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Abstract

Deep ReLU networks are at the basis of many
modern neural architectures. Yet, the loss
landscape of such networks and its interac-
tion with state-of-the-art optimizers is not
fully understood. One of the most crucial
aspects is the landscape at random initial-
ization, which often influences convergence
speed dramatically. In their seminal works,
Xavier & Bengio, 2010 and He et al., 2015
propose an initialization strategy that is sup-
posed to prevent gradients from vanishing.
Yet, we identify shortcomings of their expec-
tation analysis as network depth increases,
and show that the proposed initialization can
actually fail to deliver stable gradient norms.
More precisely, by leveraging an in-depth
analysis of the median of the forward pass,
we first show that, with high probability,
vanishing gradients cannot be circumvented
when the network width scales with less than
Ω(depth). Second, we extend this analysis to
second-order derivatives and show that ran-
dom i.i.d. initialization also gives rise to Hes-
sian matrices with eigenspectra that vanish
in depth. Whenever this happens, optimiz-
ers are initialized in a very flat, saddle point-
like plateau, which is particularly hard to es-
cape with stochastic gradient descent (SGD)
as its escaping time is inversely related to
curvature magnitudes. We believe that this
observation is crucial for fully understanding
(a) the historical difficulties of training deep
nets with vanilla SGD and (b) the success of
adaptive gradient methods, which naturally
adapt to curvature and thus quickly escape
flat plateaus.
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1 Introduction and related work

In the last decade, network depth has emerged as a key
component for the success of modern deep learning
[He et al., 2016b], providing significant improvements
in terms of generalization, particularly in the field of
computer vision [He et al., 2016a, He et al., 2016b]
and natural language processing [Brown et al., 2020].
These benefits are mostly attributed to gains in
representational power [Telgarsky, 2016]. From an
optimization perspective, however, depth intro-
duces several problems when training after random
initialization. First, in the infinite depth limit,
a collapse in the rank of the network mapping
prevents information propagation, which ren-
ders learning impossible [Schoenholz et al., 2016,
Pennington et al., 2018, Daneshmand et al., 2020].
Secondly, even in finite but large depth the so-
called vanishing gradient problem commonly
makes it difficult to train deep ReLU networks
with stochastic gradient descent [Hochreiter, 1991,
Bengio et al., 1994, Pascanu et al., 2013] – even when
using state-of-the-art initialization schemes such as
He initialization [He et al., 2015] (see Figure 4).

A substantial research effort was put into finding ar-
chitectural “fixes” to mitigate the problems mentioned
above – e.g. skip connections [He et al., 2016a] and
batch normalization [Ioffe and Szegedy, 2015]. While
on the one hand these components are of great prac-
tical and intellectual value, on the other hand they
make it harder to deliver a solid and detailed math-
ematical understanding of modern neural networks.
In this work, we take a step back from modern ar-
chitectural components and propose to revisit vanish-
ing gradient phenomenon in deep ReLU MLPs, to en-
hance our understanding of basic neural network land-
scapes as depth increases – going beyond the expecta-
tion analysis in [He et al., 2016a], and showcasing the
interesting and pathologic behavior of very deep net-
works. To complete the picture, we provide novel re-
sults on the Hessian of deep ReLU networks at initial-
ization, and show important implications for gradient-
based optimizers and adaptive methods such as RM-
Sprop [Tieleman and Hinton, 2012].
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In summary, our contribution is threefold:

• We discuss shortcomings of the analysis in Xavier
[Glorot and Bengio, 2010] and He [He et al., 2015]
initialization schemes and clarify when gradients
vanish even with the initialization proposed in these
seminal works.

• We enhance the understanding of the vanishing gra-
dient phenomenon by showing that they co-occur
with vanishing curvature, giving rise to flat plateaus
at initialization. This effect gives a comprehensive
understanding of the difficulty of training (classical)
deep nets with (vanilla) SGD.

• Finally, we link the remarkable curvature adaptation
capability of adaptive gradient methods to this phe-
nomenon and show that it allows them to optimize
networks of any depth.

2 Notation and setting

In our theoretical analysis, we consider the L2 loss
associated with a multilayer perceptron (MLP)

L(W) =
1

2n

n∑
i=1

‖yi −BDLWL:1
φ Axi‖22,

WL:1
φ := WLDL−1WL−1 · · ·W2D1W1D0

(1)

where xi ∈ Rdin ,yi ∈ Rdout , A ∈ Rd×din ,B ∈ Rdout×d,
and W` ∈ Rd×d,∀` = 1, . . . , L . D` is the diagonal
matrix of activation gates w.r.t the non-linearity φ at
layer `, which we consider to be either φ(x) = x (linear
networks) or φ(x) = max{x, 0} (ReLU networks).

Notably, deep ReLU MLPs are not only the most
widely studied networks in deep learning the-
ory [Allen-Zhu et al., 2019, Jacot et al., 2018]),
but they are also still of practical rele-
vance for example in neural radiance fields
[Mildenhall et al., 2020] and image classification
[Tolstikhin et al., 2021, Touvron et al., 2021].

Assumption 1 (Random initialization). Each entry
of W` (` = 1, . . . , L) is initialized i.i.d. with some
distribution P symmetric around zero with variance
σ2 <∞ and fourth moment µ4 <∞.

For more than a decade, the standard choice of ini-
tialization variance was σ2 = 1

3d [LeCun et al., 1998].
Motivated by repeated observations of the van-
ishing gradient problem, an improved initializa-
tion was suggested by [Glorot and Bengio, 2010]
and [He et al., 2015]. The following theorem summa-
rizes the reasoning in [He et al., 2015]. We define the
parameter p = 1 for the linear case and p = 1/2 for
the ReLU case

Proposition 2 ([Glorot and Bengio, 2010],
[He et al., 2015]). Under Assumption 1, the variance
of the weight gradients Var(∂L(W)/∂W`) scales
as (pdσ2)L across all layers ` = 1, . . . , L. When
initializing with σ2 = 1

3d (LeCun init.), this quantity
vanishes in depth. Instead, choosing σ2 = 1/d in the
linear case (Xavier init.), and σ2 = 2/d in the ReLU
case (He init), stabilizes the variance.

Proof. Let a`+1 = W`h` be the preactivation of layer
` + 1, computed using h` = D`a`, the activation at
layer ` . Let a`+1, w` and h` represent the random
variables corresponding to each element in a`+1, W`

and h` respectively. Since w` is zero mean, we have
that Var[a`+1] = d · Var[w`] · E[(h`)2]. Finally, since
E[(h`)2] = pVar[a`], we end up with Var[a`+1] = dσ2p ·
Var[a`], which yields Var[a`+1] = Var[a`] for σ2 = 1

dp .

For example, for the uniform initialization P =
U [−τ, τ ], we have σ2 = τ2/3 and hence the “optimal”
initialization range amounts to τ =

√
3/d in the linear

- and τ =
√

6/d in the ReLU case.

3 Vanishing in neural chains and
implications for optimization

To illustrate an important shortcoming in the analyses
of [Glorot and Bengio, 2010] and [He et al., 2015], we
consider a deep linear network of width one (hence-
forth called neural chain). While these networks are
utterly useless for practical applications, they are suf-
ficient to exhibit some critical properties of the loss
landscape, that generalize to wider nets (see next sec-
tion).

In the neural chain case, if A = B = 1, Eq.(1) simpli-
fies to

L(w) =

n∑
i=1

(yi − wL...w1xi)
2/(2n).

We consider each wi ∈ R to be drawn uniformly at
random in [−τ, τ ].

Shortcomings of the expectation analysis.
Prop. 2 suggests that both forward pass and gradi-
ent remain stable in magnitude when choosing τ =√

3. While this is true in expectation, it is not
the case when initializing individual models, where
the expected value becomes an increasingly atypical
event (see Thm. 6) as the chain grows in depth (L).
Indeed, in Fig. 2 we see that all quantities vanish un-
der the “optimal” initialization. Perhaps the most in-
tuitive indication for this pathological behavior comes
from writing down the following population quantities
for the absolute value of the input-output map.
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Proposition 3 (Forward pass statistics chain). Con-
sider the absolute value of a forward pass on the chain,
i.e. the random variable vτ,L :=

∏L
k=1(τwk), with

wk
iid∼ U(0, 1]. Then,

E [vτ,L] =
(
τ
2

)L
,E[v2τ,L] =

(
τ2

3

)L
,E[v3τ,L] =

(
τ3

4

)L
(2)

Clearly, τ =
√

3 (Xavier init.) leads to E [vτ,L] → 0,
E
[
v2τ,L

]
= 1 and E[v3τ,L]→∞, as L→∞.

The result follows directly from the moments of the
uniform distribution. It might be tempting to con-
clude from Eq. 2 that picking τ = 2 instead of√

3 solves the problem. Yet, this is not the case
since then E[v2τ,L] → ∞ and by Mallows inequal-
ity [Mallows and Richter, 1969] the mean becomes an
unreliable predictor for the median, as their difference
is bounded by one standard deviation (exploding). In
fact, the above proposition reveals that one cannot sta-
bilize any pair of moments of vτ,L simultaneously and
hence in both cases τ =

√
3 and τ = 2, the distribu-

tion of vτ,L becomes fat-tailed as L→∞, which leads
to slow convergence of the central limit theorem2. As
we show in Sec. 4, this basic moment trade off prevails
in wider nets (see Eq. 5).

Median analysis. The above considerations sug-
gest that one has to go beyond the population analysis
in order to better understand this phenomenon. In a
first step, we characterize the distribution of the mag-
nitude of the input-output map in log scale.

Lemma 4 (Distribution of chain input-output). In the
setting of Prop. 3,

− ln(vτ,L) = z − L ln(τ), z ∼ Erlang(L, 1).

Hence Pr(− ln(vτ,L) ≤ ζ) = 1− e−ξ
∑L−1
k=0

ξk

k! , ξ := ζ +
L ln τ .

Proof. Basic logarithm identities allow us to write

− ln(vτ,L) = − ln

(
L∏
k=1

(τwk)

)
= −L ln(τ)−

L∑
k=1

ln(wk).

Clearly, − ln(wk)) is exponentially distribution with
parameter 1. Furthermore, if random variables
Vk ∼ Exp(λ) are independent, then

∑L
k=1 Vk ∼

Erlang(L, λ) [Temme, 1996, Devroye, 2006]. The CDF
follows from the properties of the Erlang distribution,
which concludes the proof.

2The speed of convergence in the CLT, as bounded by
the Berry-Esseen inequality, is proportional to E[|v|3].

This allows to characterize the median and provide an
asymptotic3 bound on the forward pass norm.

Proposition 5 (Expectation is not predictive for in-
put-output map magnitude). We have

median [vτ,L] = eL ln(τ)−L̃,

with L− 1/3 ≤ L̃ ≤ L− 1 + ln(2). Therefore, if τ = 2,
median [vτ,L] → 0 while E [vτ,L] = 1 and E

[
v2τ,L

]
→

∞. For τ =
√

3, also median [vτ,L] → 0. Yet, the
median is stabilized for τ = e, since

lim
L→∞

(vτ,L)
1
L
a.s.
= τ/e,

which implies vτ,L ∼ exp (−L(1− ln τ)).

Proof. The moments follow from Prop. 3. For the me-
dian, we solve Pr(− ln vτ,L ≤ ζ) = 1/2 for ζ, which by

Lemma 4 is equivalent to solving 1 − e−ξ
∑L−1
k=0

ξk

k! =

1/2 w.r.t. ξ := ζ + L ln τ . The solution, termed L̃,
is approximated with a Ramanujan formula (1913), as

in [Choi, 1994]. Since vτ,L = eL ln τ−z, then (vτ,L)
1
L =

τe−z/L. We conclude with the strong law of large num-
bers.

We now apply the idea behind the last result to analyze
the first and second order partial derivatives.

Theorem 6 (Almost sure vanishing). Assume
bounded data and wi ∼ U [−τ, τ ], with fixed τ . For
each k, ` ≤ L we asymptotically (as L → ∞) have
almost surely that∣∣∣∣∂Lchain(w)

∂wk

∣∣∣∣ , ∣∣∣∣∂2Lchain(w)

∂wk∂w` 6=k

∣∣∣∣ = O
(
e−(L−1)(1−ln τ)

)
,∣∣∣∣∂2Lchain(w)

∂wk∂wk

∣∣∣∣ = O
(
e−2(L−1)(1−ln τ)

)
.

In particular, as for vτ,L, all these quantities asymp-
totically vanish if τ < e and explode if τ > e.
In the case of Xavier init. τ =

√
3, the Hessian van-

ishes in norm (hence eigenvalues vanish) and becomes
hollow, i.e. diagonal elements become exponentially
smaller than off-diagonal elements.

The proof is presented in App. B.1. Furthermore,
empirical simulations in Fig. 2 and Fig. 21 (top row)
show that the result is very precise.

Implications on landscape and optimization.
In narrow networks, our results show vanishing gra-
dients and hollow Hessians with positive and nega-
tive eigenvalues of decreasing magnitude (also see Fig.

3In the context of asymptotic expansions, we write f ∼
g if limL→∞ f(L)/g(L) = 1.
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Before discussing the regime d � L, we consoli-
date our core claim about vanishing curvature by
generalizing the results of [Glorot and Bengio, 2010,
He et al., 2015] to second-order derivatives.

Theorem 10 (Gradient and Hessian in exp.). Under
Ass. 1, the expected norm of any Hessian diag block

E[‖ ∂2L(W)
∂Wk∂Wk

‖F ] in linear nets scales as O
(
(dσ2)L

)
,

while off-diag. blocks E[‖ ∂2L(W)
∂Wk∂W`

‖F ] and the gradi-

ent E[‖∂L(W)
∂Wk

‖F ] scale as O
(

(dσ2)
L
2

)
. In ReLU nets

the scaling amounts to O
((

d
2σ

2
)L)

and O
((

d
2σ

2
)L

2

)
respectively.

This result is (to the best of our knowledge) the first
to study the effects of depth on second-order deriva-
tives at random initialization. Its proof, which mainly
builds upon Prop. 8, can be found in App. B. A simple
application of Gershgorin’s theorem yields the follow-
ing bound on the eigenvalues.

Corollary 11. Under Assumption 1, the expected
magnitude of the largest eigenvalue λmax is up-

per bound as E[|λlinearmax |] ≤ Ld · O
(

(dσ2)
L
2

)
and

E[|λReLU
max |] ≤ Ld · O

(
(d2σ

2)
L
2

)
respectively.

Theorem 10, combined with Theorem 6 and Theorem 9
provides us with a very fundamental implication.

Theorem 12 (Main result). For d = Ω(L)
the initialization in [Glorot and Bengio, 2010] &
[He et al., 2015] is guaranteed to stabilize both the
gradient and the Hessian with high probability. In-
stead, if d� O(L), then both these initializations can
yield vanishing gradients/curvature almost surely.

The theorem above simply illustrates that there must
be a transition in behavior from the d = 1 case to the
d = Ω(L) case. Arguably, the precise characterization
of this transition is of little theoretical interest — as
the fundamental insight is the existence of such tran-
sition (see also Table 1). Empirically, we observe that
d =
√
L still yields vanishing gradients.

Consequences for traditional LeCun init. The
above results point to an important consequence
of the standard way of initialization prior to
[Glorot and Bengio, 2010]. When choosing σ2 = 1

3d
as in LeCun init. [LeCun et al., 1998], gradient- and
Hessian off-diagonal norms in (e.g.) linear nets van-
ish as O(( 1

3 )L/2) and Hessian diagonal blocks vanish
even faster, namely at O(( 1

3 )L) (Fig. 5 & 14). This
points to an important fact about the eigenspectrum.
Since E‖∇2L(W)‖F scales as (dσ2)

L
2 by Thm. 10, one

of the Ld2 eigenvales must have a magnitude (dσ2)
L
2

in expectation. Yet, the fast diagonal vanishing lets
the trace scale as (dσ2)L. As a result, the sum of
the eigenvalues is exponentially smaller than the max-
imum eigenvalue and hence there must be eigenval-
ues of opposite sign (see e.g. Fig. 5). In summary,
as in neural chains, optimizers are initialized in a flat
plateau with almost no gradient signal and both posi-
tive as well as negative, but very small eigenvalues.

Consequences for Xavier and He init. Thm. 9
& 10 provide simple theoretical grounding for the
benefits of increasing width in random neural net-
works.5 However, they also point out an impor-
tant limitation in the analysis and applicability of
[Glorot and Bengio, 2010, He et al., 2015]. What hap-
pens in cases where width scales sub-linearly with
depth remains open for theoretical analysis.

d = 1 d = O(L)
Ours vanish w.h.p. (Thm. 6) stable w.h.p. (Thm. 9)
[Glorot and Bengio, 2010, He et al., 2015] stable in exp. stable in exp.
[Hanin and Rolnick, 2018, Hanin and Nica, 2019] - stable w.h.p.

Table 1: Summary of existing claims for He/Xavier ini-
tialization for different scalings of width d w.r.t depth L.

Our study on the neural chain (Thm. 6) along with
Thm. 9 suggests that no initialization variance σ2

is capable of stabilizing the full distribution of all
of activation-, gradient- and the Hessian norm when
the width is small. Yet, characterizing the almost
sure behaviour of the gradient and Hessian for net-
works with d > 1 is intricate since paths in fully
connected networks overlap, such that one cannot
treat them as a set of independent products of ran-
dom variables, which would allow a straight forward
generalization of Thm. 6 using Berry-Esseen inequal-
ity [Berry, 1941]. Similarly, deriving the distribution
of the forward pass is very challenging. In fact, already
in the scalar case (neural chain), product distribu-
tions for both uniform [Dettmann and Georgiou, 2009]
and Gaussian initialization become very complex
[Springer and Thompson, 1970]. We thus retreat to
empirical simulations, but stress the fact that these
are informative because they are undertaken in a con-
trolled setting, where the only source of randomness
(weight initialization) is well controlled by running
multiple seeds.

Our empirical results highlight that σ2 = 1
d is indeed

not an optimal choice for narrow networks. Indeed, as
can be seen in Fig.4, gradients and curvature vanish in
narrow but stay stable in wide ReLU MLPs with He
init. The same happens in linear networks with Xavier
init (Fig. 16). Again, we find both negative and pos-
itive eigenvalues at initialization (Fig. 13). Interest-
ingly, Fig. 21 depicts that the optimal initialization

5[Hanin and Nica, 2019, Allen-Zhu et al., 2019] come
to similar conclusions albeit with more complex analysis.
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A Additional experimental details and results

A.1 Experimental setup

All experiments are conducted in PyTorch 1.7 [Paszke et al., 2019]. We run experiments on up to 8 Tesla V100
GPUs with 32 GB memory.

Figure 1 We draw samples X ∈ Rn×d,y ∈ {0, 1}n from two interleaving half circles using
sklearn.datasets.make moons [Pedregosa et al., 2011], choosing n = 1000 and d = 2. In order to classify these
samples, we train ReLU MLPs of width 2 (with biases) and increasing depth using SGD and Adam with learning
rates η = 0.1 and η = 0.001 respectively and batch size bs = 100. Both methods use β = 0.9 momentum. Simply
increasing the learning rate for SGD won’t solve the problem since this yields instabilities in the long run due to
sharply increasing gradient magnitudes outside the plateau. The loss landscape is computed for the full batch.
The projections were computed using a PCA on the visited parameters of both optimizers.

Figure 5 & 14. We draw samples X ∈ Rn×d from a multivariate Gaussian distribution N (0, Id), choosing
n = 100 and d equal to the network width (x-axis). Targets Y ∈ Rn×d are generated form a 1-hidden-layer
network of width as on the x-axis. We use as mean-squared-error loss. The networks are simple MLPs with

weight matrices in d× d. As initialization we use LeCun uniform, i.e. W `
i,j ∼ U

[
− 1√

d
, 1√

d

]
. As long as memory

is sufficient we compute the full hessian, above we randomly sub-sample hessian blocks (layers).

Figure 4 & 18. As in Figure 5 & 14 but using Xavier uniform initialization W `
i,j ∼ U

[
−
√

3
d ,
√

3
d

]
[Glorot and Bengio, 2010] for linear- and He uniform initialization W `

i,j ∼ U
[
−
√

6
d ,
√

6
d

]
[He et al., 2015] for

ReLU networks. The networks are simple MLPs with weight matrices in
⌈√

d
⌉
× d in the top and d × d in the

bottom row.

In Figure 18 we add residual connections and batch normalization. Notably, the residual connections skip a set
of three layers.

Figure 6. We train Fashion-MNIST [Xiao et al., 2017] with the given train-test split, on
a 32 hidden unit, 128 hidden layer MLP with ReLU activations. All optimizers are de-
picted with (individually) grid-searched learning rate (in terms of training accuracy) in the set
1e− 3, 5e− 4, 1e− 4, 5e− 5, 1e− 5, 5e− 6, 1e− 6, 5e− 7, 1e− 7, 5e− 8, 1e− 8. Depicted are SGD and Momen-
tum with learning rate 1e− 4 and RMSprop as well as Adam with learning rate 1e− 5. Batch size is 128 for all
optimizers. The momentum factor for SGD was set to 0.9.

Figure 10. Same setting as in Fig. 6 but with network width equal to network depth (128).

Figure 8 & 19. We here consider a fully convolutional image to image learning setting where each layer has
c kernels of size 3× 3 that operate with a padding of 1. As a result, the image resolution does not change over
depth. As inputs, we use a batch of 32 CIfAR-10 images [Krizhevsky, 2009]. We feed them trough the networks
once at the original 32×32 resolution and once down-sampled to 7×7 images and compute a mean-squared-error
loss at the end using the input image as target. We show plots for ReLU nets but note that the general picture
is the same for linear networks (vanishing happens just a bit slower, compare MLPs).

In Figure 19 we add residual connections and batch normalization. Notably, the residual connections skip a
set of three layers (similarly to the ResNet). In fact, we found exploding gradients/curvature when residual
connections only skip one layer.

Figure 9 & 20. In these figures we feed CIFAR-10 images [Krizhevsky, 2009] at the original 32×32 resolution
through convolutional networks that resemble the ResNet architecture but omit both Batch Normalization and
residual connections. These networks have 4 main blocks of layers which operate at image resolutions: 56× 56,
28×28, 14×14 and 7×7 and with 64, 128, 256 and 512 channels. Each of these blocks consists of 3 convolutional
layers. We depict result on networks of depth 18, 34, 50, 101, 152, 200, 270, 336, 500 which have the following block
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Figure 21: Behavior of the variable ‖WLWL−1 · · ·W11‖22. Entries randomly sampled U([−τ, τ ]). Only 50
samples are shown, but 106 are used to approximate population quantities. The expectation is by rare events,
and is drastically different from the median if d� L, as shown in Thm. 9.
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B Analysis of deep linear and ReLU Networks

Note: the fundamental result of this Section (Thm. 18) is checked numerically in Figure 22.

B.1 Proof Theorem 6 (neural chains)

Proof:

We focus on the derivatives with respect to the parameters w1 and w2 since the argument can be repeated for
any parameter wi. Denote by w the set of all parameters {wi}Li=1. The derivatives of the chain loss are

|∇w1L(w)| = |ywL · · ·w2x− (wL)2 · · · (w2)22(w1)x| (7)

|∇2
w1,w2L(w)| = |ywL · · ·w3x− 2(wL)2 · · · (w3)2w2w1x| (8)

and ∣∣∇2
w1,w1L(w)

∣∣ =
∣∣(wL)2...(w2)2x

∣∣ (9)

It can be seen that the gradient as well as the Hessian off-diagonals scale similarly in depth. Let us first consider
these two. Clearly,

|∇w1L(w)| ≤ |ywL...w2x|+ |(wL)2...(w2)2w1x|
≤ 2 ·max{|ywL...w2x|, |(wL)2...(w2)2w1x|}

(10)

For the first term in the max, we note that ln
(∏L

k=2 |wk|
)

=
∑L
k=2 ln(|wk|) and since |wk| ∼ U [0, τ ], we have

E
[
ln(|wk|)

]
= ln(τ)− 1. Thus, the strong law of large numbers yields that with probability one

L∏
k=2

|wk| → exp ((L− 1) (ln (τ)− 1)) (11)

For the second term, we have ln
(
w1
∏L
k=2(wk)2

)
= ln(w1) +

∑L
k=2 ln((wk)2) and E

[
ln((wk)2)

]
= 2 (ln(τ)− 1).

Thus, the strong law of large numbers yields that with probability one ln
(
w1
∏L
k=2(wk)2

)
→ (2L−1) (ln(τ)− 1).

Hence

w1
L∏
k=2

(wk)2 → exp ((2L− 1) (ln (τ)− 1)). (12)

For large L, Eq.11 clearly dominates Eq.12, which proves the first statement. The second statement follows
similarly to Eq. 12.

�

B.2 Notation and fundamental properties

𝐴 𝑥

ReLU

𝑊
1

ReLU

𝐵 𝑊
𝐿 …ReLU xAB ϕϕϕ W1WL
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Notation. In this section, we use neural network notations similar to the one in [Allen-Zhu et al., 2019]. In
particular,

F (x) := BDLWL:1
φ Ax, WL:1

φ := WLDL−1WL−1 · · ·W2D1W1D0, (13)

where F (x) constitutes the forward pass of a given input x ∈ Rdin , A ∈ Rd×din ,B ∈ Rdout×d, and W` ∈
Rd×d,∀` = 1, . . . , L . D` is the diagonal matrix of activation gates w.r.t the non-linearity φ at layer `, which we
consider to be either φ(x) = x (linear networks) or φ(x) = max{x, 0} (ReLU networks). Finally, we denote by
a` and h` the pre- and post activations in layer ` respectively, i.e. for example a1 = Ax and h1 = D0a1.

Fundamental properties of activations and preactivations at each layer

Lemma 13 (Fundamental properties of activations and preactivations at each layer). Let the entries of A, B
and each W` be i.i.d. samples from a symmetric distribution around 0 with finite moments, and variance σ2.
Then for any fixed input x, we have

1. At each layer, entries of the preactivation vector are integrable and have a distribution symmetric around
zero.

2. For ReLU networks, at each layer, the entries of the activation vector are non-zero with probability 1/2.

3. At each layer, in both the ReLU and the linear case, the preactivation and the activation vectors have
uncorrelated squared entries.

Proof. Recall that the preactivation at each layer is a`+1 = W`h`. Clearly, since W` = −W` in distribution,
a`+1 = −a`+1 in distribution. From this follows also that, if a ReLU is applied, h`+1 > 0 with probability 1/2.
The last property to show is that squared entries of activations and preactivations are uncorrelated. Let’s drop
the layer index ` and pick two neurons i 6= j, then

E[(gi)
2(gj)

2] =
∑
r,s,u,v

E [wirwis]E [wjuwjv]E [hrhshuhv] = σ4
∑
r,u

E
[
(hr)

2(hu)2
]
. (14)

Instead, for the single squared variables we have

E[(gi)
2] =

∑
r,s

E [wirwis]E [hrhs] = σ2
∑
r

E
[
(hr)

2
]
. (15)

Therefore E[(gi)
2(gj)

2] = E[(gi)
2]E[(gj)

2] if and only if (hi)
2 and (hj)

2 are uncorrelated. As x is fixed, this is
the case at the input layer and we conclude the proof by induction on `.

Last, we show the same properties for the activations in the ReLU case. Let di = φ(gi)/gi = 1(gi > 0) and
consider the new activation h+i = digi. We start by applying the law of total expectation:

E[(h+i )2(h+j )2] = E
[
(di)

2(dj)
2(gi)

2(gj)
2
]

=
1

4
E
[
(gi)

2(gj)
2|di, dj = 1

]
=

1

4
E
[
(gi)

2(gj)
2
]

=
1

2
E
[
(gi)

2
] 1

2
E
[
(gj)

2
]

= E[(h+i )2]E[(h+j )2],

(16)

where the third and the last equalities follow from the fact that the value of the squared preactivation is
independent on the sign of the preactivation.

Statistics for the propagation through one layer
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Lemma 14 (Statistics after activation function). Let x be a symmetric random vector with uncorrelated squared
entries. Let φ(x) = Dxx. We have

E‖Dxx‖22 = p E‖x‖22; (17)

E‖Dxx‖42 = p2E‖x‖42 + (p− p2)E‖x‖44; (18)

E‖Dxx‖44 = p E‖x‖44. (19)

where p = 1 for linear nets and p = 1/2 for ReLU nets.

Proof. The first property is based on the fundamental idea in [He et al., 2015]. Let di be the entry (i, i) of Dx.
Then, di is independent from x2i . Hence, also noting that (di)

2 = di, we have

E‖Dxx‖22 =
∑
i

E
[
d2ix

2
i

]
=
∑
i

E [di]E
[
x2i
]

= p E‖x‖22. (20)

where p = E[di], which is 1/2 for ReLU nets and 1 for linear nets, as shown in Lemma 13. The last property can
be proved in the same way by noting that di is independent from x4i

E‖Dxx‖44 =
∑
i

E
[
d4ix

4
i

]
=
∑
i

E [di]E
[
x4i
]

= p E‖x‖44. (21)

The second property is a bit more involved to prove.

E‖Dxx‖42 = E

(
d∑
i=1

(dixi)
2

)2

=

d∑
i=1

E
[
(dixi)

4
]

+
∑
i 6=j

E
[
(dixi)

2(djxj)
2
]
. (22)

From Lemma 13, third point, we have E
[
(dixi)

2(djxj)
2
]

= E
[
(dixi)

2
]
E
[
(djxj)

2
]

(compare Eq.(16)). Hence,
noting again that di = d2i ,

E‖Dxx‖42 =

d∑
i=1

E [di]E
[
x4i
]

+
∑
i 6=j

E [di]E [dj ]E
[
x2ix

2
j

]
(23)

= p E‖x‖44 + p2E
[
‖x‖42 − ‖x‖44

]
. (24)

This concludes the proof.

The following corollary is of fundamental importance of understanding the properties of ReLU nets: if the input
of the net is modified (say from x to α, the ReLU gates Dx act as purely random Bernoulli gates. This comment
can be also found in the proof of Lemma A.8 in [Zou et al., 2020].

Corollary 15 (Statistics after activation function with changed input). In the context of Lemma 14, let α be
a fixed vector. we have

E‖Dxα‖22 = p ‖α‖22; (25)

E‖Dxα‖42 = p2‖α‖42 + (p− p2)‖α‖44; (26)

E‖Dxα‖44 = p ‖α‖44. (27)

where p = 1 for linear nets and p = 1/2 for ReLU nets.

Proof. Just note that since Dx and α are independent we can basically follow the proof of Lemma 14, but
simplified:

E‖Dxα‖mm =
∑
i

E [dmi α
m
i ] =

∑
i

E [di]α
m
i = p ‖α‖mm. (28)



Antonio Orvieto*, Jonas Kohler*, Dario Pavllo, Thomas Hofmann, Aurelien Lucchi

The second property is also easy to show compared to Lemma 14:

E‖Dxα‖42 = E

(
d∑
i=1

(diαi)
2

)2

(29)

=

d∑
i=1

E
[
(diαi)

4
]

+
∑
i6=j

E
[
(diαi)

2(djαj)
2
]

(30)

=

d∑
i=1

E [di]α
4
i +

∑
i 6=j

E[di]E[dj ]α
2
iα

2
j . (31)

This concludes the proof.

Next, we study the change in statistics after multiplication with a random matrix.

Lemma 16 (Statistics after multiplication with a random matrix). Let W be an iid random matrix, with zero
mean entries that have variance σ2 and kurtosis κ. Let ξ ∈ Rd be an arbitrary random vector (not necessarily
symmetric or with uncorrelated squared entries). Then

E‖Wξ‖22 = dσ2E‖ξ‖2; (32)

E‖Wξ‖42 = d(d+ 2)σ4E‖ξ‖42 + (κ− 3)dσ4E‖ξ‖44; (33)

E‖Wξ‖44 = 3dσ4E‖ξ‖42 + (κ− 3)dσ4E‖ξ‖44. (34)

Proof. The first property is easy to show:

E‖Wξ‖22 = E
∑
r

(∑
s,u

wrsξswruξu

)
= E

∑
r

(∑
s

w2
rsξ

2
s

)
= dσ2E‖ξ‖2. (35)

The second and the third properties need computations.

‖Wξ‖42 =
(∑

i

(∑
r

wirξr

)2)2
(36)

=
∑
i,j

∑
r

wirξr
∑
s

wisξs
∑
u

wjuξu
∑
v

wjvξv, (37)

‖Wξ‖44 =
∑
i

(∑
r

wirξr

)4
(38)

=
∑
i

∑
r

wirξr
∑
s

wisξs
∑
u

wiuξu
∑
v

wivξv. (39)

Taking expectations, yields

E‖Wξ‖44
σ4

= κ
∑
i︸ ︷︷ ︸

κd

E‖ξ‖44 + 3
∑
i︸ ︷︷ ︸

3d

∑
r 6=s

E
[
ξ2rξ

2
s

]
︸ ︷︷ ︸
E‖ξ‖42−E‖ξ‖44

= 3d E‖ξ‖42 + (κ− 3)d E‖ξ‖44; (40)

E‖Wξ‖42
σ4

=
∑
i 6=j︸︷︷︸

d(d−1)

E

[(∑
r=s

ξ2r

)(∑
u=v

ξ2u

)]
︸ ︷︷ ︸

E‖ξ‖42

+ 3
∑
i=j︸ ︷︷ ︸
3d

∑
r 6=s

E
[
ξ2rξ

2
s

]
︸ ︷︷ ︸
E‖ξ‖42−E‖ξ‖44

+κ
∑
i︸ ︷︷ ︸

κd

∑
r=s

E[ξ4r ]︸ ︷︷ ︸
E‖ξ‖44

(41)

= d(d+ 2)E‖ξ‖42 + (κ− 3)d E‖ξ‖44.

The factor 3 appears because, if 4 indices are paired in groups of two, we have a total of 3 disjoint choices:
{i = j, u = v}, {i = u, j = v}, {i = v, j = u}.
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Corollary 17 (Preactivations after one (ReLU) layer). Let x be a symmetric random vector with uncorrelated
squared entries and W be an iid random matrix, entries having mean zero, variance σ2 and kurtosis κ. Then,
the following formulas hold:

E‖WDxx‖22 = dσ2pE‖x‖22; (42)

E‖WDxx‖42 =
[
d(d+ 2)σ4p2

]
E‖x‖42 +

[
dσ4p (κ− 3 + (1− p)(d+ 2))

]
E‖x‖44; (43)

E‖WDxx‖44 =
[
3dσ4p2

]
E‖x‖42 +

[
dσ4p(κ− 3p)

]
E‖x‖44. (44)

Proof. Follows directly from Lemma 16 by plugging in ξ = Dxx. The effect of the potential ReLU is then
integrated out using Lemma 14.

B.3 Forward pass

The next theorem, which is the fundamental tool for our analysis, is checked numerically in Figure 22.

Theorem 18 (Forward pass statistics). Let z = Ax, which is, for x fixed, symmetrically distributed and with
uncorrelated squared entries. Then,

E‖Wk:1
φ z‖22 = (dσ2p)kE‖z‖22; (45)(

E‖Wk:1
φ z‖42

E‖Wk:1
φ z‖44

)
=
(
p2dσ4

)k
Qk

(
E‖z‖42
E‖z‖44

)
, Q :=

(
d+ 2 κ−3+(1−p)(d+2)

p

3 κ−3p
p

)
. (46)

Proof. From Lemma 13 we know that at initialization the entries of layer preactivations are symmetrically dis-
tributed and with uncorrelated squared entries. Hence, we can apply Corollary 17 recursively to preactivations.

E‖Wk:1
φ z‖22 = dσ2pE‖Wk−1:1

φ z‖22; (47)

E‖Wk:1
φ z‖42 =

[
d(d+ 2)σ4p2

]
E‖Wk−1:1

φ z‖42 (48)

+
[
dσ4p (κ− 3 + (1− p)(d+ 2))

]
E‖Wk−1:1

φ z‖44; (49)

E‖Wk:1
φ z‖44 =

[
3dσ4p2

]
E‖Wk−1:1

φ z‖42 +
[
dσ4p(κ− 3p)

]
E‖Wk−1:1

φ z‖44. (50)

The formula for E‖Wk:1
φ z‖22 directly follows, while the other two statistics evolve as a coupled dynamical system.

Simple take away. Consider a Gaussian initialization κ = 3 in linear neural networks (p = 1). Then the
recursion matrix Q in Eq.(46) simplifies to

Q :=

(
d+ 2 0

3 0

)
, (51)

from which follows that E‖Wk:1
φ z‖42 =

(
dσ4
)k

(d+ 2)
k E‖z‖24. Hence, similar to the case of the neural chain

depicted in Eq. 2 the pair of moments E‖Wk:1
φ Az‖22 and E‖Wk:1

φ z‖42 cannot be stabilized jointly. Hence,
as shown in Figure 21, the mean is allowed to be very different from the median by Mallows inequal-
ity [Mallows and Richter, 1969] — see also Thm. 9. Finally, we note that the effect we just discussed grows
stronger if d� L. This is also confirmed by the simulation in Figure 22.

Corollary 19 (Asymptotic forward pass statistics). In the context of Theorem 18, as d→∞

E‖Wk:1
φ Ax‖42 . (dσ2p)2k, (52)

E‖Wk:1
φ Ax‖44 . (dσ2p)2k, (53)

where “.” denotes “asymptotically less of equal than a multiple of” (same as O).
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Figure 22: Numerical validation of Theorem 18 using the classical stabilizing initializa-
tions [Glorot and Bengio, 2010, He et al., 2015]. The variance of the weights is set to 1/

√
d for linear

nets and 2/
√
d for ReLU nets (here, we used d = 3, 10). We consider a random Gaussian input and initialization

of the weights with either Gaussian or uniform distribution. The theory matches the experiment (empirical

mean denoted as Ê — 1e5 runs for d = 10, 1e7 runs for d = 3). The results for the two initializations are similar,
yet Gaussian case explodes a bit faster due to the effect of the kurtosis, which for the Gaussian is 3 while for
the uniform is 3− 6

5 . The formula in Thm 18 also perfectly predicts this tiny shift in the population quantities,
confirming the correctness of our calculations.
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Proof. For the linear and the ReLU case we respectively have

Qlinear =

(
d+ 2 κ− 3

3 κ− 3

)
, QReLU =

(
d+ 2 d+ 2κ− 4

3 2κ− 3

)
. (54)

As d→∞, these matrices behave as follows:

Q∞linear =

(
O(d) O(1)
O(1) O(1)

)
, Q∞ReLU =

(
O(d) O(d)
O(1) O(1)

)
. (55)

The result follows.

Proposition 20 (Forward pass form a different vector). Assume that, instead of x, we feed into the random
net (with activation gates computed using x) a different vector α. Then, all the forward pass statistics still hold.

Proof. Direct consequence of Corollary 15, when applied iteratively as done above.

Statistics for network-dependent matrices from the forward pass

Proposition 21 (From network matrices to propagations of canonical vectors). Let e1 be the first vector in the
canonical basis. We have

E‖W`:k+1
φ ‖2F = d E‖W`:k+1

φ e1‖22 ∼ (dσ2p)`−k; (56)

E‖W`:k+1
φ ‖4F = d2 E‖W`:k+1

φ e1‖42 ∼ (dσ2p)2(`−k). (57)

where “.” denotes “asymptotically less of equal than a multiple of” (same as O).

Proof. By direct calculation

E‖W`:k+1
φ ‖2F = E

[
d∑
i=1

‖W`:k+1
φ ei‖22

]
= d E‖W`:k+1

φ e1‖22 ∼ (dσ2p)`−k. (58)

The second last equality follows from the isotropic structure of W`:k
φ and the last from Prop. 20.

E‖W`:k+1
φ ‖4F = E

( d∑
i=1

‖W`:k+1
φ ei‖22

)2
 = E

∑
ij

‖W`:k+1
φ ei‖22‖W`:k+1

φ ej‖22

 . (59)

Since ‖W`:k+1
φ ej‖22 = ‖W`:k+1

φ ei‖22 in distribution, E‖W`:k+1
φ ‖4F = d2E‖W`:k+1

φ ei‖42. The asymptotic statements
hold thanks to Proposition 20.

B.4 Gradient

We consider the loss

Lx,y(W) =
1

2
‖y −BDLWL:1

φ Ax‖2. (60)

As in [Allen-Zhu et al., 2019], by noting B̃ := BDL and z = Ax we get

∂L
∂Wk

= Wk+1:L
φ B̃>[B̃WL:1

φ z− y]z>W1:k−1 (61)

= Wk+1:L
φ B̃>B̃WL:1

φ zz>W1:k−1︸ ︷︷ ︸
∂L1

k

−Wk+1:L
φ B̃>yz>W1:k−1︸ ︷︷ ︸

∂L2
k

, (62)
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with Wk+1:L
φ :=

(
WL:k+1

φ

)>
. By the triangle inequality, we have∥∥∥∥ ∂L

∂Wk

∥∥∥∥
F

≤ ‖∂L1
k‖F + ‖∂L2

k‖F , (63)

therefore we can bound each term individually. Let Ep[·] be the p-th power of E[·].

Proposition 22 (Bounding gradients with forward passes). We have

E‖∂L1
k‖F ≤ E1/2

[
‖B̃WL:k+1

φ ‖22
]
E1/4

[
‖B̃WL:1

φ z‖42
]
E1/4

[
‖Wk−1:1

φ z‖42
]

; (64)

E‖∂L2
k‖F ≤ E

[
‖y>B̃WL:k+1

φ ‖22
]
E
[
‖Wk−1:1

φ z‖22
]
. (65)

Proof. The bounds follow from submultiplicativity of Frobenius norm and Cauchy-Schwarz inequality — applied
possibly twice.

E‖∂L1
k‖F = E‖Wk+1:L

φ B̃>B̃WL:1
φ zz>W1:k−1

φ ‖F (66)

≤ E
[
‖Wk+1:L

φ B̃>‖F ‖B̃WL:1
φ z‖F ‖z>W1:k−1

φ ‖F
]

(67)

= E
[
‖B̃WL:k+1

φ ‖F ‖B̃WL:1
φ z‖F ‖Wk−1:1

φ z‖F
]

(68)

≤ E1/2
[
‖B̃WL:k+1

φ ‖2F
]
E1/2

[
‖B̃WL:1

φ z‖2F ‖Wk−1:1
φ z‖2F

]
(69)

≤ E1/2
[
‖B̃WL:k+1

φ ‖2F
]
E1/4

[
‖B̃WL:1

φ z‖4F
]
E1/4

[
‖Wk−1:1

φ z‖4F
]
. (70)

E‖∂L2
k‖F = E‖Wk+1:L

φ B̃>yz>W1:k−1
φ ‖F (71)

≤ E
[
‖Wk+1:L

φ B̃>y‖F ‖z>W1:k−1
φ ‖F

]
(72)

≤ E1/2
[
‖Wk+1:L

φ B̃>y‖2F
]
E1/2

[
‖z>W1:k−1

φ ‖2F
]

(73)

= E1/2
[
‖y>B̃WL:k+1

φ ‖2F
]
E1/2

[
‖Wk−1:1

φ z‖2F
]
. (74)

We conclude by noting that the Frobenius norm is the 2-norm for vectors.

Proposition 23 (Bounding gradients with forward passes, wide net). As d→∞,

E‖∂L1
k‖F . (pσ2d)

2L−1
2 , (75)

E‖∂L2
k‖F . (pσ2d)

L−1
2 , (76)

where “.” denotes “asymptotically less of equal than a multiple of” (same as O). Hence, we have

E
∥∥∥∥ ∂L
∂Wk

∥∥∥∥
F

. (pσ2d)
L−1

2 if (pσ2d) ≤ 1 (vanishing-stable regime). (77)

E
∥∥∥∥ ∂L
∂Wk

∥∥∥∥
F

. (pσ2d)
2L−1

2 if (pσ2d) ≥ 1 (exploding regime). (78)

Proof. Simple application of Corollary 19 and Proposition 21 to the bounds in Proposition 22.

B.5 Hessian

The Hessian of a linear DNN can be split into two block matrices, where each block has a Kronecker product
structure. We can apply the product rule to the gradient and consider W` and W`> (` > k) as two distinct
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matrices: the block (k, `) of the Hessian matrix is:

∂2L
∂Wk∂W`︸ ︷︷ ︸

Hk`
1

+
∂2L

∂Wk∂W`>︸ ︷︷ ︸
Hk`

2

∂(W`>)

∂W`︸ ︷︷ ︸
T

,

where T is the matrix transpose tensor. Recall that

∂L
∂Wk

= Wk+1:L
φ B̃>[B̃WL:1

φ z− y]z>W1:k−1. (79)

By using the simple rule ∂EWF
∂W = F> ⊗E, we get

Hk`
1 = Wk−1:1

φ zz>W1:`−1
φ ⊗ Wk+1:L

φ B̃>B̃WL:`+1
φ ; (80)

Hk`
2 = Wk−1:1

φ z
(
z>W1:L

φ B̃> − y>
)

B̃WL:`+1
φ ⊗Wk+1:`−1

φ (81)

= Wk−1:1
φ zz>W1:L

φ B̃>B̃WL:`+1
φ ⊗Wk+1:`−1

φ︸ ︷︷ ︸
Hk`

21

−Wk−1:1
φ zy>B̃WL:`+1

φ ⊗Wk+1:`−1
φ︸ ︷︷ ︸

Hk`
22

,

Note that if instead k = `, Hkk = Hkk
1 .

Proposition 24 (Bounding the Hessian with forward passes). It is possible to bound the Hessian with statistics
only on the forward pass.

Proof. We simply apply the Cauchy-Schwarz inequality twice for each term, using also the Frobenius norm
formula for the Kronecker product and norm submultiplicativity.

E‖Hk`
1 ‖F = E

∥∥∥Wk−1:1
φ zz>W1:`−1

φ ⊗ Wk+1:L
φ B̃>B̃WL:`+1

φ

∥∥∥
F

(82)

≤ E1/2
∥∥∥Wk−1:1

φ zz>W1:`−1
φ

∥∥∥2
F
E1/2

∥∥∥Wk+1:L
φ B̃>B̃WL:`+1

φ

∥∥∥2
F

(83)

≤ E1/4
∥∥∥Wk−1:1

φ z
∥∥∥4
F
E1/4

∥∥∥W`−1:1
φ z

∥∥∥4
F
E1/4

∥∥∥B̃WL:`+1
φ

∥∥∥4
F
E1/4

∥∥∥B̃WL:k+1
φ

∥∥∥4
F
. (84)

E‖Hk`
22‖F ≤ E1/2

∥∥∥Wk−1:1
φ zy>B̃WL:`+1

φ

∥∥∥2
F
E1/2

∥∥∥Wk+1:`−1
φ

∥∥∥2
F

(85)

≤ E1/4
∥∥∥Wk−1:1

φ z
∥∥∥4
F
E1/4

∥∥∥y>B̃WL:`+1
φ

∥∥∥4
F
E1/2

∥∥∥W`−1:k+1
φ

∥∥∥2
F
. (86)

E‖Hk`
21‖F ≤ E1/2

∥∥∥Wk−1:1
φ zz>W1:L

φ B̃>B̃WL:`+1
φ

∥∥∥2
F
E1/2

∥∥∥Wk+1:`−1
φ

∥∥∥2
F

(87)

≤ E1/4
∥∥∥Wk−1:1

φ zz>W1:`
φ W`+1:L

φ B̃>B̃WL:`+1
φ

∥∥∥2
F
E1/4

∥∥∥W`−1:k+1
φ

∥∥∥2
F
. (88)

Note that the last term is not simplified completely, but unfortunately a simple iterated Cauchy-Schwarz splitting
would lead to quantities with high exponents (eighth moment). Hence, we need to take a more complex approach.
First, we split between terms which do not share weights.

E
[∥∥∥Wk−1:1

φ zz>W1:`
φ

∥∥∥2
F

∥∥∥W`+1:L
φ B̃>B̃WL:`+1

φ

∥∥∥2
F

]
. (89)

Using the law of total expectation, the last expression becomes

E
[

E
[ ∥∥∥Wk−1:1

φ zz>W1:`
φ

∥∥∥
F

∥∥∥W`+1:L
φ B̃>B̃WL:`+1

φ

∥∥∥2
F

∣∣∣∣ F` ] ]
, (90)
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where F` is the information until layer `. Using the same reasoning as Corollary 15 and Proposition 20, it is easy
to realize that fixing the preactivation a separate integration of the second term in the product. In particular,
the expression becomes

E
[∥∥∥Wk−1:1

φ zz>W1:`
φ

∥∥∥
F

]
· E

[ ∥∥∥W`+1:L
φ B̃>B̃WL:`+1

φ

∥∥∥2
F

∣∣∣∣ F` ] . (91)

As usual, we drop the filtration notation and plug this back into the expression for E‖Hk`
21‖F :

E‖Hk`
21‖F ≤ E1/2

∥∥∥Wk−1:1
φ zz>W1:`

φ

∥∥∥2
F
E1/2

∥∥∥W`+1:L
φ B̃>B̃WL:`+1

φ

∥∥∥2
F
E1/2

∥∥∥W`−1:k+1
φ

∥∥∥2
F

≤ E1/4
∥∥∥Wk−1:1

φ z
∥∥∥4
F
E1/4

∥∥W`:1
φ z
∥∥4
F

+ E1/2
∥∥∥B̃WL:`+1

φ

∥∥∥4
F
E1/2

∥∥∥W`−1:k+1
φ

∥∥∥2
F
.

Proposition 25 (Bounding Hessians with forward passes, wide net). As d→∞, for k 6= `

E‖Hk`‖F . (pσ2d)
L−2

2 + (pσ2d)L−1, (92)

E‖Hkk‖F . (pσ2d)L−1, (93)

where “.” denotes “asymptotically less of equal than a multiple of” (same as O). Hence, we have

E‖Hk`‖F . (pσ2d)
L−2

2 , E‖Hkk‖F . (pσ2d)L−1 if (pσ2d) ≤ 1 (vanishing regime).

E‖Hk`‖F . (pσ2d)L−1, E‖Hkk‖F . (pσ2d)L−1 if (pσ2d) ≥ 1 (exploding regime).

Proof. Follows from the triangle inequality. The only element left to bound is the transpose tensor T, which
however has only polynomial frobwnius norm in d and L.
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C Curvature Adaption of RMSProp

C.1 Literature review

Role of adaptive methods in modern-day deep learning. Adam and RMSprop (as well as explicitly regu-
larized variants such as AdamW [Loshchilov and Hutter, 2017]) are known to perform extremely well compared to
SGD when training attention models [Zhang et al., 2020, Liu et al., 2019, Wolf et al., 2020, Brown et al., 2020,
Biggio et al., 2021], generative models [Karras et al., 2020a] and RNNs [Hochreiter and Schmidhuber, 1997].
In convolutional neural networks, many works [Loshchilov and Hutter, 2017, Balles and Hennig, 2018,
Chen et al., 2020, Liu et al., 2019] show that slight variations of adaptive methods (e.g. AdamW) can close
a suspected generalization gap [Wilson et al., 2017] and recently, [Tan and Le, 2019, Tan et al., 2019] achieved
state of the art on ImageNet classification training with RMSprop (Adam with β1 = 0). Finally, in the context
of generative adversarial nets [Goodfellow et al., 2014], RMSprop is often preferred over Adam, leading to fast
convergence [Park et al., 2019, Brock et al., 2018, Karras et al., 2020b], as opposed to SGD with momentum (see
e.g. [Gemp and McWilliams, 2019] and references within).

The stochastic non-convex optimization approach to Adam. The first correct7 proof of convergence
for (a modified variant of) Adam in the stochastic nonconvex case was given in [Reddi et al., 2019], subject to a
few assumptions (e.g. bounded gradients, decreasing stepsizes) and under the framework of online optimization.
Perhaps the most recent simple, up-to-date, complete, and elegant proof of convergence of Adam was recently
given in [Défossez et al., 2020], where the authors show that a rate O(log(k)/

√
k) can be achieved in expectation

with iterate averaging yet no additional assumption on the maximum gradient norm (as opposed to most previous
work). The same exact rate is also achieved by vanilla SGD [Ghadimi and Lan, 2013], which is well-known to be
optimal for non-convex stochastic programming with bounded variance [Arjevani et al., 2019], if one does not rely
on variance reduction (else, one can achieve slightly faster convergence [Cutkosky and Orabona, 2019]). Hence,
it is clear that worst-case first-order complexity bounds which can be derived using the standard non-convex
optimization methodology (at least for first order stationary points) are not yet able to explain the superiority
of Adam in the context of optimization of deep neural networks. However, for Padam [Chen et al., 2020] a slight
variation of Adam, it is possible to show a better dependency on the problem dimension, compared to (the known
upper bound for) SGD.

Geometry adaptation, noise rescaling, gradient clipping and other conjectures. Some papers on
Adam do not take the standard non-convex optimization approach discussed above. Chronologically, the first
was [Balles and Hennig, 2018], that “dissects” Adam highlighting a variance-dependent preconditioning effect.
This insight was taken one step further by [Staib et al., 2019], that shows how the variance-adaptation of Adam
effectively scales the gradient variance to be isotropic; the authors claim this effect leads to fast escape from
saddle points, since all eigendirections are equally excited by the stochastic perturbation.

Other papers take instead a geometric approach and motivate how Adam and RMSprop provide a cheap diagonal
approximation of the empirical Fisher preconditioner, which is sometimes related to the Hessian [Martens, 2020].
As a result, Adam can be thought of as an approximate Gauss-Newton method [Nocedal and Wright, 2006].
While this interpretation could in principle explain the fast convergence of Adam, it was recently
shown [Kunstner et al., 2019] that very often the Adam preconditioner can be very far away from the
true Hessian, which is instead provably related to the non-empirical (a.k.a. true) Fisher. However,
in [Dauphin et al., 2015], the authors show that RMSprop effectively regularizes the landscape, making it more
“equilibrated” (well-conditioned).

Finally, [Zhang et al., 2019c] relate the success of adaptive methods to the underlying gradient clipping effect: if
sporadic big stochastic gradients are encountered, those are smoothed out by the effect of the variables m and
v. The authors are able to show that clipped SGD, under quite uncommon assumptions on the cost function, is
able to slightly improve (by a constant factor) over the rate of SGD, in some particular cases. While this does
provide a quantitative improvement on SGD (not the case e.g. for the rates in [Défossez et al., 2020]), the result
is arguably not strong enough to motivate the success of adaptive methods.

7Quite interestingly, the original proof in [Kingma and Ba, 2014] contains a few mistakes due to the problematic
non-monotonic decrease of the effective stepsize.
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