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Abstract

Local di↵erential privacy (LDP) is an
information-theoretic privacy definition suit-
able for statistical surveys that involve an
untrusted data curator. An LDP ver-
sion of quasi-maximum likelihood estima-
tor (QMLE) has been developed, but the ex-
isting method to build LDP QMLE is dif-
ficult to implement for a large-scale survey
system in the real world due to long wait-
ing time, expensive communication cost, and
the boundedness assumption of derivative of
a log-likelihood function. We provided an al-
ternative LDP protocol without those issues,
which is potentially much easily deployable
to a large-scale survey. We also provided
su�cient conditions for the consistency and
asymptotic normality and limitations of our
protocol. Our protocol is less burdensome
for the users, and the theoretical guarantees
cover more realistic cases than those for the
existing method.

1 INTRODUCTION

The collection and use of data related to individuals
continue at an unprecedented pace, raising a critical
question: How do we balance the benefits of data
use with the inherent privacy risks involved? One
option is privacy protection based on di↵erential pri-
vacy (DP)(Dwork et al., 2006; Dwork and Roth, 2014),
whose information-theoretic definition requires data
curators such as IT companies to stochastically per-
turb the results of research before making them avail-
able to third parties or the public. DP statistical
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data processing has been widely studied both theo-
retically (Bassily et al., 2014) and empirically (Abadi
et al., 2016). However, protection with DP does not
work when the curator is adversarial. In fact, IT com-
panies sometimes betray their users (Day et al., 2019).

To ensure that user privacy is protected even if
the company is adversarial, local di↵erential pri-
vacy (LDP)(Kasiviswanathan et al., 2011; Duchi et al.,
2013) can be employed. By definition, LDP requires
that the users themselves stochastically perturb their
sensitive records before providing the records to a com-
pany. This perturbation ensures that no one can de-
terministically know the records. Notably, Google and
Apple have conducted statistical surveys that guaran-
tee user privacy based on this definition (Erlingsson
et al., 2014; Apple Di↵erential Privacy Team, 2017).

LDP versions of many statistical tools have been de-
veloped, including heavy-hitter estimation (Erlingsson
et al., 2014; Fanti et al., 2016; Bassily and Smith,
2015; Qin et al., 2016), discrete distribution esti-
mation (Kairouz et al., 2016; Ding et al., 2017), t-
tests (Ding et al., 2018), chi-squared tests (Gaboardi
and Rogers, 2018) and sparse linear regression (Wang
and Xu, 2019). An LDP quasi-maximum likelihood
estimator (QMLE) can also be included among these
tools. QMLE is an estimator of a parameter likely
approximating a distribution F generating a set of
observations Dn = {x1, . . . ,xn}, from model fam-
ily {F✓ : ✓ 2 ⇥}. The likelihood of parameter ✓ is
evaluated using the log-likelihood function `(✓;Dn) =Pn

i=1 log f✓(xi)/n, and QMLE ✓̂n is defined as the
maximizer of `(✓;Dn). MLE is a special case in which
there is a correct model: F 2 {F✓ : ✓ 2 ⇥}. Since no
one observes the raw data under the LDP constraint, it
is too optimistic to assume that we can specify a fam-
ily including the true distribution. In this paper, we
mainly consider QMLE rather than MLE. Under reg-
ularity conditions, QMLE has asymptotic normality.
By understanding its normality, the curator is able to
determine how likely and by how much the estimator
is to deviate from the optimal point. Moreover, with
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the asymptotic normality, we can perform the Wald
test, which is an important application (Vaart, 2000).

Bhowmick et al. (2018) provided a framework for LDP
M-estimators, which is a superclass of LDP QMLEs. It
approximates the maximizer of an objective function
with stochastic gradient descent. They showed that
the covariance matrix of the normal distribution on
which the estimator converges agrees with minimax
optimal ones up to a constant.

However, the existing protocol may be di�cult to de-
ploy for a large-scale system in the real world due to
the following three problems: (i) it requires a long
waiting time for users, (ii) it is communication ine�-
cient, and (iii) it requires finiteness of the derivative
of the objective function. The existing protocol is in-
teractive wherein the communication of the ith user
depends on those of the previous i� 1 users. Though
this interactivity gives more accurate statistics (Smith
et al., 2017), it causes a long waiting time for users
when millions of users are involved in the protocol.
Communication e�ciency is a non-ignorable problem
for large-scale implementation, especially on Edge or
IoT devices. When the parameter is d-dimensional
and each component of the parameter uses float as a
data type, each user submits 32d bits. It is also of
great practical importance to be able to apply to un-
bounded domain data. The LDP constraints require
a user to perturb her record so as to be indistinguish-
able from the other candidate records in the domain.
An unbounded domain makes it di�cult to satisfy this
requirement since no one knows how many candidate
values exist in the domain.

We provide low-user-side-cost protocols that involve
no waiting time, require no boundedness assumption,
and avoid high communication costs for QMLEs of re-
gression. In this paper, we focus on regression which is
a wide and important class. To eliminate waiting time,
we abandon interactivity. Although less accurate than
interactive methods, our protocol has a significant ad-
vantage in that the execution time on the user side is
constant regardless of the number of users. To remove
the boundedness assumption, we incorporate trunca-
tion into the protocol. This simple technique makes it
possible for the protocol to perform safely even when
the record domain is unbounded. For communication
e�ciency, we adopt the one-bit submission strategy
whereby a record is stochastically quantized into a bi-
nary value (McGregor et al., 2010; Seide et al., 2014;
Bassily and Smith, 2015; Ding et al., 2018; Wang et al.,
2018). This strategy significantly reduces the commu-
nication cost. See Table 1 for a quick comparison of
the communication costs and waiting time.

As the main contributions of this paper, (i) we give

consistency and asymptotic normality theorem with
their su�cient conditions for our QMLEs, and (ii) we
make explicit the limitations of the scope of our the-
oretical analysis. The asymptotic normality is useful
for curators to adequately decide sample size n and
privacy parameter ✏. The su�cient conditions for our
consistent and normality theorems are conditions on
the model family and the true distribution. The cura-
tor should check the conditions for the model family
when selecting the family. On the other hand, no one
can evaluate the conditions on the true distribution.
We recommend that the curator should carefully con-
sider these conditions with the help of experts.

To discuss the su�cient conditions for our theorems on
a concrete problem, we consider ↵-quantile linear re-
gression (Davino et al., 2013). With this example, we
can see that it is not so di�cult to make a model family
satisfying the conditions. Given ↵ 2 (0, 1), coe�cients
estimation for ↵-quantile regression is one of the stan-
dard statistical data analyses and QMLE is one of the
solutions. For explanatory variables X on Rd and ob-
jective variable Y on R, the goal of the ↵-quantile re-
gression is to find coe�cient � 2 B ⇢ Rd such that the
inner product �>X well approximates the ↵-quantile
of the distribution of Y , i.e., inf{y|Pr(Y  y|X) > ↵}.
If we consider asymmetric Laplace distributions as the
model family, this problem is a likelihood-maximizing
problem. With this example, we are able to confirm
that the conditions regarding the model family are eas-
ily satisfied. In addition, using real data, we observe
the asymptotic behavior of our QMLE. The observa-
tions imply that the Frobenius norm of empirical co-
variance matrix shrinks in proportion to 1/n as ex-
pected in the asymptotic normality theorem.

We mention some related works. LDP regression by
non-interactive algorithms has been studied in the con-
text of LDP empirical risk minimization e.g., (Smith
et al., 2017; Zheng et al., 2017; Wang et al., 2018,
2019a, 2021). Their targets are not analyses of asymp-

Table 1: Comparison of communication costs in num-
ber of submitting bits and waiting time of the proto-
cols of the existing protocol (Bhowmick et al., 2018)
and our protocol in two scenarios where explanatory
variables X are public and private, d is the dimension
of parameter, k is number of explanatory variables,
and n is the number of users.

Id Scenario Server User Wait

Bhowmick2018
X pub 32k 32d

O(n)
X pri 0 32k

Ours
X pub 32k 1

O(1)
X pri 0 d+ 1
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totic normality but seeking smaller risk. The studies
for non-local di↵erentially privately M-estimators took
di↵erent ways from us (Smith, 2011; Chaudhuri and
Hsu, 2012; Avella-Medina, 2020). Due to the di↵erence
in the privacy models, we do not compare our results
with theirs. Bhowmick et al. (2018) showed asymp-
totic normality of their estimator relying on Polyak
and Juditsky (1992) ’s asymptotic-normality proof for
the estimators obtained by stochastic gradient descent.
Since we do not use stochastic gradient descent, we
prove our theorem by a di↵erent method.

The remainder of the paper is organized as follows:
In Section 2, we introduce the notation used in this
paper and some of the basic concepts. In Section 3,
we describe our protocols for building QMLEs. In Sec-
tion 4, we discuss QMLE for ↵-quantile regression as
an illustrative application of the protocol. In Section 5,
we report the results of a numerical experiment with
real data. In Section 6, we o↵er concluding remarks.

2 PRELIMINARIES

We begin by defining some of the notation used in
the paper. We denote by 0d the d-length zero vector.
When we take expectation while emphasizing the dis-
tribution F , we use Fg = EX⇠F [g(X)] where g is a
function. A comprehensive summary of our notation
is provided in Appendix A.

2.1 Local Di↵erential Privacy

Local di↵erential privacy is a rigorous privacy defini-
tion for distributed statistical analyses. The definition
requires each user to protect her sensitive record indi-
vidually by stochastic perturbation. In particular, we
consider the case in which users receive no feedback
from the curator. LDP in such a situation is called
non-interactive LDP; in this paper, we refer to non-
interactive LDP simply as LDP.

We can now formally define LDP. Assume there are
n users, each of whom possesses a sensitive record Ri

for i = 1, · · · , n. Let R be the domain of the records.
Assume that there is also a curator who will perform a
statistical analysis on the users’ records and that each
user will submit her perturbed record to the curator.
We can define the perturbation as a conditional distri-
bution Q(·|R = r) and LDP as a property of Q.

Definition 1 (✏-LDP). Given ✏ > 0, distribution Q is

✏-locally di↵erentially private if, for any r, r0 2 R,

sup
S2�(X )

Q(S|R = r)  e✏Q(S|R = r0),

where �(X ) is a �-algebra on X .

This definition requires that the conditional distribu-
tions Q(·|r) and Q(·|r0) are not so di↵erent from each
other for any pair r, r0 of records in R. The ✏ repre-
sents the similarity of the conditional distributions. A
smaller ✏ implies stricter privacy protection but less in-
formation of the outputs. ✏ thus controls the trade-o↵
between privacy protection and utility.

This paper uses the bit flip (Ding et al., 2018) for the
concrete implementation of conditional distribution Q
satisfying ✏-LDP. The bit flip stochastically maps a
finite continuous interval [cl, cu], where cl and cu are
some real constants such that cl < cu, into discrete
binary values {z�, z+}. Then, for any input v 2 [cl, cu]
and with C✏ =

e✏+1
e✏�1 , the bit flip is defined as

Qbf(Z = z|v) =

8
<

:

1
2 � v� cu+cl

2
(cu�cl)C✏

if z = z�,

1
2 +

v� cu+cl
2

(cu�cl)C✏
if z = z+.

When the input is close to cu, the output is likely to
be z+; conversely, when the input is close to cl, the
output is likely to be z�.

2.2 Quasi-Maximum Likelihood Estimator

Given observations Dn = {x1, . . . ,xn} generated by
distribution F , the likelihood of parameter ✓ of a
model F✓ is evaluated by the log-likelihood function

`(✓;Dn) =
1

n

nX

i=1

log f✓(xi),

where f✓ is the density function of F✓. Roughly speak-
ing, the log-likelihood is the log of the probability that
the observations are obtained assuming they are sam-
pled from F✓. For the likelihood function, QMLE ✓̂n
is defined as ✓̂n = argmax✓2⇥`(✓;Dn). Not only Dn

but also ✓̂n itself is a random variable.

In this subsection, we review the consistency and
asymptotic normality theorems of QMLEs by White
(1982). To define the log-likelihood function well,
we first need to make some assumptions. The first
is that the observations are independently generated
from a distribution F and that F has a regular Radon–
Nikodym density function f . The second condition re-
quires that the model family also has regular density
functions.

Assumption 1. Let ⌫ be an appropriate measure on

X . For a constant k, the independent 1 ⇥ k random

vectors Xi, i = 1, · · · , n, have common joint distribu-

tion function F on X , a measurable Euclidean space,

with measurable Radon–Nikodym density f = dF/d⌫.

Assumption 2. The family of distribution func-

tions F✓(x) has Radon–Nikodym densities f✓(x) =
dF✓(x)/d⌫ which are measurable in x for every ✓ 2 ⇥,
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a compact subset of a d-dimensional Euclidean space,

and continuous in ✓ for every x 2 X .

To guarantee consistency, we introduce an additional
technical assumption.

Assumption 3. (a) F log f exists, and | log f✓(x)| 
h(x) for all ✓ 2 ⇥, where h is integrable with respect

to F ; (b) F log f✓ has a unique maximum at ✓⇤ 2 ⇥.

Under these regularity conditions, the QMLE con-
verges to ✓⇤ = argmax✓2⇥F log f✓.

Theorem 1 (Theorem 2.2 in (White, 1982)). Given

Assumptions 1 to 3, ✓̂n ! ✓⇤ as n ! 1 for almost

every sequence {Xi}ni=1.

We also have asymptotic normality under some addi-
tional assumptions regarding the existence of scores
@ log f✓(x)/@✓ and related quantities.

Assumption 4. @ log f✓(x)/@✓j , j = 1, ..., d, are mea-

surable of x for each ✓ 2 ⇥ and continuously di↵eren-

tiable functions of ✓ for each x 2 X .

Assumption 5. |@ log f✓(x)/@✓j1 · @ log f✓(x)/@✓j2 |
and |@2 log f✓(x)/@✓j1@✓j2 |, for j1, j2 = 1, . . . , d are

dominated by functions integrable with respect to F for

all x in X and ✓ in ⇥.

Assumption 6. (a) ✓⇤ is interior to ⇥; (b) B(✓) =
(F (@ log f✓/@✓)(@ log f✓/@✓)> is nonsingular at ✓ =
✓⇤; (c) ✓⇤ is a regular point of A(✓) = F@2 log f✓/@✓2.

The following shows the asymptotic normality.

Theorem 2 (Theorem 3.2 in (White, 1982)). Given

Assumptions 1 to 6,

p
n(✓̂n � ✓⇤) ! N (0, C(✓⇤))

where C(✓) = A(✓)�1B(✓)A(✓)�1.

When F✓⇤ = F , C(✓⇤) is called the Fisher information
matrix.

2.3 Quantile Regression

Linear quantile regression deals with the statistical
problem of finding coe�cients � 2 B ⇢ Rd such that,
given x, the inner product �>x well approximates the
↵-quantile inf{y|F (Y  y|x) > ↵} of Y |x. The prob-
lem is often formulated as an optimization problem
finding � 2 B that minimizes the following objective
function: Given observations {xi, yi}ni=1,

nX

i=1

⇢↵(yi � �>xi) where ⇢↵(⌧) =

(
(↵� 1)⌧ if ⌧  0,

↵⌧ if ⌧ > 0.

(1)

⇢↵ is a convex function, which is called the check loss.

If we assume that objective variable Y is sampled from
the asymmetric Laplace distribution defined below,
the minimization of (1) is equivalent to the likelihood
maximization for the parameter of the distributions:
With � > 0,

fY (y;↵, µ,�) =
↵(1� ↵)

�
exp

✓
�⇢↵

✓
y � µ

�

◆◆
. (2)

Hence the log-likelihood function is written as

1

n

nX

i=1

log fY (yi;↵,�
>xi,�)

= log
↵(1� ↵)

�
� 1

n�

nX

i=1

⇢↵
�
yi � �>xi

�
. (3)

Finally, we revisit the classical result of the asymptotic
normality of the MLE. Let �̂n 2 B be the MLE that
minimizes (3), and let �⇤ be the coe�cient such that
F (Y  y|X = x) = FY (y;↵,�⇤>x,�) for almost every
x and y with appropriate ↵ and �. Then, the sequence
of MLEs {�̂n}n converges as

p
n(�̂n � �⇤) ! N (0d, I

�1), (4)

where N (0d, I�1) is the normal distribution whose
mean and covariance are 0d and I�1, respec-
tively (Davino et al., 2013). Assuming that E

⇥
XX>⇤

is non-singular, I is the Fisher information matrix de-
fined as

I =
↵(1� ↵)

�2
E
⇥
XX>⇤ . (5)

3 PROPOSED PROTOCOL

We provide two protocols for building QMLEs of re-
gression in two di↵erent privacy scenarios and give
their asymptotic normality theorem. Then, we remark
on their advantages, limitations, and possible future
works.

3.1 Regression with Public X

In this subsection, we consider regression with sensi-
tive objective variable Y and public explanatory vari-
ables X. This situation may seem strange, but we will
give a practical use case. Consider a situation in which
a company is planning to conduct a customer opinion
survey on a new product. The company can control
its features set X and gives a new product with cer-
tain features X = x to each customer. The customer
gives an evaluation Y for X = x. The target of the
company is to understand the conditional distribution
of Y . In the survey, the company knows the Xs and
their distribution, and they are public.
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The system model is as follows: There are a single
curator and n users. The curator selects distribution
FX on X ⇢ Rk, a measurable Euclidean space, gener-
ates Xi for each user i = 1, · · · , n following FX, and
passes them to each user. Given Xi = xi, user i inde-
pendently generates Yi following unknown conditional
distribution F (·|xi) on Y ⇢ R, a measurable space,
and truncates it into interval [cl, cu]. Let Ȳi be the
truncated version of Yi:

Ȳi = t(Yi) ⌘

8
><

>:

cl if Yi  cl,

Yi if cl < Yi < cu,

cu if Yi � cu.

(6)

We let ȳi be a realization of Ȳi. Then, the user per-
turbs ȳi by the bit flip. Zi that is perturbed Ȳi dis-
tributes as

p(Zi = z|Xi = x) =

Z
Qbf(z|t(y))dF (y|x). (7)

User i submits zi which is a realization of Zi to the
curator. The user submission is always only one bit.

The curator considers model family {F�(·|x) : � 2
B,x 2 X} that consists of conditional distributions pa-
rameterized by B, a compact subset of a d-dimensional
Euclidean space. For each � 2 B, we define condi-
tional density function p�(z|x) by replacing F by F�

in (7). The target of the curator is to find � such that
P� well approximates P . In this subsection, we write
P and P� to designate joint distributions P (x, z) and
P�(x, z) rather than conditional distributions P (z|x)
and P�(z|x).

Given observations Dn = {(zi,xi)}ni=1, the log-
likelihood function is defined as

`(�;Dn) ⌘
1

n

nX

i=1

log p�(xi, zi)

=
1

n

nX

i=1

(zi log⇤✏(�,xi) + (1� zi) log(1� ⇤✏(�,xi))

+ logFX(xi))

where ⇤✏(�,x) = p�(z = 1|x). We define �̂n =
arg max�2B`(�;Dn) and �⇤ = arg max�2BP log p� .
The model selection and optimization are performed
by the curator, and the users do not have to care about
them. The curator can change hyperparameters ex-
cepting cu, cl and ✏ and can try multiple model fam-
ilies without any additional cost for the users. The
pseudo-code is included in Appendix B.

Now, we analyze the behavior of �̂n. To derive the
consistency of our QMLE, we replace F and F✓ in
Theorem 1 with P and P� , respectively. We find the
conditions under which Assumptions 1 to 3 are sat-
isfied while replacing F and F✓ with P and P� . To

satisfy Assumptions 1 and 2, we introduce the follow-
ing assumptions.

Assumption 7. Conditional distribution F (·|x)
has a Radon–Nikodym density function f(y|x) =
dF (y|x)/d⌫ which is measurable in y for every x 2 X .

Assumption 8. FX has a measurable Radon-

Nikodym density fX = dFX/dµ with some appropriate

measure µ.

Assumption 9. The family of distribution func-

tions F�(y|x) has Radon–Nikodym densities f�(y|x) =
dF�(y|x)/d⌫ which are measurable in y for every x 2
X and � 2 B, and continuous in � for every x 2 X
and y 2 Y.

These assumptions are satisfied with many dis-
tributions e.g., Gaussian and Bernoulli distribu-
tions. From these assumptions, it is obvious that
P (x, z), P�(x, z) are measurable and that the den-
sity functions p(x, z) = p(z|x)f(x) and p�(x, z) =
p�(z|x)f(x) exist.

In order for the QMLE for regression parameter to
satisfy Assumption 3, we consider the following two
conditions. The first one is the existence of P log p and
integrable function h(x, z) such that | log p�(x, z)| 
h(x, z) for all � 2 B. P log p can be extended as

P log p = FX(P·|X log p(·|X) + log fX(X)).

Since log p(·|X) is always bounded away from �1 and
+1 by the following lemma, log p(·|X) is always inte-
grable with respect to P .

Lemma 1. The value of ⇤✏(�,x) is bounded away

from 0 and 1, for all � 2 B and x 2 X .

See Appendix C.1.1 for the proof. Thus, if FX logFX

exists, P log p also exists. Similarly, the existence of
P log p� depends on the existence of FX log fX.

Assumption 10. FX log fX exists.

The second condition relates to the uniqueness of the
maximum of the log-likelihood function. Because the
maxima are not always unique, we adopt the following
assumption.

Assumption 11. P log p� has a unique maximum.

We now have consistency.

Theorem 3. Suppose Assumptions 7 to 11 hold.

Then, �̂n ! �⇤
as n ! 1 surely.

Next, we derive the asymptotic normality. We find
the conditions under which Assumptions 4 to 6 are
satisfied. Assumption 4 specifies the continuous dif-
ferentiability of @ log p�/@�. The partial derivative is
extended as

@

@�
log(p�(x, z)) =

(2z � 1)⇤0
✏(�,x)

⇤✏(�,x)z(1� ⇤✏(�,x))1�z
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where ⇤0
✏(�,x) = @⇤✏(�,x)/@�. By Lemma 1, the

following is su�cient to satisfy the requirement.

Assumption 12. Each element of ⇤0
✏(�,x) is measur-

able of x for each � 2 B and continuously di↵erentiable

functions of � for each x 2 X .

Assumption 5 states that |@2 log p�/@�j1@�j2 | and
|@ log p�/@�j1 · @ log p�/@�j2 | for j1, j2 = 1, · · · , d are
bounded by functions integrable with respect to P . To
verify this, we extend these values.

@2 log p�(x, z)

@�2
=(2z � 1)

⇤00
✏ (�,x)

⇤✏(�,x)z(1� ⇤✏(�,x))1�z

� ⇤0
✏(�,x)⇤

0
✏(�,x)

>

⇤✏(�,x)2z(1� ⇤✏(�,x))2(1�z)

where ⇤00
✏ (�,x) = @2⇤✏(�,x)/@�2, and
✓

@

@�
log p�(x, z)

◆✓
@

@�
log p�(x, z)

◆>

=
⇤0
✏(�,x)⇤

0
✏(�,x)

>

⇤✏(�,x)2z(1� ⇤✏(�,x))2(1�z)
.

The denominators are always non-zero by Lemma 1.
Thus, the following assumption is su�cient to satisfy
the requirement.

Assumption 13. The absolute values of each ele-

ment of ⇤0
✏(�,x) and ⇤00

✏ (�,x) are bounded by inte-

grable functions with respect to P .

Assumption 6 consists of three parts. The first part is
that �⇤ is interior to B. We assume this.

Assumption 14. �⇤
is interior to B.

The second part is the non-singularity of
P ((@ log p�/@�)(@ log p�/@�)>) at � = �⇤.

P

✓
@

@�
log p�

◆✓
@

@�
log p�

◆>
=

FX

✓
p(Z = 1|X)

⇤✏(�,X)2
+

p(Z = 0|X)

(1� ⇤✏(�,X))2

◆
⇤0
✏(�,X)⇤0

✏(�,X)>.

Thus, the following assumption is a su�cient condition
of the requirement.

Assumption 15. FX⇤0
✏(�

⇤,X)⇤0
✏(�

⇤,X)> is non-

singular.

The third part is non-singularity of P@2 log p�/@�2

at � = �⇤. We obtain this from Assumption 11.
If P log p� has a second partial derivative along �
and �⇤ is interior to B, then @2P log p�/@�2 must
be negative-definite. If not, there exists �0 such that
P log p�0 = P log p�⇤ and �0 6= �⇤. Finally, we obtain
asymptotic normality.

Theorem 4. Suppose Assumptions 7 to 15 hold.

Then,
p
n(�̂n � �⇤) ! N (0d, C(�⇤)) where C(�) =

A�1(�)B(�)A�1(�) with A(�) = P@2 log p�/@�2
and

B(�) = P (@ log p�/@�)(@ log p�/@�)>.

3.2 Regression with Private X

Next, we consider regression when both objective vari-
ables and explanatory variables are sensitive and are
submitted with perturbation. The system model is
that each user i generates Xi following unknown dis-
tribution FX and then generates Yi following unknown
conditional distribution F (·|Xi).

The communication protocol is as follows. User i
stochastically perturbs Xi and Yi by LDP mechanism
Q. We denote the perturbed ones by Z(X) and Z(Y ),
respectively. Q consists of QZ(Y ) and QZ(X) perturb-
ing Yi and Xi, respectively. The privatized objec-
tive variable Z(Y ) is the same as Z in the previous
subsection without the privacy budget consumed by
the LDP mechanisms. On the other hand, since Z(X)

was not defined in the previous section, we need to
define QZ(X) . We use the bit flip as QZ(X) in an
element-wise manner. Each element is randomized
with privacy budget ✏/(k + 1). The total consump-
tion of the privacy budget per user does not exceed
✏ by the sequential composition theorem (McSherry,
2009). We set the domain of QZ(X) to {�1,+1}k. For
each z(X) 2 {�1,+1}k,

QZ(X)(z(X)|x) =
kY

j=1

 
1

2
+

t(xj)z
(X)
j

2C✏/(k+1)

!
. (8)

The generated privatized variables (z(X)
i , z(Y )

i ) are
submitted to the curator.

In the communication protocol, each user submits
(k+1) bits to the curator, and the curator sends no in-
formation to the users. This privacy scenario is nearly
the same as the Bhowmich’s one, and our communica-
tion protocol is more e�cient than theirs. In their pro-
tocol, each user receives and submits d float or double
values, either 64d bits or 144d bits. Thus, our protocol
results in communication costs that are roughly 64 or
144 times smaller than their protocol when k  d.

The curator defines model family {F�(y|x) : � 2
B,x 2 X} and provisional distribution F̂X. Though
the true FX is unknown, the curator must assume
some distribution of X to compute the log-likelihood
function, as we will see later. F̂X is a kind of prior
distribution.

Since the discussion of consistency and asymptotic
normality has much in common with the previous sub-
section, here we describe only the di↵erences. See
the appendix for details. Given observations Dn =

{(z(X)
i , z(Y )

i )}ni=1, the likelihood function is

`(�;Dn) =
1

n

nX

i=1

�
log p̂(X)

Z (z(X)
i ) + z(Y )

i log�(�, z(X)
i )
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+ (1� z(Y )
i ) log(1� �(�, z(X)

i ))
�

where p̂(X)
Z (z(X)) ⌘

Z
QZ(X)(z(X)|x)dF̂X(x),

�(�, z(X)) ⌘
F̂X(⇤✏/(d+1)(�,X)QZ(X)(Z(X)|X)

p̂(X)
Z (z(X))

.

QMLE �̂n is defined as �̂n ⌘ argmin�2B`(�;Dn).

We can show consistency based on Theorem 1 under
the assumption that the curator chooses a regular dis-
tribution as F̂X.

Assumption 16. F̂X has a measurable Radon-

Nikodym density f̂X = dF̂X/dµ.

Theorem 5. Suppose Assumptions 7 to 9, 11 and 16

hold. Then, �̂n ! �⇤
as n ! 1 for almost every

sequence {(Z(X)
i , Z(Y )

i )}i.

For details, see Appendix C.2. This consistent theo-
rem does not require the existence of FX log fX unlike
Theorem 3. We can obtain the existence from Assump-
tion 16 and the properties of p̂Z(X) . The discretization
by the bit flip relaxes the integrable condition.

To show asymptotic normality, we adopt several addi-
tional assumptions.

Assumption 17. �0(�, z(X)) is continuous di↵eren-

tiable function of �.

Assumption 18. Each component of �00(�, z(X)) and
(�0(�, z(X)))(�0(�, z(X)))> is bounded by integrable

functions with respect to P .

Assumption 19. EZ(X)

⇥
(�0(�,Z(X))(�0(�,Z(X)))>

⇤

is non-singular at � = �⇤
.

Assumption 17 is used to prove the requiment corre-
sponding to Assumption 4. The requirement corre-
sponding to Assumption 5 is satisfied with Assump-
tion 18, which requires that the curator should de-
sign � such that its first and second derivatives almost
surely take finite values. The requirement correspond-
ing to Assumption 6 is satisfied with Assumptions 11,
14 and 19. We now have asymptotic normality.

Theorem 6. Suppose Assumptions 7 to 9, 11,

14 and 16 to 19 hold. Then,
p
n(�̂n � �⇤) !

N (0d, C(�⇤)) where C(�) = A�1(�)B(�)A�1(�)
with A(�) = P@2 log p�/@�2

and B(�) =
P (@ log p�/@�)(@ log p�/@�)>.

3.3 Remark and Limitation

The assumptions for proving consistency and asymp-
totic normality in Theorems 3 to 6 are not relevant
to privacy preservation. Even if those assumptions do
not hold, users’ privacy is still protected as long as
the ✏-LDP mechanisms correctly work. The users who

supply data do not need to worry about these assump-
tions at all.

The requirements of our theorems clarify the proper-
ties of the model that the curator should check. The
curator is free to choose any linear or non-linear model
as long as it satisfies these properties. In addition,
those requirements place few restrictions on model se-
lection since the curator can modify the model after
data collection.

As we see in Section 4, it is not so di�cult to craft
a model satisfying the requirements. We thus expect
that most standard regression models satisfy them.

The first limitation relates to the problem of choosing
F̂ . Although any F̂ satisfying Assumptions 10 and 16
can be acceptable, a poor choice of F̂ may make it
di�cult to satisfy the other assumptions. The theorem
provides no method for choosing a better F̂ , which
remains an open problem.

The second limitation relates to the true distribution,
which is a common problem in most statistical theo-
ries. We have no method to evaluate Assumptions 7,
11 and 14. The curator never know the exact value of
�⇤ and C(�⇤). The curator should carefully consider
these assumptions with the help of experts.

The exploration of better mechanisms is our future
work. There may exist QZ(X) giving us a more sharp
covariance matrix. In the context of LDP, vector sub-
mission is studied by many researchers e.g., (Duchi
et al., 2013; Erlingsson et al., 2014; Bassily and Smith,
2015; Wang et al., 2019b).

Better selection of cl and cu is another future work.
Whether certain cl and cu are good or bad strongly
depends on F , and we have no general strategy to
select better cl and cu.

One of the potential applications of our algorithms is
bootstrapping. In the above subsections, we described
that our algorithms output only one estimator in each
protocol. However, without additional privacy loss,
the curator can compute many estimators using the
subsets of the submitted data. The post-processing in-
variant enables us to perform such an operation. This
is one of the advantages of a non-interactive algorithm.

Another potential application is a misspecification test
to determin whether the model family contains the
true distribution (White, 1982). In the LDP setting,
since the raw data are distributed, no single entity
has knowledge on the statistical properties of the raw
data. It is di�cult to evaluate whether a model fam-
ily is appropriate. A curator performs the test as a
preliminary experiment. The results of the test would
help the curator to quantitatively assess the confidence
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level of the main survey.

4 EXAMPLE: QUANTILE
REGRESSION

In this section, we show the QMLEs for quantile re-
gression as a concrete example of our QMLEs. One of
the main goals of this section is to show that it is pos-
sible to replace some of the assumptions noted in the
previous section with a concrete implementation of the
model. We note that the notation used in Section 4.1
and Section 4.2 is the same as that used in Section 3.1
and Section 3.2. Here, k = d.

4.1 With Public X

As described in Section 2.3, we can formulate the ↵-
quantile regression as a quasi-maximum likelihood es-
timation problem. For some � > 0, we set f� as

f�(y|x) =
↵(1� ↵)

�
exp

✓
�⇢↵

✓
y � �>x

�

◆◆

for each y and x, where ⇢↵ is defined in (1). This
construction satisfies Assumption 9: measurable and
continuous.

When we choose the product of independent d uni-
form distributions on interval [�1,+1] as FX, Assump-
tion 10 is satisfied.

Let  ✏ be the function such that ⇤✏(�,x) =
 ✏(�>x). Then, ⇤0

✏(�,x) =  
0
✏(�

>x)x and ⇤00
✏ (�,x) =

 00
✏ (�

>x)xx> where  0
✏(✓) = @ ✏(✓)/@✓ and  00

✏ (✓) =
@2 ✏(✓)/@✓2. It has the following property.

Lemma 2.  ✏(✓) is a strictly monotonically increas-

ing function and is bounded away from 0 and 1.  0
✏(✓)

and  00
✏ (✓) exist and for any ✓ 2 R, and their absolute

values are bounded.

See Appendix C.3 for the proof. From the second
part of Lemma 2, Assumptions 12 and 13 are satis-
fied. Mover, FX(XX>) is a non-singular matrix since

FXXj1Xj2 =

(
0 if j1 6= j2,
1
3 if j1 = j2.

Thus, Assumption 15 is satisfied.

As a consequence of Theorems 3 and 6, we have the
following corollaries.

Corollary 1. Suppose Assumptions 7, 11 and 14 hold.

Then, �̂n ! �⇤
almost surely and

p
n(�̂n � �⇤) !

N (0d, C(�⇤)).

To prove this corollary, we need only three assump-
tions. The concrete constructions of the model remove
some of the assumptions used in Theorems 3 and 6.

Although the accuracy of our QMLEs is not a focus
of this paper, we did conduct a rough comparison of
accuracy with existing works. As a result, we found
with ✏ # 0, the Fisher information of our MLEs is
�2/↵(1�↵) times smaller than the upper bound shown
in (Barnes et al., 2020). For details, see Appendix D.

4.2 With Private X

In this setting, the curator does not know FX. In-
stead of FX, we adopt the product distribution of d
symmetric binary distributions on {�1,+1}. Then,
Assumption 16 is satisfied.

With ✏0 = ✏/(d+ 1), � is extended as

�(�, z(X)) =

P
x2{±1}d  ✏0(�>x) exp

⇣
✏01
h
z(X)
j = xj

i⌘

pZ(X)(z(X))(e✏0 + 1)d2d
,

where  ✏0 is defined in the previous subsection. Due to
the properties of  ✏0 , which we evaluated in the previ-
ous subsection, Assumptions 17 and 18 are obviously
satisfied. By the monotonicity of  ✏0 , Assumption 19
is also satisfied. Now, as a corollary of Theorems 5
and 6, we obtain the following result.

Corollary 2. Suppose Assumptions 7, 11 and 14 hold.

Then,
p
n(�̂n � �⇤) ! N (0d, C(�⇤)) where C(�) =

A�1(�)B(�)A�1(�).

5 NUMERICAL EVALUATION

In this section, we observe the behavior of our QMLE
for real data. We consider the QMLE for quantile re-
gression in the public X case. Since we do not know
the true distribution generating the real data, we can-
not perform exact comparisons with the theoretical
result, Corollary 3. Here, we observe the empirical co-
variance of the QMLEs to evaluate the convergence of
the distribution of the QMLE. For additional numeri-
cal evaluations, see Appendix E.

We numerically compare the covariance matrices with
varying n and ✏. We use CO and NOx emission data
set (Kaya et al., 2019), which consists of 36, 733 records
of 11 sensors attached to a turbine of a power plant.
Although this data is not sensitive, we chose this data
because of its large number of records and its format.
We treat the 11th column as y and treat the columns
from the first to 9th as x. We set cu = 110, cl =
40,� = 1.0 and ↵ = 0.3. These specific values of hy-
perparameters do not have a particular meaning. We
vary n from 5, 000 to 35, 000 in increments of 5, 000
for ✏ 2 {1, 2.5, 5, 10}. For each combination of n and
✏, we sub-sample n records 1, 000 times without re-
placement from the 36, 733 records. For each sub-data,
we perturb ys and compute a QMLE as descrived in
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Figure 1: Frobenius norm of covariance matrices. The
norms decrease in proportion to 1/n for each ✏.

Section 4.1. With the 1, 000 QMLEs, we obtain the
empirical covariance matrix and its Frobenius norm.
We implemented the simulations with Python 3.9.2,
NumPy 1.19.2, and SciPy 1.6.1. The Python code is
contained in the supplementary material.

Figure 1 shows the result. The horizontal and verti-
cal axes show n and the value of each Frobenius norm
in log-scale, respectively. For each ✏, with large n, the
norm of the covariance matrix is smaller. The decreas-
ing speed is O(1/n), and this result is compatible with
the theoretical result. Greater ✏ also gives smaller co-
variance. In this case, the QMLE is concentrated in
one point, and, as n increases, the distribution be-
comes more concentrated at that point.

6 CONCLUSION

We developed the simple protocols for building QM-
LEs from distributed data while guaranteeing ✏-LDP
for the users. They address the two di↵erent privacy
scenarios. In the protocols, users submit only one or a
few bits to the curator and do not need to wait for one
another. Moreover, the users do not need to perform
complex computations such as integration or deriva-
tion. Thus, the protocols are highly user-friendly and
suitable for low-priced devices. We clarified the su�-
cient conditions for the QMLEs to be consistent and
asymptotically normal, and showed their limitations.
We showed that the su�cient conditions are relaxed
with a concrete implementation.
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A SUMMARY OF NOTATION

A.1 Defined in Section 2

Qbf is the bit flip, and C✏ =
e✏+1
e✏�1 is a value used to define the bit flip.

With 0 < ↵ < 1, check loss for ↵-quantile is defined as

⇢↵(⌧) =

(
(↵� 1)⌧ if ⌧  0,

↵⌧ if ⌧ > 0.

A.2 Defined in Section 3.1

Y and X are objective and explanatory variables. FX is the distribution of X, and F (·|X = x) is the distribution
of Y conditioned by X = x. X and Y are the domains of X and Y. For each i = 1, · · · , n, (Xi, Yi) is an
independent copy of (X, Y ), which is possessed by the ith user. Ȳi is truncated version of Yi, and t(·) is the
truncating function mapping Y into [cl, cu], where cl and cu are real values such that cl < cu. Zi is the perturbed
version of Yi, and its distribution is

p(Zi = z|Xi = x) =

Z
Qbf(z|t(y))dF (y|x).

{F�(·|x) : � 2 B,x 2 X} is the model family and B is the parameter set. For each � 2 B, p�(z|x) is the density
function which is obtained by replacing F by F� in (7). In this Section 3.1, we write P and P� to designate joint
distributions P (x, z) and P�(x, z) rather than conditional distributions P (z|x) and P�(z|x).

⇤✏(�,x) = p�(z = 1|x). Its first and second derivatives along � are denoted by ⇤0
✏(�,x) and ⇤

00
✏ (�,x).

A.3 Defined in Section 3.2

FX is the model of X. Q consists of QZ(Y ) and QZ(X) perturbing Yi and Xi, respectively.

p̂(z(X)) is the model of z(X) written as

p̂X(z(X)) =

Z
QZ(X)(z(X)|x)dF̂ (x).

�(�, z(X)) is the probability that Z(Y )|X = x is 1 when model F� is correct:

�(�, z(X)) =
F̂X(⇤✏/(d+1)(�,X)QZ(X)(Z(X)|X)

p̂(X)
Z (z(X))

.

Its first and second derivatives along � are denoted by �0(�, z(X)) and �00(�, z(X)).

B PSEUDO-CODE

Algorithm 1 and Algorithm 2 are the pseudo-codes of the protocols described in Section 3.1 and Section 3.2,
respectively. In the for loops, the processing of each user does not need to be synchronized.
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Algorithm 1: Protocol with Public X

Input: Unknown distribution F , privacy parameter ✏ and B
Curator set FX ;
for i = 1 to n do

Curator generates xi ⇠ FX ;
Send xi to user i;
User i generates yi ⇠ F (·|xi);
User i computes ȳi as (6);
User i generates zi ⇠ Qbf(·|ȳi);
Send zi to curator;

end
Let Dn = {(xi, zi)}ni=1;
Curator computes `(�;D);

Computes �̂n = arg max
�2B

`(�;D);

Output: �̂n

C MATHEMATICAL NOTES

C.1 for Section 3.1

C.1.1 Proof of Lemma 1

By the definition of ⇤✏(�,x), it is written as

⇤✏(�,x) = p�(Z = 1|X = x) =

Z
Qbf(1|t(y))dF�(y|x).

From the definition of Qbf, we have

1

e✏ + 1
 Qbf(1|t(y)) 

e✏

e✏ + 1

for any y 2 Y. Thus, the following relation holds.

⇤✏(�,x) 
Z

e✏

e✏ + 1
dF�(y|x) =

e✏

e✏ + 1
.

The last equation is by the fact that F� is a probability distribution. Similarly, we have

⇤✏(�,x) �
1

e✏ + 1
.

C.2 for Section 3.2

For each z(X) 2 {�1,+1}d, the curator considers the probability distribution of Z(X) at z(X) as

p̂(X)
Z (z(X)) =

Z
QZ(X)(z(X)|x)dF̂ (x).

The joint density is

p�(z
(X), z(Y )) =

Z
QZ(X)(z(X)|x)QZ(Y )(z(Y )|t(y))dF�(y|x)dF̂X(x).

The conditional distribution of Z(Y ) is written as

p�(z
(Y )|z(X)) =

F̂X(p�(z(Y )|X)QZ(X)(z(X)|X))

p̂(X)
Z (z(X))

= �(�, z(X))z
(Y )

(1� �(�, z(X)))1�z(Y )

.
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Algorithm 2: Protocol with Private X

Input: Unknown distribution F, FX , privacy parameter ✏ and B
Curator set F̂X ;
for i = 1 to n do

User i generates xi ⇠ FX ;
User i generates yi ⇠ F (·|xi);
User i computes ȳi as (6);

User i generates z(Y )
i ⇠ Qbf(·|ȳi);

for j = 1 to d do
User i compute x̄ij as (6);

Generate z(X)
ij ⇠ Qbf(·|x̄ij);

end

Let z(X)
i = (z(X)

ij )i;

Send (z(X)
i , z(Y )

i ) to curator;
end

Let Dn = {(z(X)
i , z(Y )

i )}ni=1;
Curator computes `(�;D);

Computes �̂n = arg max
�2B

`(�;D);

Output: �̂n

With �, the joint density is written as

p�(z
(X), z(Y )) = �(�, z(X))z

(Y )

(1� �(�, z(X)))1�z(Y )

p̂(X)
Z (z(X)).

We analyze the su�cient conditions under which Assumptions 1 to 3 are satisfied while replacing F and F✓

in Theorem 1 with P and P� . We adopt Assumptions 7 to 9 and 16. From these assumptions, it is obvious
that P (z(X), z(Y )) and P�(z(X), z(Y )) are measurable, and that density functions p(z(X), z(Y )) and p�(z(X), z(Y ))
exist.

The condition corresponding to Assumption 3 consists of two parts. The first part is the existence of P log p
integrable function h(z(X), z(Y )) such that | log p�(z(X), z(Y ))|  h(z(X), z(Y )) for all �. P log p is expanded as
follows:

P log p = P (X)
Z (P·|Z(X) log p(·|Z(X)) + log p(X)

Z ).

To evaluate the bound condition, it is necessary to analyze pZ(X) and p(·|Z(X)).

Lemma 3. For any z(X) 2 {�1,+1}d,
✓

1

e✏/(d+1) + 1

◆d

 p̂(X)
Z (z(X)) 

✓
e✏/(d+1)

e✏/(d+1) + 1

◆d

.

p(X)
Z (z(X)) has the same bounds.

Lemma 4. For any � 2 B and z(X) 2 {�1,+1}d,

1

e✏/(d+1) + 1
 �(�, z(X))  e✏/(d+1)

e✏/(d+1) + 1
.

With 0 < ✏ < +1 and 1  d < +1, �(�, z(X)) are always bounded away from 0 and 1. Also,

1

e✏/(d+1) + 1
 1� �(�, z(X))  e✏/(d+1)

e✏/(d+1) + 1
.

By the above lemmas, log p(·|z(X)) and log p(X)
Z are always bounded away from ±1, and log p(·|z(X)) and log p(X)

Z
are always integrable with respect to P . The existence of integral function h is also obtained.
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The second part is the uniqueness of the log-likelihood function. To guarantee that this property holds, we again
adopt Assumption 11. Then, we have Theorem 5.

We next analyze the conditions under which Assumptions 4 to 6 are satisfied. The condition corresponding to
Assumption 4 is the continuous di↵erentiability of @ log p�/@�. The partial derivative is expanded as

@

@�
log p�(z

(X), z(Y )) = z(Y )�
0(�, z(X))

�(�, z(X))
� (1� z(Y ))

�0(�, z(X))

1� �(�, z(X))
=
�0(�, z(X))(z(Y ) � �(�, z(X)))

�(�, z(X))(1� �(�, z(X)))

where

�0(�, z(X)) ⌘ @

@�
�(�, z(X)).

By Lemma 4, �(�, z(X)) always takes values greater than 0 and less than 1. So, if Assumption 17 holds,
Assumption 4 is satisfied.

The condition corresponding to Assumption 5 is that there exist integrable functions with respect
to P that upper bound the absolute values of each component of @2 log p�(z(X), z(Y ))/@�2 and
(@ log p�(z(X), z(Y ))/@�)(@ log p�(z(X), z(Y ))/@�)>. The second-order derivative is

@2

@�2
log p�(z

(X), z(Y )) = (2z(Y ) � 1)
�00(�, z(X))

 ✏(�>x)z(1� ✏(�>x))1�z(Y ) � �0(�, z(X)))(�0(�, z(X)))>

�(�, z(X))2z(Y )(1� �(�, z(X)))2(1�z(Y ))

where we define �00(�, z(X)) ⌘ @2

@�2�(�, z(X)). (@ log p�(z(X), z(Y ))/@�)(@ log p�(z(X), z(Y ))/@�)> is

✓
@

@�
log p�(z

(X), z(Y ))

◆✓
@

@�
log p�(z

(X), z(Y ))

◆>
=

✓
z � �(�, z(X))

�(�, z(X))(1� �(�, z(X)))

◆2

�0(�, z(X))�0(�, z(X))>

By Lemma 4, Assumption 18 is su�cient to make the requirement hold.

The requirement corresponding Assumption 6 consists of three parts. The first part is that � is interior of B.
We assume this as Assumption 14. For enough large B, this assumption is not particularly strong. Letting

A(�) =P
@2

@�2
log p� and B(�) = P

✓
@

@�
log p�

◆✓
@

@�
log p�

◆>
,

the second and third parts are the regularity of A(�⇤) and B(�⇤). We have already assumed that A(�⇤) is regular
in Assumption 11. We consider the regularity of B(�⇤) here. B(�) is

B(�) = EZ(X)

"✓
p(1|Z(X))

�(�,Z(X))2
+

p(0|Z(X))

(1� �(�,Z(X)))2

◆
(�0(�,Z(X))(�0(�,Z(X)))>

#

Since the scalar part is always finite and positive, Assumption 19 is a su�cient condition of the regularity of
B(�⇤).

Summarizing the above discussions, we obtain Theorem 6.

C.2.1 Proof of Lemma 3

Proof. By definition, for any z(X) 2 {�1,+1}d, we have

p̂X(z(X)) =

Z
QZ(X)(z(X)|x)dF̂ (x) 

Z ✓
e✏/(d+1)

e✏/(d+1) + 1

◆d

dF̂ (x) =

✓
e✏/(d+1)

e✏/(d+1) + 1

◆d

.

Similarly, we have

p̂X(z(X)) �
✓

1

e✏/(d+1) + 1

◆d

.



One-bit Submission for Locally Private Quasi-MLE: Its Asymptotic Normality and Limitation

C.2.2 Proof of Lemma 4

Proof. By Lemma 1 and (8), we have

�(�, z(X)) =
F̂X⇤(�,X)QZ(X)(z(X)|X)

p(X)
Z (z(X))


F̂X

e✏/(d+1)

e✏/(d+1)+1
QZ(X)(z(X)|X)

p(X)
Z (z(X))

=
e✏/(d+1)

e✏/(d+1) + 1
.

Similarly, we have

�(�, z(X)) � 1

e✏/(d+1) + 1
.

Replacing F̂X by FX , we obtain the arguments with regard to p(z(Y )|z(X)).

C.3 for Section 4

In this section, we derive  ✏(✓) used in Section 4. As a consequence of the analysis, we obtain Lemma 2. We
analyze the function in di↵erent three cases. The first case is the case where cl < ✓ < cu. For the sake of
simplicity of notation, we let G = exp

�
�↵�1

� (cl � ✓)
�
and H = exp

�
�↵

� (cu � ✓)
�
. These values appear many

times throughout the remainder of this section. First, we extend the probability F✓(Yi  cl).

F✓(Yi  cl) =

Z cl

�1

↵(1� ↵)

�
exp

✓
�⇢

✓
yi � ✓

�

◆◆
dyi

=

Z cl

�1

↵(1� ↵)

�
exp

✓
�↵� 1

�
(yi � ✓)

◆
dyi

=


↵(1� ↵)

�

✓
� �

↵� 1

◆
exp

✓
�↵� 1

�
(yi � ✓)

◆�cl

�1

=↵ exp

✓
�↵� 1

�
(cl � ✓)

◆
� ↵⇥ 0

=↵ exp

✓
�↵� 1

�
(cl � ✓)

◆
= ↵G.

Similarly, the probability F✓(Yi � cu) is expanded as:

F✓(Yi � cu) =

Z +1

cu

↵(1� ↵)

�
exp

✓
�⇢

✓
yi � ✓

�

◆◆
dyi

=

Z +1

cu

↵(1� ↵)

�
exp

⇣
�↵

�
(yi � ✓)

⌘
dyi

=


↵(1� ↵)

�

⇣
�↵

�

⌘
exp

⇣
�↵

�
(yi � ✓)

⌘�+1

cu

=� (1� ↵)⇥ 0 + (1� ↵) exp
⇣
�↵

�
(cu � ✓)

⌘

=(1� ↵) exp
⇣
�↵

�
(cu � ✓)

⌘
= (1� ↵)H.

The probability P✓(Zi = 1) is written as follows:

P✓(Zi = 1) =↵G

✓
1

2
� 1

2C✏

◆

+
↵(1� ↵)

�

Z ✓

cl

 
1

2
+

yi � cu+cl
2

C✏(cu � cl)

!
exp

✓
�(↵� 1)

yi � ✓

�

◆
dyi

+
↵(1� ↵)

�

Z cu

✓

 
1

2
+

yi � cu+cl
2

C✏(cu � cl)

!
exp

✓
�↵

yi � ✓

�

◆
dyi

+ (1� ↵)H

✓
1

2
+

1

2C✏

◆
(9)
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Now, we extend each term.

↵(1� ↵)

�

Z ✓

cl

 
1

2
+

yi � cu+cl
2

C✏(cu � cl)

!
exp

✓
�(↵� 1)

yi � ✓

�

◆
dyi

=
↵(1� ↵)

�

✓
1

2
� cu + cl

2C✏(cu � cl)
+

✓

C✏(cu � cl)

◆Z ✓

cl

exp

✓
�(↵� 1)

yi � ✓

�

◆
dyi

+
↵(1� ↵)

�

1

C✏(cu � cl)

Z ✓

cl

(yi � ✓) exp

✓
�(↵� 1)

yi � ✓

�

◆
dyi

=
↵(1� ↵)

�

✓
1

2
� cu + cl

2C✏(cu � cl)
+

✓

C✏(cu � cl)

◆
�

1� ↵
(1�G)

+
↵(1� ↵)

2�

1

C✏(cu � cl)

✓
� �2

(1� ↵)2
� �

1� ↵
(cl � ✓)G+

�2

(1� ↵)2
G

◆

=↵

✓
1

2
� cu + cl

2C✏(cu � cl)
+

✓

C✏(cu � cl)

◆
(1�G) +

↵

C✏(cu � cl)

✓
� �

1� ↵
� (cl � ✓)G+

�

1� ↵
G

◆
. (10)

Similarly,

↵(1� ↵)

�

Z cu

✓

 
1

2
+

yi � cu+cl
2

C✏(cu � cl)

!
exp

✓
�↵

yi � ✓

�

◆
dyi

=� (1� ↵)

✓
1

2
� cu + cl

2C✏(cu � cl)
+

✓

C✏(cu � cl)

◆
(H � 1) +

↵(1� ↵)

�C✏(cu � cl)

✓
� �

↵
(cu � ✓)H � �2

↵2
H +

�2

↵2

◆

=� (1� ↵)

✓
1

2
� cu + cl

2C✏(cu � cl)
+

✓

C✏(cu � cl)

◆
(H � 1)

+
1� ↵

C✏(cu � cl)

✓
� (cu � ✓)H � �

↵
H +

�

↵

◆
. (11)

Substituting (10) and (11) into (9), we have

 ✏(✓) = P✓(Zi = 1)

=
✓

C✏(cu � cl)
+

↵

1� ↵

�

C✏(cu � cl)
exp

✓
�↵� 1

�
(cl � ✓)

◆
� 1� ↵

↵

�

C✏(cu � cl)
exp

⇣
�↵

�
(cu � ✓)

⌘

+
1

2
+

✓
� ↵

1� ↵
+

1� ↵

↵

◆
�

C✏(cu � cl)
� cu + cl

2C✏(cu � cl)
.

The first and second derivatives are

 0
✏(✓) =

1

C✏(cu � cl)
� ↵

C✏(cu � cl)
exp

✓
1� ↵

�
(cl � ✓)

◆
� 1� ↵

C✏(cu � cl)
exp

⇣
�↵

�
(cu � ✓)

⌘
,

 00
✏ (✓) =

↵(1� ↵)

�C✏(cu � cl)

 
e

1�↵
� (cl�✓) � e�

↵
� (cu�✓)

!
.

By cl < ✓ < cu,
1�↵
� (cl � �>x) and �↵

� (cu � �>x) are always negative.

| 0
✏(✓)| <

1

C✏(cu � cl)
and | 00

✏ (✓)| <
↵(1� ↵)

�C✏(cu � cl)
.

The second case is the case where ✓  cl.  ✏(✓) is computed as

 ✏(✓) =

✓
�(1� ↵) exp

✓
�↵

cl � ✓

�

◆
+ 1

◆✓
1

2
� 1

2C✏

◆

+
↵(1� ↵)

�

1

C✏(cu � cl)

✓
�

↵
(cl � ✓) +

�2

↵2

◆
exp

⇣
�↵

�
(cl � ✓)

⌘
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� ↵(1� ↵)

�

1

C✏(cu � cl)

✓
�

↵
(cu � ✓) +

�2

↵2

◆
exp

⇣
�↵

�
(cu � ✓)

⌘

+
↵(1� ↵)

�

✓
1

2
+

✓

C✏(cu � cl)
� cu + cl

2C✏(cu � cl)

◆
�

↵
(exp(�↵

�
(cl � ✓))� exp(�↵

�
(cu � ✓)))

+ (1� ↵) exp
⇣
�↵

�
(cu � ✓)

⌘✓1

2
+

1

2C✏

◆

=

✓
�(1� ↵) exp

✓
�↵

cl � ✓

�

◆
+ 1

◆✓
1

2
� 1

2C✏

◆

+
↵(1� ↵)

�

1

C✏(cu � cl)

✓
�

↵
cl +

�2

↵2

◆
exp

⇣
�↵

�
(cl � ✓)

⌘

� ↵(1� ↵)

�

1

C✏(cu � cl)

✓
�

↵
cu +

�2

↵2

◆
exp

⇣
�↵

�
(cu � ✓)

⌘

+
↵(1� ↵)

�

✓
1

2
� cu + cl

2C✏(cu � cl)

◆
�

↵
(exp(�↵

�
(cl � ✓))� exp(�↵

�
(cu � ✓)))

+ (1� ↵) exp
⇣
�↵

�
(cu � ✓)

⌘✓1

2
+

1

2C✏

◆

=
1

2
� 1

2C✏
+

(1� ↵)�

↵

1

C✏(cu � cl)
exp

⇣
�↵

�
(cl � ✓)

⌘
� (1� ↵)�

↵

1

C✏(cu � cl)
exp

⇣
�↵

�
(cu � ✓)

⌘
.

Its first and second derivatives are

 0
✏(✓) =

1� ↵

C✏(cu � cl)

⇣
exp

⇣
�↵

�
(cl � ✓)

⌘
� exp

⇣
�↵

�
(cu � ✓)

⌘⌘
,

 00
✏ (✓) =

↵(1� ↵)

�C✏(cu � cl)

⇣
exp

⇣
�↵

�
(cl � ✓)

⌘
� exp

⇣
�↵

�
(cu � ✓)

⌘⌘

Since ✓  cl and cu > cl,  0
✏(✓) is positive, and  

00
✏ (✓) is positive. Moreover, we have

| 0
✏(✓)| <

1� ↵

C✏(cu � cl)
and | 00

✏ (✓)| <
↵(1� ↵)

�C✏(cu � cl)
.

The last case is the case where ✓ � cu.

 ✏(✓) =↵ exp

✓
1� ↵

�
(cl � ✓)

◆✓
1

2
� 1

2C✏

◆

� ↵(1� ↵)

�

1

C✏(cu � cl)

✓
�

1� ↵
(cl � ✓)� �2

(1� ↵)2

◆
exp

✓
1� ↵

�
(cl � ✓)

◆

+
↵(1� ↵)

�

1

C✏(cu � cl)

✓
�

1� ↵
(cu � ✓)� �2

(1� ↵)2

◆
exp

✓
�1� ↵

�
(cu � ✓)

◆

+
↵(1� ↵)

�

✓
1

2
+

✓

C✏(cu � cl)
� cu + cl

2C✏(cu � cl)

◆
�

1� ↵
(� exp(

1� ↵

�
(cl � ✓)) + exp(

1� ↵

�
(cu � ✓)))

+

✓
1� ↵ exp

✓
1� ↵

�
(cu � ✓)

◆◆✓
1

2
+

1

2C✏

◆

=↵ exp

✓
1� ↵

�
(cl � ✓)

◆✓
1

2
� 1

2C✏

◆

� ↵(1� ↵)

�

1

C✏(cu � cl)

✓
�

1� ↵
cl �

�2

(1� ↵)2

◆
exp

✓
1� ↵

�
(cl � ✓)

◆

+
↵(1� ↵)

�

1

C✏(cu � cl)

✓
�

1� ↵
cu � �2

(1� ↵)2

◆
exp

✓
�1� ↵

�
(cu � ✓)

◆

+
↵(1� ↵)

�

✓
1

2
� cu + cl

2C✏(cu � cl)

◆
�

1� ↵
(� exp(

1� ↵

�
(cl � ✓)) + exp(

1� ↵

�
(cu � ✓)))
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+

✓
1� ↵ exp

✓
1� ↵

�
(cu � ✓)

◆◆✓
1

2
+

1

2C✏

◆

=
1

2
+

1

2C✏
+

↵�

1� ↵

1

C✏(cu � cl)
exp

✓
1� ↵

�
(cl � ✓)

◆
� ↵�

1� ↵

1

C✏(cu � cl)
exp

✓
�1� ↵

�
(cu � ✓)

◆
.

Its first and second derivatives are
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� exp
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Since ✓ � cu and cu > cl,  0
✏(✓) is positive, and  00

✏ (✓) is negative. Moreover, since (1 � ↵)(cl � ✓)/� <
(1� ↵)(cu � ✓)/�  0, we have

| 0
✏(✓)| <

↵

C✏(cu � cl)
and | 00

✏ (✓)| <
↵(1� ↵)

�C✏(cu � cl)
.

We also analyze their behavior on the boundaries.  ✏(✓) is continuous at ✓ = cl and cu if and only if
lim✓#cu  ✏(✓) = lim✓"cu  ✏(✓) and lim✓#cl  ✏(✓) = lim✓"cl  ✏(✓). As we see below, these equations hold.
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⌘
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We next evaluate the existence of first and second derivatives at ✓ = cl and cu.

lim
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lim
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D COMPARISON WITH NON-PRIVATE ESTIMATOR

For comparison with existing work, we also consider the correct model case.

Assumption 20. Given x 2 Rd
, Y is a random variable sampled from the asymmetric Laplace distribution

f(·;↵,�>x,�), which is defined in (2). For each i 2 [n], yi is a realization of random variable Yi that is a copy

of Y .

Under this condition, Corollary 1 is more specified.

Corollary 3. Suppose Assumptions 7, 10, 11 and 20 hold. The MLE �̂n is distributed asymptotically normally

as
p
n(�̂n � �⇤) ! N (0d, I

�1
�⇤ ) where I�⇤ = FX

 0
✏(�

>X)2

 ✏(�>X)(1� ✏(�>X))XX>
.

To obtain an intuitive understanding of the result, we roughly compare the Fisher information matrix derived
in Corollary 3 and the non-private Fisher matrix (5), and analyze some extreme cases. First, we consider the
concentrated case in which the scale parameter � is extremely small. For a � su�ciently small that � ⌧
|(1� ↵)(cl � �⇤>x)| and � ⌧ |↵(cu � �⇤>x)| for most x,

 (�⇤>x) ⇡ 1

2
+

✓
� ↵

1� ↵
+

1� ↵

↵

◆
�

2C✏
+

�⇤>x

2C✏
and  0(�⇤>x) ⇡ 1

2C✏
.
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Thus,

 0(�⇤>x)2

 (�⇤>x)(1� (�⇤>x))
⇡ 1

C2
✏ �

⇣
1�2↵

↵(1�↵)� + �⇤>x
⌘2 � 1

C2
✏ �

⇣
1�2↵

↵(1�↵)� + cl
⌘2 .

In comparing this with (4), we can see that the Fisher information matrix of our LDP estimator is ⌦
⇣
✏2 �2

↵(1�↵)

⌘

times smaller than that of the non-private estimator as ✏ # 0. This lower bound agrees with the complexity of
✏ but is �2/↵(1 � ↵) times lower. Since we assumed that � is small, this gap can be large. Although our MLE
tends to lose more information regarding the structure of f�⇤ than an optimal MLE, it experiences minimum
information loss due to perturbation for privacy.

We omit the comparison of the MLE of the regression coe�cient with the private X. The Fisher information
matrix strongly depends on the structure of the distribution of X. We have no informative comparison in this
case.

E ADDITIONAL NUMERICAL EVALUATION

In this section, we perform some additional numerical evaluations with the real data, which is the same data
used in Section 5.

We implemented our simulation in Python.The necessary packages are written in requirements.txt. The main
part is written in experiment.py. We made the Jupyter notebook files corresponding to each numerical evaluation.
Visualization of the results is also in the Jupyter notebook files. You can open these files and run the simulations
on your Jupyter notebook or Jupyter Lab.

Our supplemental material does not contain the real data used in the numer-
ical evaluation. Before running our program, please download the data from
”https://archive.ics.uci.edu/ml/datasets/Gas+Turbine+CO+and+NOx+Emission+Data+Set”. Then, put
them into the folder ”data/emission/”.

E.1 Evaluation of Private X

Here, we observe the behavior of our QMLE for the private X scenario, which is described in Section 4.2.

Due to implementation needs, we have made some modifications to the description in the main part. First, we
made some changes to �(�, z(X)). Theoretically, � and 1 � � never take negative values. However, we found
that the value of � can exceed 1 by a small amount due to rounding error. Then, 1 � � is negative, and the
computation corrupts since the log function is inputted a negative value. To avoid this undesirable situation, we
multiplied � by e�0.000001.

Second, we changed the domain of F̂X because no element of each xi is in the inter-
val [�1, 1]. In the simulation, each user truncates the components of Xi into the intervals
[5, 10], [1000, 1030], [70, 100], [4, 6], [20, 30], [1000, 1100], [530, 570], [130, 170], and [10, 15]. We recommend
that the curators should set the intervals with the help of experts when they use our algorithm in reality.

We observe the covariance matrices for n 2 {100, 1000, 10000} and ✏ 2 {5.0, 10, 25} with ↵ = 0.3 and � = 1.0.
For each combination of n and ✏, we sub-sample n records 1, 000 times without replacement from the 36, 733
records. For each sub-data, we simulate the protocol described in Section 4.2 and obtain a QMLE. Then, we
compute the Frobenius norm of covariance matrices of the 1, 000 QMLEs,

Fig. 2 shows the result. The horizontal and vertical axes show n and the value of each Frobenius norm in
log-scale, respectively. For each ✏, with large n, the norm of the covariance matrix is smaller. The decreasing
speed is O(1/n), These properties are similar to those in the public X scenario, which is described in Section 5.

E.2 Evaluation of E↵ect of Truncation

In this subsection, we evaluate the e↵ect of the truncation in the public X scenario.
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Figure 2: Frobenius norm of covariance matrices in private X scenario. The norm decrease in proportion to 1/n
for each ✏.

Figure 3: Frobenius norm of covariance matrices with various [cl, cu]s. A smaller interval makes the norm smaller.

With ✏ = 2.5 and n = 10, 000, we try intervals [50, 100], [40, 110], [30, 120] and [20, 130] for the truncation. The
other setting is the same as Section 5.

Fig. 3 shows the result. A shorter interval makes the estimators more concentrated. We remark that the
concentration does not necessarily imply a good approximation of the true distribution. In general, there is a
trade-o↵ between bias and variance.

E.3 Comparison with Non-private Estimator

In this subsection, we evaluate the di↵erence between the centers of the distributions of our QMLEs and the
non-private QMLEs which is described in Section 2.3. Our theoretical result does not say that those QMLEs
converge to the same point. Thus, we consider it with numerical simulations.

First, we observe the behavior of the non-private QMLE. Fig. 4 shows the Frobenius norm of covariance matrices.
It is seen that the non-private QMLEs converge to one point. We treat the average vector of the non-private
QMLEs with n = 30, 000 as the grand truth in the main observation as described below. We remark that the
”grand truth” can be biased.

We use the same simulation result used in Section 5. We compute the di↵erence of the average vector of our
QMLE and the grand truth and observe the norm for each n and ✏.

Fig. 5 shows the main result. The horizontal and vertical axes show n and the value of the norm of the covariance
matrices, respectively. The bias is not zero for all ✏. Smaller ✏ tends to give smaller bias. It is seen that n does
not a↵ect the bias. This result implies that the non-private QMLE and our QMLE can converge to di↵erent
points.
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Figure 4: Frobenius norm of covariance matrices of non-private QMLE. It seems that the non-private QMLEs
converge to one point.

Figure 5: Norm of di↵erence between the centers of non-private QMLEs and our QMLEs with various n and ✏.
The di↵erence does not depend on n.


