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Abstract

Mixture models are widely used to fit com-
plex and multimodal datasets. In this pa-
per we study mixtures with high dimensional
sparse latent parameter vectors and consider
the problem of support recovery of those vec-
tors. While parameter learning in mixture
models is well-studied, the sparsity constraint
remains relatively unexplored. Sparsity of
parameter vectors is a natural constraint in
variety of settings, and support recovery is
a major step towards parameter estimation.
We provide efficient algorithms for support
recovery that have a logarithmic sample com-
plexity dependence on the dimensionality of
the latent space. Our algorithms are quite
general, namely they are applicable to 1) mix-
tures of many different canonical distributions
including Uniform, Poisson, Laplace, Gaus-
sians, etc. 2) Mixtures of linear regressions
and linear classifiers with Gaussian covariates
under different assumptions on the unknown
parameters. In most of these settings, our
results are the first guarantees on this prob-
lem while in the rest, we provide significant
improvements on existing results in certain
regimes.

1 INTRODUCTION

Mixture models are standard tools for probabilistic
modeling of heterogeneous data, and have been studied
theoretically for more than a century. Mixtures are
used in practice for modeling data across different fields,
such as, astronomy, genetics, medicine, psychiatry, eco-
nomics, and marketing among many others [Moosman
and Peel, 2000]. Mixtures with finite number of com-
ponents are especially successful in modeling datasets

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

having a group structure, or presence of a subpopu-
lation within the overall population. Often, mixtures
can handle situations where a single parametric family
cannot provide a satisfactory model for local variations
in the observed data [Titterington et al., 1985].

The literature on algorithmically learning mixture dis-
tributions is quite vast and comes in different flavors.
Computational and statistical aspects of learning mix-
tures perhaps starts with [Dasgupta, 1999], and since
have been the subject of intense investigation in both
computer science and statistics [Achlioptas and McSh-
erry, 2005, Kalai et al., 2010, Belkin and Sinha, 2010,
Arora and Kannan, 2001, Moitra and Valiant, 2010,
Feldman et al., 2008, Chan et al., 2014, Acharya et al.,
2017, Hopkins and Li, 2018, Diakonikolas et al., 2018,
Kothari et al., 2018, Hardt and Price, 2015]. A large
portion of this literature is devoted to density estima-
tion or PAC-learning, where the goal is simply to find a
distribution that is close in some distance (e.g., TV dis-
tance) to the data-generating mechanism. The results
on density estimation can be further subdivided into
proper and improper learning approaches depending
on whether the algorithm outputs a distribution from
the given mixture family or not. These two guarantees
turn out to be quite different.

A significant part of the literature on the other hand
is devoted to parameter estimation, where the goal
is to identify the mixing weights and the parameters
of each component from samples. Apart from Gaus-
sian mixtures, where all types of results exist, prior
work for other mixture families largely focuses on den-
sity estimation, and very little is known for parameter
estimation outside of Gaussian mixture models. In
this paper, our focus is to facilitate parameter estima-
tion in Gaussian mixtures and beyond. We consider
the setting where the parameters of the mixture are
themselves high dimensional, but sparse (i.e., have few
nonzero entries). Sparsity is a natural regularizer in
high dimensional parameter estimation problems and
have been considered in the context of mixtures in
[Verzelen and Arias-Castro, 2017, Arias-Castro and Pu,
2017, Azizyan et al., 2013], where it is assumed only
few dimensions of the component means are relevant
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for de-mixing. In this paper we consider a slightly
different model where we assume the means themselves
are sparse. The former problem can be reduced to our
setting if one of the component means is known.

There are parameter estimation problems in other data
subpopulation modeling, where functional relationships
in data can be thought of as mixture of simple com-
ponent models. Most prominent among these is the
mixed linear regression problem [De Veaux, 1989]. In
this setting, each sample is a tuple of (covariates,label).
The label is stochastically generated by picking a linear
relation uniformly from a set of two or more linear
functions, evaluating this function on the covariates
and possibly adding noise. The goal is to learn the set
of unknown linear functions. The problem has been
studied widely [Chaganty and Liang, 2013, Faria and
Soromenho, 2010, Städler et al., 2010, Li and Liang,
2018, Kwon and Caramanis, 2018, Viele and Tong, 2002,
Yi et al., 2014, 2016], with an emphasis on the EM
algorithm and other alternating minimization (AM)
techniques. It is interesting that [Städler et al., 2010]
argued to impose sparsity on the solutions, implying
that each linear function depends on only a small num-
ber of variables. In this paper we are concerned with
exactly this same problem.

Similar to mixed linear regressions, there can be mixed
linear classifications. In that setting, the labels are
binary (or other categorical). The works in this domain
is limited, with notable exceptions [Sun et al., 2014,
Sedghi et al., 2016].

We consider the high dimensional parameter learning
problem in a very general mixture model that covers all
of the above settings. We assume the parameter vectors
to be sparse, and focus on recovering the support of
the vectors.

Note that, support recovery is an effective way to re-
duce the dimension of the latent space, and therefore
can be considered as a key step towards parameter
estimation. We study the support recovery problem in
three different canonical mixture models as described
above: mixtures of distributions (MD), mixtures of lin-
ear regressions (MLR), and mixtures of linear classifiers
(MLC). The three models will differ somewhat in analy-
sis as they pose different challenges; however there will
be commonalities in the key techniques. We provide
two flavors of results for support recovery namely, 1)
Exact support recovery: where we recover the support
of all unknown sparse latent parameters correspond-
ing to all components of the mixture, 2) Deduplicated
support recovery: where we recover the support of a
crucial subset of latent parameters. To formally define
the problems and state the results we need to define
certain quantities.

It is worth mentioning that mixtures of sparse linear
regressions and classifiers were also considered in some
recent works that focus on a query-based model, i.e.,
where the covariates can be designed as queries [Yin
et al., 2019, Krishnamurthy et al., 2019, Mazumdar
and Pal, 2020, Gandikota et al., 2020, 2021, Polyanskii,
2021]. The query based setting is drastically different
from our unsupervised setting, because in the former
one can use the same covariates again and again to
get potentially different labels, and thus identify the
components. However, as we will see, some tools devel-
oped in [Gandikota et al., 2021] can still be relevant
for support recovery in the current setting where we
cannot dictate the covariates.

An interesting application of learning mixtures with
sparse parameters is in high-dimensional clustering
problems where cluster centers actually belong to a
low-dimensional space. This is similar in spirit with
sparse-PCA [Johnstone and Lu, 2009]; our objective is
to identify a few important input features, so one can
easily interpret its meaning. Our techniques can also
be seen as a novel method for feature selection that
can significantly speed up a learning algorithm.

Another practical application comes up naturally
in recommendation systems where multiple users
rate/purchase/evaluate items. User tastes can differ,
and that can be modeled by a few unknown parameter
vectors. It makes sense for the unknown vectors to be
sparse, because most users have an affinity towards a
few particular features of items among many possible.
Sparse mixtures were motivated with such an applica-
tion in the query based setting in [Gandikota et al.,
2020, 2021].

1.1 Notations

We write [n] to denote the set {1, 2, . . . , n}. We will use
1n,0n to denote an all one vector and all zero vector of
dimension n respectively. We will use Q([n]) to denote
the power set of [n] i.e. Q([n]) = {C | C ⊆ [n]}.

For any vector v ∈ Rn, we use vi to denote the ith
coordinate of v and for any ordered set S ⊆ [n], we
will use the notation v|S ∈ R|S| to denote the vector v
restricted to the indices in S. Furthermore, we will use
supp(v) , {i ∈ [n] : vi 6= 0} to denote the support of v
and ||v||0 , |supp(v)| to denote the size of the support.
Let sign : R→ {−1,+1} be a function that returns the
sign of a real number i.e. for any input x ∈ R,

sign(x) =

{
1 if x ≥ 0

−1 if x < 0
.

Consider a multi-set of n-dimensional vectors U ≡
{u(1),u(2), . . . ,u(`)}. We will write SU (i) , {u ∈ U :



Arya Mazumdar, Soumyabrata Pal

ui 6= 0} to denote the multi-set of vectors in U that
has a non-zero entry at the ith index. Furthermore,
for an ordered set C ⊆ [n] and vector a ∈ {0, 1}|C|,
we will also write occU (C,a) ,

∑
u∈U 1[u|C = a] to

denote the number of vectors in U that equal a when
restricted to the indices in C. For a matrix M ∈ Rm×n,
we will use Mi to denote the ith column of M. Let
AU ∈ {0, 1}n×` denote the support matrix of U where
each column vector Ai ∈ {0, 1}n represents the support
of the vector u(i) ∈ U . For ease of notation, we will
omit the subscript U when the set of vectors is clear
from the context.

We write N (µ, σ2) to denote a Gaussian distribution
with mean µ and variance σ2. We will denote the cu-
mulative distribution function of a random variable
Z by φ : R → [0, 1] i.e. φ(a) =

∫ a
−∞ p(z)dz where

p(·) is the density function of Z. Also, we will de-
note erf : R → R to be the error function defined by
erf(z) = 2√

π

∫ z
0

exp(−t2)dt. Since the error function
erf is bijective, we define erf−1(·) to be the inverse of
the erf(·) function. Finally, for a fixed set B we will
write X ∼Unif B to denote a random variable X that is
uniformly sampled from the elements in B.

1.2 Formal Problem Statements

Let V be a multi-set of ` unknown k-sparse vectors
v(1),v(2), . . . ,v(`) ∈ Rn such that

∣∣∣∣v(i)
∣∣∣∣

0
≤ k for all

i ∈ [`]. We consider the following problems described
below:

Mixtures of Distributions with Sparse Latent
Parameters (MD): Consider a class of distributions
P ≡ {P(θ)}θ∈Θ parameterized by some θ ∈ Θ where
Θ ⊆ R. We assume that all distributions in P satisfy
the following property: Ex∼P(θ)x

` can be written as
a polynomial in θ of degree exactly `, From Table
2 in [Belkin and Sinha, 2010], we know that many
well-known distributions satisfy this property (further
discussion later). A sample x ∼ Pd is generated as
follows:

t ∼Unif [`] and xi | t ∼ P(v
(t)
i ) independently ∀i ∈ [n].

In other words, x is generated according to a uniform
mixture of distributions each having a sparse unknown
parameter vector. Consider x(1),x(2), . . . ,x(m) ∈ Rn,
m i.i.d. copies of x, that we can use to recover V.

Here are some examples of this setting:

1. P(θ) can be a Gaussian distribution with mean θ
and known variance σ2. This setting corresponds
to a mixture of high-dimensional isotropic Gaus-
sian distributions with sparse means.

2. P(θ) can be a uniform distribution with range
[θ, b] for a fixed and known b.

3. P(θ) can be a Poisson distribution with mean θ.

Mixtures of Sparse Linear Regressions (MLR).
Consider m samples

(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m)) ∈ Rn × R

which are generated independently according to a dis-
tribution Pr defined as follows: for (x, y) ∼ Pr, we
have

xi ∼ N (0, 1) independently for all i ∈ [n]

v ∼Unif V and y | x,v ∼ N (〈v,x〉, σ2).

In other words, each entry of x is sampled indepen-
dently from N (0, 1) and for a fixed x, the conditional
distribution of y given x is a Gaussian with mean 〈v,x〉
and known variance σ2 where v is uniformly sampled
from the multi-set V.

Mixtures of Sparse Linear Classifiers (MLC).
Consider m samples

(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m)) ∈ Rn×{−1,+1}

which are generated independently according to a dis-
tribution Pc defined as follows: for (x, y) ∼ Pc, we
have

xi ∼ N (0, 1) independently for all i ∈ [n]

v ∼Unif V and z ∼ N (0, σ2) and y = sign(〈v,x〉+ z).

In other words, each entry of x is sampled indepen-
dently from N (0, 1) and for a fixed x, the conditional
distribution of y given x is +1 if 〈v,x〉 ≥ −z and −1
otherwise; here, v is uniformly sampled from the multi-
set of unknown vectors V and z denotes zero mean
Gaussian noise with variance σ2.

Our goal in all the three problems described above
is to recover the support of unknown vectors
v(1),v(2), . . . ,v(`) ∈ V with minimum number of sam-
ples m. More formally, we look at two distinct notions
of support recovery:
Definition 1 (Exact Support Recovery). We will say
that an algorithm achieves Exact Support Recovery in
the MLC/MLR/MD setting if it can recover the support
of all the unknown vectors in V exactly.
Definition 2 (Deduplicated set). A deduplicated
set V ′ is a subset of V such that 1) supp(v(1)) 6⊆
supp(v(2)) for any distinct v(1),v(2) ∈ V ′ and 2) v 6∈
V ′ if there exists v′ ∈ V satisfying supp(v) ⊆ supp(v′).
Now,

Trimmed(V) , argmaxV′⊆V |V ′| (1)

where the maximization is over all deduplicated sets.
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We can show that the set Trimmed(V) is unique (see
Lemma 13 in Appendix D).

Definition 3 (Deduplicated Support Recovery). We
will say that an algorithm achieves Deduplicated support
recovery in the MLR/MLC/MD setting if it can recover
the support of all the unknown vectors in Trimmed(V)
exactly.

Note that in Definition 3, the objective is to recover
supports of the largest set of vectors in V, where no
support is included completely in another support; this
is easier than exact support recovery (Definition 1).

Remark 1. If every unknown vector v ∈ V had a
unique non-zero index i ∈ [n] i.e. vi 6= 0 and v′i = 0
for all v′ ∈ V \{v}, then Deduplicated support recovery
is equivalent to Exact Support Recovery. This con-
dition, also known as the separability condition, has
been commonly used in the literature for example in
unique non-negative matrix factorization [Arora et al.,
2016, Donoho and Stodden, 2004, Slawski et al., 2013]
and approximate parameter recovery in MLC in the
query-based setting [Gandikota et al., 2020].

Note that a trivial approach to the support recovery
problem is to first recover the union of support and
then apply existing parameter estimation guarantees in
the corresponding mixture setting. However, note that
this approach crucially requires parameter estimation
results for the corresponding family of mixtures which
may be unavailable. We have provided a detailed dis-
cussion on our results and other relevant work including
the alternate approach outlined above in Appendix C.

Main Technical Contribution beyond
[Gandikota et al., 2021]. As discussed ear-
lier, our unsupervised setting is different from the
query-based setting of [Gandikota et al., 2021],
where the focus is also support recovery. However,
we crucially use a general technique introduced in
[Gandikota et al., 2021] (see Lemma 1) for exact
support recovery. Namely, support recovery is possible
if we can estimate some subset statistics.

But computing estimates of these subset statistics to in-
voke the guarantees given in Lemma 1 is a difficult prob-
lem. For the three settings, namely MD/MLR/MLC,
we provide distinct and novel techniques to compute
these quantities. Our approach to compute the suffi-
cient statistics in MD setting involve a two-step ap-
proach with polynomial identities : 1) first, using the
method of moments, we compute estimates of the
power sum polynomial of degree p in the variables
{
∏
i∈C v

2
i }v∈V for all subsets C ⊂ [n] up to a certain

size; 2) secondly, we use an elegant connection via New-
ton’s identities to compute estimates on the elementary
symmetric polynomial in the variables {

∏
i∈C v

2
i }v∈V

which in turn allows us to compute the sufficient statis-
tics. In MLR, for a set C ⊆ [n], we again analyze an
interesting quantity namely y|C| ·

(∏
i∈C xi

)
that re-

veals the sufficient statistic for invoking Lemma 1. In
MLC, our method is quite different and it involves con-
ditioning on the event that certain coordinates of the
covariate have large values. If this event is true, then
analyzing the response variables reveals the sufficient
statistics for invoking Lemma 1.

Organization: The rest of the paper is organized as
follows: in Section 2, we provide the necessary prelimi-
nary lemmas for exact support recovery. In Section 3,
we provide our main results on exact support recovery
and discuss our core approaches in each of the settings
namely MD/MLR/MLC at a high level. For exam-
ple, see Corollary 2, Theorem 4, and Theorem 2 for
representative results in the three settings respectively.
In Appendix A.1 and A, we have provided additional
results on Deduplicated support recovery. In Appendix
B.1, B.2 and B.3, we provide the detailed proofs of all
our results in the MD, MLC and MLR setting respec-
tively. In Appendix C, we provide a detailed discussion
on our Results and other related works. In Appendix
D, we provide the missing proofs of lemmas in Section
2 and in Appendix F, we provide the proof of Lemma
1 proved in [Gandikota et al., 2021]. In Appendix E,
we provide some technical lemmas that are used in the
main proofs.

2 PRELIMINARIES

The missing proofs and algorithms of this section can
be found in Appendix D.

To derive our support recovery results, we will crucially
use the result of Lemma 1 below which has been proved
in [Gandikota et al., 2021]. Recall the definition of
occ(C,a) in Sec. 1.1. Lemma 1 states that if occ(C,a)
is known for all sets C ⊆ [n] up to a cardinality of
log `+ 1, then it is possible to recover the support of
all the unknown vectors in V. We restate the result
according to our terminology.

Lemma 1. [Corollary 1 in [Gandikota et al., 2021]]
Let V be a set of ` unknown vectors in Rn. Then, if
occ(C,a) is provided as input for all sets C ⊂ [n], |C| ≤
log ` + 1 and for all a ∈ {0, 1}|C|, then there exists
an algorithm (see Algorithm 10) that can recover the
support of the unknown vectors in V.

For the sake of completeness, we provided Algorithm
10 and Lemma 1 proof in Appendix F.

Remark 2. Lemma 1 provides an unconditional guar-
antee for recovering the support of the unknown vectors
in V. In other words, in the worst case, we only need to
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know occ(C,a) for all sets of size |C| ≤ log `+ 1. How-
ever, in [Gandikota et al., 2021][Theorems 1,2 and 4],
significantly relaxed sufficient conditions for recovering
the support of V under different structural assumptions
were also provided. As noted in [Gandikota et al., 2021],
these additional conditions are mild and in most cases,
if occ(C,a) is known for all sets C ⊆ [n] up to a cardi-
nality of 3, then it is possible to recover the support of
all the unknown vectors in V.

Next, we describe another result, Lemma 2, proved in
[Gandikota et al., 2021] that is also going to be useful
for us. The main takeaway from Lemma 2 is that
computing |∪i∈CS(i)| (which represents the number of
unknown vectors in V having non-zero values in at least
one entry corresponding to C) for all sets smaller than
a fixed size (say t) is sufficient to compute occ(C,a) for
all subsets C ⊆ [n], |C| ≤ t and all vectors a ∈ {0, 1}|C|.
In addition, we provide a result in Lemma 2 where we
show that it is also possible to compute occ(C,a) if
the quantities |∩i∈CS(i)| (which represents the number
of unknown vectors in V having non-zero values in all
entries corresponding to C) are provided for all subsets
C ⊆ [n] satisfying |C| ≤ t.
Lemma 2 (Partially proved in [Gandikota et al.,
2021]). Let V be a set of ` unknown vectors in Rn.
If |

⋃
i∈C S(i)| is provided as input for all sets C ⊂

[n], |C| ≤ t or alternatively |
⋂
i∈C S(i)| is provided as

input for all sets C ⊂ [n], |C| ≤ t, then we can compute
occ(C,a) for all sets C ⊆ [n], |C| ≤ t,a ∈ {0, 1}|C|.
Corollary 1. Let V be a set of ` unknown k-sparse vec-
tors in Rn. Suppose, for each C ⊆ [n], |C| ≤ log `+1, we
can compute |∪i∈CS(i)| (or alternatively |

⋂
i∈C S(i)|)

with probability 1 − γ using T log γ−1 samples where
T is independent of γ. Then, there exists an algo-
rithm (see Algorithm 6) that can achieve Exact Sup-
port Recovery with probability at least 1 − γ using
O(T log(γ−1(n+ (`k)log `+1))) samples.

3 RESULTS AND TECHNIQUES

3.1 Mixtures of Distributions

In this section, we will present our main results and high
level techniques in the MD setting. The detailed proofs
of all results in this section can be found in Section B.1.
We will start by introducing some additional notations
specifically for this setting.

Additional Notations for MD: Recall that
Ex∼P(θ)x

t can be written as a polynomial in θ of degree
t. We will write

qt(θ) , Ex∼P(θ)x
t =

∑
i∈[t+1]

βt,iθ
i−1

Algorithm 1 Recover |
⋂
i∈C S(i)| in MD setting

Require: Samples x(1), . . . ,x(m) ∼ Pd. Set C ⊆ [n].
1: For every z ≤ 2`1|C|, compute estimate Ûz of

E
∏
i∈C x

zπ(C,i)
i using Algorithm 9 on the set of sam-

ples {(x(j)
i )zπ(C,i)}mj=1.

2: For every z ≤ 2`1|C|, compute an estimate V̂ z of∑
j∈[`]

∏
i∈C(v

(j)
i )zπ(C,i) recursively using equation

`Ûz −
∑

u<z ζz,u · V̂ u = ζz,z · V̂ z.

3: For every t ∈ [`], compute an estimate ÂC,t of∑
C′⊆[`]

|C′|=t

∏
i∈C
j∈C′

(v
(j)
i )2 recursively using Newton’s

identity tÂC,t =
∑t
p=1(−1)p+1ÂC,t−pV̂

2p1|C| .

4: Return maxt∈[`] t.1[ÂC,t > 0].

to denote this aforementioned polynomial where we
use {βt,i}i∈[t+1] to denote its coefficients. For all sets
A ⊆ [n], we will write Qi(A) to denote all subsets of A
of size at most i i.e. Qi(A) = {C | C ⊆ A, |C| ≤ i}. Let
us define the function π : Q([n])× [n]→ [n] to denote
a function that takes as input a set C ⊆ [n], an index
r ∈ C and returns as output the position of r among all
elements in C sorted in ascending order. In other words,
for a fixed set C and all j ∈ [|C|], π(C, ·) maps the jth
smallest index in C to j; for example, if C = {3, 5, 9},
then π(C, 3) = 1, π(C, 5) = 2 and π(C, 9) = 3.

We will write Z+ to denote the set of non-negative in-
tegers and (Z+)n to denote the set of all n-dimensional
vectors having entries which are non-negative integers.
For two vectors u, t ∈ (Z+)n, we will write u ≤ t if
ui ≤ ti for all i ∈ [n]; similarly, we will write u < t
if ui < ti for some i ∈ [n]. For any fixed subset
C ⊆ [n] and vectors u, t ∈ (Z+)|C|, we will write ζt,u
to denote the quantity ζt,u ,

∏
i∈C βtπ(C,i),uπ(C,i)+1.

For any u, z ∈ (Z+)|C| satisfying u < z, we will de-
fine a path M to be a sequence of vectors z1 > z2 >
· · · > zm such that z1, z2, . . . , zm ∈ (Z+)n, z1 = z
and zm = u. Let M(z,u) be the set of all paths
starting from z and ending at u. We will also write
a path M ∈ M(z,u) uniquely as a set of m − 1 or-
dered tuples {(z1, z2), (z2, z3), . . . , (zm−1, zm)} where
each tuple consists of adjacent vectors in the path se-
quence. We will also write T (M) ≡ {z1, z2, . . . , zm} to
denote the set of elements in the path.

We start with the following assumption which states
that every unknown vector is bounded within an eu-
clidean ball and furthermore, the magnitude of every
non-zero co-ordinate of all unknown vectors is bounded
from below:

Assumption 1. We will assume that all unknown vec-
tors in the set V are bounded within a ball of known
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radius R i.e.
∣∣∣∣v(i)

∣∣∣∣
2
≤ R for all i ∈ [`]. Further-

more, the magnitude of all non-zero entries of all un-
known vectors in V is bounded from below by δ i.e.
minv∈V mini:vi 6=0 |vi| ≥ δ.

Now, we show our main lemma in this setting where
we characterize the sufficient number of samples to
compute

∣∣⋂
i∈C S(i)

∣∣ for each set C ⊆ [n] with high
probability in terms of the coefficients of the polynomi-
als {qt(θ)}t:
Lemma 3. Suppose Assumption 1 is true. Let

Φ ,
δ2`|C|

2
(

3 max(`R2`|C|, 2`R`+|C|)
)(`−1)

`!

×

(
max

z≤2`1|C|

`

ζz,z
+
∑
u<z

∑
M∈M(z,u)

`
∏

(r,s)∈M ζr,s∏
r∈T (M) ζr,r

)−1

g`,V ,
maxz≤2`1|C| E

∏
i∈C x

2zπ(C,i)
i

Φ2

where g`,V is a constant that is independent of k and
n but depends on `. There exists an algorithm (see
Algorithm 1) that can compute

∣∣⋂
i∈C S(i)

∣∣ exactly for
each set C ⊆ [n] with probability at least 1 − γ using
O
(

log(γ−1(2`)|C|)g`,V

)
samples generated according to

Pd.

In order to prove Lemma 3, we first show that (see
Lemma 10) for each fixed ordered set C ⊆ [n] and each
vector t ∈ (Z+)|C|, we must have

E
∏
i∈C

x
tπ(C,i)
i =

1

`

∑
u≤t

ζt,u ·
(∑
j∈[`]

∏
i∈C

(v
(j)
i )uπ(C,i)

)
. (2)

Note that each summand in equation 2 is a prod-
uct of the powers of the co-ordinates of the same un-
known vector. In Lemma 11, we show that for each set
C ⊆ [n] and any vector t ∈ (Z+)|C|, we can compute∑
j∈[`]

∏
i∈C(v

(j)
i )tπ(C,i) via a recursive procedure pro-

vided for all u ∈ (Z+)|C| satisfying u ≤ t, the quantity
E
∏
i∈C x

uπ(C,i)
i is pre-computed. This implies that we

can compute
∑
j∈[`]

∏
i∈C(v

(j)
i )2p for all p ∈ [`] from

the quantities E
∏
i∈C x

uπ(C,i)
i for all u ≤ 2p1|C|. It is

easy to recognize
∑

v∈V

(∏
i∈C v

2
i

)p
as the power sum

polynomial of degree p in the variables {
∏
i∈C v

2
i }v∈V .

Now, let us define the quantity AC,t for a fixed ordered
set C and parameter t ∈ [`] as follows:

AC,t ,
∑
C′⊆[`]

|C′|=t

∏
i∈C
j∈C′

(v
(j)
i )2

Notice that AC,t > 0 if and only if there exists a subset
C′ ⊆ [`], |C′| = t such that v(j)

i 6= 0 for all i ∈ C, j ∈ C′.

Hence, the maximum value of t such that AC,t > 0 is
the number of unknown vectors in V having non-zero
value in all the indices in C. In other words, we have
that ∣∣∣∣∣⋂

i∈C
S(i)

∣∣∣∣∣ = max
t∈[`]

t · 1[AC,t > 0].

Notice that AC,t is the elementary symmetric polyno-
mial of degree t in the variables {

∏
i∈C v

2
i }v∈V . We

can use Newton’s identities to state that for all t ∈ [`],

tAC,t =

t∑
p=1

(−1)p+1AC,t−p
(∑

v∈V

(∏
i∈C

v2
i

)p)
using which, we can recursively compute AC,t for all
t ∈ [`] (AC,0 = 1) and hence

∣∣⋂
i∈C S(i)

∣∣ if we were

given
∑

v∈V

(∏
i∈C v

2
i

)p
as input for all p ∈ [`] (see

Lemma 12). Lemma 3 follows from making these set of
computations robust. We next show Theorem 1 which
follows from applying Lemma 3 and Corollary 1.

Theorem 1. Let V be a set of ` unknown vectors
in Rn satisfying Assumption 1. Let Fm = Q1([n]) ∪
Qm(∪v∈Vsupp(v)) and

Φm ,
δ2`m

2
(

3`max(R2`m, 2`R`+m)
)(`−1)

`!

×

(
max

z≤2`1m

`

ζz,z
+
∑
u<z

∑
M∈M(z,u)

`
∏

(r,s)∈M ζr,s∏
r∈T (M) ζr,r

)−1

f`,V , max
z≤2`1log `+1

C∈Flog `+1

E
∏
i∈C x

2zπ(C,i)
i

Φ2
log `+1

.

Here f`,V is a constant that is independent of k and n
but depends on `; furthermore, f`,V . Then, there exists
an algorithm (see Algorithm 1 and 6) that achieves
Exact Support Recovery with probability at least 1− γ
using O

(
log(γ−1(2`)log `+1(n+ (`k)log `+1))f`,V

)
sam-

ples generated according to Pd.

Remark 3. We can relax Assumption 1 in Theorem
1 without much further work. For our proofs to work
out verbatim, it is sufficient to just have the following
condition be true: given the latent variable t denot-
ing the mixture component, coordinates of the random
vector x ∼ Pd must be (log ` + 1)-wise independent
(any log `+ 1 co-ordinates are independent). However,
for the sake of simplicity, we have provided the setting
where all co-ordinates of x | t are independent.

Example: Consider the setting when we obtain m
i.i.d samples x(1),x(2), . . . ,x(m) ∈ Rn from a high
dimensional Gaussian mixture D = 1

2N (µ(1), σ2I) +
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1
2N (µ(2), σ2I) with two components where µ(1),µ(2) ∈
Rn satisfying ‖µ(1)‖0, ‖µ(2)‖0 ≤ k are unknown and
σ > 0 is known. Our goal is to recover the sup-
port of µ(1),µ(2) while minimizing the number of sam-
ples m. For x ∼ D, for all i ∈ [n], we have that
Ex2

i = σ2 +((µ
(1)
i )2 +(µ

(2)
i )2)/2; for all i, j ∈ [n], i 6= j,

we have

Ex2
ix

2
j = σ2(Ex2

i + Ex2
j )− σ4

+
( (µ

(1)
i )2(µ

(1)
j )2 + (µ

(2)
i )2(µ

(2)
j )2

2

)
Hence, in the first step, for all i ∈ [n], with probability
1 − γ we compute an estimate ui of Ex2

i (using
Lemma 18) satisfying

∣∣ui − Ex2
i

∣∣ ≤ δ4/(64σ2) using
O(δ−8σ4 maxi(σ

4, (µ
(1)
i )4, (µ

(2)
i )4) log(nγ−1)) samples.

With this, we can infer the union of support correctly
to be S ≡ {i ∈ [n] | ui − σ2 ≥ δ2/4}. This is because
for any index i in the union of support, we must
have Ex2

i ≥ σ2 + δ2/2 while for any index i not in
the union, we have Ex2

i = σ2. Next, in the second
step, for all i, j ∈ S; i 6= j, we compute an estimate
u′ij of Ex2

ix
2
j satisfying |u′ij − Ex2

ix
2
j | ≤ δ4/16 using

O(δ−8 maxi,j(σ,µ
(1)
i ,µ

(1)
j ,µ

(2)
i ,µ

(2)
j )8 log(nγ−1))

samples with probability at least 1 − γ (see
Lemma 18). In that case, if i, j belongs to the
support of the same vector, then we will have
|u′ij − σ2(ui + uj) + σ4| ≥ 13δ4/32 while otherwise, we
must have |u′ij−σ2(ui+uj)+σ4| ≤ 3δ4/32. Hence, T =

{(i, j) ∈ S, i 6= j | |u′ij − σ2(ui + uj) + σ4| ≥ 13δ4/32}.
If there does not exist i, j ∈ S, i 6= j such that (i, j) 6∈ T ,
then we return supp(µ(1)) = supp(µ(2)) = S implying
that both supports are same. On the other hand, if
there exists i, j ∈ S, i 6= j such that (i, j) 6∈ T then i
belongs to the support of one vector while j belongs to
the support of the other vector (both supports are not
same). Let the support of one vector will be {s ∈ S, s 6=
i | (i, s) ∈ T } and the support of the other vector is
{s ∈ S, s 6= j | (j, s) ∈ T }. Therefore, the sufficient
sample complexity for recovering the support is m =

O(δ−8 maxi,j(σ,µ
(1)
i ,µ

(1)
j ,µ

(2)
i ,µ

(2)
j )8 log(nγ−1)).

Note that in this example, the algorithm is slightly
different from the one presented in Algorithm 1; in,
fact the algorithm follows that of deduplicated support
recovery (see Section A) which is equivalent to exact
support recovery for ` = 2 (see Remark 1).

Now, we provide a corollary of Theorem 1 specifically
for mean-estimation in a mixture of distributions with
constant number of components i.e. ` = O(1) . In
particular, consider the setting where

t ∼Unif [`] and xi | t ∼ P(v
(t)
i ) independently ∀i ∈ [n]

Ex∼Pd [xi | t = j] = v
(j)
i

i.e. the mean of the ith co-ordinate of the random
vector x distributed according to Pd is v(j)

i .
Corollary 2. Consider the mean estimation problem
described above. Let V be a set of ` = O(1) unknown
vectors in Rn satisfying Assumption 1 and f`,V be
as defined in Theorem 1. Then, there exists an al-
gorithm (see Algorithm 1 and 6) that with probabil-
ity at least 1 − γ, achieves Exact Support Recovery
using O

(
log(nγ−1)poly(δR−1)f`,V

)
samples generated

according to Pd.

We can compare the sample complexity presented in
Corollary 2 with the alternate approach for support
recovery namely the two stage process of recovering
the union of support followed by parameter estimation
restricted to the union of support. As discussed in
Section 1, most known results (other than [Moitra and
Valiant, 2010]) for parameter estimation in Gaussian
mixtures without separability assumptions hold for two
mixtures and are therefore not applicable for ` > 2.
For general value of `, the only known sample complex-
ity guarantees for parameter estimation in mixture of
Gaussians is provided in [Moitra and Valiant, 2010].

Note that computing the union of support is not diffi-
cult in the MD setting. In particular, in Lemma 3, the
guarantees include the sample complexity of testing
whether a particular index belongs to the union of sup-
port; this can be used to compute the union of support
itself after taking a union bound over all indices leading
to a multiplicative log n factor.

However, for one dimensional Gaussian mixture models
(1D GMM), the parameter estimation guarantees in
[Moitra and Valiant, 2010] (See Corollary 5) are poly-
nomial in the inverse of the failure probability. Since
parameter estimation in 1D GMM is used as a frame-
work for solving the high dimensional problem, it can
be extracted that the sample complexity in n dimen-
sions must be polynomial in n with degree at least 1
to achieve a per coordinate error (error in `∞ norm).
If restricted to the union of support of the unknown
vectors in V , then using the guarantees in [Moitra and
Valiant, 2010] directly will lead to a polynomial depen-
dence on `k. In essence, the sample complexity of the
alternate approach has a logarithmic dependence on the
latent space dimension and a polynomial dependence
on sparsity k (for constant `). Note that our sample
complexity only has a logarithmic dependence on the
dimension n (and is independent of k for constant `)
and is therefore essentially dimension-free.

For other distributions, to the best of our knowledge,
the only known parameter estimation results that ex-
ist in literature are [Belkin and Sinha, 2010, Krish-
namurthy et al., 2020]. In both of these works, the
authors use the same assumption that Ex∼P(θ)x

` can



On Learning Mixture Models with Sparse Parameters

be written as a polynomial in θ of degree exactly `.
While the guarantees in [Belkin and Sinha, 2010] are
non-constructive, the results in [Krishnamurthy et al.,
2020] need the restrictive assumption that the means
must be multiple of some ε > 0 and moreover, they
have an exponential dependence on the noise variance
and ε−1. Our results do not have these limitations and
are therefore widely applicable.

We also show additional results on Deduplicated Sup-
port Recovery in MD setting but due to space limita-
tions, we have provided them in Appendix A.2.

3.2 Mixtures of Linear Classifiers

Algorithm 2 Recover |
⋃
i∈C S(i)| in MLC setting

Require: Samples (x(1), y(1)), . . . , (x(m), y(m)) ∼ Pc.
Set C ⊆ [n]. Parameter a > 0.

1: Find the subset of samples T = {(x(i), y(i)) | x(i)
j >

a for all i ∈ [m]}.
2: Compute an estimate P̂ of Pr(y = 1 | EC) as P̂ =

|T |−1∑
(x,y)∈T 1 [y = 1] .

3: Find t ∈ [`] such that

1

2

(
1 +

t

`

)
− t

4`2
≤ P̂ ≤ 1

2

(
1 +

t

`

)
4: Return t

In this section, we will present our main results and
high level techniques in the MLC setting. The detailed
proofs of all results in this section can be found in
Section B.2. We solve the sparse recovery problem
when the observed samples are generated according to
Pc under the following assumption which states that
the unknown vectors in V either all have non-negative
entries or they all have non-positive entries.

Assumption 2. The non-zero entries of unknown
vectors in V are all either positive (vi ≥ 0 for all
i ∈ [n],v ∈ V) or they are all negative (vi ≤ 0 for all
i ∈ [n],v ∈ V).

Although Assumption 2 looks restrictive, it can often be
made in practice. As an example, in the recommenda-
tion system application motivated in the introduction
(Section 1), the affinity of the users towards the dif-
ferent item features can be modeled by non-negative
values; such a modeling assumption is similar to the
motivation presented in the literature for non-negative
matrix factorization [Ding et al., 2008].

Next, if Assumption 2 is satisfied, we show the sample
complexity of computing

∣∣⋃
i∈C S(i)

∣∣ for each set C ⊆
[n].

Lemma 4. Suppose Assumptions 1 and 2 are true.

Let a =

√
2(R2+σ2)

δ erf−1
(

1− 1
2`

)
. There exists an algo-

rithm (see Algorithm 2) that can compute
∣∣⋃

i∈C S(i)
∣∣

for each set C ⊆ [n] with probability at least 1− γ using
O
(

(1− φ(a))−|C|`2 log γ−1
)
i.i.d samples from Pc.

Let us present a high level proof of Lemma 4. Without
loss of generality, let us assume that all unknown vec-
tors in V have positive non-zero entries. For a fixed set
C ⊆ [n], suppose we condition on the event EC which
is true when for all j ∈ C, xj > a for some suitably
chosen a > 0. Furthermore, let Ev be the event that
the particular vector v ∈ V is used to generate the
sample (x, y). Notice that if vi = 0 for all i ∈ C, then
conditioning on the event EC does not change the dis-
tribution of the response y | Ev; hence the probability
of y = 1 is exactly 1/2 in this case. On the other hand,
if vi 6= 0 for some i ∈ C, then conditioning on the event
EC does change the distribution of the response y | Ev.
In particular, if vi 6= 0, note that 〈v|C ,x|C〉 ≥ aδ and
therefore Pr(y = 1 | EC , Ev) must be larger than 1/2
and is an increasing function of a. Of course, if a is
chosen to +∞, then Pr(y = 1 | EC , Ev) = 1 and there-
fore 2 Pr(y = 1 | EC) = 1 + `−1 |∪i∈CS(i)|. Thus, if
a = +∞, we can use the fact that |∪i∈CS(i)| is inte-
gral to compute |∪i∈CS(i)| correctly from an estimate
of Pr(y = 1 | EC) that is within an additive error of
1/4`. Of course, we cannot choose a = +∞ since no
samples will satisfy the event EC in that case. However,
we can choose a, (a > 0) carefully so that it is small
enough to make Pr(EC) reasonably large and at the
same time, a is large enough to allow us to correctly
compute |∪i∈CS(i)| from a reasonably good estimate of
Pr(y = 1 | EC). Next, we can again use Lemma 4 and
Corollary 1 to arrive at the main theorem for Mixtures
of Linear Classifiers:
Theorem 2. Let V be a set of ` unknown vectors
in Rn satisfying Assumptions 1 and 2. Let a =√

2(R2+σ2)

δ erf−1
(

1 − 1
2`

)
. Then, there exists an al-

gorithm (see Algorithm 2 and 6) that achieves Exact
Support Recovery with probability at least 1 − γ us-
ing O

(
(1− φ(a))−(log `+1)`2 log(γ−1(n+ (`k)log `+1))

)
samples generated according to Pc.

The only comparable result is provided in [Sedghi et al.,
2016] who provide parameter estimation guarantees in
the MLC setting. However, since it is not evident
how to recover the union of support in the sparse
MLC setting (unlike MD/MLR); directly applying the
result in [Sedghi et al., 2016] will lead to polynomial
dependence on n which is undesirable. Moreover, the
guarantees in [Sedghi et al., 2016] also require the
latent parameter vectors to be linearly independent. In
contrast, our sample complexity guarantees for support



Arya Mazumdar, Soumyabrata Pal

recovery scale logarithmically with n and also does
not need the latent parameter vectors to be linearly
independent (in fact they are not even required to be
distinct).

3.3 Mixtures of Linear Regression

Finally, we move on to the mixtures of linear regression
or MLR setting. Note that the sample complexity guar-
antees for MLC (Theorem 2) is also valid in the MLR
setting as we can simulate MLR responses by simply
taking the sign of the response in the MLR dataset.
However, note that the sample complexity presented in
Theorem 2 has a poor dependence on R, δ and `. Here
we solve the support recovery problem provided the
unknown vectors in V are all binary and demonstrate
significantly better sample complexity guarantees under
this assumption. The detailed proofs of all results in
this section can be found in Section B.3. As usual, we
start with a lemma where we characterize the sample
complexity of estimating

∣∣⋂
i∈C S(i)

∣∣ correctly:
Lemma 5. If the unknown vectors in the set V are
all binary i.e. v(1),v(2), . . . ,v(`) ∈ {0, 1}n, then, with
probability at least 1 − γ, for each set C ⊆ [n], there
exists an algorithm (see Algorithm 4) that can compute∣∣⋂

i∈C S(i)
∣∣ using O(`2(k + σ2)|C|/2(log n)2|C| log γ−1)

i.i.d samples from Pr.

We provide a high level proof of Lemma 5 here. We
consider the random variable y|C| ·

(∏
i∈C xi

)
where

(x, y) ∼ Pr. Clearly, we can write y = 〈v,x〉+ ζ where
ζ ∼ N (0, σ2) and v is uniformly sampled from the set
of unknown vectors V. We can show that

E(x,y)∼Pry
|C| ·

(∏
i∈C

xi

)
= Ex,ζ`

−1
∑
v∈V

(∏
i∈C

xi

)
·
(
〈v,x〉+ ζ

)|C|
Ey|C| ·

(∏
i∈C

xi

)
=

1

`

∑
v∈V

(∏
i∈C

Exx
2
i · vi

)
=

∣∣⋂
i∈C S(i)

∣∣
`

.

Hence, by using the fact that
∣∣⋂

i∈C S(i)
∣∣ is integral,

we can estimate the quantity correctly from a reason-
ably good estimate of Ey|C| ·

(∏
i∈C xi

)
. Again, by an

application of Corollary 1, we arrive at the following
theorem:
Theorem 3. Let V be a set of ` unknown binary vec-
tors in {0, 1}n. Then, with probability at least 1 − γ,
there exists an algorithm (see Algorithm 4 and 6) that
achieves Exact Support Recovery with

O
(
`2(log4 n(k + σ2))

log `+1
2 log((n+ (`k)log `+1)γ−1)

)
samples generated according to Pr.

As in mixtures of distributions, it is possible to recover
the union of support of the unknown vectors in V in
the MLR setting with a small number of samples (see
Lemma 17 in Appendix E). Therefore an alternate
approach that can be used for support recovery is to
recover the union of support followed by parameter es-
timation with the features being restricted to the union
of the support. Note that if the set of unknown vectors
satisfy Assumption 1, then estimating each vector up
to an `2 norm of δ will suffice for support recovery.
Hence, by using Lemma 17 followed by Theorem 1 in
[Li and Liang, 2018], we arrive at the following result
for support recovery:
Theorem 4. Let V be a set of ` unknown vectors
satisfying Assumption 1. Further, assume that any
two distinct vectors v,v′ ∈ V satisfies ‖v − v′‖2 ≥ ∆.
Then, with high probability, there exists an algorithm
that achieves Exact Support Recovery with

O
(
`k log

(`k
δ

)
poly

(`σ
∆

)
+
(σ`

∆

)O(`2)

+

`2(R2 + σ2)(log n)3/δ2
)

samples generated according to Pr.

If the unknown vectors in V are restricted to being
binary, then the sample complexity in Theorem 4 has
a linear dependence on the sparsity but on the other
hand, its dependence on σ, ` is very poor; note that
Theorem 4 uses parameter estimation framework in
mixtures of Gaussians ([Moitra and Valiant, 2010]) as
a black-box leading to the polynomial in `, σ with a
possibly high degree. Moreover, the sample complex-
ity in Theorem 4 has an exp(`2) dependence on the
number of unknown vectors which is undesirable when
the number of unknown vectors ` is large. In contrast,
the sample complexity of Theorem 3 has a polynomial
dependence on `, k, σ whose degree can be precisely
extracted from the expression. In particular, in the
regime where σ or ` is large, Theorem 3 provides signif-
icant improvements over the guarantees in Theorem 4.
Finally, although not mentioned explicitly in Theorem
1 in [Li and Liang, 2018], it can be extracted that the
sample complexity is polynomial in γ−1 where γ is the
failure probability; this leads to a similar dependence
on the failure probability in Theorem 4. On the other
hand, the sample complexity in Theorem 3 depends
logarithmically on γ−1.

We also show additional results on Deduplicated Sup-
port Recovery in MLR setting but due to space limita-
tions, we have provided them in Appendix A.3.
Remark 4 (Computational complexity). All our al-
gorithms described in the MD/MLR/MLC settings are
efficient namely their computational complexities are
polynomial in the dimension n and sparsity k.
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A Results for Deduplicated Support Recovery

A.1 Preliminary Results

In the next few lemmas, we characterize the set Trimmed(V) and show some useful properties. We start with the
following definition:

Definition 4 (t-good). A binary matrix A ∈ {0, 1}n×` with all distinct columns is called t-good if for every
column Ai, there exists a set S ⊂ [n] of at most t-indices such that Ai|S = 1t, and Aj |S 6= 1t for all j 6= i.

Let V be set of ` unknown vectors in Rn, and A ∈ {0, 1}n×` be its support matrix. Let B be the sub-matrix
obtained by deleting duplicate columns of A. The set V is called t-good if B is t-good.

Notice that if any set V is t-good then it must be r-good for all r ≥ t. In Lemma 6, we show that Trimmed(V) is
(`− 1)-good and in Lemma 8, we provide sufficient conditions for deduplicated support recovery of the set of
unknown vectors V.

Lemma 6. For all sets of ` unknown vectors V, Trimmed(V) must be (`− 1)-good.

Lemma 7. If it is known whether |∩i∈CS(i)| > 0 or not for all sets C ⊆ [n], |C| ≤ s + 1, then there exists an
algorithm that achieves Deduplicated support recovery of the set of unknown vectors V provided Trimmed(V) is
known to be s-good for s ≤ `− 1 and |Trimmed(V)| ≥ 2.

Lemma 8. If it is known whether |∩i∈CS(i)| > 0 or not for all sets C ⊆ [n], |C| = `, then there exists an algorithm
(see Algorithm 7) that achieves Deduplicated support recovery of the set of unknown vectors V.

Corollary 3. Let V be a set of ` unknown k-sparse vectors in Rn. Suppose with probability 1 − γ, for each
C ⊆ [n], |C| ≤ `, we can compute if |∩i∈CS(i)| > 0 correctly with T log γ−1 samples where T is independent of γ.
Then, there exists an algorithm (see Algorithm 8) that can achieve Deduplicated support recovery with probability
at least 1− γ using O(T log(γ−1(n+ (`k)`))) samples.

Remark 5. Corollary 3 describes the sample complexity for deduplicated support recovery using Lemma 8 which
provides the worst-case guarantees as Trimmed(V) is (`− 1)−good for all sets V. We can also provide improved
guarantees for deduplicated support recovery provided Trimmed(V) is known to be s−good by using Lemma 7.
However, for the sake of simplicity of exposition, we have only provided results for deduplicated support recovery
in mixture models using Corollary 3.

A.2 Mixtures of Distributions (MD)

Now, we provide results on deduplicated support recovery in the MD setting. Note that from Lemma 8, for
partial recovery, we only need to estimate correctly if

∣∣⋂
i∈C S(i)

∣∣ > 0 for ordered sets C ⊆ [n]. Notice that∣∣⋂
i∈C S(i)

∣∣ > 0 if and only if
∑

v∈V
∏
i∈C v

2
i > 0. From our previous arguments,

∑
v∈V

∏
i∈C v

2
i can be computed

if the quantities E
∏
i∈C x

uπ(C,i)
i for all u ≤ 21|C| are pre-computed. The following lemma stems from making this

computation robust to the randomness in the dataset:

Lemma 9. Suppose Assumption 1 is true. Let

Φ , max
z≤21|C|

δ2|C|

2

( `

ζz,z
+
∑
u<z

∑
M∈M(z,u)

`
∏

(r,s)∈M ζr,s∏
r∈T (M) ζr,r

)−1

h`,V ,
maxz≤21|C| E

∏
i∈C x

2zπ(C,i)
i

Φ2

where h`,V is a constant independent of k and n but depends on `. There exists an algorithm (see Algorithm 3) that
can compute if

∣∣⋂
i∈C S(i)

∣∣ > 0 correctly for each set C ⊆ [n] with probability at least 1− γ using O(h`,V log γ−1)
samples generated according to Pd.

The subsequent theorem follows from Lemma 9 and Corollary 3. Note that, compared to exact support recovery
(Theorem 5) the sample complexity for deduplicated support recovery has significantly improved dependency on
δ and furthermore, it is also independent of R.
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Theorem 5. Let V be a set of unknown vectors in Rn satisfying Assumption 1. Let Fm = Q1([n]) ∪
Qm(∪v∈Vsupp(v)) and

Φm = max
z≤21|C|

δ2|C|

2

( `

ζz,z
+
∑
u<z

∑
M∈M(z,u)

`
∏

(r,s)∈M ζr,s∏
r∈T (M) ζr,r

)−1

h′`,V , max
z≤21`
C∈F`

E
∏
i∈C x

2zπ(C,i)
i

Φ2
`

where h′`,V is a constant independent of k and n but depends on `. Accordingly, there exists an algorithm
(see Algorithm 3 and 8) that achieves Deduplicated support recovery with probability at least 1 − γ using
O
(
h′`,V log(γ−1(n+ (`k)`))

)
samples generated from Pd.

A.3 Mixtures of Linear Regression (MLR)

Our final results are for deduplicated support recovery in the MLR setting under different assumptions. Below,
we state Assumption 3 which is a generic condition and if satisfied by the set of unknown vectors V allows for
deduplicated support recovery of V.
Assumption 3. We assume that there exists positive numbers α1, α2, . . . , α` > 0 such that for all sets C ⊆
[n], |C| ≤ ` the following condition is satisfied by the set of ` unknown vectors v(1),v(2), . . . ,v(`) ∈ V:

If there exists v ∈ V such that
∏
j∈C

vj 6= 0

then

∣∣∣∣∣∣
∑
v∈V

(∏
j∈C

vj

)∣∣∣∣∣∣ ≥ α|C|.
Theorem 6. Suppose the following conditions are satisfied:

1. All unknown vectors in V are bounded within a ball of radius R i.e.
∣∣∣∣v(i)

∣∣∣∣
2
≤ R for all i ∈ [`].

2. Assumption 3 is satisfied by the set of unknown vectors V.

Accordingly, there exists an algorithm (see Algorithms 5 and 8) that achieves Deduplicated support recovery with
probability at least 1− γ using

O(`2(R2 + σ2)`/2(log n)2` log((n+ (`k)`)γ−1)/α2
` )

samples from Pr.

Next, using Theorem 6, we provide deduplicated support recovery guarantees in two cases: 1) The set of unknown
vectors in V satisfies Assumptions 1 and all unknown parameters are non-negative 2) The non-zero entries in the
unknown vectors in V are distributed according to a zero mean Gaussian N (0, ν2).
Corollary 4. Consider a set of ` unknown vectors V that satisfies Assumptions 1 and furthermore, every non-zero
entry in all the unknown vectors is positive (vi ≥ 0 for all i ∈ [n],v ∈ V). In that case, Assumption 3 is satisfied
with α|C| ≥ δ|C|. Accordingly, there exists an algorithm that achieves Deduplicated support recovery with probability
at least 1− γ using

O(`2(R2 + σ2)`/2(log n/δ)2` log((n+ (`k)`)γ−1))

samples from Pr.
Corollary 5. If all non-zero entries in the set of unknown vectors V are sampled i.i.d according to N (0, ν2),
then with probability 1− η, Assumption 3 is satisfied with α|C| ≥ δ

|C|
|C| where

δ|C| =
(√π

8

νη

`|C|(`k)|C|

)
.
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Conditioned on this event, there exists an Algorithm that achieves Deduplicated support recovery with probability
at least 1− γ using

O(`2(R2 + σ2)`/2(log n)2` log((n+ (`k)`)γ−1)/δ2
` )

samples from Pr.

B Detailed Algorithms and Results

B.1 Mixtures of Distributions (MD)

Lemma 10. For each fixed set C ⊆ [n] and each vector t ∈ (Z+)|C|, we must have

E
∏
i∈C

x
tπ(C,i)
i =

1

`

∑
u≤t

ζt,u ·
(∑
j∈[`]

∏
i∈C

(v
(j)
i )uπ(C,i)

)
.

Proof. We will have

E
∏
i∈C

x
tπ(C,i)
i =

1

`

∑
j∈[`]

(∏
i∈C

qtπ(C,i)(v
(j)
i )
)
.

From the above equations, note that each summand is a product of polynomials in v
(j)
i for a fixed j. Expanding the

polynomial and using the fact that ζt,u =
∏
i∈C βtπ(C,i),uπ(C,i)+1 is the coefficient of the monomial

∏
i∈C(v

(j)
i )uπ(C,i)

for all j ∈ [`], we obtain the proof of the lemma.

Lemma 11. For each fixed set C ⊆ [n] and each vector t ∈ (Z+)|C|, we can compute
∑
j∈[`]

∏
i∈C(v

(j)
i )tπ(C,i)

provided for all u ∈ (Z+)|C| satisfying u ≤ t, the quantities E
∏
i∈C x

uπ(C,i)
i are pre-computed.

Proof. We will prove this lemma by induction. For the base case, we have from Lemma 10 that `Exi =

β1,2

∑
j∈[`] v

(j)
i + β1,1. Hence

∑
j∈[`] v

(j)
i can be computed from Exi by using the following equation:

∑
j∈[`]

v
(j)
i =

1

β1,2

(
`Exi − β1,1

)
.

Now suppose for all vectors u ∈ (Z+)|C| satisfying u ≤ t, the lemma statement is true. Consider another vector
z ∈ (Z+)|C| such that there exists an index j ∈ |C| for which zj = tj + 1 and zi = ti for all i 6= j. From the
statement of Lemma 10, we know that

E
∏
i∈C

x
zπ(C,i)
i =

1

`

∑
u≤z

ζz,u ·
(∑
j∈[`]

∏
i∈C

(v
(j)
i )uπ(C,i)

)
where ζz,u =

∏
i∈C βzπ(C,i),uπ(C,i)+1. From our induction hypothesis, we have already computed∑

j∈[`]

∏
i∈C(v

(j)
i )uπ(C,i) for all u < z (the set {u ∈ (Z+)|C| | u < z} is equivalent to the set {u ∈ (Z+)|C| | u ≤ t}).

Since E
∏
i∈C x

zπ(C,i)
i is already pre-computed, we can compute

∑
j∈[`]

∏
i∈C(v

(j)
i )zπ(C,i) as follows:

`E
∏
i∈C

x
zπ(C,i)
i −

∑
u<z

ζz,u ·
(∑
j∈[`]

∏
i∈C

(v
(j)
i )uπ(C,i)

)
= ζz,z ·

(∑
j∈[`]

∏
i∈C

(v
(j)
i )zπ(C,i)

)
.

This completes the proof of the lemma.

Lemma 12. For each fixed set C ⊆ [n], we can compute
∣∣⋂

i∈C S(i)
∣∣ provided for all p ∈ [`], the quantity∑

v∈V

(∏
i∈C v

2
i

)p
is pre-computed.
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Proof. Let us fix a particular subset C ⊆ [n]. Now, let us define the quantity

AC,t =
∑
C′⊆[`]

|C′|=t

∏
i∈C
j∈C′

(v
(j)
i )2

Notice that AC,t > 0 if and only if there exists a subset C′ ⊆ [`], |C′| = t such that v(j)
i 6= 0 for all i ∈ C, j ∈ C′.

Hence, the maximum value of t such that AC,t > 0 is the number of unknown vectors in V having non-zero value
in all the indices in C. In other words, we have that∣∣∣∣∣⋂

i∈C
S(i)

∣∣∣∣∣ = max
t∈[`]

t · 1[AC,t > 0].

Let t? be the maximum value of t for which AC,t > 0. We will have AC,t? ≥ δ2`|C|. It is easy to recognize∑
v∈V

(∏
i∈C v

2
i

)p
as the power sum polynomial of degree p in the variables {

∏
i∈C v

2
i }v∈V . On the other hand,

AC,t is the elementary symmetric polynomial of degree t in the variables {
∏
i∈C v

2
i }v∈V . We can use Newton’s

identities to state that for all t ∈ [`],

tAC,t =

t∑
p=1

(−1)p+1AC,t−p
(∑

v∈V

(∏
i∈C

v2
i

)p)

using which, we can recursively compute AC,t for all t ∈ [`] if we were given
∑

v∈V

(∏
i∈C v

2
i

)p
as input for all

p ∈ [`]. We can also express AC,t as a complete exponential Bell polynomial Bt

AC,t =
(−1)n

n!
Bt
(
−
∑
v∈V

∏
i∈C

v2
i ,−1!

(∑
v∈V

∏
i∈C

v2
i

)2

,−2!
(∑

v∈V

∏
i∈C

v2
i

)3

, . . . ,−(t− 1)!
(∑

v∈V

∏
i∈C

v2
i

)t)
.

We are now ready to prove Lemma 3.
Lemma (Restatement of Lemma 3). Suppose Assumption 1 is true. Let

Φ ,
δ2`|C|

2
(

3 max(`R2`|C|, 2`R`+|C|)
)(`−1)

`!

(
max

z≤2`1|C|

`

ζz,z
+
∑
u<z

∑
M∈M(z,u)

`
∏

(r,s)∈M ζr,s∏
r∈T (M) ζr,r

)−1

g`,V ,
maxz≤2`1|C| E

∏
i∈C x

2zπ(C,i)
i

Φ2

where g`,V is a constant that is independent of k and n but depends on `. There exists an algorithm (see
Algorithm 1) that can compute

∣∣⋂
i∈C S(i)

∣∣ exactly for each set C ⊆ [n] with probability at least 1 − γ using

O
(

log(γ−1(2`)|C|)f`,V

)
samples generated according to Pd.

Proof. Suppose, for every vector z ∈ (Z+)|C| satisfying z ≤ 2`1|C|, we compute an estimate Ûz of E
∏
i∈C x

zπ(C,i)
i

such that
∣∣∣Ûz − E

∏
i∈C x

zπ(C,i)
i

∣∣∣ ≤ Φz where Φz is going to be determined later. Recall that in Lemma 12, we
showed

`E
∏
i∈C

x
zπ(C,i)
i −

∑
u<z

ζz,u ·
(∑
j∈[`]

∏
i∈C

(v
(j)
i )uπ(C,i)

)
= ζz,z ·

(∑
j∈[`]

∏
i∈C

(v
(j)
i )zπ(C,i)

)
. (3)

Using the computed Ûz’s , we can compute an estimate V̂ z of
∑
j∈[`]

∏
i∈C(v

(j)
i )zπ(C,i) for all z ∈ (Z+)|C| satisfying

z ≤ 2`1|C|. Let us denote the error in estimation by εz i.e. we have
∣∣∣V̂ z −

∑
j∈[`]

∏
i∈C(v

(j)
i )zπ(C,i)

∣∣∣ ≤ εz. Now, we
prove the following claim.
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Claim 1. We must have

εz ≤
`Φz

ζz,z
+
∑
u<z

∑
M∈M(z,u)

`Φu

∏
(r,s)∈M ζr,s∏

r∈T (M) ζr,r

Proof. We will prove this lemma by induction. Let ei be the standard basis vector having a non-zero entry at the
ith index and is zero everywhere else. For the base case, we have from Lemma 10 that `Exi = β1,2

∑
j∈[`] v

j
i +β1,1.

Therefore, we must have

`Exi − `Ûei = β1,2(
∑
j∈[`]

vji − Û
ei)

=⇒ `Φei = β1,2εei .

From definition, (recall that ζz,u =
∏
i∈C βzπ(i),uπ(i)+1), we have ζei,ei = β1,2 which completes the proof of the

base case. Now suppose for all vectors u ∈ (Z+)|C| satisfying u ≤ t, the lemma statement is true. Consider
another vector z ∈ (Z+)|C| such that there exists an index j ∈ |C| for which zj = tj + 1 and zi = ti for all i 6= j.
From the statement of Lemma 10, we know that

`E
∏
i∈C

x
zπ(i)

i −
∑
u<z

ζz,u ·
(∑
j∈[`]

∏
i∈C

(vji )
uπ(i)

)
= ζz,z ·

(∑
j∈[`]

∏
i∈C

(vji )
zπ(i)

)
.

Hence, we must have(
`E
∏
i∈C

x
zπ(i)

i − `Ûz
)
−
(∑

u<z

ζz,u ·
(∑
j∈[`]

∏
i∈C

(vji )
uπ(i) − V̂ u

))
= ζz,z ·

(∑
j∈[`]

∏
i∈C

(vji )
zπ(i) − V̂ z

)
=⇒ ζz,zεz ≤ `Φz +

∑
u<z

ζz,uεu.

Now, by using our induction hypothesis, we must have

ζz,zεz ≤ `Φz +
∑
u<z

ζz,u

(
`Φu

ζu,u
+
∑
v<u

∑
M∈M(u,v)

`Φv

∏
(r,s)∈M ζr,s∏

r∈T (M) ζr,r

)

=⇒ εz ≤
`Φz

ζz,z
+
∑
u<z

ζz,u

(
`Φu

ζz,zζu,u
+
∑
v<u

∑
M∈M(u,v)

`Φv

∏
(r,s)∈M ζr,s

ζz,z
∏

r∈T (M) ζr,r

)

=⇒ εz ≤
`Φz

ζz,z
+
∑
u<z

∑
M∈M(z,u)

`Φu

∏
(r,s)∈M ζr,s∏

r∈T (M) ζr,r
.

This completes the proof of the claim.

Hence, for fixed Φz = Φ for all z ≤ 2`1|C|, we get

εz ≤ Φ
( `

ζz,z
+
∑
u<z

∑
M∈M(z,u)

`
∏

(r,s)∈M ζr,s∏
r∈T (M) ζr,r

)
.

For a fixed Φ, let us write ε to denote the following quantity:

ε , max
z≤2`1|C|

Φ
( `

ζz,z
+
∑
u<z

∑
Q∈Q(z,u)

`
∏

(r,s)∈Q ζr,s∏
r∈T (Q) ζr,r

)
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Consider a fixed subset of indices C ⊆ [n] and a fixed vector t ∈ (Z+)|C|. Using the fact maxv∈V,i∈[n] v
2
i ≤ R2, we

have that

1

`

∑
v∈V

(∏
i∈C

v2
i

)p
≤ R2p|C| and AC,t =

∑
C′⊆[`]

|C′|=t

∏
i∈C
j∈C′

(v
(j)
i )2 ≤

(
`

t

)
R2(t+|C|) ≤ 2`R2(t+|C|).

We can compute an estimate ÂC,t of AC,t by using V̂ 2p1|C| in the following set of recursive equations

tÂC,t =

t∑
p=1

(−1)p+1ÂC,t−pV̂
2p1|C| .

Claim 2. ∣∣∣ÂC,t − AC,t

∣∣∣ ≤ ε(3 max(`R2`|C|, 2`R`+|C|)
)(t−1)

t! for all t ∈ [`].

Proof. We will prove this claim by induction. For the base case i.e. t = 1, notice that

∣∣∣ÂC,1 − AC,1

∣∣∣ ≤ ∣∣∣∣∣V̂ 21|C| −
∑
v∈V

∏
i∈C

v2
i

∣∣∣∣∣ ≤ ε.
Now, suppose for all t ≤ k, the following holds true:∣∣∣ÂC,t − AC,t

∣∣∣ ≤ ε(3 max(`R2`|C|, 2`R`+|C|)
)t−1

t!.

For ease of notation, let us denote a = 3 max(`R2`|C|, 2`R`+|C|). In that case, for t = k + 1, we must have

t
∣∣∣ÂC,t − AC,t

∣∣∣ ≤∑
p≤t

∣∣∣∣∣ÂC,t−pV̂ 2p1|C| − AC,t−p ·
∑
v∈V

(∏
i∈C

v2
i

)p∣∣∣∣∣
≤

∣∣∣∣∣V̂ 21|C| −
∑
v∈V

(∏
i∈C

v2
i

)(k+1)
∣∣∣∣∣

+
∑
p≤t−1

∣∣∣∣∣εat−2(t− 1)! ·
∑
v∈V

(∏
i∈C

v2
i

)p
+ ε · AC,t−p + ε2at−2(t− 1)!

∣∣∣∣∣
≤ ε+

∑
p≤t−1

∣∣∣εat−2(t− 1)!`R2`|C| + ε · 2`R2(`+|C|) + ε2at−2(t− 1)!
∣∣∣

≤ ε+
∑
p≤t−1

εat−1(t− 1)! ≤ εa(t−1)t!.

Hence,
∣∣∣ÂC,t − AC,t

∣∣∣ ≤ εat−1t! thus proving our claim.

Hence, to identify t? correctly, we must have

ε
(

3 max(`R2`|C|, 2`R`+|C|)
)(`−1)

`! ≤ δ2`|C|

2

=⇒ Φ ≤ δ2`|C|

2
(

3 max(`R2`|C|, 2`R`+|C|)
)(`−1)

`!

(
max

z≤2p1|C|

1

ζz,z
+
∑
u<z

∑
M∈M(z,u)

∏
(r,s)∈M ζr,s∏
r∈T (M) ζr,r

)−1
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where we inserted the definition of Φ. Therefore, for every vector z ∈ (Z+)|C| satisfying z ≤ 2`1|C|, in order to

compute Ûz of E
∏
i∈C x

zπ(C,i)
i such that

∣∣∣Ûz − E
∏
i∈C x

zπ(C,i)
i

∣∣∣ ≤ Φ, the number of samples that is sufficient with
probability 1− γ is going to be

O
(

log(γ−1(2`)|C|)
maxz≤2`1|C| E

∏
i∈C x

2zπ(C,i)
i

Φ2

)
.

Theorem (Restatement of Theorem 1). Let V be a set of ` unknown vectors in Rn satisfying Assumption 1. Let
Fm = Q1([n]) ∪Qm(∪v∈Vsupp(v)) and

Φm =
δ2`m

2
(

3`max(R2`m, 2`R`+m)
)(`−1)

`!

(
max

z≤2`1m

`

ζz,z
+
∑
u<z

∑
M∈M(z,u)

`
∏

(r,s)∈M ζr,s∏
r∈T (M) ζr,r

)−1

f`,V = max
z≤2`1log `+1

C∈Flog `+1

E
∏
i∈C x

2zπ(C,i)
i

Φ2
log `+1

where f`,V is a constant that is independent of k and n but depends on `. Then, there exists an algo-
rithm (see Algorithm 1 and 6) that achieves Exact Support Recovery with probability at least 1 − γ using
O
(

log(γ−1(2`)log `+1(n+ (`k)log `+1))f`,V

)
samples generated according to Pd.

Proof. The proof follows directly from Corollary 1 and Lemma 3.

Corollary (Restatement of Corollary 2). Consider the mean estimation problem where Ex∼Pd [xi | t = j] = v
(j)
i .

Let V be a set of ` = O(1) unknown vectors in Rn satisfying Assumption 1 and f`,V be as defined in Theorem
5. Then, there exists an algorithm (see Algorithm 1 and 6) that with probability at least 1− γ, achieves Exact
Support Recovery using O

(
log(nγ−1)poly(δR−1)f`,V

)
samples generated according to Pd.

Proof. We can re-scale the samples (dividing them by R) so that Assumption 1 will be satisfied with δ′ = δ/R
and R′ ≤ 1. Since ` is a constant, Φlog ` = O(poly(δR−1)). Therefore, the corollary follows from Theorem 1.

Algorithm 3 Estimate if |
⋂
i∈C S(i)| > 0 in MD setting

Require: Samples x(1),x(2), . . . ,x(m) ∼ Pd. Set C ⊆ [n].
1: For every z ≤ 21|C|, compute estimate Ûz of E

∏
i∈C x

zπ(C,i)
i using Algorithm 9 on the set of samples

{(xji )zπ(C,i)}mj=1.
2: For every z ≤ 21|C|, compute an estimate V̂ z of

∑
j∈[`]

∏
i∈C(v

(j)
i )zπC,i recursively using the following equation:

`Ûz −
∑
u<z

ζz,u · V̂ u = ζz,z · V̂ z.

3: If V̂ 21|C| ≥ δ2|C|/2, return True and otherwise return False.

Lemma (Restatement of Lemma 9). Suppose Assumption 1 is true. Let

Φ , max
z≤21|C|

δ2|C|

2

( `

ζz,z
+
∑
u<z

∑
M∈M(z,u)

`
∏

(r,s)∈M ζr,s∏
r∈T (M) ζr,r

)−1

h`,V ,
maxz≤21|C| E

∏
i∈C x

2zπ(C,i)
i

Φ2

where h`,V is a constant independent of k and n but depends on `. There exists an algorithm (see Algorithm 3) that
can compute if

∣∣⋂
i∈C S(i)

∣∣ > 0 correctly for each set C ⊆ [n] with probability at least 1− γ using O(h`,V log γ−1)
samples generated according to Pd.
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Proof. For a fixed ordered set C ⊆ [n], consider the statistic
∑

v∈V
∏
i∈C v

2
i . If

∑
v∈V

∏
i∈C v

2
i > 0, then

|∩i∈CS(i)| > 0 and otherwise, if
∑

v∈V
∏
i∈C v

2
i = 0, then |∩i∈CS(i)| = 0. Hence it suffices to estimate correctly if∑

v∈V
∏
i∈C v

2
i > 0 or not. From Lemma 11, we know that for each set C ⊆ [n], we can compute

∑
j∈[`]

∏
i∈C(v

(j)
i )2

provided for all u ∈ (Z+)|C| satisfying u ≤ 21|C|, the quantity E
∏
i∈C x

uπ(C,i)
i is pre-computed.

Suppose, for every vector z ∈ (Z+)|C| satisfying z ≤ 21|C|, we compute an estimate Ûz of E
∏
i∈C x

zπ(C,i)
i such that∣∣∣Ûz − E

∏
i∈C x

zπ(C,i)
i

∣∣∣ ≤ Φ where Φ is going to be determined later. Using the computed Ûz’s , we can compute

an estimate V̂ z of
∑
j∈[`]

∏
i∈C(v

(j)
i )zπ(C,i) for all z ∈ (Z+)|C| satisfying z ≤ 21|C|. As before, let us denote the

error in estimation by εz i.e. we have
∣∣∣V̂ z −

∑
j∈[`]

∏
i∈C(v

(j)
i )zπ(C,i)

∣∣∣ ≤ εz. Note that we showed in Lemma 12
that for fixed Φ, we get for all z ≤ 21|C|,

εz ≤ Φ
( `

ζz,z
+
∑
u<z

∑
M∈M(z,u)

`
∏

(r,s)∈M ζr,s∏
r∈T (M) ζr,r

)
.

Note that the minimum value of
∑

v∈V
∏
i∈C v

2
i is at least δ2|C| and therefore, it suffices εz to be less than δ2|C|/2.

Hence, it is sufficient if

Φ ≤ max
z≤21|C|

δ2|C|

2

( `

ζz,z
+
∑
u<z

∑
M∈M(z,u)

`
∏

(r,s)∈M ζr,s∏
r∈T (M) ζr,r

)−1

.

Now, we use Lemma 18 to complete the proof of the lemma (similar to Lemma 12)

Theorem (Restatement of Theorem 5). Let V be a set of unknown vectors in Rn satisfying Assumption 1. Let
Fm = Q1([n]) ∪Qm(∪v∈Vsupp(v)) and

Φm = max
z≤21|C|

δ2|C|

2

( `

ζz,z
+
∑
u<z

∑
M∈M(z,u)

`
∏

(r,s)∈M ζr,s∏
r∈T (M) ζr,r

)−1

h′`,V , max
z≤21`
C∈F`

E
∏
i∈C x

2zπ(C,i)
i

Φ2
`

where h′`,V is a constant independent of k and n but depends on `. Accordingly, there exists an algorithm
(see Algorithm 3 and 8) that achieves Deduplicated support recovery with probability at least 1 − γ using
O
(
h′`,V log(γ−1(n+ (`k)`))

)
samples generated from Pd.

Proof. The proof follows from Lemma 9 and Corollary 3.

B.2 Mixtures of Linear Classifiers (MLC)

Recall that in this section, we solve the sparse recovery problem when the observed samples are generated
according to Pc under Assumption 2.

Lemma (Restatement of Lemma 4). Suppose Assumptions 1 and 2 are true. Let a =

√
2(R2+σ2)

δ erf−1
(

1− 1
2`

)
.

There exists an algorithm (see Algorithm 2) that can compute
∣∣⋃

i∈C S(i)
∣∣ for each set C ⊆ [n] with probability at

least 1− γ using O
(

(1− φ(a))−|C|`2 log γ−1
)
i.i.d samples from Pc.

Proof. Without loss of generality, let us assume that all unknown vectors in V have positive non-zero entries. for
each fixed set C ⊆ [n], we will condition on event EC defined as follows: for all j ∈ C, the data-point x satisfies
xj > a for some suitably chosen a > 0. Recall that the minimum magnitude of any non-zero entry in an unknown
vector in V is at least δ. Further condition on the event Ev which is true when a particular unknown vector v is
being sampled from V. In that case, we show the following claim:
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Claim 3.

Pr(y = 1 | Ev, EC) =
1

2
if v|C = 0

1 ≥ Pr(y = 1 | Ev, EC) ≥
1

2
+

1

2
· erf

( aδ√
2(R2 + σ2)

)
if v|C 6= 0.

Proof. In order to see the above equation, note that if v|C = 0, then 〈v,x〉+ z ∼ N (0, ||v||22 + σ2) or in other
words, conditioning on the event EC has no effect on the distribution of y. On the other hand, if v|C 6= 0,
conditioning on the event EC modifies the distribution of y. Consider an index j ∈ supp(v) ∩ C. Since vjxj ≥ aδ,
we must have 〈v|C ,x|C〉 ≥ aδ using Assumption 2. Therefore, the probability that y = 1 must be at least
Pr(〈v|[n]\C ,x|[n]\C〉+ z ≥ −aδ). Using the fact that 〈v|[n]\C ,x|[n]\C〉+ z ∼ N (0, ν2 + σ2) (where ν ≤ R) and the
property of error function (Pru∼N (0,σ2)(|u| ≤ a) = erf(a/

√
2σ)), we prove the claim.

Hence we must have

1

2
+
|∪i∈CS(i)|

2`
≥ Pr(y = 1 | EC) ≥

1

2
+
|∪i∈CS(i)|

2`
erf
( aδ√

2(R2 + σ2)

)

We choose a such that erf
(

aδ√
2(R2+σ2)

)
≥ 1− 1

2` in which case, we must have

1

2

(
1 +

1

`

∣∣∣∣∣⋃
i∈C
S(i)

∣∣∣∣∣ )− 1

4`2
·

∣∣∣∣∣⋃
i∈C
S(i)

∣∣∣∣∣ ≤ Pr(y = 1 | EC) ≤
1

2

(
1 +

1

`

∣∣∣∣∣⋃
i∈C
S(i)

∣∣∣∣∣ )

Clearly, for each value of
∣∣⋃

i∈C S(i)
∣∣ ∈ {0, 1, . . . , `}, the interval in which Pr(y = 1 | EC) lies are disjoint and each

interval is separated by at least 1/4`. Hence, if we are able to estimate Pr(y = 1 | EC) up to an additive factor
of 1/8`, then we can uniquely (and correctly) decode the value of

∣∣⋃
i∈C S(i)

∣∣. By using Chernoff bound, with
O(`2 log γ−1) samples satisfying the event EC , we can estimate Pr(y = 1 | EC) (See Step 2 in Algorithm 2 for the

estimator) with probability at least 1− γ/2. From our previous analysis, we chose a =

√
2(R2+σ2)

δ erf−1
(

1− 1
2`

)
.

The probability that for a sample (x, y) ∼ Pc, the event EC is true is exactly O
(

(1− φ(a))|C|
)
. Therefore, with

(1− φ(a))−|C|`2 log γ−1
)
samples, we will have O(`2 log γ−1) samples satisfying the event EC with probability at

least 1− γ/2. Hence, this allows us to recover
∣∣⋃

i∈C S(i)
∣∣ with probability at least 1− γ.

Theorem (Restatement of Theorem 2). Let V be a set of ` unknown vectors in Rn satisfying Assumptions 1 and

2. Let a =

√
2(R2+σ2)

δ erf−1
(

1− 1
2`

)
. Then, there exists an algorithm (see Algorithm 2 and 6) that achieves Exact

Support Recovery with probability at least 1− γ using O
(

(1− φ(a))−(log `+1)`2 log(γ−1(n+ (`k)log `+1))
)
samples

generated according to Pc.

Proof. The proof follows directly from Lemma 4 and Corollary 1.

B.3 Mixtures of Linear Regression (MLR)

B.3.1 Unknown binary Vectors

Lemma (Restatement of Lemma 5). If the unknown vectors in the set V are all binary i.e. v(1),v(2), . . . ,v(`) ∈
{0, 1}n, then, with probability at least 1− γ, for each set C ⊆ [n], there exists an algorithm (see Algorithm 4) that
can compute

∣∣⋂
i∈C S(i)

∣∣ using O(`2(k + σ2)|C|/2(log n)2|C| log γ−1) i.i.d samples from Pr.
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Algorithm 4 Recover |
⋂
i∈C S(i)| in MLR setting

Require: Samples (x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m)) ∼ Pr. Set C ⊆ [n].

1: Return round
(
`
m ·
∑m
j=1

(
y(j)
)|C|(∏

i∈C x
(j)
i

))

Proof. Consider the random variable y|C| ·
(∏

i∈C xi

)
where (x, y) ∼ Pr. Clearly, we can write y = 〈v,x〉+ ζ

where ζ ∼ N (0, σ2) and v is uniformly sampled from the set of unknown vectors V. Therefore, we must have

E(x,y)∼Pry
|C| ·

(∏
i∈C

xi

)
= Ex,ζ`

−1
∑
v∈V

(∏
i∈C

xi

)
·
(
〈v,x〉+ ζ

)|C|
Ey|C| ·

(∏
i∈C

xi

)
=

1

`

∑
v∈V

(∏
i∈C

Exx
2
i · vi

)
=

∣∣⋂
i∈C S(i)

∣∣
`

.

This is because in the expansion of (〈v,x〉+ ζ)|C|, the only monomial containing xi for all i ∈ C is
∏
i∈C vixi.

For any other monomial, the product with
∏
i∈C xi will contain some xj , j ∈ C such that the degree of xj in the

monomial is 1; the expectation of this monomial goes to zero as all the xi’s are independent. Since Ex2
i = 1 for

all i ∈ [n] and
∏
i∈C vi is 1 iff vi = 1 for all i ∈ C (and 0 otherwise), we obtain the desired equations. We estimate∣∣⋂

i∈C S(i)
∣∣ by computing the following sample average

`

m
·
m∑
j=1

(
y(j)
)|C|(∏

i∈C
x

(j)
i

)
.

From definition for (x, y) ∼ Pr, we must have y ∼ `−1
∑

v∈V N (0, ||v||20 + σ2). Therefore, we must have
Ey2 ≤ k + σ2 since v ∈ {0, 1}n, ||v||0 ≤ k for all v ∈ V. By using Gaussian concentration inequalities, we must
have Pr(|y| > t) ≤ exp(−t2/2(k + σ2)). Therefore, with probability 1 − n−10, we have |y| < 20

√
k + σ2 log n.

Similarly, with probability 1 − n−10, |xi| is bounded from above by 20 log n. We take a union bound over all

|C|+ 1 random variables and all m samples to infer that
(
y(j)
)|C|(∏

i∈C x
(j)
i

)
is bounded within a ball of radius

O((k+σ2)|C|/2(log n)2|C|) with probability at least 1−O(m|C|n−10). Subsequently, we use Hoeffding’s inequality
(see Lemma 14) to say that

Pr
( ∣∣∣∣∣∣ 1

m
·
m∑
j=1

(
y(j)
)|C|(∏

i∈C
x

(j)
i

)
−
∣∣⋂

i∈C S(i)
∣∣

`

∣∣∣∣∣∣ ≥ 1

2`

)
≤ exp

(
− Ω

( m

`2(k + σ2)|C|/2(log n)2|C|

))
.

Hence, withm = O(`2(k+σ2)|C|/2(log n)2|C| log γ−1) samples, we can estimate
∣∣⋂

i∈C S(i)
∣∣ exactly with probability

at least 1− γ.

We can now show the following result:
Theorem (Restatement of Theorem 3). Let V be a set of ` unknown binary vectors in {0, 1}n. Then, with
probability at least 1− γ, there exists an algorithm (see Algorithms 4 and 8) that achieves Exact Support Recovery
with

O
(
`2(k + σ2)(log `+1)/2(log n)2(log `+1) log((n+ (`k)log `)γ−1)

)
samples generated according to Pr.

Proof. The proof follows directly from Lemma 5 and Corollary 1.

B.3.2 Separability Assumption on Parameters

Below, we show that if Assumption 3 is satisfied, then we can recover the support of the unknown vectors. We
start with the following theorem:
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Algorithm 5 Estimate if |
⋂
i∈C S(i) > 0| in MLR setting

Require: Samples (x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m)) ∼ Pr. Set C ⊆ [n].

1: If 2`
m ·
∑m
j=1

(
y(j)
)|C|(∏

i∈C x
(j)
i

)
≥ α|C|, return True else return False.

Theorem (Restatement of Theorem 6). Suppose the following conditions are satisfied:

1. All unknown vectors in V are bounded within a ball of radius R i.e.
∣∣∣∣v(i)

∣∣∣∣
2
≤ R for all i ∈ [`].

2. Assumption 3 is satisfied by the set of unknown vectors V.

Accordingly, with probability at least 1 − γ, there exists an algorithm (see Algorithms 5 and 8) that achieves
Deduplicated support recovery using

O(`2(R2 + σ2)`/2(log n)2` log((n+ (`k)`)γ−1)/α2
` )

samples from Pr.

Proof. Again, we look at the random variable y|C| ·
(∏

i∈C xi

)
where (x, y) ∼ Pr and therefore, we must have

y|C| ·
(∏
i∈C

xi

)
=

1

`

∑
v∈V

(∏
i∈C

xi

)
·
(
〈v,x〉+ ζ

)|C|
Ey|C| ·

(∏
i∈C

xi

)
=

1

`

∑
v∈V

(∏
i∈C

Ex2
i · vi

)
=

1

`

∑
v∈V

(∏
j∈C

vj

)
.

Notice that Ey|C| ·
(∏

i∈C xi

)
= 0 if

∣∣⋂
i∈C S(i)

∣∣ = 0 and
∣∣∣Ey|C| · (∏i∈C xi

)∣∣∣ ≥ α|C|/` otherwise (by using

Assumption 3). We estimate Ey|C| ·
(∏

i∈C xi

)
by computing the following sample average

`

m
·
m∑
j=1

(
y(j)
)|C|(∏

i∈C
x

(j)
i

)
.

From the definition of Pr, we must have y ∼ `−1
∑

v∈V N (0, ||v||22 + σ2). Therefore, we have that Ey2 ≤
R2 + σ2 since ||v||2 ≤ R for all v ∈ V from the statement of the Theorem. By using Gaussian concentration
inequalities, we must have Pr(|y| > t) ≤ exp(−t2/2(R2 + σ2)). Therefore, with probability 1 − n−10, we have
|y| < 20

√
R2 + σ2 log n. Similarly, with probability 1− n−10, |xi| is bounded from above by 20 log n. We take a

union bound over all |C|+ 1 random variables and all m samples to infer that
(
y(j)
)|C|(∏

i∈C x
(j)
i

)
is bounded

within a ball of radius O((R2 + σ2)|C|/2(log n)2|C|) with probability at least 1−O(m|C|n−10). Subsequently, we
use Hoeffding’s inequality (see Lemma 14) to say that

Pr
( ∣∣∣∣∣∣ 1

m
·
m∑
j=1

y(j) |C|
(∏
i∈C

x
(j)
i

)
− 1

`

∑
v∈V

(∏
j∈C

vj

)∣∣∣∣∣∣ ≥ α|C|

2`

)
≤ exp

(
− Ω

( mα2
|C|

`2(R2 + σ2)|C|/2(log n)2|C|

))
.

Hence, with m = O(`2(R2 + σ2)|C|/2(log n)2|C| log γ−1/α2
|C|) samples, we can estimate if

∣∣⋂
i∈C S(i)

∣∣ > 0 or not
correctly with probability at least 1− γ. The proof now follows directly from using Corollary 3.

Corollary (Restatement of Corollary 4). Consider a set of ` unknown vectors V that satisfies Assumptions 1 and
furthermore, every non-zero entry in all the unknown vectors is positive (vi ≥ 0 for all i ∈ [n],v ∈ V). In that
case, Assumption 3 is satisfied with α|C| ≥ δ|C|. Accordingly, there exists an algorithm that achieves Deduplicated
support recovery with probability at least 1− γ using

O(`2(R2 + σ2)`/2(log n/δ)2` log((n+ (`k)`)γ−1))

samples from Pr.
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Proof. Note that when all the unknown vectors in set V are non-negative, it must happen that for each set
C ⊆ [n],

∣∣∣∑v∈V

(∏
j∈C vj

)∣∣∣ ≥ α|C| is a sum of positive terms (provided is it non-zero) each of which is at least

δ|C|. Therefore, it must happen that α|C| ≥ δ|C|. The above argument also holds true when all the unknown
vectors in set V are non-positive. We can directly use Theorem 6 to arrive at the statement of the corollary.

Corollary (Restatement of Corollary 5). If all non-zero entries in the set of unknown vectors V are sampled
i.i.d according to N (0, ν2), then with probability 1− η, Assumption 3 is satisfied with α|C| ≥ δ

|C|
|C| where

δ|C| =
(√π

8

νη

`|C|(`k)|C|

)
.

Conditioned on this event, there exists an Algorithm that achieves Deduplicated support recovery with probability
at least 1− γ using

O(`2(R2 + σ2)`/2(log n)2` log((n+ (`k)`)γ−1)/δ2
` )

samples from Pr.

Proof. For a fixed set C ⊆ [n], consider the random variable
∑

v∈V

(∏
j∈C vj

)
. For each vector v ∈ V such that∏

j∈C vj 6= 0, we denote the minimum index i ∈ C such that vi 6= 0 by i? and therefore vi? ∼ N (0, ν2). Now, for
each v ∈ V, let us condition on a fixed realization of non-zero indices of v in C other than i?. Let VC ⊆ V be the
set of vectors such that

∏
j∈C vj 6= 0. Therefore, we must have∑

v∈V

(∏
j∈C

vj

)
| vj for all j ∈ C \ i?,v ∈ VC ∼ N

(
0, ν2

∑
v∈VC

∏
j∈C\i?

v2
j

)
. (4)

Therefore, conditioned on vj for all j ∈ C \ i?,v ∈ VC , by standard Gaussian anti-concentration inequality (see
Lemma 16), we must have with probability 1− ρ,∣∣∣∣∣∣

∑
v∈V

(∏
j∈C

vj

)∣∣∣∣∣∣ ≥
√
π

8
ρν

√∑
v∈VC

∏
j∈C\i?

v2
j . (5)

for each vector v ∈ VC , we must have with probability at least 1− (|C| − 1)ρ that∣∣∣∣∣∣
∏

j∈C\i?
vj

∣∣∣∣∣∣ ≥
(√π

8
ρν
)(|C|−1)

. (6)

By taking a union bound, we can conclude that with probability at least 1− `ρ, we must have∣∣∣∣∣∣
∑
v∈V

(∏
j∈C

vj

)∣∣∣∣∣∣ ≥
(√π

8
ρν
)|C|

since there exists at least one vector v ∈ VC such that equation 6 holds true for v. Next, after taking another
union bound over all subsets of size |C| restricted to the union of support (at most (`k)|C| of them), we have that
with probability 1− |C|(`k)|C|ρ, ∣∣∣∣∣∣

∑
v∈V

(∏
j∈C

vj

)∣∣∣∣∣∣ ≥
(√π

8
ρν
)|C|

.

Subsequently, we have with probability at least 1− η/`∣∣∣∣∣∣
∑
v∈V

(∏
j∈C

vj

)∣∣∣∣∣∣ ≥
(√π

8

νη

`|C|(`k)|C|

)|C|
.

After taking a final union bound over |C| ≤ ` and subsequently using Theorem 6, we complete the proof of the
corollary.
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C Discussion on Our Results and Other Related Works

Mixtures of Distributions: Our technique of learning the supports of the latent parameter vectors in mixture
of simple distributions is based on the method of moments [Hsu and Kakade, 2013, Hardt and Price, 2015].
This method works in general, as long as moments of the distribution of each coordinate can be described as
a polynomial in the component parameters. The authors in [Belkin and Sinha, 2010] showed (see Table 2 in
[Belkin and Sinha, 2010]) that most common distributions, including Gaussian, Uniform, Poisson, and Laplace
distributions, satisfy this assumption. Our results in this part that include sample complexity guarantees for
both exact support recovery (see Theorem 1) and Deduplicated support recovery (see Theorem 5) are not only
applicable to many canonical distributions but also makes progress towards quantifying the sufficient number of
moments in the general problem defined in Sec. 1.2.

An alternate approach to the support recovery problem is to first recover the union of supports of the unknown
parameters and then apply known parameter estimation guarantees to identify the support of each of the unknown
vectors after reducing the dimension of the problem. Note that this approach crucially requires parameter
estimation results for the corresponding family of mixtures which may be unavailable. To the best of our
knowledge, most constructive sample complexity guarantees for parameter estimation in mixture models without
separability assumptions correspond to mixtures of Gaussians [Kalai et al., 2010, Belkin and Sinha, 2010, Moitra
and Valiant, 2010, Hardt and Price, 2015, Feller et al., 2016, Ho and Nguyen, 2016, Manole and Ho, 2020, Heinrich
and Kahn, 2018]. Moreover, most known results correspond to mixtures of Gaussians with two components.
The only known results for parameter estimation in mixtures of Gaussians with more than 2 components is
[Moitra and Valiant, 2010] but as we describe later, using the alternate approach with the guarantees in [Moitra
and Valiant, 2010] results in a polynomial dependence on the sparsity. On the contrary, our sample complexity
guarantees scales logarithmically with the sparsity or dimension (for constant `), see Corollary 2, which is a
significant improvement over the alternate approach.

For other than Gaussian distributions, [Belkin and Sinha, 2010, Krishnamurthy et al., 2020] studied parameter
estimation under the same moment-based assumption that we use. However, [Belkin and Sinha, 2010] uses
non-constructive arguments from algebraic geometry because of which, their results did not include bounds on
the sufficient number of moments for learning the parameters in a mixture model. In [Krishnamurthy et al., 2020],
the authors resolve this question to a certain extent for these aforementioned families of mixture models as they
quantify the sufficient number of moments for parameter estimation under the restrictive assumption that the
latent parameters lie on an integer lattice. Therefore, our results for these distributions form the first guarantees
for support recovery.

Mixtures of Linear Regression For the support recovery problem in the sparse mixtures of linear regressions
(MLR) setting, we provide a suite of results under different assumptions. In particular, we study the exact support
recovery problem when the unknown sparse parameters are binary (see Theorem 3) and the deduplicated support
recovery problem when 1) the unknown sparse parameters have non-negative values (see Corollary 4), or 2) the
unknown sparse parameters are distributed according to a Gaussian (see Corollary 5). As in the MD setting,
an alternate approach for the support recovery problem is to first find the union of support of the unknown
parameters and then apply existing parameter estimation guarantees to recovery the support of each of the
unknown linear functions. The state of the art guarantees in MLR for parameter estimation is given by [Li
and Liang, 2018] providing a sample complexity guarantee which is linear in the dimension (linear in sparsity
when restricted to the union of support). Our results for support recovery are polynomial in sparsity and are
therefore worse than the parameter estimation guarantees of [Li and Liang, 2018] applied to our sparse setting
(see Theorem 4) when the sparsity is large. On the other hand, the sample complexity guarantees of [Li and
Liang, 2018] scales exponentially with `2 and polynomially with the inverse of the failure probability. In contrast,
our sample complexity guarantees are polynomial in ` and logarithmic in the inverse of the failure probability.

Mixtures of Linear Classifiers Unlike the MLR and MD setting, mixture of linear classifiers (MLC) is far
less studied. It is understandably more difficult to analyze than MLR since only the sign of the linear function of
the covariates is retained. We study the exact support recovery problem in sparse MLC (see Theorem 2) under
the setting that all the parameters of the unknown vectors are either nonnegative or they are all nonpositive.
Although this assumption might seem restrictive, note that theoretical work in the MLC setting is extremely
limited. To the best of our knowledge, there are only two relevant papers [Sun et al., 2014, Sedghi et al., 2016]
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that have studied this problem. In [Sun et al., 2014], the authors do not make any assumptions on sparsity and
provide an algorithm for recovering the subspace in which the parameter vectors corresponding to the unknown
linear functions lie. In contrast, support recovery is a different objective and hence is incomparable to the
subspace recovery guarantees. The second work, [Sedghi et al., 2016] uses tensor decomposition based methods to
provide sample complexity guarantees for learning the parameter vectors; but their sample complexity is inversely
proportional to the square of the minimum eigenvalue of the matrix comprising the unknown parameter vectors
as columns. This is an unwanted dependence as it implies that if the parameter vectors are linearly dependent,
then the algorithm will require infinite samples to recover the parameter vectors. On the other hand, our support
recovery guarantees do not have any such assumption on the parameters. Moreover, unlike the MD setting, it
is not evident in MLC how to recover the union of support of the unknown sparse vectors. Hence the sample
complexity obtained by applying the results in [Sedghi et al., 2016] directly will lead to a polynomial dependence
on the dimension of the latent space which is undesirable (ideally, we require a logarithmic dependence on the
latent space dimension). Our results exhibit such dependence on the dimension and also does not assume linear
independence of the parameter vectors. We believe this to be an important progress towards further understanding
of theoretical properties of mixtures where the response is a mixture of nonlinear functions of the covariates.

D Missing Proofs and Algorithms from Sections 2 and A.1

Proof of Lemma 2 when | ∪i∈C S(i)| is provided. Suppose we are given | ∪i∈C S(i)| for all sets C ⊆ [n] satisfying
|C| ≤ s. Notice that the set ∩i∈CS(i) is equivalent to the set occ(C,1|C|) or the number of unknown vectors in V
whose restriction to the indices in C is the all one vector and in particular, occ((i), 1) = S(i). Note that for each
family of t sets A1,A2, . . . ,At, we must have

∣∣∣∣∣
t⋃
i=1

Ai

∣∣∣∣∣ =

t∑
u=1

(−1)u+1
∑

1≤i1<i2<···<iu≤t

∣∣∣∣∣
u⋂
b=1

Aib

∣∣∣∣∣ .

We now show using induction on s that the quantities
{∣∣⋃

i∈S occ((i), 1)
∣∣ ∀ T ⊆ [n], |T | ≤ s

}
are sufficient to

compute |occ(C,a)| for all subsets C of indices of size at most s, and any binary vector a ∈ {0, 1}≤s.

Base case (t = 1):

The base case follows since we can infer |occ((i), 0)| = `− |occ((i), 1)| from |occ((i), 1)| for all i ∈ [n].

Inductive Step: Let us assume that the statement is true for r < s i.e., we can compute |occ(C,a)| for all subsets C
satisfying |C| ≤ r and any binary vector a ∈ {0, 1}≤r from the quantities

{∣∣⋃
i∈S occ((i), 1)

∣∣ ∀ T ⊆ [n], |T | ≤ r
}

provided as input. Now, we prove that the statement is true for r + 1 under the induction hypothesis. Note that
we can also rewrite occ(C,a) for each set C ⊆ [n],a ∈ {0, 1}|C| as

occ(C,a) =
⋂
j∈C′
S(j)

⋂
j∈C\C′

S(j)c

where C′ ⊆ C corresponds to the indices in C for which the entries in a is 1. Fix any set i1, i2, . . . , ir+1 ∈ [n].
Then we can compute

∣∣∣⋂r+1
b=1 S(ib)

∣∣∣ using the following equation:

(−1)r+3

∣∣∣∣∣
r+1⋂
b=1

S(ib)

∣∣∣∣∣ =

r∑
u=1

(−1)u+1
∑

j1,j2,...,ju∈{i1,i2,...,ir+1}
j1<j2<···<ju

∣∣∣∣∣
u⋂
b=1

S(jb)

∣∣∣∣∣−
∣∣∣∣∣
r+1⋃
b=1

S(ib)

∣∣∣∣∣ .

Finally for each proper subset Y ⊂ {i1, i2, . . . , ir+1}, we can compute
∣∣∣⋂ib 6∈Y S(ib)

⋂
ib∈Y S(ib)

c
∣∣∣ using the following

set of equations:
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∣∣∣∣∣∣
⋂
ib 6∈Y

S(ib)
⋂
ib∈Y
S(ib)

c

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋂
ib 6∈Y

S(ib)
⋂( ⋃

ib∈Y
S(ib)

)c∣∣∣∣∣∣
=

∣∣∣∣∣∣
⋂
ib 6∈Y

S(ib)

∣∣∣∣∣∣−
∣∣∣∣∣∣
⋂
ib 6∈Y

S(ib)
⋂( ⋃

ib∈Y
S(ib)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
⋂
ib 6∈Y

S(ib)

∣∣∣∣∣∣−
∣∣∣∣∣∣
⋃
ib∈Y

( ⋂
ib 6∈Y

S(ib)
⋂
S(ib)

)∣∣∣∣∣∣ .
The first term is already pre-computed and the second term is again a union of intersection of sets. for each
jb ∈ Y, let us define H(jb) :=

⋂
ib 6∈Y S(ib)

⋂
S(jb). Therefore we have∣∣∣∣∣∣

⋃
jb∈Y
H(jb)

∣∣∣∣∣∣ =

|Y|∑
u=1

(−1)u+1
∑

j1,j2,...,ju∈Y
j1<j2<···<ju

∣∣∣∣∣
u⋂
b=1

H(jb)

∣∣∣∣∣ .
We can compute

∣∣∣⋃jb∈Y H(jb)
∣∣∣ because the quantities on the right hand side of the equation have already been

pre-computed (using our induction hypothesis). Therefore, the lemma is proved.

Proof of Lemma 2 when | ∩i∈C S(i)| is provided. Suppose we are given | ∩i∈C S(i)| for all sets V ⊆ [n] satisfying
|V| ≤ s. We will omit the subscript V from hereon for simplicity. As in Lemma 2, the set ∩i∈CS(i) is equivalent
to the set occ(C,1|C|) or the number of unknown vectors in V whose restriction to the indices in C is the all one
vector and in particular, occ((i), 1) = S(i). We will re-use the equation that for t sets A1,A2, . . . ,At, we must
have ∣∣∣∣∣

t⋃
i=1

Ai

∣∣∣∣∣ =

t∑
u=1

(−1)u+1
∑

1≤i1<i2<···<iu≤t

∣∣∣∣∣
u⋂
b=1

Aib

∣∣∣∣∣ .
We now show using induction on s that the quantities

{∣∣⋂
i∈S occ((i), 1)

∣∣ ∀ T ⊆ [n], |T | ≤ s
}
are sufficient to

compute |occ(C,a)| for all subsets C of indices of size at most s, and any binary vector a ∈ {0, 1}≤s.

Base case (t = 1):

The base case follows since we can infer |occ((i), 0)| = `− |occ((i), 1)| from |occ((i), 1)| for all i ∈ [n].

Inductive Step: Let us assume that the statement is true for r < s i.e., we can compute |occ(C,a)| for all subsets C
satisfying |C| ≤ r and any binary vector a ∈ {0, 1}≤r from the quantities

{∣∣⋂
i∈S occ((i), 1)

∣∣ ∀ T ⊆ [n], |T | ≤ r
}

provided as input. Now, we prove that the statement is true for r + 1 under the induction hypothesis. Note that
we can also rewrite occ(C,a) for any set C ⊆ [n],a ∈ {0, 1}|C| as

occ(C,a) =
⋂
j∈C′
S(j)

⋂
j∈C\C′

S(j)c

where C′ ⊆ C corresponds to the indices in C for which the entries in a is 1. Fix any set i1, i2, . . . , ir+1 ∈ [n].
Then we can compute

∣∣∣⋃r+1
b=1 S(ib)

∣∣∣ using the following equation:∣∣∣∣∣
r+1⋃
b=1

S(ib)

∣∣∣∣∣ =

r+1∑
u=1

(−1)u+1
∑

j1,j2,...,ju∈{i1,i2,...,ir+1}
j1<j2<···<ju

∣∣∣∣∣
u⋂
b=1

S(jb)

∣∣∣∣∣ .

Finally for any proper subset Y ⊂ {i1, i2, . . . , ir+1}, we can compute
∣∣∣⋂ib 6∈Y S(ib)

⋂
ib∈Y S(ib)

c
∣∣∣ using the following

set of equations:
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∣∣∣∣∣∣
⋂
ib 6∈Y

S(ib)
⋂
ib∈Y
S(ib)

c

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋂
ib 6∈Y

S(ib)
⋂( ⋃

ib∈Y
S(ib)

)c∣∣∣∣∣∣
=

∣∣∣∣∣∣
⋂
ib 6∈Y

S(ib)

∣∣∣∣∣∣−
∣∣∣∣∣∣
⋂
ib 6∈Y

S(ib)
⋂( ⋃

ib∈Y
S(ib)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
⋂
ib 6∈Y

S(ib)

∣∣∣∣∣∣−
∣∣∣∣∣∣
⋃
ib∈Y

( ⋂
ib 6∈Y

S(ib)
⋂
S(ib)

)∣∣∣∣∣∣ .
The first term is already pre-computed and the second term is again a union of intersection of sets. For any
ib ∈ Y, let us define H(jb) :=

⋂
ib 6∈Y S(ib)

⋂
S(jb). Therefore we have∣∣∣∣∣∣

⋃
jb∈Y
H(jb)

∣∣∣∣∣∣ =

|Y|∑
u=1

(−1)u+1
∑

j1,j2,...,ju∈Y
j1<j2<···<ju

∣∣∣∣∣
u⋂
b=1

H(jb)

∣∣∣∣∣ .
We can compute

∣∣∣⋃jb∈Y H(jb)
∣∣∣ because the quantities on the right hand side of the equation have already been

pre-computed (using our induction hypothesis). Therefore, the lemma is proved.

Proof of Corollary 1. We know that all vectors v ∈ V satisfy ‖v‖0 ≤ k as they are k-sparse. Therefore, in the
first stage, by computing |S(i)| for all i ∈ [n], we can recover the union of support of all the unknown vectors
∪v∈Vsupp(v) by computing T = {i ∈ [n] | S(i) > 0}. The probability of failure in finding the union of support
exactly is at most nγ. Once we recover T , we compute |∪i∈CS(i)| for all C ⊆ T , |C| ≤ log `+ 1 (or alternatively
| ∩i∈C S(i)| for all C ⊆ T , |C| ≤ log ` + 1). The probability of failure for this this event (`k)log `+1γ. From
Lemma 1, we know that computing |∪i∈CS(i)| for all C ⊆ [n], |C| ≤ log `+ 1 (or alternatively | ∩i∈C S(i)| for all
C ⊆ T , |C| ≤ log ` + 1) exactly will allow us to recover the support of all the unknown vectors in V. However
|∪i∈CS(i)| = 0 for all C ⊆ [n] \ T provided T is computed correctly. Therefore, we can recover the support of all
the unknown vectors in V with T log γ−1 samples with probability at least 1− ((`k)log `+1 + n)γ. Rewriting the
previous statement so that the failure probability is γ leads to the statement of the lemma.

Algorithm 6 Exact Support recovery using access to estimates of |∩i∈CS(i)| (or alternatively
|∪i∈CS(i)|) that are correct with high probability

Require: For C ⊆ [n], access to estimates of |∩i∈CS(i)| (or alternatively |∪i∈CS(i)|) that are correct with high
probability.

1: For each i ∈ [n], compute an estimate of |S(i)|.
2: Compute T = {i ∈ [n] | estimate(S(i)) > 0}.
3: Compute estimates of |∩i∈CS(i)| (or alternatively |∪i∈CS(i)|) for all subsets C ⊆ T , |C| ≤ log `+ 1.
4: Compute occ(C,a) for all subsets C ⊆ T , |C| ≤ log ` + 1,a ∈ {0, 1}|C| using the computed estimates of
|∩i∈CS(i)| (or alternatively |∪i∈CS(i)|).

5: Use Algorithm 10 to recover the support of all unknown vectors in V.

Proof of Lemma 6. Note that Trimmed(V) is the largest subset of vectors in V ≡ {v(1),v(2), . . . ,v(`)} such that
the support of any vector in Trimmed(V) is not contained within the support of any other vector in Trimmed(V). Let
us fix a vector v ∈ Trimmed(V). For any other vector v′ ∈ Trimmed(V) there must exist an index iv,v′ ∈ supp(v)

such that iv,v′ 6∈ supp(v′). Clearly the vector v constrained to the set of indices C , ∪v′∈Trimmed(V),v′ 6=v{iv,v′}
is an all-one vector but v′|C 6= 1 for all v′ ∈ V,v′ 6= v. This is true for all vectors in Trimmed(V) and since
|Trimmed(V) \ {v}| ≤ `− 1, we must have Trimmed(V) to be (`− 1)−good.
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Proof of Lemma 7. As stated in the Lemma, suppose it is known if |∩i∈CS(i)| > 0 or not for all sets C ⊆ [n]
satisfying |C| ≤ s + 1. Further assume that the set of unknown vectors V is s-good. Consider any vector
v ∈ Trimmed(V). Since V is s-good, there must exist an ordered set C ⊆ [n] such that v|C is the all 1 vector but
v′|C is not the all 1 vector for any other vector v′ ∈ Trimmed(V). Therefore, we must have |∩i∈CS(i)| > 0. But,
on the other hand, notice that if |Trimmed(V)| ≥ 2, there must exist an index j ∈ ∪v∈Trimmed(V)supp(v) such that∣∣∩i∈C∪{j}S(i)

∣∣ = 0 since the support of v does not contain the support of all other vectors. Algorithm 7 precisely
checks for this condition and therefore this completes the proof.

Algorithm 7 Partial Support recovery using the quantities 1[|∩i∈CS(i)| > 0]

Require: For every C ⊆ [n], |C| ≤ `, the quantities 1[|∩i∈CS(i)| > 0] are provided as input
1: Set T = φ
2: while There exists a set C ⊆ [n], |C| ≤ `− 1 such that v|C 6= 1|C| and 1[|∩i∈CS(i)| > 0] = 1. do
3: Set U = C.
4: for j ∈ [n] \ C do
5: if 1[

∣∣∩i∈C∪{j}S(i)
∣∣ > 0] = 1 then

6: Set U ← U ∪ {j}
7: end if
8: end for
9: Set T ← T ∪ {v} where v ∈ {0, 1}n and supp(v) = U .
10: end while
11: Return T .

Algorithm 8 Partial Support recovery using access to estimates of 1[|∩i∈CS(i)| > 0] that are
correct with high probability
Require: For C ⊆ [n], access to estimates of 1[|∩i∈CS(i)| > 0] that are correct with high probability.
1: For each i ∈ [n], compute an estimate of 1[|∩i∈CS(i)| > 0].
2: Compute T = {i ∈ [n] | estimate(1[|S(i)| > 0])) = True}.
3: Compute estimates of 1[|∩i∈CS(i)| > 0] for all subsets C ⊆ T , |C| ≤ `.
4: Use Algorithm 7 to recover the support of all unknown vectors in V.

Proof of Corollary 3. Again, we know that all vectors v ∈ V satisfy ‖v‖0 ≤ k as they are k-sparse. Therefore, in
the first stage, by computing if |S(i)| > 0 for all i ∈ [n], we can recover the union of support of all the unknown
vectors ∪v∈Vsupp(v) by computing T = {i ∈ [n] | S(i) > 0}. The probability of failure in finding the union
of support correctly is at most nγ. Once we recover T correctly, we compute |∩i∈CS(i)| for all C ⊆ T , |C| ≤ `.
The probability of failure for this event (`k)`γ. From Lemma 8, we know that computing |∩i∈CS(i)| for all
C ⊆ [n], |C| ≤ ` exactly will allow us to recover the support of all the unknown vectors in V. On the other hand,
we will have |∩i∈CS(i)| = 0 for all C ⊆ [n] \ T provided T is computed correctly. Therefore, we can achieve
deduplicated support recovery of all the unknown vectors in V with T log γ−1 samples with probability at least
1− ((`k)` + n)γ. Rewriting, so that the failure probability is γ leads to the statement of the lemma.

Proof of Lemma 8. Consider the special case when |Trimmed(V)| = 1 i.e. there exists a particular vector v
in V whose support subsumes the support of all the other unknown vectors in V. In that case, for each set
C ⊆ ∪v∈Trimmed(V)supp(v), |C| ≤ `, we must have that

∣∣⋃
i∈C S(i)

∣∣ > 0 (as there is only a single vector in
Trimmed(V)). On the other hand, if |Trimmed(V)| ≥ 2, then we know that Trimmed(V) is (` − 1)-good and
therefore, for each vector v ∈ Trimmed(V), there exists an ordered set and an index C, {j} ⊆ ∪v∈Trimmed(V)supp(v),
|C| ≤ ` − 1 such that C belongs to the support of v but does not belong to the support of any other vector;
hence

∣∣⋂
i∈C S(i)

∣∣ > 0 but
∣∣∣⋂i∈C∪{j} S(i)

∣∣∣ = 0. In other words, there exists a set of size ` that is a subset of the
union of support of vectors in Trimmed(V) but there does not exist any unknown vector that has 1 in all the
indices indexed by the aforementioned set. Again, Algorithm 7 precisely checks this conditions and therefore this
completes the proof.
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Algorithm 9 Estimate(m,B) Estimating EX for X ∼ P

Require: I.i.d samples x(1), x(2), . . . , x(m) ∼ P
1: Set t = m/B
2: for i = 1, 2, . . . , B do
3: Set Batch i to be the samples x(j) for j ∈ {it+ 1, it+ 2, . . . , (i+ 1)t}.
4: Set Si1 =

∑
j∈ Batch i

x(j)

t
5: end for
6: Return median({Si1}Bi=1)

Lemma 13. The set Trimmed(V) is unique.

Proof. We will prove this lemma by contradiction. Suppose there exists two distinct sets T1, T2 ⊂ V such that
|T1| = |T2| = |Trimmed(V)|. Since T1, T2 are distinct, there must exist a vector v ∈ T2 \ T1. If supp(v) is not
contained with the support of some vector in T1 and there is no other vector in V whose support contains v,
then clearly, v can be added to T1 implying that T1 cannot be the largest deduplicated set. On the other hand,
suppose supp(v) is contained within the support of some vector v′ in T1. However, this implies that T2 cannot be
a valid deduplicated set as the support of v is contained with the support of v′ and therefore, v cannot belong to
a deduplicated set. This implies that the vector v cannot exist without violating some constrained of Trimmed(V)
and therefore, the set Trimmed(V) is unique.

E Technical Lemmas

Lemma 14 (Hoeffding’s inequality for bounded random variables). Let X1, X2, . . . , Xm be independent random
variables strictly bounded in the interval [a, b]. Let µ = m−1

∑
i EXi. In that case, we must have

Pr
( ∣∣∣∣∣ 1

m

m∑
i=1

Xi − µ

∣∣∣∣∣ ≥ t) ≤ 2 exp
(
− 2mt2

(b− a)2

)
.

Lemma 15 (Gaussian concentration inequality). Consider a random variable Z distributed according to N (0, σ2).
In that case, we must have Pr(|Z| ≥ t) ≤ 2 exp(−t2/2) for any t > 0.

Lemma 16 (Gaussian anti-concentration inequality). Consider a random variable Z distributed according to

N (0, σ2). In that case, we must have Pr(|Z| ≤ t) ≤
√

2
π ·

t
σ for any t < σ

√
π/
√

2.

Proof. By simple calculations, we can have

Pr(|Z| < t) ≤
∫ t

−t

e−x
2/2σ2

√
2πσ

dx ≤
√

2

π
· t
σ
.

Lemma 17. Suppose |∪v∈Vsupp(v)| ≤ n/2. In that case, we can compute ∪v∈Vsupp(v) correctly using O(`2(R2 +
σ2)(log n)3/δ2) samples with probability at least 1− 1/poly(n).

Proof. For each i ∈ [n], suppose we want to test whether i ∈ ∪v∈Vsupp(v) or not. Consider the random variable
y2x2

i when (x, y) ∼ Pr. Notice that

Ey2x2
i =

1

`

∑
v∈V

Ey2x2
i | v =

1

`

∑
v∈V

( ∑
j∈[n]

v2
j + 2v2

i

){ = 1
`

∑
v∈V ||v||

2
2 if |SV(i)| = 0

≥ 1
`

∑
v∈V ||v||

2
2 + 2δ2

` if |SV(i)| 6= 0

where the final inequality follows from the fact that the magnitude of any non-zero entry of any unknown vector
must be at least δ. For simplicity of notation, we will denote A = 1

`

∑
v∈V ||v||

2
2 to be average norm of the
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unknown vectors. We will estimate Ey2x2
i by computing the following sample average

`

m
·
m∑
j=1

(
y(j)x

(j)
i

)2

.

From the definition of Pr, we must have y ∼ N (0, ζ2 + σ2), |ζ| ≤ R since v ∈ {0, 1}n, ||v||2 ≤ R for all v ∈ V.
By using Gaussian concentration inequalities, we must have Pr(|y| > t) ≤ exp(−t2/2(R2 + σ2)). Therefore, with
probability 1− n−10, we have |y| < 20

√
R2 + σ2 log n. Similarly, with probability 1− n−10, |xi| is bounded from

above by 20 log n. a Subsequently, we use Hoeffding’s inequality to say that

Pr
( ∣∣∣∣∣∣ `m ·

m∑
j=1

(
y(j)x

(j)
i

)2

− Ey2x2
i

∣∣∣∣∣∣ ≥ δ22

2`

)
≤ exp

(
− Ω

( mδ2

`2(R2 + σ2)(log n)2

))
.

Hence, with m = O(`2(R2 + σ2)(log n)3/δ2) samples, we can estimate if
∣∣⋂

i∈C SV(i)
∣∣ > 0 or not correctly with

probability at least 1− 1/poly(n). We can take a union bound over all the n indices to estimate Ey2x2
i correctly

within an additive error of δ2/2` for all i ∈ [n]. We will cluster all the indices such that a pair of distinct indices
u, v ∈ [n] are in the same group if∣∣∣∣∣∣ `m ·

m∑
j=1

(
y(j)x(j)

u

)2

− `

m
·
m∑
j=1

(
y(j)x(j)

v

)2

∣∣∣∣∣∣ ≤ δ2

`
.

Clearly, any two indices u, v ∈ [n] that satisfy |SV(u)| = |SV(v)| = 0 must belong to the same cluster. Since the
size of the union of the support is at most n/2, the largest cluster must correspond to the indices where the entry
is zero in all the unknown vectors. Subsequently, all those indices that do not belong to the largest cluster (after
the clustering step) must belong to ∩v∈Vsupp(v). Furthermore, no index i ∈ [n] such that |SV(i)| 6= 0 can belong
to the largest cluster. This complete the proof of the lemma.

Finally, we will also use the following well-known lemma stating that we can compute estimates of the expectation
of any one-dimensional random variable with only a few samples similar to sub-gaussian random variables.
Lemma 18. For a random variable x ∼ P, there exists an algorithm (see Algorithm 9 in Appendix D) that can
compute an estimate u of Ex such that |u− Ex| ≤ ε with O(log γ−1Ex2/ε2) with probability at least 1− γ.

Proof of Lemma 18. Suppose we obtain m independent samples x(1), x(2), . . . , x(m) ∼ P. We use the median of
means trick to compute u, an estimate of Ex. We will partition m samples obtained from P into B = dm/m′e
batches each containing m′ samples each. In that case let us denote Sj to be the sample mean of the jth batch i.e.

Sj =
∑

s∈Batch j

x(s)

m′
.

We will estimate the true mean Ex by computing u where u , median({Sj}Bj=1). For a fixed batch j, we can use
Chebychev’s inequality to say that

Pr
( ∣∣Sj − Ex

∣∣ ≥ ε) ≤ Ex2

tε2
≤ 1

3

for t = O(Ex2/ε2). Therefore for each batch j, we define an indicator random variable Zj = 1[
∣∣Sj − Ex

∣∣ ≥ ε]
and from our previous analysis we know that the probability of Zj being 1 is less than 1/3. It is clear that
E
∑B
j=1 Zj ≤ B/3 and on the other hand |u− Ex| ≥ ε iff

∑B
j=1 Zj ≥ B/2. Therefore, due to the fact that Zj ’s

are independent, we can use Chernoff bound to conclude the following:

Pr
(
|u− Ex| ≥ ε

)
≤ Pr

( ∣∣∣∣∣∣
B∑
j=1

Zj − E
B∑
j=1

Zj

∣∣∣∣∣∣ ≥ E
∑B
j=1 Zj

2

)
≤ 2e−B/36.

Hence, for B = 36 log γ−1, the estimate u is at most ε away from the true mean Ex with probability at least 1− γ.
Therefore the sufficient sample complexity is m = O(log γ−1Ex2/ε2).
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Algorithm 10 Recover p-identifiable Supports

Require: |occ(C,a)| for every C ⊂ [n], |C| = t, t ∈ {p, p+ 1}, and every a ∈ {0, 1}p ∪ {0, 1}p+1.
1: Set count = 1, i = 1.
2: while count ≤ ` do
3: if |occ(C,a)| = w, and |occ(C ∪ {j}, (a, 1))| ∈ {0, w} for all j ∈ [n] \ C then
4: Set supp(ui)|C = a
5: For every j ∈ [n] \ C, set supp(ui)|j = b, where |occ(C ∪ {j}, (a, b))| = w.
6: Set Multiplicityi = w.
7: For all t ∈ {0, 1}p ∪ {0, 1}p+1, S ⊆ [n] such that |S| ∈ {p, p+ 1}, update

|occ(S, t)| ← |occ(S, t)| − |occ(C,a)| × 1[supp(ui)|S = t]

8: count = count + w.
9: i = i+ 1.

10: end if
11: end while
12: Return Multiplicityj copies of supp(uj) for all j < i.

F Proof of Lemma 1 (Theorem 1 in [Gandikota et al., 2021])

We will start with a few additional notations and definitions:

For a set of unknown vectors V ≡ {v1,v2, . . . ,v`}, let A ∈ {0, 1}n×` denote the support matrix corresponding to
V where each column vector Ai ∈ {0, 1}n represents the support of the ith unknown vector vi.

Definition 5 (p-identifiable). The ith column Ai of a binary matrix A ∈ {0, 1}n×` with all distinct columns is
called p-identifiable if there exists a set S ⊂ [n] of at most p-indices and a binary string a ∈ {0, 1}p such that
Ai|S = a, and Aj |S 6= a for all j 6= i.

A binary matrix A ∈ {0, 1}n×` with all distinct columns is called p-identifiable if there exists a permutation
σ : [`] → [`] such that for all i ∈ [`], the sub-matrix Ai formed by deleting the columns indexed by the set
{σ(1), σ(2), . . . , σ(i− 1)} has at least one p-identifiable column.

Let V be set of ` unknown vectors in Rn, and A ∈ {0, 1}n×` be its support matrix. Let B be the matrix obtained
by deleting duplicate columns of A. The set V is called p-identifiable if B is p-identifiable.

Theorem (Theorem 2 in [Gandikota et al., 2021]). Any n × `, (with n > `) binary matrix with all distinct
columns is p-identifiable for some p ≤ log `.

Proof. Suppose A is the said matrix. Since all the columns of A are distinct, there must exist an index i ∈ [n]
which is not the same for all columns in A. We must have |occ((i), a)| ≤ `/2 for some a ∈ {0, 1}. Subsequently,
we consider the columns of A indexed by the set occ((i), a) and can repeat the same step. Evidently, there must
exist an index j ∈ [n] such that |occ((i),a)| ≤ `/4 for some a ∈ {0, 1}2. Clearly, we can repeat this step at most
log ` times to find C ⊂ [n] and a ∈ {0, 1}≤log ` such that |occ(C,a)| = 1 and therefore the column in occ(C,a) is
p-identifiable. We denote the index of this column as σ(1) and form the sub-matrix A1 by deleting the column.
Again, A1 has `−1 distinct columns and by repeating similar steps, A1 has a column that is log(`−1) identifiable.
More generally, Ai formed by deleting the columns indexed in the set {σ(1), σ(2), . . . , σ(i− 1)}, has a column
that is log(`− i) identifiable with the index (in A) of the column having the unique sub-string (in Ai) denoted
by σ(i). Thus the lemma is proved.

Next, we present an algorithm (see Algorithm 10) for support recovery of all the ` unknown vectors V ≡ {v1, . . . ,v`}
when V is p-identifiable. In particular, we show that if V is p-identifiable, then computing |occ(C,a)| for every
subset of p and p+ 1 indices is sufficient to recover the supports.

The proof follows from the observation that for any subset of p indices C ⊂ [n], index j ∈ [n] \ C and a ∈ {0, 1}p,
|occ(C,a)| = |occ(C ∪ {j}, (a, 1))|+ |occ(C ∪ {j}, (a, 0))|. Therefore if one of the terms in the RHS is 0 for all
j ∈ [n] \ C, then all the vectors in occ(C,a) share the same support.
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Also, if some two vectors u,v ∈ occ(C,a) do not have the same support, then there will exist at least one index
j ∈ [n] \ C such that u ∈ occ(C ∪ {j}, (a, 1))| and v ∈ occ(C ∪ {j}, (a, 0)) or the other way round, and therefore
|occ(C ∪ {j}, (a, 1))| 6∈ {0, |occ(C,a)|}. Algorithm 10 precisely checks for this condition. The existence of some
vector v ∈ V (p-identifiable column), a subset of indices C ⊂ [n] of size p, and a binary sub-string b ∈ {0, 1}≤p
follows from the fact that V is p-identifiable. Let us denote the subset of unknown vectors with distinct support
in V by V1.

Once we recover the p-identifiable column of V1, we mark it as u1 and remove it from the set (if there are multiple
p-identifiable columns, we arbitrarily choose one of them). Subsequently, we can modify the |occ(·)| values for all
S ⊆ [n], |S| ∈ {p, p+ 1} and t ∈ {0, 1}p ∪ {0, 1}p+1 as follows:∣∣occ2(S, t)

∣∣ , |occ(S, t)| − |occ(C,b)| × 1[supp(u1)|S = t]. (7)

Notice that, Equation 7 computes
∣∣occ2(S, t)

∣∣ =
∣∣{vi ∈ V2 | supp(vi)|S = t}

∣∣ where V2 is formed by deleting all
copies of u1 from V. Since V1 is p-identifiable, there exists a p-identifiable column in V1 \ {u1} as well which we
can recover. More generally for q > 2, if uq−1 is the p-identifiable column with the unique binary sub-string bq−1

corresponding to the set of indices Cq−1, we will have for all S ⊆ [n], |S| ∈ {p, p+ 1} and t ∈ {0, 1}p ∪ {0, 1}p+1

|occq(S, t)| ,
∣∣occq−1(S, t)

∣∣− ∣∣occq−1(Cq−1,bq−1)
∣∣× 1[supp(uq−1)|S = t]

implying |occq(S, t)| =
∣∣{vi ∈ Vq | supp(vi)|S = t}

∣∣ where Vq is formed deleting all copies of u1,u2, . . . ,uq−1

from V . Applying these steps recursively and repeatedly using the property that V is p-identifiable, we can recover
all the vectors present in V.
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