped with ‖ · ‖∞. An
inspection of the proof of Theorem 2 reveals that our
penalty scales with ‖ · ‖∞ precisely for this reason.

Finally, we describe an alternative dual form which ties
robust OT to loss trimming—a popular practical tool
for robustifying estimation algorithms when µ and ν
have finite support (Shen and Sanghavi, 2019).

Proposition 2 (Loss trimming dual). Fix p ∈ [1,∞)
and take µ, ν to be uniform distributions over n points
each. If ε ∈ [0, 1] is a multiple of 1/n, then

Wε
p(µ, ν)p = sup

f∈Cb(X ) min
A⊆supp(µ)
|A|=(1−ε)n

1

|A|
∑
x∈A

f(x) + min
B⊆supp(ν)
|B|=(1−ε)n

1

|B|
∑
y∈B

f c(y)

 .

The inner minimization problems above clip out the
εn fraction of samples whose potential evaluations are
largest. This is similar to how standard loss trimming
clips out a fraction of samples that contribute most to
the considered training loss.

4 STRUCTURAL PROPERTIES

We turn to structural properties of Wε
p, exploring pri-

mal and dual optimizers, regularity of Wε
p in ε, as well

as an alternative (near) coupling-based primal form.

Figure 2: The gridded light blue and green regions each
have mass ε, respectively, and are removed to obtain optimal
µ′ and ν′ for Wε

1. No mass need be removed from the dark
region designating µ ∧ ν.

4.1 Primal and Dual Optimizers

We first prove that there are primal and dual optimizers
satisfy certain regularity conditions.

Proposition 3 (Existence of minimizers). For p ∈
[1,∞] and µ, ν ∈ P(X ), the infimum in (1) is achieved,
and there are minimizers µ′ ≤ µ and ν′ ≤ ν such that
µ′, ν′ ≥ µ ∧ ν and µ′(X ) = ν′(X ) = 1− ε.

We remark that the lower envelope of µ∧ ν, illustrated
in Fig. 2, is straightforward when p = 1, since W1(µ, ν)
is a function of µ − ν. However, this conclusion is
not obvious for p > 1, and its proof in Appendix A.6
utilizes a discretization argument. For achieving the
infimum, we show for p <∞ that the constraint set is
compact w.r.t. the classic Wasserstein topology, while
the objective is clearly continuous in Wp. For p =∞,
we observe that the constraint set is compact and the
objective is lower semicontinuous w.r.t. the topology
of weak convergence over P∞(X ).

Proposition 4 (Interpreting maximizers). If f ∈
Cb(X ) maximizes (7), then any µ′, ν′ ∈M+(X ) min-
imizing (1) satisfy supp(µ − µ′) ⊆ argmax(f) and
supp(ν − ν′) ⊆ argmin(f).

Thus, the level sets of the dual potential encode the
location of outliers in the original measures, as de-
picted in Fig. 3. In fact, optimal perturbations µ− µ′
and ν − ν′ are sometimes determined exactly by an
optimal potential f , often taking the form µ|argmax(f)

and ν|argmax(f) (though not always; we discuss this in
Appendix A.11 along with the proof).

4.2 Regularity in Robustness Radius

We examine how Wε
p depends on the robustness radius.

Proposition 5 (Dependence on ε). For any p ∈ [1,∞],
0 ≤ ε ≤ ε′ ≤ 1, and µ, ν ∈ P(X ), we have

(i) W
‖µ−ν‖TV/2
p (µ, ν) = 0, W0

p(µ, ν) = Wp(µ, ν);

(ii) Wε′

p (µ, ν) ≤Wε
p(µ, ν);

(iii) Wε
p(µ, ν)≤

(
1−ε′
1−ε

) 1
p

Wε′

p (µ, ν)+4 diam(X )
(
ε′−ε
1−ε

) 1
p

.
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𝜇𝜇 𝜈𝜈
𝑓𝑓

Figure 3: Optimal potentials: (top) 1D densities plotted
with their optimal potential for the Wε

1 dual problem; (bot-
tom) contour plots for optimal dual potentials to W1 and
Wε

1 between 2D Gaussian mixtures. Observe how optimal
potentials for the robust dual are flat over outlier mass.

The proof is given in Appendix A.7. More precise,
diameter independent, bounds in the form of (iv) are
provided in the proofs of the robustness results from
Section 2, but these require µ and ν to satisfy certain
moment bounds that do not hold in general.

4.3 Alternative Primal Form

Mirroring the primal Kantorovich problem for classic
Wp, we derive in Appendix A.8 an alternative primal
form for Wε

p in terms of (near) couplings for µ and ν.

Proposition 6 (Alternative primal form). For any
p ∈ [1,∞] and µ, ν ∈ P(X ), we have

Wε
p(µ, ν) = inf

π∈P(X×X )
µ∈Bε(π1), ν∈Bε(π2)

‖d‖Lp(π), (8)

where π1 and π2 are the respective marginals of π.

Remark 5 (Data privacy). From this, we deduce that
Wε
∞(µ, ν) ≤ M if and only if there exists a coupling

(X,Y ) for µ, ν such that |X−Y | ≤M with probability
at least 1−Θ(ε). In Appendix C, we state this more
precisely and leverage this fact for an application to
data privacy. Specifically, within the Pufferfish privacy
framework, the so-called Wasserstein Mechanism (Song
et al., 2017) maximizes W∞ over certain pairs of dis-
tributions to provide a strong privacy guarantee. By
substituting W∞ with Wε

∞, we reach an alternative
mechanism that satisfies a slightly relaxed guarantee
and can introduce significantly less noise.

Proposition 5 implies that limε→0 W
ε
p = Wp, posing Wε

p

as a natural extension of Wp. Given the representation
in Proposition 6, we now ask whether convergence

of optimal (near) couplings also holds. A proof in
Appendix A.9 provides an affirmative answer via a
Γ-convergence argument.

Proposition 7 (Convergence of couplings). Fix p ∈
[1,∞] and µ, ν ∈ P(X ). If εn ↘ 0 and πn ∈ P(X ×X )
is optimal for Wεn

p (µ, ν) via (8), for each n ∈ N, then
{πn}n∈N admits a subsequence converging weakly to an
optimal coupling for Wp(µ, ν).

Finally, we consider a case of practical importance: the
discrete setting where µ and ν have finite supports.
Like classic OT, computing Wε

p(µ, ν) between discrete
measures amounts to a linear program for p < ∞
and can be solved in polynomial time. The proof in
Appendix A.10 starts from the alternative primal form
of Proposition 6 and analyzes the feasible polytope
when the support sizes are equal.

Proposition 8 (Finite support). Let µ and ν be uni-
form discrete measures over n points each. Then there
exist optimal µ′, ν′ for Wε

p(µ, ν) such that µ′ and ν′

each give mass 1/n to b(1 − ε)nc points and assign
their remaining dεne/n− ε mass to a single point.

When ε is a multiple of 1/n, the propositions says
that there exist minimizers which assign equal mass
to (1− ε)n points, while eliminating the remaining εn
that are identified as outliers.

5 STATISTICAL ANALYSIS

We now examine estimation of Wε
p from observed data.

Throughout this section, we fix ε ≤ 1/2.

5.1 Empirical Convergence Rates

In practice, we often have access only to samples from
µ, ν ∈ P(X ), which motivates the study of empiri-
cal convergence under Wε

p. Consider the empirical
measures µ̂n := n−1

∑n
i=1 δXi and ν̂n := n−1

∑n
i=1 δYi ,

where X1, . . . , Xn and Y1, . . . , Yn are i.i.d. samples from
µ and ν, respectively. We examine both the one- and
two-sample scenarios, i.e., the speed at which Wε

p(µ, µ̂n)

and
∣∣Wε

p(µ̂n, ν̂n)−Wε
p(µ, ν)

∣∣ converge to 0 as n grows.

This section assumes that X ⊂ Rd with d > 2; exten-
sions to the non-Euclidean case are provided in the
Appendices A.13 to A.15. To state the results, we need
some definitions. Recall the covering number Nδ(γ, τ),
defined for δ > 0, τ ≥ 0, and γ ∈M+(X ) as the mini-
mum number of closed balls of radius δ needed to cover
X up to a set A with γ(A) ≤ τ . We define the lower
τ -covering dimension for γ as

dτ∗(µ) := lim inf
δ→0

Nδ(γ, τ)

− log(δ)
.
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We note that lower bounds for standard Wp depend on
the lower Wasserstein dimension given by limτ→0 d

τ
∗(µ)

(Weed and Bach, 2019). To provide meaningful bounds
for Wε

p, on the other hand, we require control of dτ∗(µ)
for some τ > ε, which can be understood as a robust
notion of dimension.

Proposition 9 (One-sample rates). Fix p ∈ [1,∞]
and τ ∈ (ε, 1]. If p < d/2, we have

E
[
Wε
p(µ, µ̂n)

]
≤ Cn−1/d

for a constant C independent of n and ε. Furthermore,
if dτ∗(µ) > s , then

Wε
p(µ, γ) ≥ C ′ (τ − ε)1/p

n−1/s

for any γ supported on at most n points, including µ̂n,
where C ′ > 0 is an absolute constant.

The robust τ -covering dimension can be smaller than
standard notions of intrinsic dimension when all but
the outlier mass is lower dimensional. Our lower bound
captures this fact. The upper bound depends on the
ambient dimension d since there is no guarantee that
only outlier mass is supported on a high-dimensional
set4. Indeed, the following corollary shows that when
a significant portion of mass is high-dimensional, the
n−1/d rate is sharp.

Corollary 2 (Simple one-sample rate). Fix p < d/2
and ε ∈ (0, 1]. If µ has absolutely continuous part
f dλ with

∫
f dλ > ε and f bounded from above, then

dτ∗(µ) = d and E
[
Wε
p(µ, µ̂n)

]
= Θ(n−1/d).

In words, if more than the ε mass that can be re-
moved via robustification is absolutely continuous
(w.r.t. Lebesgue on Rd), then the standard n−1/d

“curse of dimensionality” applies. Nevertheless, we con-
jecture that an upper bound that depends on a robust
upper dimension can be derived under appropriate as-
sumptions on µ, as discussed in Section 7. The proofs of
Proposition 9 and Corollary 2 are found in Appendices
A.13 and A.14, respectively.

Moving to the two-sample regime, we again have an
upper bound which matches the standard rate for Wp.

Proposition 10 (Two-sample rate). For any ε ∈ [0, 1]
and p < d/2, we have

E
[∣∣Wε

p(µ̂n, ν̂n)p −Wε
p(µ, ν)p

∣∣] ≤ Cn−p/d.
for a constant C independent of n and ε.

4Our upper bound holds if we substitute d with anything
greater than upper Wasserstein dimension—another notion
of intrinsic dimensionality defined in Weed and Bach (2019).

The proof in Appendix A.15 is a consequence of the dual
form from Theorem 2, combined with standard one-
sample rates for Wp. There, we also discuss obstacles
to extending two-sample lower bounds for standard Wp

to the robust setting.

5.2 Additional Robustness Guarantees

Finally, we provide conditions under which Wp(µ, ν)
can be recovered precisely from Wε

p(µ, ν) despite data
contamination. Naturally, these conditions are stronger
than those needed for approximate (minimax optimal)
robust approximation, as studied in Section 2. We
return to the Huber ε-contamination model, taking µ̃ ∈
Bε(µ) and ν̃ ∈ Bε(ν). One cannot hope to achieve exact
recovery via Wε

p in general, since Wε
p(µ̃, ν̃) <Wp(µ, ν)

when µ̃ = µ and ν̃ = ν for p <∞. Nevertheless, we can
provide exact recovery guarantees under appropriate
mass separation assumptions.

Proposition 11 (Exact recovery). Fix µ, ν ∈ P(X ),
ε ∈ [0, 1], and suppose that µ̃ = (1 − ε)µ + εα and
ν̃ = (1 − ε)ν + εβ, for some α, β ∈ P(X ). Let
S = supp(µ+ ν). If d(supp(α), S), d(supp(β), S), and
d(supp(α), supp(β)) are all greater than diam(S), then
Wε
p(µ̃, ν̃) = Wp(µ, ν).

Our proof in Appendix A.16 uses an infinitesimal per-
turbation argument and shows that, when outliers are
sufficiently far away, removing outlier mass is strictly
better than inlier mass for minimizing Wp. The ap-
pendix also discussed more flexible albeit technical
assumptions under which exact recovery is possible,
and provides bounds for when the robustness radius
does not match the contamination level ε exactly.

Proposition 11 relies on the contamination level ε be-
ing known, which is often not the case in practice. To
account for this, we prove in Appendix A.17 that, un-
der the same assumptions, there exists a principled
approach for selecting the robustness radius when ε is
unknown.

Proposition 12 (Robustness radius for unknown ε).
Assume the setting of Proposition 11 and let D be
the maximum of d(supp(α), S), d(supp(β), S), and
d(supp(α), supp(β)). Then, for p ∈ [1,∞), we have

d
dδ

[
(1−δ)Wδ

p(µ̃, ν̃)p
]
≤ −Dp, δ ∈ [0, ε)

d
dδ

[
(1−δ)Wδ

p(µ̃, ν̃)p
]
≥ −diam(S)p > −Dp, δ ∈ (ε, 1]

at the (all but countably many) points where the deriva-
tive is defined.

As (1− δ)Wδ
p(µ̃, ν̃)p is continuous and decreasing in δ

by Proposition 5, we have identified an “elbow” in this
curve located exactly at the true contamination level ε.

Next, we return to the statistical setting and show how
to obtain exact recovery assuming that the fraction of
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corrupted samples vanishes as n→∞. Consider i.i.d.
samples X1, X2, · · · ∼ µ and Y1, Y2, · · · ∼ ν, arbitrarily
corrupted to obtain X̃1, X̃2, . . . and Ỹ1, Ỹ2, . . . . We
measure the level of corruption by the rates τµ(n) =
1
n

∑n
i=1 1{Xi 6=X̃i} and τν(n) = 1

n

∑n
i=1 1{Yi 6=Ỹi}. For

this result, X may be unbounded, and only the clean
distributions µ and ν need compact support. Let µ̃n
and ν̃n denote the empirical measures associated with
X̃1, . . . , X̃n and Ỹ1, . . . , Ỹn, respectively.

Proposition 13 (Robust consistency). Fix p < ∞
and suppose that τµ(n)∨τν(n) = O(n−a) almost surely,
for some a > 0. Then, setting εn = n−b, for any
0 < b < a, we have∣∣Wp(µ, ν)−Wεn

p (µ̃n, ν̃n)
∣∣→ 0

as n→∞, almost surely.

That is, so long as the fraction of (potentially un-
bounded) corrupted samples converges to 0, there ex-
ists a schedule for robustness radii so that the correct
distance is recovered. The proof in Appendix A.18 uses
ideas from the previous result to alleviate potential
problems arising from large corruptions.

Remark 6 (Median-of-means). This consistency result
mirrors that presented by Staerman et al. (2021) for
a median-of-means (MoM) estimator WMoM. They
produce a robust estimate for W1 by partitioning
the contaminated samples into blocks and replacing
the each mean appearing in the W1 dual with a me-
dian of block means, where the number of blocks de-
pends on the contamination fractions. We remark
that when τµ ∨ τν = Ω(1) and contaminations are

stochastic—i.e., each X̃i and Ỹi are sampled from
some µ̃ ∈ Bε(µ) and ν̃ ∈ Bε′(ν), respectively—we have
WMoM(µ̃n, ν̃n)→W1(µ̃, ν̃). Hence, this approach can-
not provide guarantees in the vein of Section 2, since
it may be that W1(µ̃, ν̃)�W1(µ, ν).

6 APPLICATIONS

We now move to applications of the proposed robust
OT framework. We first discuss computational aspects
and provide an algorithm to compute Wε

p based on its
dual form. The algorithm, which requires only a minor
modification to standard OT solvers, is then used for
generative modeling from contaminated data.

6.1 Computation

In practice, similarity between datasets is often mea-
sured using the so-called neural network (NN) dis-
tance dF (µ, ν) = supθ∈Θ

∫
fθ dµ−

∫
fθ dν, where F =

{fθ}θ∈Θ is a NN class (Arora et al., 2017). Given two
batches of samples X1, . . . , Xn ∼ µ and Y1, . . . , Yn ∼ ν,

we approximate integrals by sample means and estimate
the supremum via stochastic gradient ascent. Namely,
we follow the update rule

θt+1 ← θt +
αt
n

n∑
i=1

[
∇θfθ(Xi)−∇θfθ(Yi)

]
.

When F approximates the class of 1-Lipschitz functions,
we approach a Kantorovich dual and obtain an estimate
for W1(µ, ν), which is the core idea behind the WGAN
(Arjovsky et al., 2017) (see Makkuva et al. (2020) for
an extension to W2).

By virtue of our duality theory, OT solvers as described
above can be easily adapted to the robust framework.
For the purpose of generative modeling, the one-sided
robust distance defined by

Wε
p(µ‖ν) := inf

0≤µ′≤µ
µ′(X )=1−ε

Wp

(
µ′

1− ε
, ν

)
(9)

is most appropriate, since data may be contaminated
but generated samples from the model are not. In
Appendix B.1, we translate our duality result to this
setting, finding that

(1− ε)Wε
p(µ‖ν)p

= sup
f∈Cb(X )

∫
f dµ+ (1− ε)

∫
f c dν − ε sup

x∈X
(f).

(10)

This representation motivates a modified gradient up-
date for the corresponding NN distance5 estimate:

θt+1 ← θt +
αt
n

n∑
i=1

[
∇θfθ(Xi)− (1− ε)∇θfθ(Yi)

]
− ε∇θfθ(Xi∗), i∗ ∈ argmaxi fθ(Xi)

(note here that we are formally computing Clarke sub-
gradients (Clarke, 1990)). For example, in a PyTorch

implementation of WGAN, the modified update can
be implemented with a one-line adjustment of code:

score = f_data.mean() - f_generated.mean() # old
score = f_data.mean() - (1-eps)*f_generated.mean()

- eps*f_data.max() # new

Due to the non-convex and non-smooth nature of the
objective, formal optimization guarantees seem chal-
lenging to obtain, and we defer this exploration for
future work. Nevertheless, as we will see next, this
approach proves quite fruitful in practice. Full experi-
mental details for the following results and comparisons
with existing work are provided in Appendix B.4, and
code is provided at https://github.com/sbnietert/
robust-OT. Computations were performed on a cluster
machine equipped with a NVIDIA Tesla V100.

5An inspection of the proof of Theorem 2 reveals that a
similar duality holds for NN distances, and, generally, IPMs

https://github.com/sbnietert/robust-OT
https://github.com/sbnietert/robust-OT
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Robustified GANs Standard GANs

Figure 4: Top: samples generated by robustified (left) and
standard (right) WGAN-GP after training on corrupted
MNIST dataset. Bottom: samples generated by robustified
(left) and standard (right) StyleGAN 2 after training on
corrupted CelebA-HQ dataset (left).

6.2 Generative Modeling

We examine outlier-robust generative modeling using
the modification suggested above. We train two WGAN
with gradient penalty (WGAN-GP) models (Gulra-
jani et al., 2017) on a contaminated dataset with 80%
MNIST data and 20% random noise, running both with
a standard selection of hyper-parameters but adjusting
one to compute gradient updates according to the ro-
bust objective with a selection of ε = 0.25. In Fig. 4
(top), we display generated samples produced by both
networks after processing 125k contaminated batches
of 64 samples. The effect of outliers is clearly mitigated
by training with the robustified objective.

One subtlety to the above is that WGAN-GP em-
ploys a regularizer R(fθ) penalizing large gradients,
rather than enforcing a Lipschitz constraint. In Ap-
pendix B.5, we provide results demonstrating that our
duality result still holds in the presence of many types
of regularizers. This further motivates us to apply
the robustness technique to more sophisticated GANs
which incorporate additional regularization, in particu-
lar StyleGAN 2 (Karras et al., 2020). We again train
two off-the-shelf models using contaminated data—this
time, 80% CelebA-HQ face photos and 20% MNIST
data—with one tweaked to perform gradient updates
according to the robust objective with ε = 0.25. We
present generated samples in Fig. 4 (bottom). Once
again, the modified objective enables learning a model

that is largely free of outliers despite being trained on
a contaminated dataset.

7 CONCLUDING REMARKS

This paper introduced the outlier-robust Wasserstein
distance Wε

p, which measures proximity between prob-
ability distributions while discarding an ε-fraction of
outlier mass. We conducted a theoretical study of
its structural and statistical properties, covering ro-
bustness guarantees, strong duality, characteristics of
optimal perturbations and dual potentials, regularity
in ε, and empirical convergence. The derived dual
form amounts to a simple modification of classic Kan-
torovich duality that regularizes the objective w.r.t. the
sup-norm of the potential function. This gave rise an
elementary robustification technique for duality-based
OT solvers (by introducing said penalty), which enables
adapting computational methods for classic Wp to com-
pute Wε

p. Leveraging this, we demonstrated the utility
of Wε

p for generative modeling with contaminated data.

Future research directions are abundant, both theoret-
ical and practical. First, the derived duality can be
leveraged for many high-dimensional real-world infer-
ence tasks where outlier-robustness is desired, although
a large-scale empirical exploration is beyond the scope
of this work. We also aim to sharpen our statistical
bounds and provide finite-sample robustness guaran-
tees. In the one-sample case, we expect a tighter upper
bound that depends on an upper (robust) intrinsic
dimension to hold when only a small amount of high-
dimensional mass is present. Indeed, high-dimensional
regions are harder to sample and we therefore expect
Wε
p to treat those as outliers in the empirical approx-

imation setting. The following generalizations of the
considered robust framework are also of interest: (i)
general transportation costs (many of our structural re-
sults immediately generalize); (ii) unbounded domains;
and (iii) other base and constraining distances (e.g.,
IPMs, NN distances, etc.).
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Appendix A Proofs of Main Results

We begin with some further preliminaries and notation. When convenient, we write Eµ[f(X)] for the expectation
of f(X) with X ∼ µ. Next, we recall the general definition of Wp between non-negative measures of equal (but
potentially not unit) mass. Given two measures µ, ν ∈M+(X ) with µ(X ) = ν(X ), let Π(µ, ν) = {µ(X )π : π ∈
Π(µ/µ(X ), ν/ν(X ))}, and, for p ∈ [1,∞], define

Wp(µ, ν) := inf
π∈Π(µ,ν)

‖d‖Lp(π).

We further recall the two-potential version of Kantorovich duality, which states that for p ∈ [1,∞),

Wp(µ, ν)p = sup
f,g∈Cb(X )

f(x)+g(y)≤d(x,y)p

∫
f dµ+

∫
g dν. (11)

Finally, we define the push-forward of a measure µ ∈ M+(X ) w.r.t. a measurable map T : X → Y by
T#µ(B) := µ(T−1(B)) for all measurable B ⊆ Y.

A.1 Preliminary Results

We begin with a useful fact and lemma.

Fact 1. For p ∈ [1,∞], ε ∈ [0, 1], and µ, ν ∈ P(X ), we have Wp(µ, ν) ≤Wp(µ− µ ∧ ν, ν − µ ∧ ν).

Proof. For any feasible coupling π ∈ Π(µ − µ ∧ ν, ν − µ ∧ ν) for the second distance, we have that π′ =
π + (Id, Id)#(µ ∧ ν) ∈ Π(µ, ν) is feasible for the first distance with ‖d‖Lp(π′) = ‖d‖Lp(π).

The following is a helpful rewriting of the Wε
p primal problem.

Lemma 1. For p ∈ [1,∞], ε ∈ [0, 1], and µ, ν ∈ P(X ), we have

Wε
p(µ, ν) = inf

µ′,ν′∈P(X ):
µ∈Bε(µ′), ν∈Bε(ν′)

Wp(µ
′, ν′). (12)

Proof. Here, we use that optimal perturbed measures for the original primal (1) may be taken to have mass
exactly 1− ε (since any feasible measures may be scaled down until this is the case, without changing the original
objective due to its normalization). We further observe that µ ∈ Bε(µ′) if and only if (1− ε)µ′ ≤ µ.

A.2 Proof of Theorem 1

The next lemma is the key to our upper bound, as it will allow us to provide uniform bounds on the estimation
error without considering the contaminated measures.

Lemma 2. Fix p ∈ [1,∞] and ε ≤ 1/4. Take µ, ν ∈ P(X ) and let µ̃ ∈ Bε(µ), ν̃ ∈ Bε(ν). Then, we have

W2ε/(1−ε)
p (µ, ν) ≤Wε

p(µ̃, ν̃) ≤Wp(µ, ν).

Proof. The second inequality follows directly from Lemma 1. For the other direction, we begin with µ′0, ν
′
0 ∈

M+(X ) feasible for the original primal (1) for Wε
p(µ̃, ν̃), i.e., µ′0 ≤ µ̃, ν′0 ≤ ν̃ and µ′0(X ), ν′0(X ) ≥ 1− ε. Then,

we intersect µ′0 with (1 − ε)µ, intersect ν′0 with (1 − ε)ν, and remove up to ε additional mass from each as
needed to obtain µ′1 ≤ (1 − ε)µ and ν′1 ≤ (1 − ε)ν with equal mass such that Wp(µ

′
1, ν
′
1) ≤ Wp(µ

′
0, ν
′
0) and

µ′1(X ) = ν′1(X ) ≥ 1− 3ε. Dividing both measures by 1− ε, we obtain µ′2, ν
′
2 feasible for W

2ε/(1−ε)
p (µ, ν) such that

W2ε/(1−ε)
p (µ, ν) ≤Wp(µ

′
2, ν
′
2) ≤ (1− ε)−1/pWp(µ

′
0, ν
′
0).

Infimizing over µ′0 and ν′0 gives W
2ε/(1−ε)
p (µ, ν) ≤Wε

p(µ̃, ν̃), as desired.
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To complete the argument, it suffices to bound the modulus of continuity

m+ (Dq, τ) := sup
κ∈Dq

sup
κ′∈P(X ):
κ∈Bτ (κ′)

Wp(κ, κ
′).

Indeed, taking µ, ν, µ̃, ν̃ as in the theorem and setting τ = 2ε/(1− ε) ≤ 2
5 , we have

|Wε
p(µ̃, ν̃)−Wp(µ, ν)| ≤Wp(µ, ν)−Wτ

p(µ, ν)

= sup
µ′:µ∈Bτ (µ′)
ν′: ν∈Bτ (ν′)

|Wp(µ, ν)−Wp(µ
′, ν′)|

≤ sup
µ′:µ∈Bτ (µ′)

Wp(µ, µ
′) + sup

ν′: ν∈Bτ (ν′)

Wp(ν, ν
′)

≤ 2m+ (Dq, τ) .

Hence, we conclude the upper bound with the following lemma.

Lemma 3. For any q > p and τ ∈ [0, 1/2], we have

m+(Dq, τ) .Mτ1/p−1/q.

Proof. Without loss of generality, we suppose that M = 1 (otherwise, one can always apply the lemma to the
same metric space with distances — and hence OT measurements — shrunk by a factor of M). To control this
modulus, fix any κ ∈ Dq and κ′ ∈ P(X ) such that κ = (1− τ)κ′ + τα for some α ∈ P(X ). Next, take yκ, yα, yκ′

minimizing Eκ[d(X, ·)q], Eα[d(X, ·)q], and Eκ′ [d(X, ·)q], respectively. Then, we compute

Wp(κ, κ
′) ≤ τ1/pWp(κ

′, α) ≤ τ1/pWq(κ
′, α)

≤ τ1/p
(
Wq(κ

′, δyκ′ ) + Wq(α, δyα) + Wq(δyκ′ , δyα)
)

= τ1/p
(
Eκ′ [d(yκ′ , X)q]1/q + Eα[d(yα, X)q]1/q + d(yκ′ , yα)

)
≤ 3 τ1/p (Eκ′ [d(yκ′ , X)q] + Eα[d(yα, X)q] + d(yκ′ , yα)q)

1/q
.

Here, the first inequality follows from Fact 1, the second uses that Wp is increasing in p, the third follows from
the triangle inequality for Wq, and the final inequality is a consequence of Hölder’s inequality. To bound the first
two summands of the final expression, we compute

1 ≥ Eκ[d(yκ, X)q] = (1− τ)Eκ′ [d(yκ, X)q] + τ Eα[d(yκ, X)q]

≥ τ (Eκ′ [d(yκ, X)q] + Eα[d(yκ, X)q])

≥ τ (Eκ′ d(yκ′ , X)q] + Eα[d(yα, X)q]) ,

where the first inequality uses that κ ∈ Dq, the second inequality uses that τ ≤ 1/2, and the last uses the
definitions of yκ′ and yα. For the final distance term, we begin by writing xκ′ = Eκ′ [X] and xα = Eα[X] and
bounding

1 ≥ τ (Eκ′ d(yκ′ , X)q] + Eα[d(yα, X)q])

≥ τ (d(yκ′ , xκ′)
q + d(yα, xα)q)

≥ τ

2q
(d(yκ′ , xκ′) + d(yα, xα))

q
,

where the first inequality was shown above, the second follows by Jensen’s inequality, and the third by Hölder’s.
Next, we show

1 ≥ τ (Eκ′ d(yκ, X)q] + Eα[d(yκ, X)q])

≥ τ (d(yκ, xκ′)
q + d(yκ, xα)q)

≥ τ

2q
(d(yκ, xκ′) + d(yκ, xα))

q

≥ τ

2q
(d(xκ′ , xα))

q
,
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using the previous line of logic along with the triangle inequality. Combining the two with another application of
the triangle inequality gives

d(yκ′ , yα) ≤ 1

2
τ−1/q +

1

2
τ−1/q = τ−1/q.

All together, we obtain

Wp(κ, κ
′) ≤ 3 τ1/p

(
τ−1 + τ−1

)1/q ≤ 6 τ1/p−1/q,

as desired.

For the lower bound, we use the following result.

Lemma 4. For any D ⊆ P(X ) and τ ∈ [0, 1], we have E(D, τ) & m−(D, τ) := sup κ,κ′∈D
κ∈Bτ (κ′)

Wp(κ, κ
′).

Proof. Fix any feasible κ, κ′ ∈ D with κ ∈ Bτ (κ′), and suppose that both contaminated measures µ̃ and ν̃ are
equal to κ. This is consistent with two cases: (1) the clean measures are µ = ν = κ′ (in which case Wp(µ, ν) = 0);
and (2) the clean measures are µ = κ and ν = κ′ (in which case Wp(µ, ν) = Wp(κ, κ

′)). Hence, no matter which

distance a robust proxy Ŵ assigns to µ̃ and ν̃, it must incur error at least Wp(κ, κ
′)/2 in one of these cases,

proving the lemma.

To conclude, we fix two points x, y ∈ X such that d(x, y) = ε−1/q as guaranteed by the theorem condition (the
same proof works when exact equality fails after shrinking ε by a constant factor). Then we apply Lemma 4 to
lower bound E(Dq, ε) by 1

2Wp(κ, κ
′), where κ = δx and κ′ = (1− τ)δx + εδy. Indeed, both distributions belong

to Dq (since Eκ′ [d(x,X)q] = εd(x, y)q = 1) and Wp(κ, κ
′) = ε1/pd(x, y) = ε1/p−1/q.

A.3 Proof of Corollary 1

For the upper bound, we observe that for κ ∈ Dcov
2 with mean Eκ[X] = xκ, we have

E[‖xκ −X‖22] = tr(Σκ) ≤ d.

Hence (by scaling down Rd by a factor of d), we obtain the desired upper bound as an application of Theorem
1. For the other direction, we apply Lemma 4 to lower bound E(Dcov

2 , ε) by 1
2Wp(κ, κ

′) where κ = δ0 and
κ′ = (1 − ε)δ0 + εN (0, I/ε). Indeed, both distributions belong to Dcov

2 (since, in case (2), Σν = I) and
Wp(µ, ν) ≥ ε1/p EX∼N (0,I/ε)[‖X‖] = Ω(

√
d ε1/p−1/2), as desired.

A.4 Proof of Proposition 1

Proposition 1 (Mass addition). For all p ∈ [1,∞] and µ, ν ∈ P(X ), we have

Wε
p(µ, ν) = (1− 2δ)−1/p inf

µ′∈Bδ(µ)
ν′∈Bδ(ν)

Wp(µ
′, ν′), (5)

where δ = ε/(1 + ε).

Proof. To begin, we rewrite the RHS as(
1 + ε

1− ε

)1/p

inf
µ̃∈B ε

1+ε
(µ)

ν̃∈B ε
1+ε

(ν)

Wp(µ̃, ν̃) = inf
µ′≥µ,ν′≥ν

µ′(X ),ν′(X )=1+ε

Wp

(
µ′

1− ε
,
ν′

1− ε

)
=: W

ε

p (µ, ν). (13)

First, we prove that Wε
p(µ, ν) ≥ W

ε

p (µ, ν). Take µ′ ≤ µ and ν′ ≤ ν optimal for the original formulation (1) of
Wε
p(µ, ν), with µ′(X ) = ν′(X ) = 1 − ε (see Proposition 3 for existence of minimizers). Take π ∈ Π(µ′, ν′) to

be an optimal coupling for Wp(µ
′, ν′). Then, consider the alternative perturbed measures µ′+ := µ + (ν − ν′)



Sloan Nietert, Rachel Cummings, Ziv Goldfeld

and ν′+ := ν + (µ − µ′), which are feasible for W
ε

p (µ, ν), and define the coupling π+ ∈ Π(µ′+, ν
′
+) by π+ =

π + (Id, Id)#(µ− µ′ + ν − ν′). By construction, we have ‖d‖Lp(π+) = ‖d‖Lp(π), and so

W
ε

p (µ, ν) ≤ (1− ε)−1/p‖d‖Lp(π+) = (1− ε)−1/pWp(µ
′, ν′) = Wε

p(µ, ν),

as desired.

For the other direction, consider any µ′ ≥ µ and ν′ ≥ ν feasible for W
ε

p (µ, ν), and write µ′ = µ+ α, ν′ = ν + β
for α, β ∈M+(X ) with α(X ) = β(X ) = ε. Take π ∈ P(µ′, ν′) to be an optimal coupling for Wp(µ

′, ν′), and let
π(y|x) be the regular conditional probability distribution such that ν′(·) =

∫
X π(·|x) dµ′(x). Informally, we next

show that the added masses α and β need not be moved during transport, since we might as well replace them
with their destinations after transport. Formally, this requires a bit of labeling.

To start, we decompose ν′ into ν′ = ν′←µ + ν′←α, where ν′←µ(·) :=
∫
X π(·|x) dµ(x) denotes the mass transported

from µ to ν′ via π and ν′←α(·) :=
∫
X π(·|x) dα(x) denotes the mass transported from α. Similarly, we decompose

ν into ν←µ = ν′←µ ∧ ν and ν←α = ν − ν←µ and split β into β←µ = ν′←µ − ν←µ and β←α = β − β←µ. By this
construction, we have

ν = ν←µ + ν←α, β = β←µ + β←α, ν′←µ = ν←µ + β←µ, ν′←α = ν←α + β←α.

Next, we arbitrarily decompose µ into µ→ν + µ→β and α into α→ν + α→β so that ν(·) =
∫
X π(·|x) d(µ→ν +

α→ν)(x). To see that this is always possible, consider the restricted coupling π̄ ∈ Π(µ, ν′←µ) defined by
π̄(A × B) =

∫
A
π(B|x) dµ(x), as well as the regular conditional probability distribution π̄(x|y) satisfying

µ(·) =
∫
X π̄(·|y) dν′←µ(y). We can then set µ→ν(·) =

∫
X π̄(·|y) dν←µ(y) and µ→β = µ − µ→ν . The same

method works to construct α→ν and α→β .

Now, consider the alternative perturbed measures µ̃′ = µ+ ν′←α = µ→ν + ν′←α + µ→β and ν̃′ = ν + µ→β + β←α =
ν←µ + ν′←α + µ→β with π̃ ∈ Π(µ̃′, ν̃′) defined by

π̃(A×B) :=

∫
A

π(B|x) dµ→ν(x) + (Id, Id)#(ν′←α + µ→β)(A×B)

=

∫
A

π(B|x) dµ→ν(x) + (µ→β + ν′←α)(A ∩B).

Note that µ̃′ and ν̃′ are still feasible for the mass-addition problem and ‖d‖Lp(π̃) ≤ Wp(µ
′, ν′), implying that

‖d‖Lp(π̃) = Wp(µ
′, ν′). Finally, observe that µ→ν ≤ µ and ν←µ ≤ ν are feasible for the initial mass-subtraction

problem (1), so

Wε
p(µ, ν)p ≤Wp

(
µ→ν

µ→ν(X )
,

ν←µ
µ→ν(X )

)p
=

1

µ→ν(X )
Wp(µ→ν , ν←µ)p

≤ 1

µ→ν(X )
‖d‖pLp(π̃)

=
1

µ→ν(X )
Wp(µ

′, ν′)p

=
1− ε

µ→ν(X )
W

ε

p (µ, ν)p

≤W
ε

p (µ, ν)p,

as desired.

A.5 Proof of Theorem 2

Theorem 2 (Dual form). For p ∈ [1,∞), ε ∈ [0, 1], and µ, ν ∈ P(X ), we have

(1−ε)Wε
p(µ, ν)p= sup

f∈Cb(X )

∫
f dµ+

∫
f c dν − 2ε‖f‖∞

= sup
f∈Cb(X )

∫
f dµ+

∫
f c dν − εRange(f),

(7)
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and the suprema are achieved by f ∈ Cb(X ) with f = (f c)c.

Proof. To start, we apply Proposition 1 and Kantorovich duality (11) to obtain

(1− ε)Wε
p(µ, ν)p = inf

α,β∈M+(X )
α(X )=β(X )=ε

Wp (µ+ α, ν + β) (14)

= inf
α,β∈M+(X )
α(X )=β(X )=ε

sup
f,g∈Cb(X )

f(x)+g(y)≤d(x,y)p

∫
f d(µ+ α) +

∫
g d(ν + β). (15)

By compactness of X , the infimum set is itself compact w.r.t. the weak topology. Having that, it is readily verified
that the conditions for Sion’s minimax theorem (convexity, continuity of objective, and compactness of infimum
set) apply, giving

(1− ε)Wε
p(µ, ν)p = sup

f,g∈Cb(X )
f(x)+g(y)≤d(x,y)p

∫
f dµ+

∫
g dν + inf

α∈M+(X ),α(X )=ε

∫
f dα+ inf

β∈M+(X ),β(X )=ε

∫
g dβ

= sup
f,g∈Cb(X )

f(x)+g(y)≤d(x,y)p

∫
f dµ+

∫
g dν + ε

(
inf
x∈X

f(x) + inf
y∈X

g(y)

)
.

Noting that replacing g with f c preserves the constraints and can only increase the objective, we further have

(1− ε)Wε
p(µ, ν)p = sup

f∈Cb(X )

∫
f dµ+

∫
f c dν − ε

(
sup
x∈X

f(x)− inf
x∈X

f(x)

)
= sup
f∈Cb(X )

∫
f dµ+

∫
f c dν − εRange(f),

using the fact that infy f
c(y) = infx,y d(x, y)p − f(x) = − supx f(x). The same reasoning allows us to restrict to

f = (f c)c if desired. Since adding a constant to f decreases f c by the same constant, we are free to shift f so that
the final term equals 2ε‖f‖∞. Without shifting, we always have Range(f) ≤ 2‖f‖∞, so the problem simplifies to

(1− ε)Wε
p(µ, ν)p = sup

f∈Cb(X )

∫
f dµ+

∫
f c dν − 2ε‖f‖∞,

as desired. Since Wε
p(µ, ν) ≤ Wp(µ, ν), we can assume that the supremum set is uniformly bounded with

‖f‖∞ ≤ Wp(µ, ν)/(2ε). Furthermore, the argument preceding (Santambrogio, 2015, Proposition 1.11) proves that
the supremum set is uniformly equicontinuous. Since X is compact, Arzelà–Ascoli implies that the supremum is
achieved.

See Appendix B.1 for an extension of this result to the asymmetric setting.

A.6 Proof of Proposition 3

Proposition 3 (Existence of minimizers). For p ∈ [1,∞] and µ, ν ∈ P(X ), the infimum in (1) is achieved, and
there are minimizers µ′ ≤ µ and ν′ ≤ ν such that µ′, ν′ ≥ µ ∧ ν and µ′(X ) = ν′(X ) = 1− ε.

Proof. We first prove existence via a compactness argument, and then turn to the lower envelope property
µ′, ν′ ≥ µ ∧ ν. This turns out to be considerably simpler to prove in the discrete setting, so we begin there and
extend to the general case via a discretization argument. We already addressed the mass equality constraints in
the proof of Lemma 1.

Existence: Because measures in this feasible set are positive and bounded by µ and ν, the set is tight, i.e.
pre-compact w.r.t. the topology of weak convergence. If p <∞, then for any sequence µ′n, ν

′
n in the infimum set,

lim
R→∞

lim sup
n→∞

∫
d(x0,x)≥R

d(x0, x)p dµ′n(x) ≤ lim
R→∞

∫
d(x0,x)≥R

d(x0, x)p dµ(x) = 0,
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since µ ∈ Pp(X ), with the same holding for the ν′n sequence. Thus, by the characterization of convergence in Wp

given by (Villani, 2009, Theorem 6.8), the infimum set is precompact w.r.t. Wp. Finally, the mass function in the
constraints is continuous w.r.t. the weak topology, so the infimum set is compact w.r.t. Wp. As the objective is
clearly continuous with w.r.t. Wp, the infimum is achieved.

For p =∞, we note that W∞ is lower semicontinuous on P∞(X ) w.r.t. the weak topology (and since supports

are compact, the Wp topology, for all p <∞). Indeed, for any µ′n
w→ µ′, ν′n

w→ ν′ in P∞(X ), we have

lim inf
n→∞

W∞(µ′n, ν
′
n) = lim inf

n→∞
sup
p→∞

Wp(µ
′
n, ν
′
n)

≥ sup
p→∞

lim inf
n→∞

Wp(µ
′
n, ν
′
n)

≥ sup
p→∞

Wp(µ
′, ν′) = W∞(µ′, ν′).

The infimum of a lower semicontinuous function over a compact set is always achieved, as desired.

Lower envelope (discrete case): Having proven the existence of minimizers µ′ ≤ µ and ν′ ≤ ν, it remains to
show that we can take µ′, ν′ ≥ µ ∧ ν. We begin with the case where X is countable and treat measures and their
mass functions interchangeably. Then, if µ′ ≥ µ ∧ ν fails to hold, there exists x0 ∈ X such that µ′(x0) < µ(x0)
and µ′(x0) < ν(x0). We can further assume that ν(x0) = ν′(x0). Otherwise, a := (ν − ν′)(x0)∧ (µ−µ′)(x0) mass
could be returned to both µ′ and ν′ at x0 without increasing their transport cost. Indeed, for any π ∈ Π(µ′, ν′),
the modified plan π + a · δ(x0,x0) is valid for the new measures, µ′ + aδx0 and ν′ + aδx0 (still feasible by the choice
of a), and attains the same cost.

Taking π ∈ Π(µ′, ν′) optimal for Wp(µ
′, ν′), we define the measure κ ≤ µ′ by κ(x0) := 0, κ(x) := π(x, x0) for

x 6= x0. This captures the distribution of the mass that is transported away from x0 w.r.t. π when transporting
ν′ to µ′. By conservation of mass, κ has total mass at least (ν′ − µ′)(x0) > 0, so we can set κ̃ ≤ κ to be a
scaled-down copy of κ with total mass (µ ∧ ν′ − µ′)(x0) > 0. Now, we define an alternative perturbed measure
µ̃′ := µ′ + κ̃(X ) · δx0

− κ̃. By definition, we have 0 ≤ µ̃′ ≤ µ′ with µ̃′(X ) = µ′(X ) and µ̃′(x0) = (µ ∧ ν′)(x0).
Furthermore, the modified plan π̃ defined by

π̃(x, y) =


π(x, y), y 6= x0
κ(X )−κ̃(X )

κ(X ) π(x, x0), x 6= x0, y = x0

π(x0, x0) + κ̃(X ), x = y = x0

satisfies π̃ ∈ Π(µ̃′, ν′) and ‖d‖Lp(π̃) < ‖d‖Lp(π) = Wp(µ
′, ν′), contradicting the optimality of µ′.

Lower envelope (general case): For general X , we will need the following lemma, which allows us to apply
our discrete argument to all settings.

Lemma 5 (Dense approximation). Let (Y, ρ) be a separable metric space with dense subset D ⊆ Y. For any
y ∈ Y, let yλ denote a representative from D with d(y, yλ) ≤ λ (which exists by separability). Similarly, for
any K ⊆ Y, define Kλ = {yλ : y ∈ K}. Then, if f : Y → R is uniformly continuous, we have infy∈K f(y) =
limλ→0 infy∈Kλ f(y).

Proof. First, if {yn}n∈N is an infimizing sequence for infy∈K f(y), then

lim inf
λ→0

inf
y∈Kλ

f(y) ≤ lim inf
n→∞

f(y1/n
n ) = lim

n→∞
f(yn) = inf

y∈K
f(y),

where the second equality relies on the uniform continuity of f . Similarly, if {yn}n∈N with yn ∈ Kλn , λn ↘ 0, is

an limiting sequence for lim supλ→0 infy∈Kλ f(x), then we can write yn = x
1/n
n for xn ∈ K and find

lim sup
λ→0

inf
y∈Kλ

f(y) = lim sup
n→∞

f(yn) = lim sup
n→∞

f(xn) ≥ inf
y∈K

f(y),

where the second equality again follows from the uniform continuity of f . The two inequalities imply the
lemma.
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We will essentially apply this lemma to the space of measures Y = ((1− ε)Pp(X ),Wp), letting D be its dense
subset of discrete measures. For any λ > 0, separability of X implies the existence of a countable partition
{Aλi }i∈N of X such that diam(Aλi ) ≤ λ for all i ∈ N, with representatives xλi ∈ Aλi for all i ∈ N. For any measure
κ ∈ Y , we let κλ ∈M+(∪i∈N{xλi }) denote the discretized measure defined by κλ :=

∑
i∈N κ(Aλi ) · δxλi . For p <∞,

we have

Wp(κ, κ
λ)p ≤

∑
i∈N

Wp(κ|Aλi , κ(Aλi ) · δxλi )p ≤
∑
i∈N

κ(Aλi )λp = λp,

and so Wp(κ, κ
λ) ≤ λ (including p =∞ by continuity). This discretization lifts to sets as in the lemma. Now,

for any α, β ∈ M+(X ) with α ≤ β, let Kα,β = {κ ∈ Y : α ≤ κ ≤ β, κ(X ) = 1− ε}. Importantly, this choice of
discretization satisfies Kλ

α,β = Kαλ,βλ . Indeed if κ ∈ Kα,β , then κλ ∈ Kαλ,βλ by our discretization definition, and
total mass is preserved. Likewise, if κ ∈ Kαλ,βλ , then we can consider

κ̃ :=
∑

i:xi∈supp(κ′)

α|Aλi + ci(β − α)|Aλi ,

where ci ∈ [0, 1] are chosen such that κ̃({i}) = κ(Ai) for all i. By this construction, we have κ = κ̃λ and κ̃ ∈ Kα,β

with κ̃(X ) = κ(X ) = 1− ε, as desired. We also observe that αλ ∧ βλ = (α ∧ β)λ. Putting everything together, we
finally obtain

(1− ε)1/pWε
p(µ, ν) = inf

µ′∈K0,µ

ν′∈K0,ν

Wp(µ
′, ν′) (16)

= lim
λ→0

inf
µ′∈Kλ

0,µ

ν′∈Kλ
0,ν

Wp(µ
′, ν′) (17)

= lim
λ→0

inf
µ′∈K

0,µλ

ν′∈K
0,νλ

Wp(µ
′, ν′) (18)

= lim
λ→0

inf
µ′∈K

µλ∧νλ,µλ

ν′∈K
µλ∧νλ,νλ

Wp(µ
′, ν′) (19)

= lim
λ→0

inf
µ′∈K

(µ∧ν)λ,µλ

ν′∈K
(µ∧ν)λ,νλ

Wp(µ
′, ν′) (20)

= lim
λ→0

inf
µ′∈Kλ

µ∧ν,µ
ν′∈Kλ

µ∧ν,ν

Wp(µ
′, ν′) (21)

= inf
µ′∈Kµ∧ν,µ
ν′∈Kµ∧ν,ν

Wp(µ
′, ν′). (22)

concluding the proof. Here, (17) is an application of Lemma 5 (technically, we use the product space Y × Y with
metric (α, β), (α′, β′) 7→ max{Wp(α, α

′),Wp(β, β
′)}), (18) uses that Kλ

α,β = Kαλ,βλ , (19) is an application of the
discrete result, and the remaining steps apply the same results in reverse order. The final equality shows that the
lower envelope of µ ∧ ν can be assumed even in this general setting.

A.7 Proof of Proposition 5

Proposition 5 (Dependence on ε). For any p ∈ [1,∞], 0 ≤ ε ≤ ε′ ≤ 1, and µ, ν ∈ P(X ), we have

(i) W
‖µ−ν‖TV/2
p (µ, ν) = 0, W0

p(µ, ν) = Wp(µ, ν);

(ii) Wε′

p (µ, ν) ≤Wε
p(µ, ν);

(iii) Wε
p(µ, ν)≤

(
1−ε′
1−ε

) 1
p

Wε′

p (µ, ν) + 4 diam(X )
(
ε′−ε
1−ε

) 1
p

.
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Proof. For (i), we clearly have W0
p = Wp, and

W‖µ−ν‖TV/2p (µ, ν) ≤ (1− ‖µ− ν‖TV/2)−1/pWp(µ ∧ ν, µ ∧ ν) = 0.

For (ii), let µ′, ν′ be optimal for Wε1
p (µ, ν) (in the mass removal formulation) and take π ∈ Π(µ′, ν′) to be an

optimal coupling for Wp(µ
′, ν′). We can transform π into a feasible coupling for Wε2

p by restricting ourselves to

the fraction 1−ε1
1−ε2 of mass π′ minimizing ‖d‖Lp(π′). This gives that

(1− ε2)1/pWε2
p (µ, ν) ≤

(
1− ε2

1− ε1

)1/p

(1− ε1)1/pWε1
p (µ, ν) ⇐⇒ Wε2

p (µ, ν) ≤Wε1
p (µ, ν),

as desired.

For (iii), we recall from Villani (2009, Theorem 6.13) that for α, β ∈M+(X ) with α(X ) = β(X ), we have

Wp(α, β) ≤ 2 diam(X )‖α− β‖1/pTV .

Since any pair of feasible measures for Wε2
p are within (coordinate-wise) TV distance ε2 − ε1 from a pair of

feasible measures for Wε1
p , this bound combined with the triangle inequality for Wp gives

(1− ε2)1/pWε2
p (µ, ν) ≥ (1− ε1)1/pWε1

p (µ, ν)− 4 diam(X )(ε2 − ε1)1/p,

which can be rearranged to give the desired inequality.

A.8 Proof of Proposition 6

Proposition 6 (Alternative primal form). For any p ∈ [1,∞] and µ, ν ∈ P(X ), we have

Wε
p(µ, ν) = inf

π∈P(X×X )
µ∈Bε(π1), ν∈Bε(π2)

‖d‖Lp(π), (8)

where π1 and π2 are the respective marginals of π.

Proof. Starting from formulation given by Lemma 1, we compute

Wε
p(µ, ν) = inf

µ′:µ∈Bε(µ′)
ν′: ν∈Bε(ν′)

Wp(µ
′, ν′) = inf

µ′:µ∈Bε(µ′)
ν′: ν∈Bε(ν′)
π∈Π(µ′,ν′)

‖d‖Lp(π) = inf
π∈P(X×X )
µ∈Bε(π1)
ν∈Bε(π2)

‖d‖Lp(π),

eliminating auxiliary variables µ′ and ν′ for the final equality.

A.9 Proof of Proposition 7

Proposition 7 (Convergence of couplings). Fix p ∈ [1,∞] and µ, ν ∈ P(X ). If εn ↘ 0 and πn ∈ P(X × X )
is optimal for Wεn

p (µ, ν) via (8), for each n ∈ N, then {πn}n∈N admits a subsequence converging weakly to an
optimal coupling for Wp(µ, ν).

Proof. In this case, because the two marginals of each πn are bounded by µ
1−ε and ν

1−ε respectively, this
sequence is tight and admits a weakly convergent subsequence converging to some π? ∈ P(X × X ). Furthermore,
π?(A× X ) = limn→∞ πn1 (A) = µ(A), and, likewise, π?(X ×B) = ν(B); hence π? ∈ Π(µ, ν). We now recall the
definition of Γ-convergence.

Definition 1 (Γ-Convergence). Let Y be a metric space and consider a sequence Fn : Y → R ∪ {∞}, n ∈ N. We

say that {Fn}n∈N Γ-converges to F : Y → R ∪ {∞} and write Fn
Γ→ F if

(i) For every yn, y ∈ Y, n ∈ N, with yn → y, we have F (y) ≤ lim infn→∞ Fn(yn);

(ii) For any y ∈ Y, there exists yn ∈ Y, n ∈ N, with yn → y and F (y) ≥ lim supn→∞ Fn(yn).
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If {yn}n∈N is a sequence of minimizers for Fn, for each n ∈ N, and Fn
Γ→ F , then any limit point of {yn}n∈N is a

minimizer of F (Maso, 2012, Corollary 7.20). Hence, it suffices to prove the Γ-convergence of Fn : P(X × X )→
R ∪ {∞} to F : P(X × X )→ R ∪ {∞} as defined by

Fn(γ) =

{
‖d‖Lp(γ), µ ∈ Bεn(γ1), ν ∈ Bεn(γ2)

∞, o.w.

F (γ) =

{
‖d‖Lp(γ), γ ∈ Π(µ, ν)

∞, o.w.

For the lim inf inequality, we start with any sequence γn ∈ P(X × X ), n ∈ N, with weak limit γ ∈ P(X × X ). If
{γn}n∈N does not contain a subsequence with µ ∈ Bεn((γn)1), ν ∈ Bεn((γn)2), then the claim is trivial. Otherwise,
γ ∈ Π(µ, ν), and the Portmanteau Theorem gives

F (γ) = ‖d‖Lp(γ) ≤ lim inf
n→∞

‖d‖Lp(γn) = Fn(γn),

where we used the fact that dp is non-negative and continuous for p <∞. The fact that Lp norms are continuous
in p ∈ [1,∞] implies that the inequality holds for p =∞ as well.

For the lim sup direction, fix γ ∈ Π(µ, ν). Then, we must have µ ∈ Bεn(γ1), ν ∈ Bεn(γ2) for all n ∈ N, so we can
consider the constant sequence γn ≡ γ, n ∈ N, and obtain

Fk(γn) = ‖d‖Lp(γ) = F (γ),

which implies the desired condition.

A.10 Proof of Proposition 8

Proposition 8 (Finite support). Let µ and ν be uniform discrete measures over n points each. Then there exist
optimal µ′, ν′ for Wε

p(µ, ν) such that µ′ and ν′ each give mass 1/n to b(1− ε)nc points and assign their remaining
dεne/n− ε mass to a single point.

Proof. Assume first that p <∞ and εn = k for some k ∈ N. Suppose that µ is uniform over {x1, . . . , xn} and
ν is uniform over {y1, . . . , yn}. Define the cost matrix C ∈ Rn×n with Cij = d(xi, yj)

p. Then, we can rewrite
definition (1) for Wε

p as a linear program, computing

(1− ε)Wε
p(µ, ν)p = min

π∈Rn×n+

π1≤1/n
πᵀ1≤1/n
1ᵀπ1≥1−ε

tr(πC) =
1

n
min

π∈Rn×n+

π1≤1
πᵀ1≤1

1ᵀπ1≥n−k

tr(πC).

This representation relates to the problem of characterizing the extreme points of the polytope of doubly
substochastic n× n matrices with entries summing to an specified integer. This polytope was studied in Cao and
Chen (2019), where Theorem 4.1 shows that the extreme points of interest are exactly the partial permutation
matrices of order n− k. This implies the existence of a coupling for Wε

p(µ, ν)p whose marginals are uniform over
n− k = (1− ε)n points (giving mass 1/n to each point).

When ε is not a multiple of 1/n, the same result (Cao and Chen, 2019, Theorem 4.1) reveals that there are
optimal perturbed measures that each give mass 1/n to b(1− ε)nc points and give the remaining mass to a single
point. For p sufficiently large, the set of minimizers to the above problem stabilizes to a constant set, so this
argument captures the p =∞ case as well.

A.11 Proof of Proposition 4

Proposition 4 (Interpreting maximizers). If f ∈ Cb(X ) maximizes (7), then any µ′, ν′ ∈M+(X ) minimizing
(1) satisfy supp(µ− µ′) ⊆ argmax(f) and supp(ν − ν′) ⊆ argmin(f).
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Proof. Take f ∈ Cb(X ) maximizing (7) (by Theorem 2, such f is guaranteed to exist). Take any µ′ = µ−α, ν′ =
ν − β optimal for the mass removal formulation of Wε

p(µ, ν), where α, β ∈M+(X ) with α(X ) = β(X ) = ε. Of
course, µ+ β and ν + α are then optimal for the mass addition formulation of Wε

p(µ, ν). Examining the proof
of Theorem 2, we see that µ+ β, ν + α and f, f c must be a minimax equilibrium for the problem given in (15).
Consequently, we have

(1− ε)Wε
p(µ, ν)p =

∫
f dµ+

∫
f c dν +

∫
f dβ +

∫
f c dα (23)

=

∫
f dµ+

∫
f c dν + ε inf

x
f(x)− ε sup

x
f(x). (24)

Since infy f
c(y) = − supx f(x) (and the minimizers of f c correspond to the maximizers of f), we have that

(23) is strictly less than (24) unless supp(β) ⊆ argmin(f) and supp(α) ⊆ argmax(f). This suggests taking
α = µ|argmax(f) and β = ν|argmin(f), but we cannot do so in general; consider the case where µ and ν are uniform
discrete measures on n points and ε is not a multiple of 1/n. Issues with that approach also arise when µ and ν
are both supported on argmax(f) and the optimal µ′ satisfies µ′ ≥ µ ∧ ν.

A.12 Proof of Proposition 2

Proposition 2 (Loss trimming dual). Fix p ∈ [1,∞) and take µ, ν to be uniform distributions over n points
each. If ε ∈ [0, 1] is a multiple of 1/n, then

Wε
p(µ, ν)p = sup

f∈Cb(X ) min
A⊆supp(µ)
|A|=(1−ε)n

1

|A|
∑
x∈A

f(x) + min
B⊆supp(ν)
|B|=(1−ε)n

1

|B|
∑
y∈B

f c(y)

 .

Proof. We place no restrictions on µ and ν initially and extend to the two-sided robust distance Wε1,ε2
p defined in

Appendix B.1. For this result, we will apply Sion’s minimax theorem to the mass-removal formulation of Wε1,ε2
p .

Mirroring the proof of Theorem 2, we compute

Wε1,ε2
p (µ, ν) = inf

0≤µ′≤µ
0≤ν′≤ν

µ′(X )=1−ε1
ν′(X )=1−ε2

sup
f,g∈Cb(X )

f(x)+g(y)≤d(x,y)p

1

1− ε1

∫
f dµ′ +

1

1− ε2

∫
g dν′

= sup
f,g∈Cb(X )

f(x)+g(y)≤d(x,y)p

 1

1− ε1
inf

0≤µ′≤µ
µ′(X )=1−ε1

∫
f dµ′ +

1

1− ε2
inf

0≤ν′≤ν
ν′(X )=1−ε2

∫
g dν′


= sup
f∈Cb(X )

 1

1− ε1
inf

0≤µ′≤µ
µ′(X )=1−ε1

∫
f dµ′ +

1

1− ε2
inf

0≤ν′≤ν
ν′(X )=1−ε2

∫
f c dν′

 .

When µ and ν are uniform distributions over n points, and ε1, ε2 are multiples of 1/n, we simplify further to

Wε1,ε2
p (µ, ν) = sup

f∈Cb(X )

 1

|A|
min

A⊆supp(µ)
|A|=(1−ε1)n

∑
x∈A

f(x) +
1

|B|
min

B⊆supp(ν)
|B|=(1−ε2)n

∑
y∈B

f c(y)

 ,

as desired

A.13 Proof of Proposition 9

Proposition 9 (One-sample rates). Fix p ∈ [1,∞] and τ ∈ (ε, 1]. If p < d/2, we have

E
[
Wε
p(µ, µ̂n)

]
≤ Cn−1/d
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for a constant C independent of n and ε. Furthermore, if dτ∗(µ) > s , then

Wε
p(µ, γ) ≥ C ′ (τ − ε)1/p

n−1/s

for any γ supported on at most n points, including µ̂n, where C ′ > 0 is an absolute constant.

Proof. For the upper bound, we simply use that Wε
p(µ, ν) ≤ Wp(µ, ν) and apply well-known empirical convergence

results for Wp which give E[Wp(µ, µ̂n)] ≤ Cn−1/d for a constant C independent of n (and ε); see, e.g., Weed and
Bach (2019).

For the lower bound, if d∗(µ) > s, then there is δ0 > 0 such that Nδ(µ, τ) ≥ δ−t for all δ ≤ δ0. By Proposition 3,
we know that Wε

p(µ, γ) is achieved by µ′ ≤ µ and γ′ ≤ γ, with | supp(γ′)| ≤ | supp(γ)| ≤ n. Fix δ = n−s/2 and
take n sufficiently large so that δ ≤ δ0. Let S = ∪x∈supp(γ′)B(x, δ/2), where B(x, r) := {y ∈ X : d(x, y) ≤ r} is
the ball of radius r centered at x. Since N (µ, τ) ≥ δ−t > n, we have that µ(S) ≤ 1− τ , which further implies
µ′(S) ≤ 1− τ + ε.

For any π ∈ Π(µ′, γ′), we now have∫
d(x, y)p dπ(x, y) ≥ µ′(X \ S)

(
δ

2

)p
> (τ − δ)

(
δ

2

)p
= (τ − ε) 4−pn−

p
s ,

which gives Wε
p(µ, γ) = (1−ε)−1/pWp(µ

′, γ′) ≥ 1
4 (τ−ε)1/p(1−ε)−1/p n−1/s. This suffices since (1−ε)−1/p ≥ 1.

A.14 Proof of Corollary 2

Corollary 2 (Simple one-sample rate). Fix p < d/2 and ε ∈ (0, 1]. If µ has absolutely continuous part f dλ with∫
f dλ > ε and f bounded from above, then dτ∗(µ) = d and E

[
Wε
p(µ, µ̂n)

]
= Θ(n−1/d).

Proof. Set τ = (
∫
f dλ+ ε)/2, so that ε < τ < inf f dλ. Then, for any covering of X with balls of radius δ except

for A with µ(A) ≤ τ , we have ∫
A

f dλ ≤ µ(A) ≤ τ ≤
∫
X
f dλ− c

for a positive constant c > 0. This gives that
∫
X\A f dλ > c, and hence λ(X \A) ≥ c/‖f‖∞ > 0. Since X \A has

Lebesgue measure bounded away from 0, a volumetric argument implies that the covering must contain at least
Cδ−d balls of radius δ for some C > 0. This implies the desired lower covering dimension and, by the proof of the
previous lower bound, the desired empirical convergence rate.

A.15 Proof of Proposition 10

Proposition 10 (Two-sample rate). For any ε ∈ [0, 1] and p < d/2, we have

E
[∣∣Wε

p(µ̂n, ν̂n)p −Wε
p(µ, ν)p

∣∣] ≤ Cn−p/d.
for a constant C independent of n and ε.

Proof. To begin, we write

(1− ε)Wε
p(µ, ν)p = sup

f∈Cb(X )

µ(f) + ν(f c)− Range(f)

(1− ε)Wε
p(µ̂n, ν̂n)p = sup

f∈Cb(X )

−µ̂n(f c)− ν̂n(f)− Range(f),

using that Cb(X ) is closed under negation. From here, we compute

(1− ε)
∣∣Wε

p(µ̂n, ν̂n)p −Wε
p(µ, ν)p

∣∣ ≤ sup
f∈Cb(X )

∣∣∣∣∫ f dµ+

∫
f c dµ̂n +

∫
f dν̂n +

∫
f c dν

∣∣∣∣
≤Wp(µ, µ̂n)p + Wp(ν, ν̂n)p.
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Hence, standard one-sample empirical convergence rates for Wp (e.g., Weed and Bach (2019)), give

E
[∣∣Wε

p(µ̂n, ν̂n)p −Wε
p(µ, ν)p

∣∣] ≤ C(1− ε)−1n−p/d ≤ 2Cn−p/d,

for a constant C independent of n and ε.

The standard lower bounds for two-sample empirical convergence (Talagrand, 1992; Barthe and Bordenave, 2013)
do not immediately transfer to this setting. When µ = ν are both an absolutely continuous distribution like
Unif([0, 1]d), these can easily be adapted to provide a lower bound for

inf
A⊆[n],|A|=(1−ε)n

B⊆supp([n]),|B|=(1−ε)n

E

Wp

 1

(1− ε)n
∑
i∈A

δXi ,
1

(1− ε)n
∑
j∈B

δYj


=E

Wp

 1

(1− ε)n

(1−ε)n∑
i=1

δXi ,
1

(1− ε)n

(1−ε)n∑
j=1

δYj

 .
For this to be helpful for the present case, one would also need to bound∣∣∣∣∣∣∣∣ inf
A⊆[n],|A|=(1−ε)n
B⊆[n],|B|=(1−ε)n

E

Wp

 1

(1− ε)n
∑
i∈A

δXi ,
1

(1− ε)n
∑
j∈B

δYj



− E

 inf
A⊆[n],|A|=(1−ε)n
B⊆[n],|B|=(1−ε)n

Wp

 1

(1− ε)n
∑
i∈A

δXi ,
1

(1− ε)n
∑
j∈B

δYj



∣∣∣∣∣∣∣∣,

which we defer for future work.

A.16 Proof of Proposition 11

Proposition 11 (Exact recovery). Fix µ, ν ∈ P(X ), ε ∈ [0, 1], and suppose that µ̃ = (1 − ε)µ + εα and
ν̃ = (1 − ε)ν + εβ, for some α, β ∈ P(X ). Let S = supp(µ + ν). If d(supp(α), S), d(supp(β), S), and
d(supp(α), supp(β)) are all greater than diam(S), then Wε

p(µ̃, ν̃) = Wp(µ, ν).

Proof. Under the conditions of the proposition, we will prove that µ′ = (1 − ε)µ and ν′ = (1 − ε)ν are the
unique minimizers for Wε

p(µ̃, ν̃), implying that Wε
p(µ̃, ν̃) = Wp(µ, ν). Suppose not, and take µ′ and ν′ optimal

for (1) such that µ′ = µ′g + µ′b, where µ′g := µ′ ∧ (1− ε)µ and µ′b = µ′ − µ′g ≤ εα, µ′b 6= 0. Let π ∈ Π(µ′, ν′) be
an optimal coupling for Wp(µ

′, ν′), and let π(y|x) be the regular conditional probability distribution such that
ν′(·) =

∫
X π(·|x) dµ′(x). Then we can compute

(1− ε)Wp(µ, ν)p ≥ (1− ε)Wε
p(µ̃, ν̃)p

= Wp(µ
′, ν′)p

=

∫ ∫
d(x, y)p dπ(y|x) dµ′(x)

=

∫ ∫
d(x, y)p dπ(y|x) dµ′g(x) +

∫ ∫
d(x, y)p dπ(y|x) dµ′b(x)

≥ (1− ε)Wp(µ, ν)p −
∫ ∫

d(x, y)p dπ(y|x) d(µ− µ′g)(x) +

∫ ∫
d(x, y)p dπ(y|x) dµ′b(x)

> (1− ε)Wp(µ, ν)p − (µ− µ′g)(X ) diam(S)p + µ′b(X ) diam(S)p

= (1− ε)Wp(µ, ν)p,

a contradiction. The same argument goes through if the three relevant distances are greater than ‖d‖L∞(π),
although general conditions under which this norm is finite seem hard to obtain (unless p =∞, in which case
‖d‖L∞(π) = W∞(µ′, ν′) ≤W∞(µ, ν)).



Outlier-Robust Optimal Transport: Duality, Structure, and Statistical Analysis

A.17 Proof of Proposition 12

Proposition 12 (Robustness radius for unknown ε). Assume the setting of Proposition 11 and let D be the
maximum of d(supp(α), S), d(supp(β), S), and d(supp(α), supp(β)). Then, for p ∈ [1,∞), we have

d
dδ

[
(1−δ)Wδ

p(µ̃, ν̃)p
]
≤ −Dp, δ ∈ [0, ε)

d
dδ

[
(1−δ)Wδ

p(µ̃, ν̃)p
]
≥ −diam(S)p > −Dp, δ ∈ (ε, 1]

at the (all but countably many) points where the derivative is defined.

Proof. By Proposition 5, (1− δ)Wδ
p(µ̃, ν̃)p is continuous and decreasing in δ, so it must be differentiable except

on a countable set. Now, if 0 ≤ δ′ < δ ≤ ε, then the proof of Proposition 11 reveals that there are optimal µ′, ν′

for Wδ
p(µ̃, ν̃) and µ′′, ν′′ for Wδ′

p (µ̃, ν̃) such that µ̃ ≥ µ′′ ≥ µ′ ≥ (1 − ε)µ and ν̃ ≥ ν′′ ≥ ν′ ≥ (1 − ε)ν. Letting
π ∈ Π(µ′′, ν′′) be an optimal coupling for Wp(µ

′′, ν′′) and defining π(y|x) as before, we compute

(1− δ)Wδ
p(µ̃, ν̃)p − (1− δ′)Wδ′

p (µ̃, ν̃)p = Wp(µ
′, ν′)p −Wp(µ

′′, ν′′)p

= Wp(µ
′, ν′)p − ‖d‖pLp(π)

≤
∫ ∫

d(x, y)π(y|x) dµ′(x)−
∫ ∫

d(x, y)π(y|x) dµ′′(x)

= −
∫ ∫

d(x, y)π(y|x) d(µ′′ − µ′)(x)

≤ −(δ − δ′)Dp.

Taking δ′ → δ, we find that the derivative of interest is bounded by −Dp from above wherever it exists. On
the other hand, if ε ≤ δ < δ′ ≤ 1, then there are optimal µ′, ν′ for Wδ

p(µ̃, ν̃) and µ′′, ν′′ for Wδ′

p (µ̃, ν̃) such
that (1 − ε)µ ≥ µ′ ≥ µ′′ ≥ 0 and (1 − ε)ν ≥ ν′ ≥ ν′′. Letting π ∈ Π(µ′′, ν′′) again be an optimal coupling for
Wp(µ

′′, ν′′), we compute

(1− δ′)Wδ′

p (µ̃, ν̃)p − (1− δ)Wδ
p(µ̃, ν̃)p = Wp(µ

′′, ν′′)p −Wp(µ
′, ν′)p

= ‖d‖pLp(π) −Wp(µ
′, ν′)

≥ ‖d‖pLp(π) − ‖d‖
p
Lp(π) −Wp(µ

′ − µ′′, ν′ − ν′′)p

≥ −diam(S)p(δ′ − δ).

Taking δ′ → δ, we find that the derivative of interest is bounded by −diam(S)p > −Dp from below, wherever it
exists.

A.18 Proof of Proposition 13

Proposition 13 (Robust consistency). Fix p <∞ and suppose that τµ(n) ∨ τν(n) = O(n−a) almost surely, for
some a > 0. Then, setting εn = n−b, for any 0 < b < a, we have∣∣Wp(µ, ν)−Wεn

p (µ̃n, ν̃n)
∣∣→ 0

as n→∞, almost surely.

Proof. Fix p < ∞ (a minor adjustment from the statement in the main text). By design, there exists some
n0 ∈ N such that εn ≥ τµ(n) ∨ τν(n) for all n ≥ n0. For such n, let µn and νn denote the empirical probability

measures associated with the uncontaminated samples among X̃1, . . . , X̃n and Ỹ1, . . . , Ỹn, respectively. By the
proof of Proposition 11, if µ′ and ν′ are optimal for Wεn

p (µ̃n, ν̃n), and π ∈ Π(µ′, ν′) is optimal for Wp(µ
′, ν′), then

‖d‖L∞(π) ≤ diam(supp(µn + νn)) ≤ diam(supp(µ+ ν)). Indeed, were any mass to be transported further than
this by an optimal coupling, the source or destination would have to be contaminated, and the transport cost
could be strictly improved by removing this contamination instead of inlier mass. Now, let µ′g and ν′g denote the
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restrictions of µ′ and ν′, respectively, to supp(µ+ ν). Hence, applying the same Wasserstein-TV bound used to
prove Proposition 5 (iii), we obtain

(1− εn)Wp(µn, νn)p ≥ (1− εn)Wεn
p (µ̃n, ν̃n)p (25)

= Wp(µ
′, ν′)p (26)

≥Wp(µ
′
g, ν
′
g)
p − τµ(n) ∨ τν(n) ‖d‖pL∞(π) (27)

≥Wp(µ
′
g, ν
′
g)
p − εn diam(supp(µ+ ν)) (28)

≥ (1− 2εn)W2εn
p (µn, νn)p − εn diam(supp(µ+ ν)) (29)

≥ (1− 2εn)Wp(µn, νn)p − Cεn diam(supp(µ+ ν)), (30)

for an absolute constant C > 0. Here, (25) follows by the under-estimation property of Wε
p under Huber

contamination, (25) holds since at most τµ(n) ∨ τν(n) ≤ εn fraction of samples are removed from µ′ and ν′ to
obtain their restrictions, (29) observes that µ′g and ν′g are feasible for W2εn

p (µn, νn), and (30) is an application of
the bound mentioned above. Hence, limn→∞Wεn

p (µ̃n, ν̃n) = limn→∞Wp(µn, νn) = Wp(µ, ν) as n → ∞, where
the second equality follows from empirical convergence of Wp.

Appendix B Supplementary Results and Discussion

B.1 Asymmetric Variant

First, we formally define the asymmetric robust p-Wasserstein distance with robustness radii ε1 and ε2 by

Wε1,ε2
p (µ, ν) = inf

µ′,ν′∈M+(X )
0≤µ′≤µ, ‖µ−µ′‖TV≤ε1
0≤ν′≤ν, ‖ν−ν′‖TV≤ε2

Wp

(
µ′

µ′(X )
,

ν′

ν′(X )

)
,

naturally extending the definition in (1) so that Wε
p = Wε,ε

p and Wp(µ‖ν) = Wε,0
p (µ, ν). Our robustness results

translate immediately to this setting. Indeed, writing the asymmetric minimax error

E(D, ε1, ε2) := inf
Ŵ :P(X )2→R

sup
µ,ν∈D

µ̃∈Bε1 (µ)

ν̃∈Bε2 (ν)

∣∣Ŵ (µ̃, ν̃)−Wp(µ, ν)
∣∣,

we trivially obtain E(D, ε1, ε2) ≤ E(D, ε1 ∨ ε2) since Bε(µ) ⊂ Bε′(µ) for ε′ ≥ ε. Moreover, it is easy to check that
E(D, ε1, ε2) & m−(D, ε1 ∨ ε2), as defined in Lemma 4 (using the same proof), and so our lower bounds carry over.

We next focus on obtaining dual forms for Wε1,ε2
p which are relevant for applications, although most of the primal

properties shown for Wε
p translate to this case as well. Our proof of Proposition 2 is already written for this

general setting. Next, although the proof of Proposition 1 was given for the symmetric distance, an identical
argument reveals that the following variant holds in general:

Wε
p(µ, ν) =

(
1− ε1ε2

(1− ε1)(1− ε2)

)1/p

inf
µ′∈Bδ1 (µ)

ν′∈Bδ2 (ν)

Wp(µ
′, ν′),

where δ1 = ε2(1−ε1)
1−ε1ε2 and δ2 = (1−ε2)ε1

1−ε1ε2 . We now translate Theorem 2 to the asymmetric case, following the same
argument of the original proof to obtain

(1−ε1)(1−ε2)Wε1,ε2
p (µ, ν)p = sup

f∈Cb(X )

(1−ε2)

∫
f dµ+(1−ε1)

∫
f c dν+(1−ε1)ε2 inf

x
f(x)+(1−ε2)ε1 sup

x
f(x).

Note that this matches the symmetric case when ε1 = ε2 and matches the one-sided dual (10) when ε2 = 0.

B.2 Relation to TV-Robustified Wp

In Balaji et al. (2020), the authors consider

Wε,TV
p (µ, ν) := inf

µ′,ν′∈P(X )
‖µ−µ′‖TV,‖ν−ν′‖TV≤ε

Wp(µ
′, ν′),



Outlier-Robust Optimal Transport: Duality, Structure, and Statistical Analysis

(although χ2 robustification is examined more thoroughly). We have the following relationship between this
quantity and our robust distance.

Proposition 14 (Relation to Wε,TV
p ). For p ∈ [1,∞] and µ, ν ∈ Pp(X ),

W2ε,TV
p (µ, ν) ≤Wε

p(µ, ν) ≤ (1− ε)−1/pWε,TV
p (µ, ν).

Proof. To prove W2ε,TV
p ≤ Wε

p, take µ′, ν′ ∈ P(X ) optimal for (12), with µ ∈ Bε(µ′) and ν ∈ Bε(ν′). Writing
µ = (1− ε)µ′ + εα, for some α ∈ P(X ), we compute ‖µ− µ′‖TV = ε‖µ′ − α‖TV ≤ 2ε; similarly, ‖ν − ν′‖TV ≤ 2ε.
Hence, W2ε,TV

p (µ, ν) ≤Wp(µ
′, ν′) = Wε

p(µ, ν).

For the opposite inequality, take any µ′, ν′ ∈ P(X ) with ‖µ − µ′‖TV, ‖ν − ν′‖TV ≤ ε. Then, we can write
µ′ = µ+ ε

2 (α+ − α−) and ν′ = ν + ε
2 (β+ − β−), where α+, α−, β+, β− ∈ P(X ). Next, set

µ̃′ =
1

1 + ε
µ+

ε

1 + ε

(
α+ + β−

2

)
∈ B ε

1+ε
(µ), ν̃′ =

1

1 + ε
ν +

1

1 + ε

(
β+ + α−

2

)
∈ B ε

1+ε
(ν),

and observe that

Wp(µ̃
′, ν̃′)p =

1

1 + ε
Wp

(
µ+

ε

2
(α+ + β−), ν +

ε

2
(β+ + α−)

)p
≤ 1

1 + ε
Wp(µ

′, ν′),

where the last inequality follows by considering the transport plan which leaves β− and α− stationary while
otherwise following an optimal plan for Wp(µ

′, ν′). Finally, noting that µ̃′ and ν̃′ are feasible for the mass-addition
formulation (5), we obtain

Wε
p(µ, ν) ≤

(
1 + ε

1− ε

)1/p

Wp(µ̃
′, ν̃′) ≤ (1− ε)−1/pWp(µ

′, ν′).

Infimizing over all such µ′ and ν′ gives Wε
p(µ, ν) ≤ (1− ε)−1/pWε,TV

p (µ, ν).

B.3 Examples

On the real line, Wε
p is often simple enough to compute, although it does not lend itself to many closed-form

solutions. One useful class of examples is that of µ and ν which are absolutely continuous with respect to
Lebesgue and whose supports have disjoint convex hulls, e.g., when µ is supported on the negative numbers
and ν is supported on the positive numbers. In this case, due to the structure of optimal couplings for real
distributions, we know that the optimal µ′ and ν′ simply cut off the extreme ends of the original measures.
Assuming that the support of µ is to the left of that of ν, we find that µ′ = µ|[a,∞) and ν′ = ν|(−∞,b] for constants
a, b such that µ′(X ) = ν′(X ) = 1− δ. For example, if µ = Exp(λ) and ν = (− Id)#µ, then W∞(µ, ν) =∞ but
Wε
∞(µ, ν) ≤ 2 ln(1/ε)/λ.

B.4 Experiment Details and Comparison with Existing Work

Full code is available on GitHub at https://github.com/sbnietert/robust-OT. We stress that we never had
to adjust hyper-parameters or loss computations from their defaults, only adding the additional robustness
penalty and procedures to corrupt the datasets. The implementation of WGAN-GP used for the robust GAN
experiments in the main text was based on a standard PyTorch implementation (Cao, 2017), as was that of
StyleGAN 2 (Varuna Jayasiri, 2020). The images presented in Fig. 4 were generated without any manual filtering
after a predetermined number of batches (125k, batch size 64, for WGAN-GP; 100k, batch size 32, for StyleGAN
2). Training for the WGAN-GP and StyleGAN 2 experiments took 5 hours and 20 hours of compute, respectively,
on a cluster machine equipped with a NVIDIA Tesla V100 and 14 CPU cores.

In addition to the experiments provided in the main text, we also compared our robustification method for GANs
with the existing techniques of Balaji et al. (2020) and Staerman et al. (2021) (noting that the GAN described
in Mukherjee et al. (2021) does not appear to scale to high-dimensional image data). Using publicly available
code for these projects, we trained these robust GAN variants with their provided default options (using the
continuous weighting scheme, recommended robustness strength, and DCGAN architecture for that of Balaji
et al. (2020)) using the 50k CIFAR-10 training set of 32x32 images contaminated with 2632 images with uniform

https://github.com/sbnietert/robust-OT
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Robust GAN Method

Epoch Ours Balaji et al. (2020) Staerman et al. (2021) Control (Balaji et al., 2020)

20k 38.61 60.92 58.19 59.19
60k 22.08 35.49 49.64 39.08
100k 18.87 30.44 40.81 31.40

Table 1: FID scores between uncontaminated CIFAR-10 image dataset and datasets generated by various robust GANs
during training.

Ours Balaji et al. (2020) Staerman et al. (2021) Control

Figure 5: Samples generated by various robust GANs after 100k epochs of training.

noise in each pixel (giving a contamination fraction of 0.05). In the table and figure above, the control GAN
is that of Balaji et al. (2020) without its robustification weights enabled, and our robust GAN is obtained by
adding our robustness penalty with ε = 0.07 (two lines of code, as described in Section 6) to this control. Each
GAN was trained for 100k epochs, taking approximately 12 hours of compute on a cluster machine equipped
with a NVIDIA V100 GPU and 14 CPU cores. In addition to the raw generated images presented in Fig. 5, we
also computed Frechet inception distance (FID) scores (Heusel et al., 2017) to track progress during training,
provided in Table 1. Our method performs favorably without tuning, but more detailed empirical study is needed
to separate the impact of various hyperparameters (for example, the poor relative performance of Staerman et al.
(2021) may be due in part to its distinct architecture).

B.5 Presence of Regularization

Consider the Banach space Cb(X ) equipped with the uniform topology. Given a convex family of functions
F ⊆ Cb(X ) and a convex, lower semicontinuous regularizer R : F → R+, consider the statistical discrepancy
measure between µ, ν ∈ P(X ) defined by

dF,R(µ, ν) = sup
f∈F

∫
f d(µ− ν)−R(f).

Then, we can verify that the conditions of Sion’s minimax theorem apply as in Theorem 2 to obtain

inf
µ′≥µ,µ′(X )=1+ε
ν′≥ν,ν′(X )=1+ε

dF,R(µ′, ν′) = inf
α,β∈P(X )

sup
f∈F

∫
f d(µ− ν) + ε

∫
f d(α− β) +R(f)

= sup
f∈F

∫
f d(µ− ν) + ε inf

α,β∈P(X )

∫
f d(α− β) +R(f)

= sup
f∈F

∫
f d(µ− ν)− εRange(f)−R(f)

As an example, this applies when F is a neural-net family and R(f) = ‖∇f‖pLp(κ) for some κ. For the case of

WGAN-GP, where R(f) = λEx∼κ
[
(‖∇f(X)‖2 − 1)2

]
, convexity may fail to hold, but the final expression above

still serves as a non-trivial lower bound for the robustified discrepancy measure. In this particular setting, near
maximizers f ∈ F are approximately 1-Lipschitz for sufficiently large λ, suggesting that our original theory should
apply up to some approximation error. We defer formal guarantees for non-convex regularizers for future work.
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Appendix C Applications to Pufferfish Privacy

Pufferfish privacy (PP) (Kifer and Machanavajjhala, 2014; Song et al., 2017; Zhang et al., 2020) is a general
privacy framework, which generalizes the popular notion of differential privacy (Dwork et al., 2006). For a
measurable data space X , the framework consists of three components: (i) a collection S of measurable subsets of
X called secrets (e.g., facts about the database that one might wish to hide); (ii) a set of discriminative pairs
Q ⊆ S × S (i.e., pairs of secret events (S, T ) that should be indistinguishable); and (iii) a class of potential
data distributions Θ ⊆ P(X ). For any θ ∈ Θ, let Xθ ∼ θ denote the dataset sampled from that distribution. A
randomized algorithm satisfies PP w.r.t. (S,Q,Θ) if all pairs of secrets in Q are indistinguishable as follows.

Definition 2 (Pufferfish Privacy (Kifer and Machanavajjhala, 2014)). A (possibly randomized) mechanism
M : X → Y is (ε, δ)-Pufferfish private in a framework (S,Q,Θ) if for all data distributions θ ∈ Θ, secret pairs
(S, T ) ∈ Q with P(Xθ ∈ S) > 0 and P(Xθ ∈ T ) > 0, and measurable Y ⊆ Y, we have

P
(
M(Xθ) ∈ Y

∣∣S) ≤ eεP(M(Xθ) ∈ Y
∣∣T )+ δ,

where P is the underlying joint probability measure.

Remark 7 (Special cases). A notable special case of PP is differential privacy (Dwork et al., 2006), where S is the
set of all possible databases, Q contains all pairs that differ in a single entry, and Θ = P(X ) (i.e., no distributional
assumptions are made, and privacy is guaranteed in the worst case). Another special case is attribute privacy
(Zhang et al., 2020), which protects global statistical properties of data attributes. In this case, S is the value of
a function evaluated on the data, Q contains pairs of function values, and Θ captures assumptions on how the
data were sampled and correlations across attributes in the data.

A general approach for publishing the value of a function f : X → R on a dataset Xθ with (ε, 0)-PP is the
Wasserstein Mechanism (Song et al., 2017). This mechanism computes the true value f(Xθ), and then adds
Laplace noise that scales with the maximal W∞ distance between conditional distributions of f(Xθ) given any
pair of secrets from Q. Denoting this maximized distance by W , the mechanism outputs M(Xθ) = f(Xθ) + Z,
where Z ∼ Lap(W/ε), which can be shown to be (ε, 0)-PP for any framework (S,Q,Θ); see Algorithm 1 with
δ = 0. The privacy guarantee relies on the fact that W∞(µ, ν) ≤ ε if and only if there exists a coupling (A,B) of
µ and ν such that |A−B| ≤ ε. If we are instead interested in (ε, δ)-PP, we only need |A−B| ≤ ε to hold with
probability 1− δ. We next show that this property is characterized precisely by Wδ

∞.

Lemma 6 (Coupling property). If Wδ
∞(µ, ν) ≤ ε, then there exists a coupling (X,Y ) for µ, ν such that |X−Y | ≤ ε

with probability at least 1− 2δ. Conversely, if there exists such a coupling, then W2δ
∞(µ, ν) ≤ ε.

Proof. If Wδ
∞(µ, ν) ≤ ε, then there exists ν′, ν′ ∈ P(X ) such that µ ∈ Bδ(µ′), ν ∈ Bδ(ν′), and W∞(µ′, ν′) ≤ ε.

By the gluing lemma, there exists a joint distribution for (X,X ′, Y, Y ′) with X ∼ µ,X ′ ∼ µ′, Y ∼ ν, Y ∼ ν′ such
that P(X 6= X ′),P(Y 6= Y ′) ≤ δ and |X ′ − Y ′| ≤ ε. By a union bound, |X − Y | ≤ ε with probability at least
1− 2δ.

On the other hand, if there exists a coupling π = (1 − δ)πg + δπb ∈ Π(µ, ν) for πg, πb ∈ P(X × X ) such
that ‖d‖L∞(πg) ≤ ε (i.e., restating the converse assumption), then taking marginals gives µ ∈ Bδ((πg)1) and

ν ∈ Bδ((πg)2). Hence, πg is feasible for the (near) coupling problem Proposition 6, and Wδ
∞(µ, ν) ≤ ε.

We can use this fact to define a Robust Wasserstein Mechanism that achieves (ε, δ)-PP.

Theorem 3 (Robust Wasserstein Mechanism). For any PP framework (S,Q,Θ) and δ ≤ 1/2, the Robust
Wasserstein Mechanism from Algorithm 1 is (ε, 2δ)-PP.

Algorithm 1 Robust Wasserstein Mechanism (f, {S,Q,Θ}, ε, δ)
for all (S, T ) ∈ Q and θ ∈ Θ such that P(Xθ ∈ S) > 0 and P(Xθ ∈ T ) > 0

Set µθ|S := L
(
f(Xθ)

∣∣S) and µθ|T := L
(
f(Xθ)

∣∣T )
Calculate Wδ = sup (S,T )∈Q,θ∈Θ

P(Xθ∈S)>0,P(Xθ∈T )>0

Wδ
∞
(
µθ|S , µ

θ
|T
)
.

Sample Z ∼ Lap(Wδ/ε).
Return M(Xθ) = f(Xθ) + Z
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Proof. The proof follows that of the original Wasserstein mechanism established in Song et al. (2017). We will
write pX to denote the probability density function of an absolutely continuous random variable X. Let M denote
the robust Wasserstein mechanism and consider the distributions µθ|S , µ

θ
|T associated with a secret pair (S, T ) ∈ Q

such that P(Xθ ∈ S) and P(Xθ ∈ T ) are positive. Because Wε
p(µ

θ
|S , µ

θ
|T ) ≤ Wδ, we know that there exists a

coupling π ∈ Π(µθ|S , µ
θ
|T ) as guaranteed by Lemma 6. We decompose π = (1− 2δ)πg + 2δπb into pieces so that

πg ∈ P(X × X ) has the Wδ distance guarantee and πb is arbitrary. Then, for any measurable Y ⊆ Y, we have

pM(Xθ)|S(w) =

∫
pf(Xθ)|S(a) pZ(w − a) da

=

∫
pf(Xθ)|S(a)e−ε|w−a|/Wδ da

=

∫
e−ε|w−a|/Wδ dπ(a, b)

≤ (1− 2δ)

∫
e−ε|w−a|/Wδ dπg(a, b) + 2δ,

where we have simply used the definition of the mechanism and the fact that e−ε|w−a|/Wδ ≤ 1. Continuing, we
compute

pM(Xθ)|S(w) ≤
∫
{(a,b):|a−b|≤Wδ}

e−ε|w−a|/Wδ dπg(a, b) + 2δ

≤ eε
∫
{(a,b):|a−b|≤Wδ}

e−ε|w−b|/Wδ dπg(a, b) + 2δ

≤ eε
∫
e−ε|w−b|/Wδ dπ(a, b) + 2δ

≤ eε
∫
e−ε|w−b|/Wδ pf(Xθ)|T (b) db+ 2δ

≤ eεpM(Xθ)|T (w) + 2δ,

using the distance property of the coupling, performing a change of variables, and using the definition of the
mechanism. Since the previous argument holds for any secret pair, we conclude that the mechanism is (ε, 2δ)-PP
private.

This result suggests that Wδ
∞ naturally generalizes the relation between W∞ and (ε, 0)-PP to the (ε, δ)-PP regime.

In applications where a positive δ is tolerable, the Robust Wasserstein Mechanism allows a significantly lower
scale of noise relative to the original Wasserstein Mechanism from Song et al. (2017) — i.e., Wδ �W for some
Pufferfish frameworks — corresponding to a substantial improvement in accuracy. To demonstrate this, consider
the following toy example.

Example 1. Consider a toy scenario where a bank has 100 customers of two types, A and B, with at most 10
of type B. The incomes of Type A and Type B customers are distributed according to µA and µB, respectively.
Suppose that incomes are independent conditioned on the customer types, and the bank wishes to publish the
combined income of its customers while keeping the count of B users private. The corresponding PP framework
has S as the set of possible number of type B customers (between 1 and 10), Q contains all distinct pairs from S,
and each θ ∈ Θ gives the joint distribution over incomes given a selection of types.

In order to publish the sum of incomes while guaranteeing (ε, δ)-PP, the Robust Wasserstein Mechanism dictates
that it suffices to add Laplace noise at scale Wδ

∞(µ∗100
A , µ∗90

A ∗ µ∗10
B )/ε, where γ∗k denotes a k-fold convolution of

γ with itself. Assume all incomes are less than $100k, except Type B customers who have probability δ′ of being
millionaires, with 1− (1− δ′)10 � δ. In this case, the classic Wasserstein Mechanism would require noise at scale
∼ 108/ε, while the δ-robust mechanism only needs noise at scale ∼ 107/ε. Thus, utilizing Wδ

∞ and its connection
to (ε, δ)-PP allows injecting an order of magnitude less noise.

Remark 8 ((ε, δ)-PP and Wp). Using the robust Wasserstein distance we can further connect PP and classic
Wp. This may be practically advantageous, as finite-order Wasserstein distances are often easier to compute than
W∞. First note that Markov’s inequality implies that Wε

∞(µ, ν) = O
(
Wp(µ, ν)/δ1/p

)
. Hence, the mechanism that

adds noise at scale Wp/(εδ
1/p), where Wp is a uniform bound on Wp(µ

θ
|S , µ

θ
|T ), is (ε, δ)-Pufferfish private.
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