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Abstract

We formulate a quantum analogue of the fun-
damental classical PAC learning problem. As
on a quantum computer, we model data to
be encoded by modifying specific attributes
- spin axis of an electron, plane of polar-
ization of a photon - of sub-atomic parti-
cles. Any interaction, including reading off,
extracting or learning from such data is via
quantum measurements, thus leading us to a
problem of PAC learning Quantum Measure-
ment Classes. We propose and analyze the
sample complexity of a new ERM algorithm
that respects quantum non-commutativity.
Our study entails that we define the VC di-
mension of Positive Operator Valued Mea-
sure(ments) (POVMs) concept classes. Our
sample complexity bounds involve optimizing
over partitions of jointly measurable classes.
Finally, we identify universally consistent se-
quences of POVM classes. Technical compo-
nents of this work include computations in-
volving tensor products, trace and uniform
convergence bounds.

1 INTRODUCTION

The blueprint of today’s learning algorithms can be
traced back to the foundational ideas developed in the
early works of statistical learning theory (SLT). Ques-
tions such as : When is a concept class learnable?
What parameters quantify its complexity regarding its
learnability? How does the sample complexity depend
on these parameters? were formulated four decades
ago keeping in mind Turing’s model of computation.
Answers to these questions continue to influence to-
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day’s learning algorithms. On an alternate front, con-
siderable efforts are underway to design and build a
fundamentally new computing device based on the ax-
ioms of quantum mechanics. How do the above ques-
tions manifest in this new quantum computing frame-
work? Do these lead to interesting formulations re-
quiring new physical and mathematical ideas? These
questions motivate the current work.

Learning from physical realizations of quantum
states: In the classical model of computation, data
stored in registers is modeled as elements taking values
in sets, and computations or algorithms are modeled as
functions or sequences of functions operating on these
sets. In order to classify, say, an image stored in a col-
lection of registers, a learning algorithm has to identify
an optimal function from a concept class – a library of
deterministic functions. Classically, the learning algo-
rithm is able to observe the exact contents of registers
arbitrarily many times.

In contrast, on a quantum computer, data is encoded
on sub-atomic particles by modifying their attributes.
For example, 8 bits can be stored on an electron by
preparing the axis of its spin to be one among 256
outward radial directions. As we will discuss in more
detail below, data stored in such a manner cannot
be directly observed. Moreover, learning information
about the value stored in the attributes of a particle
necessarily results in a change in the value/attribute.

Our framework will focus on learning in a supervised
setting, where the data is encoded, as described above,
in attributes of sub-atomic particles – i.e., as a physical
realization (not an analytical description) of a quan-
tum state, and the associated labels, which we inter-
pret as inferences about the data, are stored in classical
registers. The combination of the quantum data with
the classical label is referred to as a classical-quantum
(CQ) state [Wilde, 2017, Sec. 4.3.4]. Any interaction
with a sub-atomic particle is governed by the laws of
quantum mechanics, and in particular, ascertaining
its state or properties thereof is via a measurement.
Therefore, the prediction of the label of a quantum
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state must proceed via a measurement that is applied
to the particle and results in a classical outcome that
is interpreted as the predicted label.

The task of a quantum learning algorithm in this for-
mulation, given a set of physical realizations of quan-
tum states along with their associated labels, is to
identify an “optimal” measurement from a fixed con-
cept class, which now consists of a library of measure-
ments. Measurements are formalized via the generic
framework of positive operator-valued measurements
(POVMs) [Holevo, 2019, Sec. 2.3]. A concept class
thus consists of a set of POVMs.

In this work, we answer the above three questions in
the context of POVM concept classes. We then initiate
a study of universal consistency [Stephane Boucheron
and Massart, 2013] and identify universally consistent
sequences of POVM concept classes.

Challenges inherent in our setting: This nat-
ural, deceptively simple formulation hides the in-
volved challenges. The axioms of quantum mechan-
ics, that govern all our interaction with quantum
data, manifests in three unique properties - non-
commutativity, quantum indeterminism and entan-
glement. Non-commutativity implies that measur-
ing a quantum state causes it to collapse. Post-
measurement collapse results in a significant blowup of
the sample complexity of the empirical risk minimiza-
tion (ERM) rule, thus leading us to modify this foun-
dational algorithm of SLT. Leveraging the elegant no-
tion of joint measurability, also referred to as compat-
ibility (Sec. 3.1) herein, we propose a modified ERM
rule (Alg. 1 in Sec. 3.2) that prevents this blowup.
Next, we quantify the effect of quantum indetermin-
ism in the characterization of the VC dimension of a
POVM concept class (Defn. 5). Our analysis (Sec. 4)
reveals the functional dependence of the sample com-
plexity (Thm. 1) on this measure of complexity. Our
formulation generalizes (Rem. 1) the original PAC for-
mulation [Vapnik and Chervonenkis, 1971,Vapnik and
Chervonenkis, 1974, Vapnik, 1982, Valiant, 1984, Vap-
nik, 1995,Vapnik, 1998] and we recover all correspond-
ing results (Rem. 4). We also generalize the results
of [Heidari et al., 2021], which only deals with finite
concept classes and a simpler notion of compatibil-
ity. In Sec. 5, we use optimal state discrimination to
identify sequences of POVM concept classes that are
universally consistent (Defn. 7).

Prior Work: Related prior work can be classi-
fied broadly into two sets. The first set, which in-
cludes this work, revolves around learning a quantum
state [Arunachalam and de Wolf, 2017, Arunachalam
et al., 2020], or its properties [Anshu et al., 2021], by

measuring multiple identically prepared states. This
set includes works on state tomography [O’Donnell
and Wright, 2016, O’Donnell and Wright, 2017, Haah
et al., 2016,Aaronson, 2006,Rehacek and Paris, 2004,
Waseem et al., 2020, Altepeter et al., 2004, Aaronson,
2018,Aaronson et al., 2018], state discrimination [Bae
and Kwek, 2015] and quantum property testing [Mon-
tanaro and de Wolf, 2018,Bubeck et al., 2020] that in-
vestigate the number of prepared states to accomplish
the learning task. We highlight the work of Cheng
et. al. [Cheng et al., 2016] that studies the related
problem when the training samples form the collec-
tion (ρi, tr(Mρi)) : 1 ≤ i ≤ n, where ρi denotes
the ith quantum state, and the algorithm must find
the unknown optimal POVM M . 1 See [Kearns and
Schapire, 1990] for a closely related classical study.
The related paper [Heidari et al., 2021] defines and
studies a similar framework and learning rule to our
own but only proves a sample complexity bound for
finite POVM classes. Furthermore, it makes much
stronger assumptions regarding the mutual compati-
bility of POVMs in the classes under study. The ex-
tension in the present work of statistical learning the-
ory machinery to the quantum setting, necessary for
proving finite upper bounds on the sample complexity
for learning infinite-cardinality POVM classes, is a key
contribution of our work.

The second set is comprised of works [Gortler and
Servedio, 2001, Servedio, 2001, Lloyd et al., 2014,
Schuld et al., 2014, Atici and Servedio, 2005, Anguita
et al., 2003, Wiebe et al., 2012, Aı̈meur et al., 2012]
that explore the use of a quantum computer to speed
up classical learning tasks. Surveys [Arunachalam and
de Wolf, 2017,Khan and Robles-Kelly, 2020] provide a
detailed account of works in this set.

Notation: For integer n ∈ N, [n] =∆ {1, · · · , n}. We
reserve H with appropriate subscripts to denote a
finite-dimensional Hilbert space. The symbols L(H),
R(H), P(H), D(H) denote the collection of linear,
Hermitian, positive and density operators acting on
H respectively. A POVM is a subcollection M =∆

{My ∈ P(H) : y ∈ Y} of indexed positive operators
that sum to the identity IH , i.e,

∑
y∈YMy = IH . For

clarity, a POVM M = {My ∈ P(H) : y ∈ Y} with
outcomes in Y is often referred to as a Y−POVM or
Y−POVM on H. In this work, we are required to
perform the same measurement on multiple quantum
states. For a Y−POVM M = {My : y ∈ Y}, we let

Mn =∆ {Myn =∆ My1 ⊗ · · · ⊗Myn : yn ∈ Yn} with a
slight abuse of notation. For a Hilbert space HX and a

1Our work differs considerably since we are provided the
actual labels, not the associated probabilities tr(Mρi) : 1 ≤
i ≤ n. As discussed in [Kearns and Schapire, 1990], this
makes the problem substantially more challenging.
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set Y, we let MX→Y denote the set of all Y−POVMs
on HX . See [Holevo, 2019, Sec. 2.3] for its structure.
We let MXn→Y denote the set of all Y−POVMs on
H⊗nX . We let SX→Y denote the subcollection of sharp
(projective) measurements onHX with outcomes in Y.
We let Z = X×Y andHZ =∆ HX⊗HY . We abbreviate
random variables, probability mass function, empirical
risk as RVs, PMF, ER respectively. We use PMF and
distribution interchangeably. We write X ∼ pX if RV
X is distributed with PMF pX .

2 MODEL FORMULATION,
PROBLEM STATEMENT

Let X represent an (arbitrary) set of features, Y a
finite set of labels and P(X × Y) the set of all dis-
tributions/densities/PMFs on X × Y. In the classi-
cal model of computation, data and hence features
are stored in registers, and operated on by functions.
Therefore, random variables (RVs) (X,Y ) ∈ X × Y
with an unknown distribution pXY model feature-label
pairs occurring in nature. A predictor – a function
f ∈ FX→Y - is only provided X. Its performance
is measured through its true risk lp(f) =∆ lpXY (f) =∆

EpXY {l(f(X), Y )} = Ep{l(f(X), Y )} with respect to
a loss function l : Y2 → [A,B] bounded between
A,B ≥ 0. A learning algorithm’s (LA’s) task is
to identify an optimal predictor – a function – from
within a/its concept class C ⊆ FX→Y – a library of
functions. We focus on supervised learning, wherein
the LA is provided with n training samples modelled as
n independent and identically distributed (IID) pairs
(Xi, Yi) ∈ X × Y : i ∈ [n] with unknown density pXY .
A C−LA is therefore again a sequence of functions
An : (X × Y)n → C : n ≥ 1, of which the ERM
rule [Shalev-Shwartz and Ben-David, 2014, Sec. 2.2] is
a canonical example.

Before we describe a quantum formulation, we briefly
highlight two consequences of the classical model that
are often taken for granted. Stored in registers and
modeled as elements in a set, features can be dupli-
cated (indiscriminately), thereby enabling one to si-
multaneously retain an “original copy” x and the out-
comes (f(x) : f ∈ C) of evaluating it through any arbi-
trary collection of functions (Note 1). Secondly, if one
ignores circuit reliability issues, no uncertainty is in-
volved in evaluating features through functions (Note
2). In other words, the outcome of evaluating a func-
tion on a feature is deterministic.

In our proposed quantum learning model, feature x ∈
X is encoded by modifying specific characteristics of
a sub-atomic particle. Let ρx ∈ D(H) : x ∈ X
model the behaviour of a particle representing feature
x ∈ X . While X × Y indexes (all) possible feature-

label pairs, the feature-label pair (x, y) is encoded in a
physically realized quantum system modeled via den-
sity operators ρxy =∆ ρx ⊗ |y〉 〈y| ∈ D(HZ), where
HZ = HX ⊗ HY , HY = span{|y〉 : y ∈ Y} with
〈y|ŷ〉 = δyŷ ensuring label distinguishability. Note
that we have modeled labels, as before, to be stored
in classical registers and have thus adopted the well-
established notion of a classical-quantum (CQ) state
[Wilde, 2017, Sec. 4.3.4] to model a feature-label pair.2

Labeled features are generated with respect to an un-
known distribution pXY . Specifically, the density op-
erator of a feature-label pair is

ρXY =∆
∫
X×Y
ρx ⊗ |y〉 〈y| dpXY ∈ D(HZ) (1)

which reduces to ρXY =
∑

(x,y)∈X×Y pXY (x, y)ρx ⊗
|y〉〈y| if |X | < ∞. A predictor is only provided the
quantum system corresponding to the feature, i.e.,
the X−system. Mathematically, the density opera-
tor of the quantum state provided to a predictor is∑
x∈X pX(x)ρx. We exemplify this below.

Ex. 1. Consider electrons with spins. An electron
can be prepared with the axis of its spin pointing in a
direction, represented by a 3−dimensional unit vector.
Let finite set X = {(θi, φj) = ( iπ8 ,

j2π
8 ) : 0 ≤ i, j ≤ 7}

index unit vectors in the Bloch sphere representing the
possible spin axis directions. We have two labels in
Y = {blue, red}. Nature decides to label an electron
‘red’ if the axis of its spin is orthonormal to a specific
orthant. Otherwise the electron is labeled ‘blue’. For
this she chooses a specific orthant O. This establishes
a relationship - pY |X - between the elements (x, y) ∈
X × Y. Going further, she chooses a distribution pX ,
samples X with respect to this distribution, endows an
electron with the corresponding spin and hands only
the electron to us. Our predictor is aware of X , its
association with the spin directions, i.e the mapping
x→ ρx, and Y. Oblivious to both the nature’s decision
and the orthant, but possessing the prepared electron,
a predictor’s task is to determine the label.3

Previously stored in registers, features were labeled
via functions. In contrast, on a quantum comput-
ing device, features encoded in quantum states can
be labeled only through measurements. A predictor
M = {My ∈ P(HX) : y ∈ Y} is therefore a Y−POVM
on HX .

2A CQ state [Wilde, 2017, Sec. 4.3.4] models a scenario
wherein some components of data is stored in classical reg-
isters, while others are encoded in quantum states that
obey the axioms of quantum mechanics.

3For example, we may know that 000 is encoded as hor-
izontal spin axis, 111 as vertical spin axis and so on. How-
ever, we are unaware of which spin axis is labeled as red
or blue, i.e., we are unaware of the rule based on which a
spin axis is labeled.
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Since our labels are stored in registers, a conventional
bounded loss function l : Y × Y → [A,B] quantifies
a predictor’s performance. The true risk of predictor
M = {My : y ∈ Y} if the underlying distribution is
pXY is

lp(M) =∆∑
(x,y,ŷ)∈Z

pXY (x, y)l(y, ŷ) tr((ρx ⊗ |y〉 〈y|)(Mŷ ⊗ IY )),

(2)

where Z =∆ X × Y2. A concept class C ⊆MX→Y is a
subcollection of measurements, i.e., POVMs with out-
comes in Y. Henceforth, a concept class, a POVM
concept class and a measurement concept class all
refer to the same object and are used interchange-
ably. For an underlying distribution pXY , we let
l∗(pXY , C) =∆ inf

M∈C
lp(M) denote the risk of an opti-

mal predictor in C. The goal of a C−LA is to choose
a predictor M ∈ C which is a POVM whose true risk
lp(M) is close to l∗(pXY , C), while being oblivious to
the underlying distribution pXY . To accomplish this,
a C−LA is provided n training samples - labeled fea-
tures - randomly chosen IID from pXY . The density
operator of the received training samples is therefore

ρ⊗nXY =∆
∫
Xn×Yn
ρxn ⊗ |yn〉 〈yn| dpnXY ∈ D(H⊗nZ ) (3)

where ρxn =∆
n⊗
i=1

ρxi , |yn〉 〈yn| =
∆

n⊗
i=1

|yi〉〈yi| .

Mathematically, any operation on a quantum state
with classical outcomes is a measurement. A C−LA
must therefore measure the n training samples mod-
eled via density operator ρ⊗nXY and output an index in
C.
Defn 1. A POVM concept class for labeling features in
D(HX) with labels in Y is a subcollection C ⊆MX→Y
of POVMs. A C−learning algorithm (C−LA) is a se-
quence An =∆ {AnM ∈ P(H⊗nZ ) : M ∈ C} ∈ MZn→C :
n ≥ 1 of C−POVMs on H⊗nZ .

We elaborate on Def. 1 for clarity. A C−LA is a se-
quence An : n ≥ 1 of measurements. Each measure-
ment in this sequence is a C−POVM. When measure-
ment An is performed on n training samples, the out-
come obtained is the index of the chosen predictor in
C. Having clarified this, we now enquire how many
samples does a C−LA need to identify ε−optimal pre-
dictor with confidence at least 1 − δ? We are thus
led to the notion of PAC learnability of measurement
spaces.

Defn 2. An algorithm An =∆ {AnM ∈ P(H⊗nZ ) : M ∈
C} ∈ MZn→C : n ≥ 1 (PAC) learns C if for every

ε > 0, δ > 0, there exists a N(ε, δ) ∈ N such that
for all n ≥ N(ε, δ) and every distribution pXY , the
probability of An choosing a predictorM∈ C for which
the true risk lp(M) > l∗(pXY , C) + ε, is at most δ. In
this case, the function N : [A,B] × (0, 1) → N is the
sample complexity of algorithm An : n ≥ 1 in learning
C. We say that the C−LA An : n ≥ 1 efficiently PAC
learns C if N(ε, δ) is polynomial in 1

ε ,
1
δ . A concept

class C ⊆MX→Y is (efficiently) PAC learnable if there
exists a C−LA that (efficiently) PAC learns C.

Remark 1. Suppose we are given a classical PAC
learning problem with feature set X , a function con-
cept class C ⊆ FX→Y . We can recover this classi-
cal formulation via the following substitutions in the
problem formulated herein. For this, choose HX =
span{|x〉 : x ∈ X} with 〈x|x̂〉 = δxx̂ and ρx = |x〉 〈x|.
We then encode the concept class of functions in terms
of POVMs as Mf

y =
∑
x:f(x)=y |x〉 〈x| for each f ∈ C.

While the classical problem is well understood [Shalev-
Shwartz and Ben-David, 2014, Devroye et al., 1996],
the unique behaviour of quantum systems and com-
plexity of the involved mathematical objects throws up
challenges leaving the above problem, which we tackle
here, unresolved.

The need to modify the ERM rule The following
example illustrates the need to modify the classical
ERM algorithm; we do so in Sec. 3.2 and analyze the
resulting sample complexity in Sec. 4.

Ex. 2. Suppose we are provided n = 20 training
samples, i.e., 20 electrons with corresponding labels
in registers, and our library C consists of 2 predictors
M1 = {M1b,M1r},M2 = {M2b,M2r}. An ERM rule
would attempt to measure all 20 electrons with both
measurements and choose that measurement, whose
outcomes disagree least with the provided labels. How-
ever, every measurement alters the spin, rendering it
unusable to perform the next measurement. Moreover,
electron spins cannot be replicated (No Cloning Theo-
rem [Wootters and Zurek, 1982]). This indicates that
every training sample can be used to evaluate the em-
pirical risk (ER) of just one measurement.

Unlike in Remark 1, non-commutativity of quantum
measurements and the No Cloning theorem [Wootters
and Zurek, 1982] suggest that each training sample can
be used to evaluate the ER of just one measurement.
Moreover the outcome of measurements are random
(Remark 2) resulting in random empirical risks. How
should a C−LA optimally utilize training samples to
identify the best predictor from within C? The dis-
cussion thus far, exemplified through Ex. 1 - 2, sug-
gests that each training sample can yield the ER of
just one measurement. This results in a blow-up of
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the sample complexity of any concept class. Our first
simple step (Sec. 3.1) is to leverage compatible mea-
surements [Holevo, 2019, Sec. 2.3.2] to ‘re-use’ sam-
ples effectively. We build on this to derive an upper
bound on the sample complexity. In contrast with the
previous work [Heidari et al., 2021], our work necessi-
tates a substantial extension to cover the ubiquitous
case of infinite-cardinality concept classes and to gen-
eralize beyond compatible partitions defined in terms
of commuting POVMs.

3 STOCHASTICALLY
COMPATIBLE POVMS AND A
NEW ERM RULE

While classical register contents maybe duplicated,
thereby permitting simultaneous evaluations of all
functions in C ⊆ FX→Y , the No Cloning theorem
[Wootters and Zurek, 1982] precludes reproducing
quantum states. Moreover, any measurement results
in the collapse of a quantum state: performing POVM
M1 = {M1y ⊗ IY : y ∈ Y} on each training sam-
ple results in the modified training samples described
via ρ̃⊗nXY , where ρ̃XY =

∑
z∈Y

∫ √
M1zρx

√
M1z ⊗

|y〉 〈y| dpXY . Performing subsequent POVMs on the
collapsed training samples does not enable us to esti-
mate the true risk of these predictors.

3.1 Stochastically Compatible Measurements

The ERM rule we propose is based on the divide-and-
conquer approach. While POVMs are generally incom-
patible, certain subsets are jointly measurable [Holevo,
2019, Sec. 2.1.2], leading us to the following.4

Defn 3. A subcollection B ⊆ MX→Y of Y−POVMs
on HX is compatible if there exists a finite outcome
set W, a W−POVM G = {Gw ∈ P(HX) : w ∈ W} on
HX and a stochastic matrix αBY|W : W → Y for each

B = {By ∈ P(HX) : y ∈ Y} ∈ B such that

By =
∑
w∈W

Gwα
B
Y|W(y|w) for all y ∈ Y and all B ∈ B. (4)

In this case, we say B is compatible with fine-graining
(W,G, αB

Y|W) =∆ (W,G, αBY|W : B ∈ B).

In other words, a compatible collection of POVMs can
be applied by first applying a single POVM to a quan-
tum state, then applying a noisy classical channel to
the output of this POVM. The classical channel is

4Note that our notion of compatible is referred to
as stochastically compatible by Holevo [Holevo, 2019,
Sec. 2.1.2, Pg. 13]. Compatible in [Holevo, 2019, Sec. 2.1.2]
corresponds to the case when the stochastic matrices are
0− 1 valued.

unique to each individual POVM in the compatible
collection.

From (4), it is evident that to obtain the joint statistics
of all POVMs in a compatible subcollection B, one can
perform POVM G and pass the outcome through the
stochastic matrix

∏
B∈B αBY|W . This suggests that we

partition the POVM concept class C into compatible
subcollections and ‘re-use’ training samples amongst
POVMs within a compatible subcollections. Before
we state this, we identify an important example of a
compatible subcollection.

Remark 2. A subcollection B ⊆ MX→Y of
Y−POVMs on HX are compatible if for any pair
M = {My : y ∈ Y} ∈ B,L = {Ly : y ∈ Y} ∈ B,
we have MyLŷ = LŷMy for all (y, ŷ) ∈ Y × Y.

While commutative POVMs are compatible, the con-
verse is not necessarily true. In fact, the problem of
characterizing compatible POVMs remains active [Jae
et al., 2019], [Guerini and Terra Cunha, 2018], [Kun-
jwal, 2014] [Karthik et al., 2015]. Notwithstanding
this, the notion of compatibility provides us with the
appropriate construct to modify a naive ERM rule that
resulted in blowup of sample complexity. We specify
the new ERM rule in the following.

3.2 ERM Rule for Learning Quantum
Measurement Concept Classes

The idea of the new ERM rule is to partition the
POVM concept class C into compatible subcollections.
The set of training samples is also partitioned analo-
gously so that there is a 1 : 1 correspondence between
the two partitions. The number ni of samples allotted
to a given partition element with index i in the com-
patible partition is chosen in accordance with our sam-
ple complexity upper bound in Theorem 1. That is,

we choose ni = 8(B−A) log(1/δ)+8B2V C(Bi)
ε2 , where the

VC dimension V C(·) is defined in subsequent discus-
sion. Each subset of the training samples is employed
to evaluate the ER of all POVMs in the corresponding
compatible subset. Finally, the POVM with the least
ER among all POVMs is the chosen predictor. The fol-
lowing definition enables us specify the proposed ERM
rule precisely.

Defn 4. Let C ⊆ MX→Y . We say (Bi : i ∈ I) is a
compatible partition of C if (i) Bi ⊆ C is compatible for
each i ∈ I, (ii) Bi ∩Bî = φ whenever î 6= i and (iii)⋃
i∈I

Bi = C. In this case, suppose Bi is compatible

with fine-graining (Wi,Gi, αiY|Wi
) =∆ (Wi,Gi, αBi

Y|Wi
)

for each i ∈ I, we say BI =∆ (Bi : i ∈ I) is a compat-
ible partition of C with fine-graining (Wi,Gi, αiY|Wi

) :
i ∈ I. Furthermore, we let B denote the set of all com-
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patible partitions of POVM concept class C ⊆MX→Y .

We give a finite example below.

Ex. 3. Suppose Y = {0, 1}, C = {M1, · · · ,M5}
contains 5 POVMs. Suppose B1 = {M1,M2}
and B2 = {M3,M4,M5} is a compatible partition
of C (Defn. 4). Specifically, suppose B1 is com-
patible with fine-graining (W1,G1, α

1
Y|W1

, α2
Y|W1

)
and B2 is compatible with fine graining
(W2,G2, α

3
Y|W2

, α4
Y|W2

, α5
Y|W2

). In order to ob-
tain outcomes that are statistically indistinguishable
from that of the outcomes of POVMs in B1, one
can perform W1−POVM G1 on the quantum state
and post-process the outcome w1 ∈ W1 by passing it
through the product stochastic matrix

α1
Y|W1

(y1, y2|w1) =∆ αB1

Y|W1
(y1, y2|w1) (5)

=∆ αM1

Y|W1
(y1|w1)αM2

Y|W1
(y2|w1) (6)

where (w1, y1, y2) ∈ W1 × Y2.

Ex. 3 identifies a compatible partition with two el-
ements, i.e., I = {1, 2} with t = 2. The product
stochastic matrix for i = 1 is explicitly stated in the

example. The outcomes (w
(i)
j : 1 ≤ j ≤ ni) are

the ni outcomes one obtains on performing POVM
Gi on the ni quantum states. Each of these is passed
through the product stochastic matrix αiY|Wi

= αBi

Y|Wi
.

We have denoted the resulting collection of outcomes
(ŷBj : B ∈ Bi) : 1 ≤ j ≤ ni to distinguish it from
the labels provided as part of the training data. These
were denoted as y1, y2 in Ex. 3. The remaining steps
facilitate identifying the ERM POVM in each parti-
tion followed by identifying the global ERM POVM
that is returned.

Remark 3. If B = {Mj : 1 ≤ j ≤ J} consists
of commuting Y−POVMs Mj = {Mjy ∈ P(H) :
y ∈ Y} : 1 ≤ j ≤ J , then B is compat-

ible with fine-graining (YJ ,
∏J
j=1Mj ,1Yj |Y ), where

YJ = ×Jj=1Yj is the Cartesian product,
∏J
j=1Mj =∆

{M1y1M2y2 · · ·MJyJ ∈ P(H) : (y1, · · · , yJ) ∈ YJ} is
the product POVM and 1Yj |Y (y|y1, · · · , yJ) = 1{y=yj}
is the co-ordinate function.

Remark 4. For a set X , consider the Hilbert space
HX =∆ span{|x〉 : x ∈ X} with 〈x̂|x〉 = δx̂x. The set of
all stochastic matrices on X (that subsumes functions)
forms a commuting set of operators on HX . Hence the
classical PAC learning problem reduces to a POVM
concept class in which all operators commute. The
ERM-Q therefore reduces to the classical ERM with
one commuting subset of POVMs.

Remark 5. While the ERM-Q algorithm ‘re-uses’
samples to obtain ER of POVMS within a compatible
subset, it makes no attempt to ‘re-use’ samples across

Algorithm 1: ERM-Quantum (ERM-Q) Algo-
rithm
Input: POVM Concept class C and n training

samples with (y1, · · · , yn) denoting the
labels.

Output: Index of the selected predictor in C
1 Identify a compatible partition BI =∆ (Bi : i ∈ I)

of C with fine graining (Wi,Gi, αiY|Wi
) : i ∈ I and

let t = |I|. Henceforth, let αiY|Wi
=
∏
B∈Bi

αBY |Wi

be the product of the stochastic matrices.
2 Partition n training samples into t = |I| subsets

with i−th subset having ni training samples. Let

(y
(i)
j : 1 ≤ j ≤ ni) denote the training sample

labels of samples provided in i−th subset. ni is
determined in relation to VC(Bi) appearing in
(9)

3 for i = 1 to t do
4 Perform Wi−POVM Gi on each of the ni

samples. For j = 1, · · · , ni, let w
(i)
j ∈ Wi

denote the outcome of the POVM on the
j−th quantum state.

5 Postprocess (w
(i)
j : 1 ≤ j ≤ ni) by passing each

component through the stochastic matrix
αiY|Wi

. For POVM B ∈ Bi ⊆ C, let ŷBj
denote the post-processed outcome
corresponding to sample j.

6 Compute ER ER(B,Bi) =∆ 1
ni

∑ni
j=1 l(ŷ

B
j , y

(i)
j )

of POVM B ∈ Bi ⊆ C.
7 Let B∗i = arg minB∈Bi

ER(B,Bi).

8 return Index arg mini∈I B∗i that globally
minimizes ER.

subsets of a compatible partition. Using {ρx : x ∈ X}
and the obtained outcomes one can, in theory, charac-
terize all possible collapsed states and ‘re-use’ samples
across partitions to glean partial information on the
ER of incompatible POVMs. Since POVMs obfuscate
phase information of the collapsed state, we have not
attempted to explore this direction in this first step.
Our sample complexity of ERM-Q is therefore only an
upper bound.

4 AN UPPER BOUND ON THE
SAMPLE COMPLEXITY OF
POVM CONCEPT CLASSES

We derive an upper bound on the sample complexity
of ERM-Q algorithm. As noted before, in contrast to
the classical PAC, there are two points of departure
- non-commutativity and random outcomes. The for-
mer led us to partitioning C. The latter forces us to
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deal with randomness in outcome labels. We provide
several steps of the proof in Sec. 4.2. To aid clarity
and readability, probability of events are expressed as
expectations of corresponding indicator RVs, which is
further expressed as a summation. E.g., if X,Y, Z has
a distribution pXY pZ|X , then P (l(Y, Z) > a) is written
as
∑
x,y,z pXY (x, y)pZ|X(z|x)1{l(y,z)>a}. This is done

only to permit an uncluttered integration of quantum
and classical probability. We emphasize that none of
the arguments rely on summations confined to finite
ranges or suprema being maxima.

4.1 VC Dimension of Compatible POVMs
and Sample Complexity of ERM-Q

The divide-and-conquer approach of ERM-Q is natu-
rally reflected in its sample complexity. Below, we de-
fine a notion of VC dimension of a compatible concept
class and use it to upper bound the sample complexity
of ERM-Q.

Defn 5. Let B = {Bk : k ∈ K} be a compatible parti-
tion with fine-graining (W,G =∆ GW , αk =∆ αkY|W : k ∈
K) where G = {Gw ∈ P(H) : w ∈ W}. Let

βk(yk|x) =∆
∑
w∈W

tr(ρxGw)αk(yk|w) (7)

and

βK(yk : k ∈ K|x) =
∑
w∈W

tr(ρxGw)
∏
k∈K

αk(yk|w). (8)

For x ∈ X , we say (yk : k ∈ K) is reachable from
x if βK(yk : k ∈ K|x) > 0. Let r ∈ N and let
y =∆ (y

1
, · · · , y

r
) ∈ Y |K| × · · · × Y |K| where y

i
= (yki :

k ∈ K) for i ∈ [r]. We say y is reachable from

x = (x1, · · · , xr) ∈ X r if
∏r
i=1 βK(y

i
|xi) > 0. Let

θr(B, x) =∆ {y ∈ Y |K|r : y is reachable from x}. We

say B shatters x ∈ X r if |θr(B, x)| = |Y|r. The VC
dimension of B, denoted VC(B), is the maximal d ∈ N
for which there exists a set x ∈ X d that is shattered by
B. Finally, we let Sr(B) =∆ maxx∈X r |θr(B, x)|.

This leads to the following theorem.

Theorem 1. The sample complexity N : [A,B] ×
(0, 1) → N of the ERM-Q algorithm in learning C is
bounded by

N(ε, δ) ≤ (9)

min
(B1,··· ,B|I|)∈B

8((B −A) log
(
|I|
δ

)
+B2

∑|I|
i=1 VC(Bi)))

ε2

where the minimum is over the collection B of all com-
patible partitions of C as defined in Defn. 4.

Remark 6. From the definition of reachability and
θr(B, x), it is evident that the VC dimension of POVM
classes is, owing to its indeterminsim, quite high. In-
deed, any set of outcome labels that get a non-zero
probability of occurrence, no matter how small, is
reachable. This increases the sample complexity of
POVM classes. Quantum indeterminism is unfortu-
nately unavoidable. Additionally, our bound is finite
only when a finite-cardinality compatible partition of
the hypothesis class exists. This condition naturally
holds in certain use cases: e.g., where an experimenter
has access to finitely many “root” measurement de-
vices (POVMs), and they form an infinite-cardinality
concept class by passing the results of these POVMs
through infinitely many classical channels. In this sce-
nario, the natural partition is immediate. It is likely
that our results can be further extended to the case
where we only require a looser version of compatibility
among POVMs in a partition element. Since the space
of POVMs of a given dimension is compact, finitude
of the partition may then be guaranteed. However, the
problem of actually specifying a partition for which our
bound is minimized can likely only be solved under fur-
ther assumptions on the hypothesis class.

Our provided sample complexity bound is a nontriv-
ial extension of the techniques in the classical learning
theory case to the quantum framework, which is nec-
essary for showing finite sample complexity bounds for
infinite-cardinality learnable hypothesis classes. Our
upper bound is likely not tight for a wide variety of
POVM classes. Thus, it is of interest to further im-
prove our upper bound and to provide sample complex-
ity lower bounds that match upper bounds. Ultimately,
the goal is to give necessary and sufficient conditions
for learnability of POVM classes, and the present work
is a first step in this direction.

4.2 Proof of Theorem 1 : Outline

To indicate the general direction of the proof, we iden-
tify here two main terms T1 and T2 that need to be
bounded on the above in order to derive sample com-
plexity. Upper bounds on the two main terms are de-
rived in the supplementary material.

Preliminaries and Notation: Let B1, · · · ,B|I| be
a compatible partition of C. Throughout, we focus
on proving the uniform convergence property [Shalev-
Shwartz and Ben-David, 2014, Defn. 4.3] of one par-
tition element B1, henceforth denoted B. Let B =
{M1, · · · ,MK} ⊆ C be compatible, with fine grain-
ing (W,GW , αkY |W : 1 ≤ k ≤ K). Henceforth, we

let αk = αkY |W : k ∈ [K] and G = GW . To pre-
vent overloading, we let Z = Y and use z, Zk, zk
to refer to the outcome of the POVMs in B on
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the X−system of the training sample. Recall that
ERM-Q performs POVM Gn = {Gw1 ⊗ · · · ⊗ Gwn :
(w1, · · · , wn) ∈ Wn} on ρ⊗nX , where ρX =

∫
ρxdpX =∑

x∈X pX(x)ρx with pX unknown. Each of the n out-
comes Wi : i ∈ [n] (RVs) is passed through stochas-
tic matrix (α[K](z|w) = α[K](z1, · · · , zK |w) : (z, w) =
(z1, · · · , zK , w) ∈ ZK ×W), where5

α[K](z1, · · · , zK |w) =∆
K∏
k=1

αk(zk|w) (10)

for (z1, · · · , zK , w) ∈ ZK × W. Provided with quan-
tum states corresponding to features (x1, · · · , xn),
it can be verified that the K random labels Zi =∆

(Z1i, Z2i, · · · , ZKi) output by the ERM-Q correspond-
ing to state ρxi have distribution

β[K](zi|xi) =∆ β[K](z1i, · · · , zKi|xi) (11)

=∆
∑
w∈W

tr(ρxiGw)α[K](z1i, · · · , zKi|w)

where (w, zi) ∈ W × ZK . Moreover, the n vectors
Z =∆ (Zi : i ∈ [n]) are mutually independent and

we let βn[K](z|x) =∆
∏n
i=1 β[K](zi|xi) specify the dis-

tribution of the outcome label RVs Z. Moreover, from
(10), (11), the marginal of Zki conditioned on feature
xi is βk(zki|xi) =∆

∑
w∈W tr(ρxiGw)αk(zki|w). Using

all of this, it can be verified that the uniform conver-
gence property [Shalev-Shwartz and Ben-David, 2014,
Defn. 4.3] demands that we characterize N(ε, δ) ∈ N
for which

sup
pXY

∑
x∈Xn

∑
y∈Yn

∑
z1∈ZK

(12)

· · ·
∑

zn∈ZK
pnXY (x, y)βn[K](z|x)1{φ(x,y,z)>ε} ≤ δ,

where φ(·) is the maximal deviation of the em-
pirical risk from the true risk, over all parti-
tion element indices k. Since 1{φ(x,y,z)>ε} ≤
1{φ(x,y,z)−E{φ(X,Y ,Z)}> ε

2} + 1{E{φ(X,Y ,Z)}> ε
2}, it suf-

fices to derive conditions under which T1 ≤ δ, where
we define

T1 =∆ (13)∑
x,y,z

pnXY (x, y)βn[K](z|x)1{φ(x,y,z)−E{φ(X,Y ,Z)}> ε
2}

and T2 =∆ E{φ(X,Y , Z)}
(ii)

≤ ε
2 , where we have

suppressed the summation ranges, and let z =

(z1, · · · , zn) ∈ ZKN .

Outline of Key Steps: The crux of the proof lies
in deriving upper bounds on T1 and T2. The main

5The reader may recall Ex. 3

tool in bounding T1 is the Bounded Difference Inequal-
ity (BDI) [Stephane Boucheron and Massart, 2013,
Thm. 6.2]. The bound on T2 is derived using the VC
inequality and Massart’s lemma Specifically, the ghost
sample technique followed by the symmetrization tech-
nique leads us to the Rademacher complexity of the
POVM concept class. Finally, using Massart’s lemma,
we derive a bound on T2. A complete proof is given in
the supplementary material.

5 UNIVERSAL CONSISTENCY OF
POVM CLASSES

We now identify specific sequences of POVM concept
classes that are universally consistent [Devroye et al.,
1996, Chap. 6]. We identify natural universally consis-
tent sequences of POVM concept classes. We also dis-
cuss techniques for identifying other universally con-
sistent sequences. Ours being the first in this theoret-
ical line of study, we do not stress on the challenges
of designing such classes. We begin by defining uni-
versal consistency and introduce a sequence of POVM
concept classes of interest.

Defn 6. Consider a distribution pXY ∈ P(X × Y),
a collection (ρx ∈ D(H) : x ∈ X ) of density oper-
ators, the density operator of the feature-label quan-
tum state ρXY =∆

∫
X×Y ρx ⊗ |y〉 〈y| dpXY ∈ D(HZ)

and a loss function l : Y2 → [A,B]. We let l∗p =∆

inf
M∈MX→Y

lp(M) denote the Bayes’ risk.6 A sequence

Ck ⊆ MX→Y : k ≥ 1 of POVM concept classes is
universally consistent if limk→∞ lp(Ck) = l∗p for ev-
ery pXY ∈ P(X × Y), where for any B ⊆MX→Y , we
define lp(B) =∆ inf

M∈B
lp(M).

Universally consistent POVM concept classes enables
us to squeeze the approximation error7 to 0. Specif-
ically, suppose a sequence Mk ∈ MX→Y : k ≥ 1 is
universally consistent, and if we can find a sequence
k(n) ∈ N for n ∈ N such that limn→∞ k(n) = ∞,
then the loss of this sequence limn→∞ lp(Mk(n)) = l∗p
achieves the Bayes’ risk. It is therefore of interest to
find a sequence k(n) : n ≥ 1 that grows slowly enough
such that the estimation error also goes to zero. Next,
we design a sequence of POVM concept classes that
are universally consistent.

6lp(M) is defined in (2). We have done away with the
subscripts XY in pXY while denoting l∗p and lp(M) to re-
duce notational clutter.

7See [Shalev-Shwartz and Ben-David, 2014, Sec. 5.2] for
definitions of approximation and estimation errors.
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5.1 Optimal state discrimination yields
universal consistency

We recall that the learning algorithm is ignorant of
the collection (ρx ∈ D(H) : x ∈ X ) of density opera-
tors and is only provided the prepared quantum states
and the corresponding labels. Our approach at de-
signing universally consistent POVM concept classes
is based on optimal state discrimination. Suppose the
collection (ρx ∈ D(H) : x ∈ X ) was perfectly dis-
tinguishable via a measurement G ∈ MHX→X . Here
MHX→X denotes the set of all X−POVMs on HX and
G = {Gx : x ∈ X} has |X | positive operators that sum
to the identity on HX that satisfy tr(Gxρx̂) = δxx̂.
Then any universally consistent sequence of function
concept classes can be adapted to form a universally
consistent sequence of POVM concept classes. Our
approach when the collection (ρx ∈ D(H) : x ∈ X )
is not perfectly distinguishable is to employ an opti-
mal state discriminator G ∈MHX→X for the collection
(ρx ∈ D(H) : x ∈ X ).

To find the optimal state discriminator G ∈MHX→X
for the collection (ρx ∈ D(H) : x ∈ X ), we turn to
[Holevo, 2019, Sec. 2.4], wherein it is proven that the
problem of identifying optimal state discriminator is
one of maximizing an affine function over a convex set
of observables. We next state the necessary facts.

Fact 1. Given a Hilbert space HX of finite dimen-
sion and a collection (ρx ∈ D(H) : x ∈ X ) of density
operators, there exists an optimal state discriminator
G = {Gx ∈ P(H) : x ∈ X} ∈ MHX→X such that,
the probability of error in identification is minimized.
Moreover, identifying an optimal state discriminator
G is equivalent to maximizing an affine function over
a convex set of observables.

Fact 1 is stated in [Holevo, 2019, Sec. 2.4, Thm. 2.22].
Additionally, [Holevo, 2019, Ex. 2.27] proves that op-
timal quantum state discrimination is facilitated via
unsharp observables - a phenomenon not observed in
classical discrimination. While an analytical charac-
terization of an optimal state discriminator G might
be available only for specific structured collections
(ρx ∈ D(H) : x ∈ X ) of density operators, and not
in general, the fact that G can be identified computa-
tionally efficiently via convex programming leads us to
the use of this tool in our identification of a universally
consistent sequence of POVM concept classes.

The second fact gives a universally consistent sequence
of function concept classes.

Fact 2. Let X be an arbitrary domain set with a dis-
tance metric d(·, ·) and Y be a finite set of labels. Let
l : Y2 → [A,B] be a loss function and FX→Y =∆ {f :
X → Y} be the set of all functions with domain X
and range Y. For a distribution pXY ∈ P(X × Y) a

function f ∈ FX→Y and any subcollection H ⊆ F , we
let

lp(f) =∆
∫
X×Y
l(f(x), y)dpXY (x, y), lp(H) =∆ inf

f∈H
lp(f),

(14)

and let l∗p =∆ inff∈F lp(f) denote the Bayes’ risk. For
k ∈ N, let {Ak,j ⊆ X : j ∈ N} be a partition of X such
that limk→∞ supj∈N diam(Ak,j) = 0, where diam(B) =
supc,d∈Bd(c, d) for B ⊆ X denotes the diameter of a
set B ⊆ X . For k ∈ N, let
Hk =∆ {h ∈ FX→Y :h(a) = h(b) (15)

⇐⇒ ∃j ∈ N, a, b ∈ Ak,j}. (16)

Then, Hk : k ∈ N is a universally consistent sequence
of function concept classes, i.e., limk→∞ lp(Hk) = l∗p
for each distribution p ∈ P(X × Y).

Fact 2 is a direct consequence of [Stephane Boucheron
and Massart, 2013, Thm. 6.1]. We are now set to define
a sequence of POVM concept classes that are univer-
sally consistent.

Defn 7. Let X be a domain set, Y be a set of labels,
HX be a Hilbert space, (ρx ∈ D(H) : x ∈ X ) be density
operators of the quantum states encoding the features,
G = {Gx : x ∈ X} ∈ MHX→Y be a optimal state
discriminator for the collection (ρx ∈ D(H) : x ∈ X )
as defined in Fact 1 and Hk ⊆ FX→Y : k ≥ 1 be
a universally consistent sequence of function concept
classes as stated in Fact 2. For k ∈ N, h ∈ Hk, we let

Mk
h = {Mk

h,y =
∑

x∈X :h(x)=y

Gx : y ∈ Y} (17)

and Mk =∆ {Mk
h : h ∈ Hk}.

It is straightforward to verifyMk
h ∈MX→Y and hence

Mk ⊆ MX→Y is a POVM concept class. Indeed∑
y∈YM

k
h,y =

∑
y∈Y

∑
x∈X :h(x)=yGx =

∑
x∈X Gx =

IHX , the identity on HX . We now assert that Mk
h :

k ≥ 1 is a sequence of POVM concept classes that are
universally consistent.

Theorem 2. The sequence Mk : k ≥ 1 of POVM
concept classes is universally consistent.

6 CONCLUSION, FUTURE WORK

We studied the problem of learning from quantum
data, entailing a graduation from function classes to
measurement concept classes. Next, the challenges
posed by quantum effects forced us to modify the foun-
dational algorithm (ERM) of statistical learning the-
ory and unravel its sample complexity. We conclude
by identifying the related combinatorial optimization
problem of identifying an optimal stochastic compat-
ible partition of the concept class as a problem of in-
dependent interest.
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Supplementary Material:
PAC Learning of Quantum Measurement Classes: Sample

Complexity Bounds and Universal Consistency

A A COMPLETE PROOF OF
THEOREM 1

In addition to deriving upper bounds on T1 and T2, we
fill in missing steps and thereby provide a complete
proof of Thm. 1. We refer the reader to Sec. 4.2 to
recall the notation and tools introduced therein. The
reader may note that we had stated in Sec. 4.2 the suf-
ficiency of the uniform convergence property [Shalev-
Shwartz and Ben-David, 2014, Definition 4.3]. Here,
we provide a proof of this sufficiency tailored to the
current scenario involving compatible partitions.

A.1 Uniform Convergence Property Suffices

As stated in Sec. 4.2, let B1, · · · ,B|I| be a compati-
ble partition of C. Suppose Bj = {Mj1, · · · ,MjK} is

compatible with fine graining (Wj ,Gj = GWj , α
j
k =

αj,kY|Wj
) where Gj = {Gjw ∈ P(H) : w ∈ Wj} ∈

MX→Wj
.8 Suppose nj of the n training samples are

used to evaluate the ER of POVMs in Bj . Let Z = Y.

The ERM-Q algorithm generates RVs Zjki ∈ Z : 1 ≤
k ≤ K,≤ i ≤ nj with distribution

 ∑
w∈Wj

tr(Gjwρxi)α
j
k(z|w) : z ∈ Z = Y

 .

For j = 1, · · · , |I|, ERM-Q identifies

k∗j =∆ arg min
1≤k≤K

1

nj

nj∑
i=1

l(yi, Z
j
ki)

the best POVM in compatible partition element Bj

and declares the index of arg min1≤j≤|I| k
∗
j as the cho-

sen predictor. Suppose, for every j = 1, · · · , |I| and

8We could just choose K = max1≤j≤|I| |Bj | and pop-
ulate the smaller compatible partitions with trivial (Iden-
tity) POVMs.

every 1 ≤ k ≤ K, we have∣∣∣∣∣ 1

nj

nj∑
i=1

l(yi, Z
j
ki) (18)

−
∑

(x,y,z)∈X×Y×Z

pXY (x, y) (19)

·
∑
w∈Wj

tr(Gjwρx)αjk(z|w)l(y, z)

∣∣∣∣∣∣ (20)

≤ ε

4
(21)

where the the second term within the modulus above is
lp(Mj,k), whenever (xi, yi) : 1 ≤ i ≤ nj are drawn ac-
cording to pXY , then by the definition of the infimum,
we can choose a POVM whose true risk is within ε

4 of
the infimum and thereby guarantee that the true risk
of the index arg min1≤j≤|I| k

∗
j is indeed within ε

2 of
the true risk of l∗(pXY , C). We have thus argued that
proving that each compatible partition B1, · · · ,B|I|
possessing the uniform convergence property is a suf-
ficient property for proving PAC learnability of the
ERM-Q algorithm. In the following two sections we
derive bounds on T1 and T2 defined in (13).

A.2 An upper bound on the first Term T1 in
(13)

Recall

T1 =∆ (22)∑
x,y,z

pnXY (x, y)βn[K](z|x)1{φ(x,y,z)−E{φ(X,Y ,Z)}> ε
2}.

(23)

Henceforth, we include a subscript, focus on the one-
sided term and let

φ+
pβ(x, y, z) (24)

=∆ sup
1≤k≤K

n∑
i=1

l(yi, zki)

n
−
∑

(a,b,c)∈
X×Y×Z

l(b, c)pXY (a, b)βk(c|a).

(25)
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With this, the first term T1 is

T1 (26)

= P ◦ β
(
φ+
pβ(X,Y , Z)− E{φ+

pβ(X,Y , Z)} > ε

4

)
.

(27)

In order to upper bound T1, we use the Bounded
Difference Inequality stated in Theorem 3. Choose
B = X × Y × ZK and Bi = (Xi, Yi, Zi) =
(Xi, Yi, Z1i, · · · , ZKi) and f(x, y, z) = φpβ(x, y, z).

Let x, x̂ ∈ Xn, y, ŷ ∈ Yn and z, ẑ ∈ ZKn, be such
that xt = x̂t, yt = ŷt and zt = ẑt for t ∈ [n] \ i. For
such a choice, we have

φ+
pβ(x, y, z)− φ+

pβ(x̂, ŷ, ẑ) (28)

= sup
1≤k≤K

n∑
i=1

l(yi, zki)

n
−
∑

(a,b,c)∈
X×Y×Z

l(b, c)pXY (a, b)βk(c|a)

− sup
1≤k≤K

n∑
i=1

l(ŷi, ẑki)

n
−
∑

(a,b,c)∈
X×Y×Z

l(b, c)pXY (a, b)βk(c|a)

≤ sup
1≤k≤K

(29)
n∑
i=1

l(yi, zki)

n
−

∑
(a,b,c)∈
X×Y×Z

l(b, c)pXY (a, b)βk(c|a)

−
n∑
i=1

l(ŷi, ẑki)

n
−

∑
(a,b,c)∈
X×Y×Z

l(b, c)pXY (a, b)βk(c|a)


(30)

= sup
1≤k≤K

{
n∑
i=1

l(yi, zki)

n
−

n∑
i=1

l(ŷi, ẑki)

n

}
≤ B −A

n

(31)

where (30) follows from supa f1(a) − supa f2(a) ≤
supa(f1(a)− f2(a)) and (31) follows from the bounds
on the loss function l(·, ·). Similarly, we can prove
φ+
pβ(x̂, ŷ, ẑ) − φ+

pβ(x, y, z) ≤ B−A
n . This proves that

φ+
pβ(x, y, z) possesses the bounded difference property

and we have P ◦ β(φ+
pβ(X,Y , Z)−E{φ+

pβ(X,Y , Z)} ≥
ε
2 ) ≤ exp

{
− nε2

2(B−A)2

}
. Analogously defining

φ−pβ(x, y, z) (32)

=∆ sup
1≤k≤K

∑
(a,b,c)∈
X×Y×Z

l(b, c)pXY (a, b)βk(c|a)−
n∑
i=1

l(yi, zki)

n

and following a similar sequence of steps, one
can prove P ◦ β(φ−pβ(X,Y , Z) − E{φ−pβ(X,Y , Z) ≥

ε
2}) ≤ exp

{
− nε2

2(B−A)2

}
and we can conclude

P ◦ β(φpβ(X,Y , Z) − E{φpβ(X,Y , Z)} ≥ ε
2 ) ≤

2 exp
{
− nε2

4(B−A)2

}
.

A.3 Bounding the Second Term T2 in (13)
via Rademacher Complexity

We recall T2 =∆ E{φ(X,Y , Z)}, where

φ(x1, · · · , xn, y1, · · · , yn, z1,· · ·, zn) =∆ (33)

sup
1≤k≤K

(34)∣∣∣∣∣∣∣∣
n∑
i=1

l(yi, zki)

n
−
∑

(a,b,c)∈
X×Y×Z

l(b, c)pXY (a, b)βk(c|a)

∣∣∣∣∣∣∣∣ . (35)

In bounding E{φ(X,Y , Z)}, we employ the ghost
sample+symmetrization trick [Devroye et al., 1996,
Thm. 12.4]. Observe that

E{φ(X,Y , Z)} (36)

=
∑
x, y, z

pnXY (x, y)βn[K](z|x) (37)

sup
k∈[K]

|
n∑
i=1

l(yi, zki)

n
−

∑
(a,b,c)∈
X×Y×Z

l(b, c)pXY (a, b)βk(c|a)|

=
∑
x, y, z

pnXY (x, y)βn[K](z|x) (38)

sup
k∈[K]

|
n∑
i=1

l(yi, zki)

n
(39)

−
∑
a, b, c

pnXY (a, b)βn[K](c|a)

 n∑
j=1

l(bj , ckj)

n

 | (40)

≤
∑
x, y, z

∑
a, b, c

pnXY (a, b)βn[K](c|a)pnXY (x, y)βn[K](z|x)

(41)

sup
k∈[K]

|
n∑
i=1

l(yi, zki)

n
−

n∑
j=1

l(bj , ckj)

n
| (42)

=
∑

(σ1,···σn)
∈{−1,+1}n

∑
x, y, z

a, b, c

(43)

pnXY (a, b)βn[K](c|a)pnXY (x, y)βn[K](z|x)

2n
(44)

sup
k∈[K]

|
n∑
i=1

σil(yi, zki)

n
−

n∑
j=1

σj l(bj , ckj)

n
|

≤ 2Rn(B). (45)
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where

Rn(B) =∆ (46)∑
σ

∈{±1}n

∑
x, y, z

pnXY (x, y)βn[K](z|x)

2n
· (47)

[
sup
k∈[K]

1

n

n∑
i=1

σil(yi, zki)

]
, (48)

where (38) follows by introducing the ghost sample to
the second term [Devroye et al., 1996, Step 1 in Proof
of Thm. 12.7], (41) follows from the chain sup |E{·}| ≤
supE{| · |} ≤ E{sup | · |} of inequalities, the next step
follows by symmetrization by random signs [Devroye
et al., 1996, Step 2 in Proof of Thm. 12.4], finally re-
sulting in the familiar average Radamacher complex-
ity. While these steps are fairly standard, we notice the
crucial difference (45), where the averaging includes
the POVM randomness β[K](·|·).

A.4 Bounding Rn(B) using Massart’s Lemma

Once again, we follow a well established sequence
of steps in statistical learning theory to bound
Rn(B). Recognizing l(y, z) ≤ B, implying ||(l(yi, zi) :
i ∈ [n])||2 ≤ B

√
n and the cardinality of the set

{(l(yi, zki) : i ∈ [n]) : k ∈ [K]} is at most
|θn(B, (x1, · · · , xn))|, we have

Rn(B) (49)

= EX Y Z

{
Eσ

[
sup
k∈[K]

1

n

n∑
i=1

σil(Yi, Zki)

]}
(50)

≤ EX Y Z

{
B
√

2n log |θn(B, X)|
n

}
(51)

(i)

≤
B
√

2nE{log |θn(B, X)|}
n

(ii)

≤
√

2B2 logSr(B)

n
(52)

where the inequality in (49) follows from Mas-
sart’s lemma provided in Theorem 4, (52(i)) fol-
lows from Jensen’s inequality applied to the concave√
·−function, (52(ii)).

A.5 Collating Bounds

We now collate bounds from the first term and (52)
and substitute in (13). Recollecting our compatible
partition B = {Mk : 1 ≤ k ≤ K}, definitions (10)

through (33), our uniform convergence bound for B is

sup
pXY

∑
x∈Xn

∑
y∈Yn

∑
z1∈ZK

(53)

· · ·
∑

zn∈ZK
pnXY (x, y)βn[K](z|x)1{φ(x,y,z)>η(ε,δ)}

(54)

≤ δ (55)

where

η(ε, δ) =∆

√
2(B −A) log

(
1
δ

)
+ 8B2 logSr(B)

n
. (56)

A.6 Union Bound on the Compatible
Partition

Having derived uniform convergence for one compat-
ible subset B of POVMs, we employ a union bound
for the compatible partition B1, · · · ,B|I|. Squeezing

δ to δ
|I| , we obtain the sample complexity stated in the

theorem statement.

B PROOF OF THEOREM 2 :
SKETCH AND OUTLINE

We first the idea of the proof before fleshing out the
details. Let us first understand the case when ρx = |x〉
for x ∈ X with 〈x|x̂〉 = δxx̂. In essence, all the quan-
tum states are distinguishable, reducing this to the
classical problem. For a given pXY ∈ P(X × Y), let

R(x → y) =∆
∑
ŷ∈Y

pY |X(ŷ|x)l(y, ŷ) denote the risk, i.e.,

the conditional expectation of the loss, of assigning la-
bel y to x. It can be shown that the Bayes’ rule for this
setting is given by the function f∗ : X → Y defined as
f∗(x) = arg min

y∈Y
R(x→ y). Essentially, f∗ is choosing

the label that minimizes the expected loss for every
x. This implies that l∗p = lp(f

∗). It is straightforward
to recognize that, in this simplified case the sequence
Mk : k ≥ 1 defined in (17) is indeed the sequence
Hk : k ≥ 1 as defined in (15). Specifically, Mk = Hk
for k ∈ N. The proof that Mk : k ≥ 1 forms a uni-
versally consistent sequence of POVM concept classes
is now a direct consequence of [Stephane Boucheron
and Massart, 2013, Thm. 6.1]. We alert the reader
here that our claim of universal consistency implies
that for every distribution pXY ∈ P(X × Y), we have
lim
k→∞

lp(Mk) = l∗p.

What if the quantum states are not distinguishable,
i.e., the operators ρx : x ∈ X have overlapping support
spaces? We leverage the approach stated in the above
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to provide a sketch of the arguments. In this submis-
sion, we provide only a sketch of the arguments and
follow it up with all the details fleshed out in a subse-
quent version available publicly. Having said that, we
should mention that the sketch provided here has suffi-
cient details for a reader informed in SLT and quantum
theory. For a distribution pXY and a collection (ρx ∈
D(H) : x ∈ X ), we let Mp = {Mp

y : y ∈ Y} ∈MX→Y
denote a Y−POVM for which∑

ŷ∈Y

tr
(
Mp
y ρx

)
pY |X(ŷ|x)l(y, ŷ) (57)

≤
∑
ŷ∈Y

tr
(
Mp
ỹ ρx

)
pY |X(ŷ|x)l(ỹ, ŷ) (58)

for every

(x, y, ŷ) ∈ X × Y × Y. (59)

The proof is built on two facts that can be proved
based on the arguments presented in proof of
[Stephane Boucheron and Massart, 2013, Thm. 6.1]
and the properties of a POVM. Firstly, (57) is a neces-
sary and sufficient condition for a POVMMp = {Mp

y :
y ∈ Y} to achieve the Bayes’ loss for the distribution
pXY and a collection (ρx ∈ D(H) : x ∈ X ). Sec-
ondly, given any pXY ∈ P(X × Y) and any collection
(ρx ∈ D(H) : x ∈ X ) of density operators, we can
identify a sequence Gk ∈ Mk : k ≥ 1 that satisfy the
above the condition in (57) in the limit. This is the ap-
proach we take to prove that the sequence Mk : k ≥ 1
of POVM concept classes is universally consistent.

C TOOLS AND PREREQUISITES

C.1 Bounded Difference Inequality

The following can be found in [Stephane Boucheron
and Massart, 2013, Section 6.1].

Defn 8. A function f : Bn → R has bounded dif-
ference property if for some non-negative constants
c1, · · · , cn, we have

sup
b1,··· ,bn,b̂i

|f(b1, · · · , bn)− f(b1, · · · , bi−1, b̂i, bi+1, · · · , bn)|

(60)

≤ ci (61)

for 1 ≤ i ≤ n.

Theorem 3. Suppose f : Bn → R possesses the
bounded difference property with constants c1, · · · , cn
and let v = 1

4 (c21 + · · · + c2n). Suppose B1, · · · , Bn are
independent and A = f(B1, · · · , Bn), then

P (A− E{A} > t) ≤ exp

{
− t

2

2v

}
, (62)

P (A− E{A} < −t) ≤ exp

{
− t

2

2v

}

C.2 Massart’s Lemma

The facts presented below and a proof of the same
can be found in [Shalev-Shwartz and Ben-David, 2014,
Chapter 26].

Theorem 4. Let A = {a1, · · · , ar} ⊆ Rm with
ai = (a1i, · · · , ami). Define b = 1

r

∑r
i=1 ai and let

B1, · · · , Bm ∈ {−1.+1} be independent and uniformly
distributed. Then

EB1,··· ,Bm

 sup
1≤i≤r

1

m

m∑
j=1

Bjaji

 (63)

≤ max
1≤i≤r

||b− ai||2
√

2 log(r)

m
. (64)


