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Abstract

Transferring knowledge embedded in trained
neural networks is a core problem in areas
like model compression and continual learn-
ing. Among knowledge transfer approaches,
functional transfer methods such as knowl-
edge distillation and representational distance
learning are particularly promising, since they
allow for transferring knowledge across dif-
ferent architectures and tasks. Considering
various characteristics of networks that are
desirable to transfer, equivariance is a notable
property that enables a network to capture
valuable relationships in the data. We as-
sess existing functional transfer methods on
their ability to transfer equivariance and em-
pirically show that they fail to even transfer
shift equivariance, one of the simplest equiv-
ariances. Further theoretical analysis demon-
strates that representational similarity meth-
ods, in fact, cannot guarantee the transfer
of the intended equivariance. Motivated by
these findings, we develop a novel transfer
method that learns an equivariance model
from a given teacher network and encourages
the student network to acquire the same equiv-
ariance, via regularization. Experiments show
that our method successfully transfers equiv-
ariance even in cases where highly restrictive
methods, such as directly matching student
and teacher representations, fail.1

1Code: https://github.com/sinzlab/orbit transfer
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1 INTRODUCTION

With the rise of large and high-capacity models being
trained on unprecedented amounts of data (Riquelme
et al., 2021; Kolesnikov et al., 2020), the paradigm
of transfer learning has grown in prominence (Zhuang
et al., 2021). In transfer learning, the goal is to transfer
useful functional properties learned by a teacher-model
to a student-model. This is often realized by copying
the teacher’s parameters, or a subset thereof, to the
student (weights-based transfer methods). However,
copying the teacher’s parameters is not feasible when
the model architectures of student and teacher are
different, for instance when the student has substan-
tially fewer parameters (for the sake of efficiency) than
the teacher (Hinton and Dean, 2015). Furthermore,
not all of the teacher’s parameters may be useful for
the student. In such cases, functional transfer meth-
ods present an alternative to weights-based methods.
Functional transfer methods rely on comparing and
transferring functional properties, i.e., layer activation
or outputs, for a given input. Transfer methods of this
nature have applications in numerous areas like model
compression (Bucilǎ et al., 2006; Hinton and Dean,
2015), continual learning (Pan et al., 2020; Titsias et al.,
2019; Benjamin et al., 2019) or even neuroscience (Li
et al., 2019).

Functional transfer methods exist in many variations.
Some rely entirely on the network’s final output, while
others use activity within the network. Some methods
require that the tasks shared by the teacher and the
student be identical, while others only require that the
network’s hierarchical structure be somewhat relatable
(McClure and Kriegeskorte, 2016). Regardless of dif-
ferences, the goal remains the same—to transfer useful
knowledge from teacher to student. This prompts us to
question: How effectively do existing functional trans-
fer methods transfer useful knowledge from a teacher
to a student? Despite the significance of this question,

https://github.com/sinzlab/orbit_transfer


Can Functional Transfer Methods Capture Simple Inductive Biases?

thus far there hardly exists any definite answer regard-
ing functional transfer methods. For instance Abnar
et al. (2020) investigate whether during knowledge dis-
tillation (a functional transfer method) the teacher’s
inductive biases are also reflected in its logit outputs,
but not specifically whether the inductive biases are
transferred to the student. One reason for the lack
of answers may be that the kind of knowledge that is
useful to transfer is hard to characterize. It could be
knowledge that the teacher learned from its training
data, such as feature extraction capabilities resultant
from large-scale pre-training (Beyer et al., 2021). It
could also be knowledge that is inherent to the teacher’s
network architecture, such as the inductive bias of shift
equivariance in convolutional neural networks, conse-
quently used to improve a student network that does
not have this knowledge built-in (Touvron et al., 2020).

As this could entail a very wide range of properties that
are potentially useful to transfer, we choose to focus
our study on one specific family of properties that are
mathematically characterized and have a strong impact
on the generalization of a model – equivariance. We be-
lieve transferring equivariance to be the minimal ability
any useful functional transfer method ought to possess.
We will thus investigate the following question: Can
functional transfer methods effectively transfer equiv-
ariance properties between student and teacher? The
answer to this question turns out to be that it is sur-
prisingly difficult to transfer equivariance properties,
and that existing functional transfer methods fail to do
so. Abnar et al. (2020) investigate transfer of equivari-
ances empirically and found that knowledge distillation
improved shift and scale invariance of the student, but
as we show, that is only guaranteed under strong as-
sumptions (as we discuss in 3), and other methods do
not focus on transferring equivariance itself. Creager
et al. (2020) develop a framework for domain invari-
ant learning, i.e., encouraging a model to be invariant
to environment and background changes. Zhou et al.
(2020) show that via meta-learning, one can recover
convolutional architectures from the data itself, which
they achieve by learning parameter sharing patterns,
as opposed to functional transfer methods.

To approach our question, we first discuss output-level
functional transfer methods (Section 3) such as knowl-
edge distillation, as they represent one of the most
popular transfer methods. Although they are theoreti-
cally capable of transferring equivariance for the entire
network, we show empirically that they do not deliver
on that promise in practice, if, for instance, the student
is very flexible. Based on this, we hypothesize that ad-
ditional within-network restriction is necessary for the
transfer to be successful. This leads us to investigate
representation-level transfer methods (Section 4), i.e.
functional transfer between different layers inside the

network. Here we show empirically that except for one-
to-one matching of hidden representations, none of the
methods are capable of even transferring shift equiv-
ariance. A theoretical exploration of this observation
reveals that many representational similarity methods,
a subclass of representational transfer methods, are not
restrictive enough to guarantee a transfer of the same
equivariance that was present in the teacher.

For each method, we first introduce the method fol-
lowed by empirical and theoretical analysis of equiv-
ariance transfer, before moving on to the next method.
Finally, we introduce a novel method of functional
transfer to enable equivariance transfer (Section 5).
Our method successfully captures equivariance proper-
ties of the teacher and transfers it to the student.

2 PRELIMINARIES AND SETUP

The no-free-lunch theorem (Shalev-Shwartz and Ben-
David, 2013) shows that models need to be constrained
in some way to have a chance of good generalization. A
constraint like that is called an inductive bias. Our goal
is to develop a method of functional transfer that guar-
antees transfer of knowledge—specifically transfer of
useful inductive biases—between two neural networks.
Here, we focus on equivariance properties, which, as
alluded to earlier, constitute fundamentally important
and useful knowledge to transfer.

2.1 Equivariance

Many tasks contain useful symmetries in their data
that can be exploited by models to improve generaliza-
tion. One famous example that successfully leverages
symmetries are convolutional neural networks (CNNs,
Fukushima, 1980). CNNs encode the shift symmetries
of natural images in their architecture. They do this
by being equivariant to shifts, which means that a shift
in the input to a CNN(-layer) will result in a related
shift in its output. Other examples of equivariance
in models can be found in many areas from natural
language processing (Gordon et al., 2020) to molecular
biology (Thiede et al., 2020).

To formalize equivariances, we extend the notation of
Cohen (2021) to our setting of transfer learning. Thus
we will be regarding equivariance in the context of sym-
metry groups. A simple example would be the set Z2

of integer shifts in a 2D pixel grid underlying an image.
E.g. a group element (m,n) ∈ Z2 corresponds to a
shift of all pixels by m positions along the vertical and
n positions along the horizontal axis. With addition
(m,n) + (p, q) = (m+ p, n+ q) as the group operation,
negative shifts (m,n) + (−m,−n) = (0, 0) as the in-
verse for each group element and (0, 0) as the identity
element, we can show that Z2 is indeed a group.



Arne F. Nix1,2,†, Suhas Shrinivasan2,3, Edgar Y. Walker1,4,5, Fabian H. Sinz1,2,‡

Layer
Sampled group
element

Representation Teacher

Transfer

Student

(D)

(E)(A) (B) (C)

max

(E.2)

(E.3)

(E.4)

(E.5)(E.1)

Figure 1: Overview of the transfer methods discussed in this paper: Knowledge distillation (A, Section 3), Direct
matching (B, Section 4), Attention transfer (C, Section 4.1), RDL (D, Section 4) and Orbit transfer (E, Section 5).

We define a neural network as a composition of func-
tions Φ = Φ(L) ◦ ... ◦ Φ(1) with layers Φ(l) : X (l−1) →
X (l). Each individual layer Φ(l) acts on an input or
feature space X (l−1) and projects to a feature space
X (l) that serves as input for the next layer. We further
focus on symmetries generated by a group G. A group
element g ∈ G acts on an input element x via a linear
representation ρg. Wherever it is clear from the context,
we will leave the dependency on g implicit to simplify
notation. If a function—or layer Φ(l)—is G-equivariant
then its output will have a corresponding action ρ(l),
that leads to the same results as transforming the input:

ρ(l)
g Φ(l)(x) = Φ(l)(ρ(l−1)

g x) (1)

for all x ∈ X (l−1)
t and any group element g ∈ G.

Known equivariance properties are useful as they allow
parameter sharing in the network (Cohen, 2021). How-
ever, it is generally hard to discover these symmetries
from data alone, since it may require a lot of data.
Hence it is beneficial if we could transfer them from a
extensively trained teacher network to a student. To for-
malize the transfer, we refer to the teacher- and student-
network as Φ and Ψ, respectively. The corresponding

layers are then defined by Φ(l) : X (l−1)
t → X (l)

t and

Ψ(l) : X (l−1)
s → X (s)

l . We assume that the student
network differs in architecture from its teacher2 and is
not necessarily G-equivariant by default, but that it is
expressive enough to learn equivariance with the right
guidance. This means generally that the student has
more capacity, or is less constrained. In other words
the student has less inductive bias than the teacher
model. This is important since the aim of the experi-
ments is to see if functional transfer would be strong
enough to constrain, or transfer inductive bias, to an
over-parameterized model that inherently lacks it. In

2We assume the number of layers is identical to simplify
the derivations. Since layers are not necessarily expected to
be linear, we can always get to the same number of layers
by adding identity layers or by summarizing multiple layers
in one.

practice, we achieve this by combining the standard
cross-entropy loss LCE with a transfer term Ω. There-
fore the final loss will be: L = (1−γ)LCE+γΩ. The two
components are combined by an interpolation weight
γ ∈ [0, 1] which is treated as a hyperparameter.

2.2 Analysis Setup

An important aspect of both the empirical and an-
alytical settings we address is the extent to which
transformed group elements are present in the training
data. Formally, the set of data points {ρgx : g ∈ G}
that can be reached from a single data point x is called
orbit. As we will see later, the extent to which entire
orbits are in the training data will affect the general-
ization performance of the student. For our theoretical
analysis we generally consider the case of unlimited
training data—in other words data that contains all
orbit elements of the transformation we aim to transfer.

To empirically investigate the transfer abilities of the
various methods we analyze in this work, we construct
a simple experimental setup on the MNIST-1D (Grey-
danus, 2020) task. This task generates 4000 training
and 1000 test inputs, which are 40-dimensional vectors
that are procedurally generated based on templates in-
spired by the original MNIST digits. The synthetic gen-
eration process allows fine-grained control over various
properties of the resulting samples. For our purposes
importantly, we can control the range of orbits range
present in the training data. This is done through
a “shift limit” s that partitions the set of shifts for
which we generate an MNIST-1D variant with random
shifts into two sets: seen shifts [0, s] and unseen shifts
(s, 39]. Our training data consists of seen shifts. We can
then test the resulting model on three different ranges
of shift values applied to the test data: seen shifts
[0, s], unseen shifts [s, 39], and all shifts [0, 39]. This
setup allows us to verify whether a network has learned
shift equivariance and generalizes well to unseen shifts.
Since we aim to create a very simple evaluation task,
we chose teacher and student networks such that their
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hidden layer outputs have the same size. Both have
two hidden layers and a spatial max-pooling operation
after the last layer to obtain the class predictions. The
two networks only differ in the nature of the first two
layers, where the teacher network uses convolutions,
the student network instead uses fully connected layers
(more flexible and less inductive bias). More details
on the architecture and training setup can be found
in the supplementary material. To fully explore the
abilities of each transfer method, we first perform a
hyper-parameter search for each on the setting with
s = 30. Since we are mainly interested in generaliza-
tion to unseen shifts, not images, we decided to select
the best performing set of hyper-parameters on the
image test set with seen shifts. The selected model is
then trained and evaluated with s = 0, 10, 20, 30, 40
to explore the transfer abilities under different data
conditions. As we introduce more shifts in the training
data, the seen shifts test set will also contain those
shifts. This makes it increasingly difficult to generalize
for models without shift equivariance. As expected, the
student network trained without any transfer knowl-
edge degrades on seen shifts as training progresses (see
Figure 2). Analogously, the performance on unseen
shifts stays consistently bad until s = 40 where all
shifts are seen.

3 OUTPUT-LEVEL TRANSFER

The most well-known methods for functional transfer
fall in the category of output-level transfer methods.
These methods aim to transfer the entire network func-
tion Φ by matching the function values directly at
the final layer, i.e. Φ(x) = Ψ(x) ∀x in the case of
infinite data. For classification, this is known as knowl-
edge distillation (KD) (Hinton and Dean, 2015) which
transfers Φ by minimizing the Kullback–Leibler diver-
gence between the output distributions given by the
softmax output of teacher and student network respec-
tively (see Figure 1.A). Thus the transfer regularization

would be Ω = pt(x) log pt(x)
ps(x) with softmax distributions

pt(x)i = exp(Φ(x)i/τ)∑
j exp(Φ(x)j/τ) and ps(x)i = exp(Ψ(x)i/τ)∑

j exp(Ψ(x)j/τ) .

The corresponding transfer method for regression tasks
would be functional distance regularization (Benjamin
et al., 2019), which minimizes the euclidean distance
between function values of student and teacher net-
works.

Can KD transfer equivariance? Abnar et al.
(2020) investigated this question empirically and found
that KD improved shift and scale invariance of fully-
connected student model when they trained it with KD
from the outputs of a scale and shift invariant teacher.
At first glance, these results are expected: a student
that is trained with KD will obtain the teacher’s equiv-

ariance properties if the training is successful, i.e. if
the function is matched perfectly. However, this is only
guaranteed if the optimization leads to zero loss and
the training happens in the limit of infinite data. It is
unclear, however what happens if this is not the case.
One scenario could be that the optimization yields zero
loss, i.e. the teacher function is matched perfectly, but
on the limited training data which might not contain
all orbits of the symmetry group. Such a solution will
likely not generalize well.

Our experimental results on MNIST1D verify this intu-
ition. KD generally will not improve over the baseline
student model when evaluated on unseen shifts (see Fig-
ure 2). We hypothesize that KD, by only regularizing
on the final outputs, is simply not restrictive enough
for this task.

4 REPRESENTATION-LEVEL
TRANSFER

As we have just seen, it is hard to transfer equivariance
on the level of final outputs and we hypothesized that
this due to the lack of constraints on the representations
within the network. One approach for this problem
would be to directly transfer on the level of hidden
representations, which we study in this section.

Can direct matching of internal representations
transfer equivariance? Direct matching of the rep-
resentations of the teacher and the student networks,
e.g. by minimizing the mean-squared error between the
teacher and student representations (see Figure 1.B),
will likely be an effective way to transfer at this level.

To confirm this experimentally, we minimize the mean-
squared distance on the internal layers’ outputs and
add a KD objective on the final layer. This approach
works as suspected. Figure 2 shows a nearly perfect
performance on unseen shifts as long as a few orbit
elements are contained in the training data. However,
making the problem slightly harder by replacing the
student’s final pooling operation with a linear projec-
tion while keeping the teacher the same reveals issues
similar to KD as we no longer see any improvement
over the student baseline in this scenario (see Figure 3).

Although we have just shown that direct matching is
successful in transferring equivariance, a direct com-
parison of teacher and student representations requires
the hidden representations to be of the same shapes.
Enforcing this on all levels of the network would mean
restricting the student network architecture to conform
to that of the teacher, which is contrary to the goals
of functional transfer methods. We thus explore alter-
native solutions to representation-level transfer that
can be applied without requiring the same hidden layer
shapes between student and teacher.
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Figure 2: Test performance after transfer for a student with max pooling as final layer.
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Figure 3: Test performance after transfer for a student
with a linear final layer.

4.1 Attention Transfer

CNNs and related architectures generally maintain a
three-dimensional structure throughout the outputs of
most of their layers. This gives hidden activations the
semantic interpretation of width, height and channel
dimensions. Attention transfer (Zagoruyko and Ko-
modakis, 2017) leverages this and the fact that layers
from comparable processing steps usually have compa-
rable spatial dimensions and only differ in the channel
dimension. Slightly differing spatial dimensions can be
aligned by up- or down-sampling, and the channel di-
mension is pooled by summation or maximum selection
to extract an “attention map” that can be matched
between teacher and student (see Figure 1.C).

Ω(l) = ‖ A
(l)
t (x)

‖A(l)
t (x)‖2

− A
(l)
t (x)

‖A(l)
t (x)‖2

‖22

whith A
(l)
t (x) =

∑C(l)
s

c=1 |Φ(l)(x)c| and A
(l)
s defined anal-

ogously, channel size C
(l)
s and C

(l)
t for student and

teacher layers respectively.

Attention transfer aligns the spatial dimensions be-
tween student and teacher. This should theoretically
be beneficial when transferring equivariances to spatial
effects like shift. However, our results show that that
in practice this is not the case (Figure 2). Attention
transfer fails to capture the shift equivariance in our
experiment. The attention method has a potential
drawback that could both be responsible for this out-
come. Collapsing the channel dimension is certainly

not a lossless operation and may likely hide information
important for equivariance.

4.2 Representational Similarity Transfer

The problem of comparing representations of two
networks with distinct architectures is of wider in-
terest outside of transfer learning. Unsurprisingly,
there exists a broad range of methods designed to
compare neural network representations (Kornblith
et al., 2019). For these methods, the general idea
is to not match the two networks on the individ-
ual representations but to consider the representa-
tions for an entire batch, i.e. consider the representa-
tion as matrices Φ(l) = [Φ(:l)(x1), . . . ,Φ(:l)(xN )]> and
Ψ(l) = [Ψ(:l)(x1), . . . ,Ψ(:l)(xN )]> for a batch of inputs
x1, . . . , xN ∈ X (0). Note that here we treat Φ(:l) and
Ψ(:l) as functions on the input features, which means
that we consider the composition of all layers up to l as
one function. Then a comparison can be done along the
number of samples N , providing a similarity for gen-

eral network representations even if X (l+1)
t 6= X (l+1)

s .
Maximizing this similarity (or equivalently minimizing
the distance between two representations) can thus be
used as an objective for functional transfer.

Representational Distance Learning A method
following this principle is representational distance
learning (RDL, McClure and Kriegeskorte, 2016). Here
the representational distance is measured through
comparison of representational dissimilarity matrices
(RDM). These matrices are essentially Gram matri-
ces of the batch representations Φ(l) (with additional
normalization). Thus each entry (n,m) in the RDM
shows the dissimilarity of samples xn and xm w.r.t.
representation Φ(:l). Such RDMs are computed for
student and teacher respectively and used to compute
representation distance by minimizing the Frobenius
norm between the two.

Ω(l) =
1

N2
‖Φ(l)Φ(l)> −Ψ(l)Ψ(l)>‖2F

This approach could be used to enforce representations
similar to a teacher on any layer of a neural network
without restricting either network in any way. To
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ease notation, we will drop the layer index l for the
remainder of this section.

However, this method does not match the individual
responses directly, which raises questions as to how
powerful and accurate the transfer will be. For RDL, an
optimal solution has to fulfill ΨΨ> = ΦΦ>. However,
ΨΨ> = ΦΦ> if and only if Ψ = QΦ with Q ∈ SO(N)
(Co, 2013, theorem 7.3.11). This means that RDL
matches the teacher representation up to orthogonal
transformations. In the following, we will show that this
is not enough to guarantee the transfer of equivariance
properties.

Alternative methods that follow the same principle as
RDL to quantify representational similarity are sum-
marized and compared in Kornblith et al. (2019). In
principle all of them can be utilized to formulate a
functional transfer objective similar to RDL. Never-
theless, most representational similarity methods have
been shown to be invariant to orthogonal transforma-
tions (Kornblith et al., 2019). This means that a global
optimum found by these methods will also have the
property Ψ = QΦ for Q ∈ SO(N).

Can representational similarity methods trans-
fer equivariance? Following the same methodology
as before, we evaluate the transfer abilities of RDL.
Similar to previous methods it fails in transferring
shift equivariance (see Figure 2). In the following, we
theoretically investigate why that is the case.

As we have shown above, functional transfer methods
that rely on representational similarity are invariant
to orthogonal transformations. That means that an
optimal solution found by these methods can only re-
strict the student representations to match the teacher
representations up to orthogonal transformation, i.e.
Ψ = QΦ for Q ∈ SO(N). In the limit of infinite data,
this also implies that the functions are equal up to the
same orthogonal transformation, which we will denote
(slight abuse of notation) as Ψ = QΦ. In this case the
following theorem holds:

Lemma 1. Given two representations Φ and Ψ with
relationship Ψ = QΦ for some orthogonal Q, the follow-
ing holds: Φ is equivariant w.r.t. group representation
(ρ(0), ρ(1)) if and only if Ψ is equivariant w.r.t. group
representation (ρ(0), Qρ(1)Q>).

Proof of Lemma 1. We first prove the forward direc-
tion, i.e. we show that if Φ is G-equivariant w.r.t. group
representations (ρ(0), ρ(1)), then Ψ is G-equivariant
w.r.t. (ρ(0), Qρ(1)Q>).

Ψ(ρ(0)x) = QΦ(ρ(0)x) = Qρ(1)Φ(x)

= Qρ(1)(Q>Q)Φ(x)

= (Qρ(1)Q>)Ψ(x)

Here we first use the fact that Ψ = QΦ, then we exploit
the orthogonality of Q and the equivariance property
of Φ w.r.t. ρ(1). Finally, we use the definition of Ψ a
second time to get back from QΦ to Ψ.

The backward direction the symmetric nature of
Lemma 1 which lets us exploit the fact that Ψ = QΦ
entails Φ = Q̃Ψ where Q ∈ SO(N) and Q̃ = Q>.
Then from the forward direction of Lemma 1 it follows
that, Ψ is equivariant w.r.t. (ρ(0), Qρ(1)QT ) yields
that Φ is equivariant w.r.t (ρ(0), Q̃Qρ(1)Q>Q̃>) =
(ρ(0), ρ(1)).

The consequence of Lemma 1 is that representational
similarity methods and other methods that can not en-
sure an exact matching of the teacher representations
will not guarantee a transfer of equivariance properties
w.r.t. the same group representation on the output.
As we showed, the student representation will be equiv-
ariant w.r.t. the transformed group representation
Qρ(1)Q>. Thus, RDL does transfer equivariance in the
limit of infinite data, but might end up with a different
“global” linear representation of the group at the final
layer which might not aid generalization in the same
way as the teacher representation itself. In particular
the possible orthogonal transform Q will destroy the
shift invariance of the last max-pooling layer since the
supremum norm is not invariant under rotation. In this
sense, the learned linear representation of the group
does not fit to the expected input representation of
the max-pooling layer which destroys its invariance
property.

5 ORBIT MODEL TRANSFER

As we have seen in Section 3, output-level functional
transfer from an equivariant teacher, such as performing
KD, does not necessarily transfer equivariance to the
student. However, we have also seen (Section 4) that
trying to enforce similarity within the network, i.e. on
the level of representations, is also insufficient. Such
representational similarity methods are theoretically
capable of enforcing an equivariance property on the
student, but they cannot restrict the exact nature of
that equivariance enough to guarantee a successful
transfer.

These findings have revealed that matching the func-
tion of the entire network or even that of individual
layers is too broad a task to reliably transfer specific
equivariances. Hence we hypothesize that decoupling
the equivariance property from the function is the issue.

We took this problem as inspiration and leveraged the
fact that the problem definition for equivariance trans-
fer is well-defined. For a transfer to be successful, the
student has to fulfill the equation Ψ(ρ0x) = ρ1(Ψ(x))
after training. Therefore, we propose a new approach
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where we directly learn the group representation ρ that
the teacher is equivariant to and encourage the same
equivariance in the student network.

5.1 Method

Our approach separates the transfer process into two
steps. First, we learn a model of the equivariance
throughout the teacher network, and then we use this
model to regularize the student network.

Learning the equivariance from the teacher The
idea for capturing the teacher’s equivariance is to learn

a model ρ that fulfills Φ(ρ
(0)
g x) = ρ

(1)
g Φ(x) for any given

g and x, i.e. a model of the group representation that
Φ is equivariant to. To find such a model, we freeze the
teacher network Φ and minimize the following objective
for a given g and x:

Lequiv =
1

H
‖Φ(ρ(0)

g x)− ρ(1)
g Φ(x)‖22 (2)

for hidden size H. This minimizes the distance between
the layer representation with the group operation ap-
plied on the input or the layer’s output.

One can see that the “true” equivariance representation
that Φ is equivariant to would minimize this objective.
However, at the same time, a trivial solution where ρ
simply learns an identity operation on X for every g
would also achieve the same result. To prevent this, we
additionally minimize the absolute cosine dissimilarity
between all representations, i.e. the kernels, of distinct
group elements:

Lgroup =
1

|G| · (|G| − 1)

∑
g∈G

∑
h∈G\{g}

| cos(ρ(0)
g , ρ

(0)
h )|

(3)

Finally, we want to encourage a group structure in ρ
and thus we add the following objective to encourage
ρ to be invertible:

Linv = ‖ρ(0)
−gρ

(0)
g x− x‖22 (4)

The parameters of the orbit model ρ are optimized to
minimize a sum of all three objectives and the standard
cross-entropy loss LCE on the transformed inputs:

min
ρ
γCELCE + γequivLeqiv + γgroupLgroup + γinvLinv

(5)

with weights γCE, γequiv, γgroup, γinv ∈ R+.

Modeling group representations through convo-
lutions So far, we have described an objective function
to extract the equivariance from a given teacher net-
work. This method is generally agnostic to the choice
of group representation model ρ, nevertheless this de-
cision is crucial for the effectiveness of the transfer.

Figure 4: The group representation model first selects
a filter of size k based on the group element g, then
it applies the linear transformation W (l) to finally get
the group representation that can be applied on the

input x to get ρ
(l)
g x.

The group representation model needs to be power-
ful enough to capture the equivariance as well as the
change of group representation throughout the depth of
the network. At the same time, we need a model that
is flexible enough to be applied on all layers of both
teacher and student. To allow this flexibility, we de-
cided to use convolution to model the group operation
on every layer. Thus, for any given layer l and group
element g, our model needs to provide a convolution
filter that can be applied to the input (after padding it
to preserve the size). A naive implementation would
learn a separate filter for each group element and layer,
which would not only require a lot of parameters, but
also ignores the connectedness that group representa-
tions of the same g can have throughout an equivariant
network. We decided to leverage this quality by fac-
torizing the parameterization. Our model therefore
learns one filter of size k per group element as well as
L linear projections of size k × k. To obtain the group

operation ρ
(l)
g the lth linear projections W (l) is applied

to the filter corresponding to group element g. The
group operation can then be applied to the input to

get its group representation ρ
(l)
g x. The entire process

is illustrated in Figure 4.

Modeling group representations as affine trans-
formation on the coordinate space To demon-
strate the flexibility of our transfer learning framework,
we propose an alternative, more general, way of model-
ing group representations. For this, we parameterize a
3D transformation directly by learning an affine trans-

formation matrix for each g and l. This ρ
(l)
g ∈ R3×4

determines the transformation of a 3D input feature
map, akin to spatial transformer networks (Jaderberg
et al., 2015). With a group representation modeled
in this way, Orbit can, in principle, transfer equivari-
ance to any affine transformation across both spatial
dimensions and the channel dimension.

Training the student to have the same equivari-
ance Once the group representation model is learned,
applying it in the student training is straight-forward.
We simply use the same objective that we used for train-
ing the group representation model on the teacher, but
here we freeze the group representation model instead.
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CNN → MLP ResNet18 → ViT

Method Centered Translated Centered Translated

Teacher 99.0 93.4 99.6 90.3
Student 98.5 35.7 98.6 37.3

+ Augment 54.3 97.0 56.5 97.4

KD 98.8 41.1 98.8 41.2
Attention 98.4 31.9 — —
RDL 98.6 31.9 99.3 59.6

Orbit 98.8 95.2 98.4 84.0

Table 1: MNIST (column 1 and 3) and MNIST-C
(column 2 and 4) test results for four different transfer
methods. Left two columns show the transfer results
from a small CNN teacher to an MLP student. The
right columns show analogous experiments between a
ResNet18 teacher and a small ViT student. The best
performing transfer is shown in bold for each column.

This means can ignore the objectives from Equation 3
and 4, which leaves us with:

Ω(l) = ‖Ψ(ρ(0)
g x)− ρ(1)

g (Ψ(x))‖22 (6)

Additionally, we can also use our model to sample data

ρ
(0)
g which we can use as data augmentation when com-

puting the standard cross-entropy loss. One potential
caveat to our method is the fixed filter-size that limits
the range of operations we can learn. For instance, a
5× 5 filter can only learn shifts of length two in all
directions. This can be solved by iteratively applying
the same filter for a random number of repeats when
computing the objectives in Equation 2 and 6.

5.2 Experiments

First, we evaluate the generalization abilities to unseen
shifts for our student model after transfer. In contrast
to most methods presented above, our approach man-
ages to outperform the student baseline after transfer
(see Figure 2). This is the case not only for unseen
shifts, but also for seen shifts, as the transferred equiv-
ariance helps with the increasingly more difficult test
set as we increase the shifts in training. Additionally
we also see that orbit transfer helps with a student
architecture that replaces the pooling with a linear
layer before the network’s output (see Figure 3). This
is especially noteworthy since direct matching failed to
perform well in this scenario.

After exploring the different transfer methods in a con-
trolled environment, we finally verify our results on
a slightly more realistic task, namely MNIST (Deng,
2012). We follow the example of Abnar et al. (2020)
and use a CNN trained on standard MNIST as the
teacher for a student network without a built-in induc-
tive bias for shift equivariance. In the first, focused,
setting, we use simple three layer networks for both

student and teacher, whereas the teacher consists of
convolutional layers with maximum pooling and the
student is a purely fully-connected network. The sec-
ond, more realistic setting transfers from a ResNet-18
(He et al., 2015) to a small six layer vision transformer
(ViT; Dosovitskiy et al., 2020). More details on the
architecture and the training procedure can be found
in the supplementary material. After training, we eval-
uate the trained model on both the standard – centered
– MNIST test set, as well as the translated version pro-
vided by MNIST-C (Mu and Gilmer, 2019). In Table 1
we report the results for hyper-parameters that were
selected on the translated test set in the CNN → MLP
setting.

The results confirm the findings from the MNIST-1D
experiments we report above. We again see that trans-
ferring shift equivariance to a fully connected network
is a hard task for conventional functional transfer meth-
ods. Attention transfer (-3.8%) and RDL (-3.8%) both
underperform compared to the student’s baseline per-
formance in the CNN→ MLP setting. Even KD, which
was reported by Abnar et al. (2020) to improve perfor-
mance on the very same evaluation set, only achieves
marginal improvements (+5.4%) in our setting, that
focuses on shift equivariance exclusively. Our approach
of Orbit transfer shows a strong improvement over the
baseline performance of the student network (+59.5%).
We observe similar results in the ResNet18 → ViT
setting. KD only slightly improves shift performance
(+3.9%) and Orbit shows major gains on the translated
test set (+46.7%). Interestingly, RDL performs signif-
icantly better in this setting, both on the translated
(+22.3%) as well as the centered test set (+0.7%).

5.3 Analysis

A control that trains the student with data augmenta-
tion identical to the translated test set reveals that our
method almost reaches the same performance (-1.8%),
even though it has never seen the translated set before
test time. Following the same procedure of Mu and
Gilmer (2019), we trained the student network with
shift augmentations that do not include the center posi-
tion. Therefore this student network shows overfitting
behavior on the test shifts, which leads to a large drop
in centered performance (-44.2%). The same is not
true for our approach, since technically there are no
“seen” or “unseen” shifts in our approach.

One big advantage of our equivariance transfer method
is its interpretability. In Figure 5 we inspect the ker-
nels that are learned for each group element in our
group representation model. For a perfect model of
shift equivariance, we would expect each filter to have
a single non-zero position and all filters to be distinct.
The learned filters resemble this expectation to a some
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Figure 5: Rows 1-5: Kernels for all 25 linear representa-
tion of the group elements learned in the equivariance
model. Rows 6-10: Kernels (in identical order) applied
to an example input.

Method Upright Rotated

Teacher (G-CNN) 99.1 87.7
Student (MLP) 98.3 39.5

KD 98.7 46.3
RDL 99.0 45.6
Attention 98.3 41.1

Orbit 97.5 76.5

Table 2: Results on the MNIST test set with images
in upright (column 1) or randomly rotated (column
2) orientation for four different transfer method for a
G-CNN teacher and an MLP student.

extend. In cases where the filters are somewhat am-
biguous, or where we do not know how the filters are
expected to look like, we can even look at an example
input after transforming it with out learned transfor-
mation network. In our case it becomes clear that the
model did learn shifts, as we clearly see shifted versions
of the input when applying the filters in Figure 5.

5.4 Rotation Experiments

In order to verify that our Orbit method can generalize
to inductive biases other than shift equivariance, we
apply it to the task of transferring equivariance to ran-
dom rotations by multiples of ninety degree. Here the
teacher model is a group-convolutional neural network
(G-CNN; Cohen and Welling, 2016) and the goal is
to transfer its inductive bias to a simple MLP. For

Orbit, we model ρ
(l)
g as an affine transformation (see

above). We observe an effect similar to the shift equiv-
ariance setting (cf. Table 2), where established transfer
methods show minimal effectiveness (up to +6.8% for
KD) and Orbit performs remarkably well (+37.0%).
However, we have to note that the corresponding opti-
mization problem suffers from local minima, making it
sensitive to initialization and – so far – preventing us
from jointly transferring shift and rotation equivariance
with the same model. More details on the experimental
setup can be found in the supplementary material.

6 CONCLUSION

We investigated the transfer abilities of functional trans-
fer methods and empirically showed in a simple con-
trolled example that they are incapable of transfer-
ring even simple equivariances such as shift. We then
showed for methods based on representational similar-
ity that they cannot guarantee that the student network
has the same linear representation of the equivariance as
the teacher after training. Based on our insights, we de-
veloped Orbit, a novel transfer method that learns the
equivariance properties of a given network and transfers
them to a student network. Finally, we demonstrated
that our method surpasses other methods by a large
margin when transferring shift equivariance from a
CNN to a fully-connected network. For future work,
we are expanding these experiments to larger models
and datasets, especially to more challenging symme-
tries such as rotations. Most importantly, our work
shows promise and hopes to inspire approaching the
transfer learning problem from the view of transferring
useful and interpretable inductive biases.

Acknowledgements

We thank all reviewers for their constructive and
thoughtful feedback. Furthermore, we thank Moham-
mad Bashiri for helpful comments and discussions. The
authors thank the International Max Planck Research
School for Intelligent Systems (IMPRS-IS) for support-
ing Arne Nix.

This work was supported by the Cyber Valley Research
Fund (CyVy-RF-2019-01). FHS is supported by the
Carl-Zeiss-Stiftung and acknowledges the support of
the DFG Cluster of Excellence “Machine Learning –
New Perspectives for Science”, EXC 2064/1, project
number 390727645. This work was supported by an
AWS Machine Learning research award to FHS. This
work was supported by the German Research Foun-
dation (DFG): SFB 1233, Robust Vision: Inference
Principles and Neural Mechanisms, TP 06, project
number: 276693517.



Can Functional Transfer Methods Capture Simple Inductive Biases?

References

Samira Abnar, Mostafa Dehghani, and Willem
Zuidema. Transferring Inductive Biases through
Knowledge Distillation. 2020. URL https:

//github.com/samiraabnar/Reflect.http:

//arxiv.org/abs/2006.00555.

Abien Fred Agarap. Deep learning using rectified linear
units (relu). arXiv preprint arXiv:1803.08375, 2018.

Ari S Benjamin, David Rolnick, and Konrad P Kord-
ing. Measuring and regularizing networks in function
space. In 7th International Conference on Learning
Representations, ICLR 2019, 2019.

Lucas Beyer, Xiaohua Zhai, Amélie Royer, Lar-
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Supplementary Material:
Can Functional Transfer Methods Capture Simple Inductive Biases?

A EXPERIMENTAL SETUP

A.1 MNIST-1D Experiments

Our goal was to design a simple teacher model that would generalize well to unseen shifts of the MNIST1D task
in our evaluation setup. We ended up with a two-layer fully convolutional architecture with ReLU activations
(Agarap, 2018), a stride of one and kernels of size five for all convolutions, fifteen channels in the first and ten in
the second layer. A spatial max-pooling operation is performed at the final layer to obtain predictions for ten
classes.

The student network is designed to replicate the teacher network as closely as possible, while using fully-connected
layers instead of convolutions. Thus, to match the output-size of each layer, we use two hidden layers of size
600 and 400 with a ReLU activation in-between. To replicate the final max-pooling layer, we experiment with
two variants of the student architecture. One architecture that replaces the max-pooling with a fully-connected
layer, and then an alternative architecture that reshapes the output of the previous fully-connected layer into
spatial and channel dimensions and on this representation performs a spatial max-pooling operation. The latter
architecture simplifies the transfer problem, as only the equivariance of the lower layers has to be transferred
instead of invariance of the entire network. More details on the architectures can be found in Table 3.

The training is always performed using Adam optimizer (Kingma and Ba, 2014) for 40,000 iterations with a batch
size of 1000 examples. After every 100 steps the validation performance is evaluated and the learning rate is
reduced by a factor of 0.8 if the accuracy has not improved for 20 evaluations. The training is interrupted if the
learning rate has been reduced five times or if the maximum of 40,000 iterations is reached.

Teacher Student

1× 15 Conv 40× 600 FC
ReLU ReLU

15× 10 Conv 600× 400 FC

max-pooling max-pooling
ReLU

400× 10 FC

Table 3: Comparison of different architectures we use for the MNIST1D experiments. (Channel-size for Conv and
hidden-size for FC.) Note that both student architectures are identical for the first two layers.

Orbit Model

The model for the orbit transfer is selected in a way that allows it to capture the shift equivariance that we hope

to transfer. Thus we chose a model that learns 40 filters of size 40 to model ρ
(0)
g for g = [0, 39]. To additionally

model ρ
(l)
g , we learn affine transformations (40× 40 projections) for each layer as well as a down-projection for

the output layer (40× 10 projection).

Transfer Hyperparameters

As discussed in Section 2, we use a hyperparameter γ to interpolate between the standard cross-entropy loss
LCE and the transfer term Ω. In an extensive hyperparameter search, we selected the γ for each transfer
method that performed best on the validation set. This left us with the following values: Attention 0.9, KD
0.6, Direct matching 0.4, RDL 0.9, Orbit 1.0. The same hyperparameter search gave us weights for the different
components of the objective for learning the Orbit model ρ. The values selected for the final evaluation were
γequiv = 0.1, γgroup = 10.0, γinv = 10.0, and γCE was fixed to 0.0.
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A.2 MNIST-2D Shift Equivariance Experiments

A.2.1 CNN → MLP

In contrast to Abnar et al. (2020), we want to isolate the effect of shift equivariance and thus end up with a
simpler architecture for both teacher and student. The teacher network has three convolutional layers with 128,
64 and 64 channels, a stride of one and a filter size of 3×3 each. Maximum-pooling is performed after layers two
and three. A final linear layer is used to obtain the network’s output. The student equals the teacher network in
depth, but differs in layer size, with fully-connected layers of size 512,128 and 32. This discrepancy is expected
in architectures as different as fully connected networks and CNNs, and it prevents the use of direct matching
within the network for function transfer, as the layer outputs do not match in size. Both student and teacher use
ReLU activation (Agarap, 2018), as well as dropout with p = 0.1 after each layer. More architectural details can
be found in Table 4.

The training is performed using Adam optimizer (Kingma and Ba, 2014) with a learning-rate of 0.0003, a schedule
of linear learning-rate warmup for 20 epochs, and a decay by factor 0.8 if there is no improvement in validation
accuracy for 20 epochs. The training stops if the learning-rate is reduced five times or if it reaches 400 epochs.
This training schedule is intentionally designed to be rather conservative, specifically to benefit functional distance
methods as it was reported that knowledge distillation needs a lot of patience in training (Beyer et al., 2021).

Teacher Student

1× 128 Conv 784× 512 FC
ReLU ReLU

Dropout (p = 0.1) Dropout (p = 0.1)
128× 64 Conv 512× 128 FC

ReLU ReLU
max-pooling (2× 2)
Dropout (p = 0.1) Dropout (p = 0.1)

64× 64 Conv 128× 32 FC
ReLU ReLU

max-pooling (3× 3)
Dropout (p = 0.1) Dropout (p = 0.1)

avg-pooling (global)
64× 10 FC 32× 10 FC

Table 4: Comparison of student and teacher architecture for the MNIST experiments. (Channel-size for Conv
and hidden-size for FC.)

A.2.2 ResNet18 → ViT

For the more realistic setting where we transfer a ResNet18 teacher to a ViT student, we use the same training
and evaluation setup as above. The only change comes through the architectures we use. This is on the one hand
a standard ResNet18, as it was described by He et al. (2015), and on the other hand a smaller variant of the
vision transformer architecture (Dosovitskiy et al., 2020). The major changes compared to the original design are
that we use six layers with eight attention heads and an embedding-size of 64. The patch-size applied on the
input image is 7×7 pixels and we use a hidden-size of 128 for all position-wise feed-forward operations.

A.2.3 Orbit Model

The orbit model is trained with the same schedule as teacher and student. Here the validation loss is used to
determine learning-rate decay and early stopping. We learn 25 kernels of size 5× 5 to model ρ

(0)
g for g ∈ [0, 24].

Additional affine projections are learned for each layer of the student, i.e. to transform ρ
(0)
g into ρ

(l)
g . These

projections are fully-connected, and thus we learn matrices of size 25× 25 for each layer except for the output
layer. There the filters are projected to size 10 instead. In order to stabilize the training, we cut off the gradient

to the transformed input ρ
(0)
g x, which means that ρ

(0)
g will only receive its feedback through ρ

(l)
g with l > 0, which

are affine projections of ρ
(0)
g .
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A.2.4 Transfer Parameters

In prior experiments, we determined a reasonable value for γ for each transfer method. This left us with the
following values: Attention 0.9, KD 1.0, RDL 0.8, Orbit 1.0. We also found that γgroup has a significant effect on
the performance. Thus we searched for its value as part of our hyperparameter search and found γgroup to work
best. The other components of the objective are all set to one.

A.3 MNIST-2D Rotation Equivariance Experiments

A.3.1 G-CNN → MLP

The student model in the rotation transfer experiments is the same MLP network that we used in the MNIST-2D
experiments above. The training setup also remained unchanged, except that for the rotation transfer experiments
we set a larger batch-size of 256 and train only for 200 epochs, as we noticed no change in performance after that
point during prior experiments.

For the teacher model, we mainly followed the architecture of the G-CNN by Cohen and Welling (2016), but
reduced the depth. Details can be seen in Table 5.

Teacher Student

1× 8 p4-Conv (kernel-size 5) 784× 512 FC
max-pooling (2× 2)

ReLU ReLU
8× 32 p4-Conv (kernel-size 3) 512× 128 FC

max-pooling (2× 2)
ReLU ReLU

32× 64 p4-Conv (kernel-size 3) 128× 32 FC
max-pooling (2× 2)

ReLU ReLU
64× 10 p4-Conv (kernel-size 3) 32× 10 FC

max-pooling over rotations
Global spatial avg-pooling

Table 5: Comparison of student and teacher architecture for the MNIST experiments. (Channel-size for Conv
and hidden-size for FC.)

A.3.2 Orbit Model

As mentioned in Section 5, we decided to use a more general architecture for the orbit representation. Thus, we

learn a separate affine transformation matrix ρ
(l)
g for each group element g = 1, . . . , G and layer l = 1, . . . , L.

Each ρ
(l)
g is initialized to a random affine transformation within a fair range (i.e. such that an image would still

be recognizable). For this, we are considering shifts in range [−0.1, 0.1] in x and y direction, rotations in range
[0, 360] degree along all axes, scaling by a factor in range [0.8, 1.2] and shears by a factor in range [0.0, 15.0]. We
trained models for G = 4, 8 and 25. All of our models outperformed existing transfer methods, but G = 25
performed the best. For this model, we report the average performance across three seeds in Table 2.
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B ABLATION STUDY ON LOSS COMPONENTS

We performed an ablation study to determine the interplay and importance of individual loss components. The
results show that the best performance is reached when all loss components are used together (see Table 6).
However, there are many combinations that show an acceptable performance on centered images while achieving
above-baseline results on translated inputs. The most notable negative effect is observed when both the
equivariance, as well as the invariance components are left out.

γgroup γequiv γinv γCE Centered Translated

10.0 1.0 1.0 1.0 99.02 96.48
10.0 1.0 1.0 - 99.02 96.48
10.0 - 1.0 1.0 89.98 88.65
10.0 - 1.0 - 92.82 89.68
10.0 1.0 - 1.0 98.36 89.98
10.0 1.0 - - 98.45 93.8
10.0 - - 1.0 37.25 52.82
10.0 - - - 43.38 58.69

- 1.0 1.0 1.0 98.78 85.01
- 1.0 1.0 - 98.48 81.18
- - 1.0 1.0 98.37 89.54
- - 1.0 - 98.59 90.98
- 1.0 - 1.0 98.24 77.36
- 1.0 - - 98.05 83.51

Table 6: Ablation study deactivating the different components of the objective: γgroup(Eq. 3), γequiv (Eq. 2),
γinv (Eq. 4) and γCE (standard loss on transformed inputs)
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