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Abstract

Recent work on permutation equivariant neu-
ral networks has mostly focused on the
first order case (sets) and second order case
(graphs). We describe the machinery for gen-
eralizing permutation equivariance to arbi-
trary k-ary interactions between entities for
any value of k. We demonstrate the effec-
tiveness of higher order permutation equiv-
ariant models on several real world applica-
tions and find that our results compare fa-
vorably to existing permutation invariant/e-
quivariant baselines.

1 INTRODUCTION

Various machine learning problems involve modeling
the interactions between individual objects from a
given set, or between multiple sets. In graph learn-
ing problems, we have vertices representing entities
and the (hyper-)edges encoding information about how
vertices are related. Learning on unordered sets of el-
ements such as point cloud data is another common
scenario. Finally, in relation learning problems we are
explicitly presented with relationships between entities
and the task is to infer other relationships.

A fundamental mathematical requirement in all these
scenarios is that the learned relationships must not be
dependent on the (arbitrary) way that we choose to
number the entities, i.e., that the learning algorithm
should be equivariant to permutations. In this paper
we consider the problem of constructing the most gen-
eral type of neural network layers that can capture k’th
order relationships in a permutation equivariant way.
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The activations in such networks are k’th order per-
mutable tensors, which we formally define in Section 2.
We describe a general framework for enumerating and
efficiently computing all possible permutation equiv-
ariant linear maps between such tensors and derive
the computational complexity of all of the operations
involved.

1.1 Previous/Related Work

Equivariance Equivariance is a crucial design prin-
ciple for constructing neural networks for learning
on structured data or data that exhibits symmetries.
Equivariant architectures include classical convolu-
tional neural networks (CNNs), which leverage the
translational symmetry in image recognition (LeCun
et al., 1998), spherical CNNs (Cohen et al., 2018;
Weiler et al., 2018; Kondor et al., 2018a; Esteves
et al., 2018), graph neural networks (Scarselli et al.,
2008; Kipf and Welling, 2016; Battaglia et al., 2018),
and permutation invariant neural network architec-
tures (Qi et al., 2017; Zaheer et al., 2017; Maron et al.,
2018; Vaswani et al., 2017) to name a few.

Graph Learning Modeling data with relationship
between entities is most commonly done in the graph
learning setting where relationships can be encoded as
edges in the graph. Early work on graph networks
focused on learning functions on the graph using the
graph Fourier basis (Bruna et al., 2013; Henaff et al.,
2015), which is invariant to permutations of the ver-
tices of the graph. Subsequent graph neural network
architectures (Duvenaud et al., 2015; Li et al., 2015;
Kipf and Welling, 2016; Gilmer et al., 2017) perform
message passing and message aggregation at each node
of the graph in a permutation invariant manner. To
deal with higher order interactions between nodes, sev-
eral works extend graph neural network ideas to the
hypergraph setting (Feng et al., 2019; Dong et al.,
2020; Bai et al., 2021) by applying the same message
passing procedure on the hypernodes and hyperedges
of the hypergraph.
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Permutation Invariant/Equivariant Networks
Architectures such as PointNet (Qi et al., 2017) for
learning on point clouds and Deep Sets (Zaheer et al.,
2017) for learning on sets of structured data were
among the first to recognize that when dealing with
collections of objects, it is important to have the neu-
ral network be invariant to permuting the ordering of
the objects. Deep Sets showed that permutation in-
variant and equivariant architectures must abide by a
very simple form involving a symmetric pooling oper-
ation over the inputs to enforce permutation invari-
ance. Kondor et al. (2018b) prove that elementary
tensor operations such as as tensor products, element-
wise operations, and tensor contractions are permu-
tation equivariant operations and show that permuta-
tion equivariant neural networks can be constructed
by interleaving the linear tensor operations with the
pointwise nonlinearities and tensor products. Thiede
et al. (2020) derive a form for second order permuta-
tion equivariant layers and apply them in graph vari-
ational autoencoders.

Given how popular they have become over the past
four years, we would be remiss not to mention atten-
tion based models. Attention layers have been used
with great success in neural networks for learning tasks
on sequences (Bahdanau et al., 2015; Vaswani et al.,
2017), graphs (Veličković et al., 2018), sets (Lee et al.,
2019), 3D objects (Fuchs et al., 2020) and images
Dosovitskiy et al. (2020). Though they were originally
used to model text/language data and not necessarily
to address permutation symmetry in data, attention
layers do in fact provide a permutation equivariant
featurization for the entities being ”attended” to.

Hartford et al. (2018) describe a permutation equiv-
ariant architecture for modeling interactions between
elements across different sets (e.g. user-movie rat-
ings). which come in the form interaction matrices
X ∈ RN×M . Permutations can act on this matrix
along the users dimension by SN or along the movies
dimension by SM . Any permutation equivariant layer
applied to X must satisfy a certain parameter shar-
ing scheme. They further show that in the case where
the two sets have equal size, there are exactly 4 free
parameters in the weight matrix. They also provide
a few conditions on how the weight matrix underly-
ing the equivariant layer must have a specific param-
eter sharing scheme. Graham et al. (2019) describes
a similar parameter sharing scheme for permutation
equivariant architectures applied to entity-relationship
networks. Parameter sharing for equivariance with re-
spect to discrete groups is also discussed in Ravan-
bakhsh et al. (2017).

Maron et al. (2018) bears the most similarity to our
present work. Following some of the aforementioned

earlier works on permutation equivariance, they pro-
vided a derivation of the number of free parameters
allowed in permutation equivariant layers between per-
mutable tensors of arbitrary order and give a full char-
acterization of the parameter sharing scheme. They
show that the space of permutation equivariant lin-

ear layers from Rnk1 → Rnk2 has dimension B(k1 + k2),
where B(n) denotes the nth Bell number which cor-
responds to the number of distinct parameters that
are possible over the equivalence classes of entries of
the weight matrices in the equivariant layer. While
their work describes the number of free parameters
in the weight matrices and their parameter sharing
scheme, they do not give details on how to actually
construct permutation equivariant layers except when
k1 = k2 = 2.

Paper organization Section 2 introduces some of the
notation that will be used throughout the paper. Sec-
tions 3 and 4 describe how to derive the necessary
equivariant operations. Section 5 discusses how to or-
ganize the computation in the proposed layers. Fi-
nally, section 6 presents the results of permutation
equivariant architectures that feature our 2nd and 3rd
order equivariant layers on two set learning tasks.

2 PRELIMINARIES

Definition 2.1 (Symmetric group). The symmetric
group of degree n, denoted Sn, is the set of all bijec-
tions from {1, 2, . . . , n} to {1, 2, . . . , n}.

Definition 2.2 (Permutable k’th order tensors). A
k’th order permutable tensor over a set of entities

{e1, . . . , en} is a multidimensional array Tk ∈ Rnk×d.
The last dimension of Tk we call the feature dimension.

For simplicity, in much of our general discussion of
equivariance we just set d = 1 and drop the feature in-
dex. The feature index is then reintroduced in the sup-
plement, where we prove that mixing feature channels
commutes with the other operations in the network.

The fact that each of the first k indices of Tk are as-
sociated with {e1, . . . , en} implies that under a per-
mutation σ ∈ Sn of these entities, (e1, . . . , en) 7→
(eσ(1), . . . , eσ(n)), the tensor Tk transforms as

Tk 7→ σ · Tk (1)

[σ · Tk]i1,...ik = [Tk]σ−1(i1),...,σ−1(ik). (2)

Formally, we say that the symmetric group Sn acts on
permutable tensors by the action (1).

The type of neural architectures that we are concerned
with in this paper involve multiple permutable tensors
(potentially of different orders) related to each other
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by learnable mappings. The constraint on such map-
pings is that if their inputs change according to (1),
their outputs must also change according to a similar
action. This is the constraint that is captured by the
concept of permutation equivariance.

Definition 2.3 (Permutation Equivariance). A map-

ping φ : Rnk1×d1 → Rnk2×d2 between k1’th and k2’th
order permutable tensors is is said to be permutation
equivariant if

φ(σ · Tk1) = σ · φ(Tk1),

for all permutations σ ∈ Sn, and all Tk1 .

Element-wise nonlinearities are permutation equivari-
ant since the operation commutes with the permuta-
tion action. Following modern neural network design
principles, we construct a permutation invariant neu-
ral network by interleaving linear permutation equiv-
ariant layers with permutation equivariant nonlinear-
ities (e.g.: ReLU’s) and eventually applying a permu-
tation invariant pooling operation before the output
layer. Tensor products and outer products of per-
mutable tensors are two other examples of simple non-
linear permutation equivariant operations that one can
use in constructing these networks. Therefore in much
of this paper, we will focus on linear permutation
equivariant layers, in particular because it is these lay-
ers which will involve learnable parameters.

2.1 Examples of permutable tensors

First order permutable tensors T1 ∈ Rn×d capture in-
dividual properties of the entities e1, e2, . . . , en. The
ith row of T1 corresponds to a feature vector for entity
ei. This form of permutation equivariance was first
explored in (Zaheer et al., 2017) and has since found
numerous applications such as jet tagging in particle
physics (Komiske et al., 2019; Dolan and Ore, 2021),
and structure from motion in computer vision (Moran
et al., 2021).

Second order permutable tensors appear in any setting
where a neural network learns from relations between
pairs of entities or learns in a way that induces re-
lations between pairs of entities. Such second order
relationships can be either symmetric or antisymmet-
ric. An example of a symmetric relationship might be
”words ei and ej co-occur in a document” whereas an
example of an antisymmetric relationship is ”player ei
beat player ej in a chess tournament.”

The prototypical example of second order relationships
is graphs, where {e1, . . . , en} is identified with the ver-
tices and the relationship is simply that ei and ej are
adjacent to each other. By definition, a graph is a
topological object and whatever ordering we impose

on its vertices to feed it in our neural network is wholly
arbitrary. The output of the neural network must not
depend on this arbitrary ordering, so, as discussed by
several authors (Keriven and Peyré, 2019; Maron et al.,
2018), permutation equivariance is a fundamental re-
quirement for graph learning.

Higher order relationships appear when we consider
interactions between k ≥ 3 entities. An example that
appears in our experiments is learning the interactions
between multiple drugs (Tekin et al., 2018). Other
scenarios might include, for example, predicting the
performance of a team based on the players (Gong
et al., 2020) or learning to rank based on interactions
between items in a list (Pobrotyn et al., 2020).

3 DERIVING EQUIVARIANT
LAYERS

For small values of k1 and k2, it is possible to de-
rive the form of linear equivariant layer mapping k1’th
to k2’th order permutable tensors by reasoning about
what symmetric linear operations are possible.

3.1 Case I: T1 7→ T1 layer

A first order permutable tensor is just a vector whose
elements are permuted by σ the natural way:

[σ · T1]i = [T1]σ−1(i).

There are two trivial ways to construct linear permuta-
tion equivariant mappings from one first order tensor
X to another, Y :

1. The identity map (multiplied by a scalar):

Yi ← λ1Xi

2. The averaging map (multiplied by a scalar):

Yi ← λ2
∑
j

Xj

Zaheer et al. (2017) prove that in fact these are the
only two possibilities. Therefore, the most general first
order permutation equivariant layer in matrix form is

Y = λ1X + λ211>X,

giving us only two learnable parameters λ1 and λ2.

3.2 Case II: T1 → T2 layer

Now consider a linear permutation equivariant func-
tion that maps a first order permutable tensor X ∈ Rn
to a second order tensor Y ∈ Rn×n. Let us consider
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how we might construct entry Yij in a symmetric fash-
ion. We have two types of entries to be updated: the
diagonal and off-diagonal entries. The off-diagonal en-
tries Yij can be set to a linear combination of Xi,Xj ,
and the sum of all the Xk’s. The diagonal entries Yii
by themselves form a first order permutable tensor, so
following Case I, they can be set to a linear combina-
tion of Xi and

∑
kXk:

Yij ← λ1Xi + λ2Xj + λ3(
∑
k

Xk)

Yii ← λ4Xi + λ5(
∑
k

Xk)

Thus, Y is a linear combination of five second order
permutable tensors:

• a tensor with X broadcast over the rows of the
output tensor

• a tensor with X broadcast over the columns of
the output tensor

• a tensor with X embedded in the diagonal

• a tensor with the global sum of X tiled over all
entries

• a tensor with the global sum of of X tiled over
the diagonal

3.3 Case III: T2 → T1 layer

Now our input tensor is X ∈ Rn×n and our output
tensor is Y ∈ Rn. Consider the elements of X that
affect the i’th element. The i’th output Yi can involve
diagonal entries Xii, the i’th row sum, the i’th column
sum, and the global sum of all of X. Lastly, we can
also construct a symmetric element by taking the sum
of the diagonal elements of X.

Yi ← λ1Xii + λ2
∑
j

Xij + λ3
∑
j

Xji

+ λ4
∑
ij

Xij + λ5
∑
i

Xii

Similar to the previous case, we can see that Y is a
linear combination of five 1st order tensors:

• X summed over its row index

• X summed over its column index

• the diagonal of X

• the global sum of X tiled into a 1st order tensor

• the sum of the diagonal entries of X tiled into a
1st order tensor

3.4 Case IV: T2 to T2 Equivariant Layer

The expected number of parameters for an equivari-
ant layer mapping from a 2nd order to 2nd order is
B(2 + 2) = 15. Figuring out all the symmetric ways of
aggregating terms in X that may affect Yij starts to
get a bit cumbersome. In the supplement, we give a
full enumeration of all the ways to construct the 2nd
order tensors that go into the resulting output tensor
which Maron et al. (2018) also describes. While it is
still somewhat manageable to enumerate all possible
operations in the T2 → T2 equivariant layer, it quickly
becomes untenable to try to figure out the necessary
operations and tensors involved in layers beyond 2nd
order. We would like to have a systematic way enu-
merating the linear combination of tensors that must
be a part of the output of the layer.

4 DERIVING EQUIVARIANT
LAYERS FROM PARTITIONS

We can also derive the full set of linear permutation
equivariant transformations using the line of reasoning
set forth by Maron et al. (2018). First, we recall their
findings on permutation equivariant layers.

Theorem 1 (Maron et al. (2018)). A matrix M ∈
Rnk2×nk1 is a permutation equivariant linear map from

Rnk1 → Rnk2 if and only if M is invariant to its per-
mutation action. If we view M as a (k1 + k2)-th mul-
tidimensional array. The permutation action on M is
given by:

[σ ·M ]i1...ik1+k2
= Mσ−1(i1)...σ−1(ik1+k2)

.

For any two indices written as a (k1 + k2)-tuple: I1 =
(i1, . . . , ik1+k2) and I2 = (j1, . . . , jk1+k2) where each of
the indices of I1 and I2 are in {1, . . . , n}, if σ · I1 = I2,
then MI1 = MI2 . In other words, the values of M
are the same along indices with the same partition
pattern. Therefore, M has exactly B(k1 +k2) degrees
of freedom, each corresponding to a different partition
pattern.

This theorem implies that if we are interested in under-
standing the constituent parts of a permutation equiv-
ariant linear map M , it is necessary to inspect its in-
dices corresponding to the same partition pattern in
M for every partition P of {1, 2, . . . , k1 + k2}.
Definition 4.1 (Bell Number). The n’th Bell number,
denoted B(n), counts the number of different ways to
partition n into a non-empty subsets.

Definition 4.2 (Stirling Numbers of the second kind).
Stirling numbers of the second kind, denoted S(n, k),
count the number of ways to partition a set of n labeled
elements into k non-empty, unlabeled subsets.
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The following notation is used to index elements of a
kth order tensor according to partitions of k. Given

a kth order tensor M ∈ Rnk , and a partition P of
{1, . . . , k}, we use the notation MP to denote the set
of indices of M that have an equality pattern corre-
sponding to P: indices in the same subset have the
same value and indices in different subsets have differ-
ent values.

Example 1. An adjacency matrix A is a second or-
der tensor. For k = 2, we only have two partitions of
{1, 2}: P1 =

{
{1, 2}

}
and P2 =

{
{1}, {2}

}
. The en-

tries of A corresponding to partition {{1, 2}} are the
diagonal entries: AP1

= {Aij | i = j}. The entries
of A that correspond to partition

{
{1}, {2}

}
are the

off-diagonal entries: AP2 = {Aij | i 6= j}.
Example 2. Let M ∈ Rn×n×n be a
third order permutable tensor. There
are five partitions of {1, 2, 3}, which are:{
{1, 2, 3}

}
,
{
{1, 2}, {3}

}
,
{
{1, 3}, {2}

}
,
{
{2, 3}, {1}

}
,

and
{
{1}, {2}, {3}

}
. Then we have five equivalence

classes of entries of M , each corresponding to one of
the partitions.

The first partition: {{1, 2, 3}} describes the diagonal
entries of M : {Mijk | i = j = k}. The 2nd, 3rd, and
4th partitions describe entries of M with two indices
with the same value and the remaining index being
different from the other two. Finally, the last partition{
{1}, {2}, {3}

}
corresponds to the entries of M where

all the indices are different: {Mijk | i 6= j 6= k}

We now introduce some convenient notation for de-
scribing linear mappings between k1 and k2th order
tensors. If we have T1 a k1th order tensor and T2 a
k2th order tensor, such that the entries of T2 are a lin-
ear function of the entries of T1. By linearity, we can
express indices of T2 as:

[T2]I =
∑

J∈[n]k1

MI,J [T1]J

where I ∈ [n]k2 is a k2-tuple of the integers 1, . . . , n
and M ∈ Rk1+k2 contains the coefficients underlying
the linear function that maps T1 to T2. MI,J denotes
the index of M associated with the k1 + k2 tuple of
the concatenation of tuples I and J . We also say that
T2 = M · T1

To better understand the implications of M being con-
stant on each equivalence class of indices, let T1 and
T2 be 3rd order tensors where T2 = φ(T1) for some

linear permutation equivariant mapping φ : Rnk1 →
Rnk1 . Denote M ∈ Rnk2×nk1 as the matrix such that
T2 = M · T1. We will also use the notation M[P] ∈ R
to denote the shared scalar value in the entries of M
corresponding to partition P.

Let P =
{
{1}, {2, 3, 4}, {5, 6}

}
be our running exam-

ple partition/equivalence class. We associate a sep-
arate index variable i1, i2, . . . i|P| to each part of P.
For this partition, if we list which index variable each
of the original indices is associated with, we have
(i1, i2, i2, i2, i3, i3). We will also draw a vertical line
as a visual aid to demark the boundary between ”out-
put” and ”input” index variables: (i1, i2, i2︸ ︷︷ ︸

k2

| i2, i3, i3︸ ︷︷ ︸
k1

)

The part of our permutation equivariant map φ corre-
sponding to partition P is then:

[T2]i1,i2,i2 ←
∑
i3

Mi1,i2,i2|i2,i3,i3 [T1]i2,i3,i3 (3)

[T2]i1,i2,i2 ←M[P] ·
∑
i3

[T1]i2,i3,i3 (4)

Recall, that the elements of the weight matrix under-
lying a permutation equivariant layer must be con-
stant on indices with the same partition pattern, hence
Mi1,i2,i2|i2,i3,i3 = M[P] for all distinct i1, i2, i3. So we
can pull the constant M[P] out of the summation in
Eqn. (4).

The full linear map can be computed by evaluating the
the same update (equation (3)) for every partition P.
The advantage of breaking down our computation of
T2 in this manner is that we can systematically iso-
late the operations that are applied only on T1 and
operations that need to be applied to T2. In our ex-
ample above, the operation applied to T1 amounted
to a summation over two of its indices. which can be
efficiently computed by numerical libraries.

We make a distinction between variables based on
whether they are input or output variables (which side
of the dividing line they reside on).

1. Variables that only appear on the right hand side
of the line serve as dummy indicies for summation.
We call these summation variables.

2. Variables that appear on the left side of the line
serve as ”free” variables in the output tensor
which determine how the result is broadcast into
T2. If a given index appears more than once, then
the result is pushed to the corresponding diagonal
slice of T2. These variables are called broadcast
variables.

3. Finally, there are variables that appear on both
sides of the dividing line such as i2 in our example
above. These tie together the input and output
side, therefore we call them transfer variables.
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5 ORGANIZING THE
COMPUTATION

The summation appearing in Eqn. (3) is shared across
all partitions P that partition k2 + 1, ..., k2 + k1 in the
same way. We can first compute all possible summa-
tions and then pair them with all possible left hand
sides (of the dividing line) and broadcast the result
into T2. There are three key quantities for organizing
this computation: (a) ns, the number of indices on the
right of the dividing line that are associated with sum-
mation variables, (b) nb, the number of indices on the
left which are associated with the broadcast variables,
(c) κ, the number of transfer variables.

5.0.1 Sums

There are
(
k1
ns

)
ways of choosing summation indices.

For each choice, there are B(ns) ways of partition-
ing the ns summation indices into distinct summation
variables. If two summation indices are grouped to-
gether, then the summation occurs on the ”diagonal”.
Therefore, the total number of distinct expressions like
Equation (3) must be:

k1∑
ns=0

(
k1
ns

)
B(ns)

The complexity of each of these sums is O(nns). Each
of these sums has k1 − ns unbound indices, so the
summation results in a tensor of order k1 − ns.
Example 3. For k1 = 3, we have:

(
3
0

)
B(0)+

(
3
1

)
B(1)+(

3
2

)
B(2)+

(
3
3

)
B(3) = 1+3+6+5 = 15 different tensors

that appear in the case of k1 = 3. In the supplement
we show exactly what these 15 tensors are.

The crucial takeaway here is that summations over
various indices can be reused for various parts of the
equivariant layer if they share the same summation
variables and partition pattern.

5.0.2 Transfer Operations

The κ transfer variables are assigned to the k1 − ns
indices of the summation tensors, but we have to in-
troduce yet another partition index Pt, since multiple
indices of the summation tensor may be tied to the
same transfer variable. In addition, we need to ac-
count for the κ! possible permutations of the transfer
variables. The total number of such transfer tensors
is1

B(k1) +

k1∑
κ=1

κ!

k1∑
ns=0

S(k1 − ns, κ)

(
k1
ns

)
B(ns)

1S(n, k) denotes a Stirling number of the 2nd kind

The transfer variables in Equation (3) tell us where to
send the result of our intermediate summation opera-
tions.

Example 4. Consider the partition P ={
{1, 4}, {2, 5}, {3, 6}

}
for a 3rd order to 3rd or-

der equivariant layer. The number of transfer
variables is κ = 3 and the output tensor associated
with this partition is: [T2]i1,i2,i3 ← M[P][T1]i1,i2,i3 .
In matrix form, it is: T2 ←M[P]T1.

We could also have the transfer operation be slightly
different according to the 3! ways we could have allot-
ted the transfer variables from the k2 side among the
k1 side’s transfer variables:

[T2]i1i2i3 ← λ1[T1]i1,i2,i3 , [T2]i1i3i2 ← λ2[T1]i1,i2,i3

[T2]i2i1i3 ← λ3[T1]i1,i2,i3 , [T2]i2i3i1 ← λ4[T1]i1,i2,i3

[T2]i3i1i2 ← λ5[T1]i1,i2,i3 , [T2]i3i2i1 ← λ6[T1]i1,i2,i3

5.0.3 Broadcasting

Finally, for each transfer tensor we need to consider
how many different ways it can be applied to the out-
put tensor. For any value of κ, nb must be in the range
0 ≤ nb ≤ k2−κ and for each value of nb we can choose
which indices become broadcast versus transfer vari-
ables as well as how the broadcast and transfer indices
are partitioned into variables amongst themselves. So
the total number of ways of broadcasting such a ten-
sor is:

∑k2
nb=0 S(k2 − nb, κ)

(
k2
nb

)
B(nb). For every pos-

sible way of constructing a transfer tensor, we have
the above number of ways to mold it into a broadcast
tensor. Thus, the total number of broadcasting oper-

ations is: B(k1)B(k2) +
∑min(k1,k2)
κ=1 κ!

[∑k1
ns=0 S(k1 −

ns)
(
k1
ns

)
B(ns)

][∑k2
nb=0 S(k2− nb)

(
k2
nb

)
B(nb)

]
. The fol-

lowing theorem shows that this expression is in fact
equal to the Bell number B(k1 + k2), which is the ex-

pected number of operands in a Rnk1 → Rnk2 per-
mutation equivariant linear layer as derived by Maron
et al. (2018).

In practice, the transfer and broadcasting parts of this
framework can be efficiently implemented in GPU ac-
celerated numerical libraries such as PyTorch (Paszke
et al., 2019) with various primitive tensor operations.

Theorem 2.

B(k1 + k2) =B(k1)B(k2) +

min(k1,k2)∑
κ=1

κ!

×
[ k1∑
ns=0

S(k1 − ns, κ)

(
k1
ns

)
B(ns)

]
×
[ k2∑
nb=0

S(k2 − nb, κ)

(
k2
nb

)
B(nb)

]
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Proof. Suppose we have k2 + k1 balls arranged from
left to right. By definition of the Bell numbers, the
number of ways to partition these balls into non-empty
subsets is B(k1 + k2).

We can also count the number of partitions of these
k2 + k1 balls by counting the number of ways we
can construct partitions with κ subsets containing
balls spanning the first k2 balls and the last k1 for
κ = 0, 1, .... balls. Let nb denote the number of balls
assigned to subsets of the partition that contained
within the first k2 balls, and ns denote the number
of balls assigned to subsets contained in the last k1
balls.

Case 1: κ = 0. There are B(k2) ways to partition
the first k2 balls and likewise B(k1) ways to partition
the last k1 balls, giving us a total of B(k1)B(k2) total
ways to partition the balls such that no subset of the
partition spans the two sides.

Case 2: κ > 0. For this case we consider ns, nb,
the number of balls on the two sides that belong to
sets that do not cross the divide. For each possible
value of ns, there are

(
k1
ns

)
ways to pick the ns balls,

and B(ns) ways to partition these balls. In the re-
maining k1 − ns balls on this side of the divide, we
can split them among the κ subsets that cross the di-
vide in S(k1 − ns, κ) ways by definition of the Stirling
numbers of the second kind. This gives us the ex-
pression

∑k1
ns=0 S(k1−ns, κ)

(
k1
ns

)
B(ns). By symmetry,

the expression for the number of ways to pick the nb
balls in subsets lying entirely on the k2 side of the di-
vide must be

∑k2
nb=0 S(k2 − ns, κ)

(
k2
nb

)
B(nb). For each

possible value of κ, we can permute the ordering of
these subsets κ! ways. Putting everything together,

we have the expression
∑min(k1,k2)
κ=1 κ!

[∑k1
ns=0 S(k1 −

ns, κ)
(
k1
ns

)
B(ns)

][∑k2
nb=0 S(k2 − nb, κ)

(
k2
nb

)
B(nb)

]
as

desired.

Theorem 2 tells us that the number of ways of con-
structing broadcast tensors according to our sum/-
transfer/broadcast procedure is in fact exactly the
number of tensors we should expect according to
Maron et al. (2018).

5.1 Constructing a Broadcast Tensor for a
Specific Partition

Algorithm 1 and 2 detail the steps involved in con-
structing a permutation equivariant layer between
k1 → k2’th order permutable tensors. We find it eas-
iest to understand the construction of the broadcast
tensors through examples so we provide two more ex-
amples before writing the general form of the output
rule.

Example 5. Let T2 ∈ Rn2

be a 3rd order tensor.
Suppose we want to construct a 3 → 3 equivariant
layer. We consider partitions of {1, . . . , 6}. Let P ={
{1, 4}, {2, 3}, {5, 6}

}
. There is 1 transfer variables for

P corresponding to the subset containing 1 and 4 that
span the k1 and k2 divide. The summation tensor is
a 1st order permutable tensor:

∑
i3
Ti1,i3,i3 and gets

broadcast to T2 as follows:

[T2]i1i2i2 ← λ
∑
i3

[T1]i1i3i3

Example 6. Using the same third order ten-
sors in Example (5), consider the partition P ={
{1, 2}, {3, 4}, {5, 6}

}
. Here we have a transfer vari-

able that links the first index of T1 to the last index
of T2. The summation tensor is identical to the sum-
mation tensor in the previous example, so the only
difference is how we broadcast the summation tensor
to the output tensor.

[T2]i1i1i2 ← λ
∑
i3

[T1]i2,i3,i3 .

In general, if we have T1 ∈ Rnk1 ,T2 ∈ Rnk2 ,
the broadcast tensor associated with partition P =
{S1, . . . , S|P|}, where the Si’s are non-intersecting sub-
sets of {1, 2, . . . , k1+k2}, can be described elementwise
by the following rule:

[T2]iψ(1),...,iψ(k2)
←

∑
iz :z 6∈{ψ(j)|j∈[k2]}

[T1]iψ(k+1),...,iψ(k1+k2)

for all entries ij ∈ {1, . . . n}, and i1 6= i2 6= . . . 6= i|P|.
The summation is applied over indices that are transfer
variables. The function ψ sends each of the numbers
1, 2, . . . , k1 + k2 to the index of the subset containing
it. Formally, ψ : {1, 2, . . . , k1 + k2} → {1, 2, . . . , |P|},
ψ(a) = b, where a ∈ Sb in the partition P.

5.2 Making the Layer Learnable

Once we have constructed each of the necessary broad-
cast tensors, the output tensor is just a linear com-
bination of each of these broadcast tensors. Given
an input Rnk1 tensor. By constructing each of the
B(k1 + k2) tensors according to the sum/transfer-
/broadcast framework and stacking the results we end
up with a multidimensional array of shape nk2 × 1 ×
B(k1 + k2), which can be mapped back to a tensor of
shape nk2 × 1 by taking a linear combination of the
stack of B(k1 + k2) tensors.

If the input were instead nk1×d1 we would have an in-
termediate tensor of shape nk2×d1×B(k1 +k2) which
can subsequently be mixed to nk2×d2, where d2 is the
desired output dimension size. Algorithm 2 provides
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the pseudocode for a k1 → k2 permutation equivariant
layer. See the code samples in the Supplement for a
concrete instantiation of some of the equivariant lay-
ers. The easiest way to perform this linear mixing on
line 3 of Algorithm (2) is with an Einstein summation.

For example, if X̂ ∈ Rn3×d1×k and M ∈ Rd1×k×d2 is
the learnable weight matrix, then we can linearly mix
the last two indices of X̂ with the following Einstein
summation: torch.einsum("ijkde,def->ijkf", X,

M).

Algorithm (2) says to compute the broadcast tensor
associated with each partition, but this is not strictly
necessary. We can pick a subset of the possible parti-
tions to use in our equivariant layer if we have some
idea of which sort of interactions are important and
which are negligible.

Algorithm 1: construct ops for a k1 → k2’th
order layer

Input : k1 ∈ N, the order of the input tensor,
k2 ∈ N, the order of the output tensors

X ∈ Rnk1×d1 , a k1th order permutable
tensor

Output: List of length B(k1 + k2) of permutable

tensors in Rnk2×d1
1 lst = [ ]

2 foreach Partition P ∈ Partitions of (k1 + k2) do

3 Construct XP , the appropriate broadcast
tensor of X corresponding to P according to
section 5.1

4 lst.append(XP)

5 end foreach
6 return lst

Algorithm 2: k1 → k2 Permutation Equivariant
Layer

Input : X ∈ Rnk1×d1 , a k1th order permutable
tensor
M ∈ Rd1×B(k1+k2)×d2 , a learnable

weight matrix

Output: Z ∈ Rnk2×d2 , a k2th order permutable
tensor

1 Construct list of B(k1 + k2) intermediate tensors :
ops← construct ops(k1, k2,X)

2 Stack layers to produce X̂ ∈ Rnk2×d1×B(k1+k2):

X̂← stack(ops)

3 Linearly mix X̂ with M along X̂’s last two indices:

Z← X̂ ·M
4 return Z

6 EXPERIMENTS

We evaluated our framework for permutation equivari-
ance by considering equivariant architectures on two
set learning tasks: counting unique elements from a
set of images, and predicting the efficacy of a set of
drugs in inhibiting E. coli growth.

6.1 Counting Unique Elements of a Set

We follow the experimental setup proposed by Lee
et al. (2019). Using the Omniglot (Lake et al.,
2015) dataset which contains 1623 different handwrit-
ten characters from 50 different languages, we sample
sets of characters and try to predict the number of
unique characters in each set.

For each batch in our training data we sample a set
size n uniformly from {6, 7, . . . , 10}. For each example
in the batch, we sample a unique character count c in
{1, . . . , n} and then sample n images that have exactly
c unique characters among them from the training por-
tion of the Omniglot dataset. We compare Deep Sets
(Zaheer et al., 2017), and Set Transformer (Lee et al.,
2019) based models against our models that used 2nd
order equivariant layers. In each network, we use a
basic convolutional neural network to encode the im-
ages, before feeding the resulting set of embedded im-
ages into permutation equivariant layers. For the sec-
ond and third order equivariant networks, we construct
second and third order permutable tensors by using a
second and third order outer product. Following Lee
et al. (2019) and Shi et al. (2020), we train each of the
networks to perform Poisson regression to predict the
number of unique characters and minimized the nega-
tive log likelihood. In all experiments, we fixed the ar-
chitecture of the intermediate convolutional neural net
used to map the input image to a fixed d dimensional
feature vector. See the supplement for full details on
our model architectures and training procedure.

6.2 Predicting the Efficacy of Drug Cocktails

Predicting the efficacy of drug combinations is a com-
mon problem in pharmacology. Researchers consider
the problem of finding the optimal subset of drugs to
inhibit the growth of E.coli and tuberculosis in Tekin
et al. (2018); Katzir et al. (2019); Cokol et al. (2017).
The goal in these experiments, broadly, is to predict
the efficacy of unseen drug combinations. This is a
challenging problem due to to the sheer number of
combinations of drugs and dosage levels possible.

We use data collected by Tekin et al. (2018), which
consists of measurements of E.coli growth after it had
been treated with drug combinations of size 1, 2, 3, 4
and 5 out of eight possible antibiotics. For every set
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Table 1: Test accuracy on unique characters task

Model Accuracy Parameters Time per minibatch

Deep Sets 0.62(±0.011) 298, 281 0.121s
Set Transformer 0.74(±0.021) 216, 745 0.128s

2nd Order Network (ours) 0.72(±0.018) 139, 661 0.128s
3rd Order Network (ours) 0.69(±0.014) 96, 425 0.129s

Table 2: Test MAE, RMSE on drug combination efficacy prediction task

Model MAE RMSE Parameters Time per epoch

Deep Sets (sum) 6.00(±0.04) 8.31(±0.11) 1, 068, 833 0.61s
Set Transformer 5.78(±0.12) 8.21(±0.20) 750, 881 0.73s

2nd Order Network (ours) 5.80(±0.09) 8.14(±0.14) 259, 617 0.70s
3rd Order Network (ours) 5.84(±0.06) 8.08(±0.08) 227, 105 1.50s

of antibiotics tested, each of the antibiotics in the set
was tested at three dosage levels. The dataset con-
tains three measurements of the bacteria growth as
proportion of the control experiment’s growth for ev-
ery combination of up to five drugs, and each possible
dosage level for each drug. There are measurements
for 24 single, 306 pair, 2403 triplet, 9639 quadruplet
and 13608 quintuplet drug combinations.

We use the median of the three measurements as the
target value to predict for each drug combination and
minimize the mean squared error. Our training set
consisted of all the experiments for up to 4 drugs and
80% of the size five drug combinations. The test set
is the remaining 20% of size five drug combinations.
We construct neural networks that uses 2 → 2 and
3 → 3 permutation equivariant layers and compare it
against Deep Sets and Set Transformer based architec-
tures. We train for a maximum of 12, 000 epochs for
all experiments.

Table (2) shows the average MAE and RMSE over five
random seeds with the standard deviations in paren-
thesis. The 2nd and third order networks are compa-
rable to the set transformer while using a fraction of
the parameters of both baseline models. Third order
networks take the longest of the four models, which
is not surprising since we have to construct third or-
der tensors to even use the third order layers. For full
details on the experiments, see our supplement.

We find that our permutation equivariant architec-
tures perform comparably to the Set Transformer and
Deep Sets baselines on both tasks. While we can-
not definitively say that our models work better or
worse, our models do require much fewer parameters
to achieve similar results.

7 CONCLUSION

We gave a prescription for how to construct permuta-
tion equivariant layers between permutable tensors of
arbitrary order and showed that the layers constructed
in this manner are the full set of equivariant opera-
tions possible in each layer. Our experiments demon-
strate their effectiveness compared to other permuta-
tion equivariant architectures and provide a template
of how to use more expressive intermediate permuta-
tion equivariant layers.
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Max Welling. Spherical cnns. arXiv preprint
arXiv:1801.10130, 2018.



Permutation Equivariant Layers for Higher Order Interactions

Murat Cokol, Nurdan Kuru, Ece Bicak, Jonah
Larkins-Ford, and Bree B Aldridge. Efficient mea-
surement and factorization of high-order drug in-
teractions in mycobacterium tuberculosis. Science
advances, 3(10), 2017.

Matthew J Dolan and Ayodele Ore. Equivariant en-
ergy flow networks for jet tagging. Physical Review
D, 103(7):074022, 2021.

Yihe Dong, Will Sawin, and Yoshua Bengio. Hnhn:
Hypergraph networks with hyperedge neurons.
arXiv preprint arXiv:2006.12278, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

David K Duvenaud, Dougal Maclaurin, Jorge Ipar-
raguirre, Rafael Bombarell, Timothy Hirzel, Alan
Aspuru-Guzik, and Ryan P Adams. Convolutional
networks on graphs for learning molecular finger-
prints. Advances in Neural Information Processing
Systems, 28:2224–2232, 2015.

Carlos Esteves, Christine Allen-Blanchette, Ameesh
Makadia, and Kostas Daniilidis. Learning so (3)
equivariant representations with spherical cnns. In
Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 52–68, 2018.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong
Ji, and Yue Gao. Hypergraph neural networks. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 3558–3565, 2019.

Fabian B. Fuchs, Daniel E. Worrall, Volker Fischer,
and Max Welling. Se(3)-transformers: 3d roto-
translation equivariant attention networks. In Ad-
vances in Neural Information Processing Systems 34
(NeurIPS), 2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley,
Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. In International
conference on machine learning, pages 1263–1272.
PMLR, 2017.

Linxia Gong, Xiaochuan Feng, Dezhi Ye, Hao Li,
Runze Wu, Jianrong Tao, Changjie Fan, and Peng
Cui. Optmatch: Optimized matchmaking via mod-
eling the high-order interactions on the arena. In
Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, pages 2300–2310, 2020.

Devon Graham, Junhao Wang, and Siamak Ravan-
bakhsh. Equivariant entity-relationship networks.
arXiv preprint arXiv:1903.09033, 2019.

Jason Hartford, Devon Graham, Kevin Leyton-Brown,
and Siamak Ravanbakhsh. Deep models of interac-
tions across sets. In International Conference on
Machine Learning, pages 1909–1918. PMLR, 2018.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep
convolutional networks on graph-structured data.
arXiv preprint arXiv:1506.05163, 2015.

Itay Katzir, Murat Cokol, Bree B Aldridge, and Uri
Alon. Prediction of ultra-high-order antibiotic com-
binations based on pairwise interactions. PLoS com-
putational biology, 15(1):e1006774, 2019.

Nicolas Keriven and Gabriel Peyré. Universal invariant
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Appendix

• Section A of our appendix gives further details on the permutation equivariant layers and their construction

• Section B discusses the general architectural template for using higher order permutation equivariant layers

• Section C and D provide further details on the experiments

A EQUIVARIANT LAYER DETAILS

For a permutation equivariant layer that maps a 2nd order permutable tensor to a 2nd order permutable tensor,
we have B(2 + 2) = 15 operations in total that are listed in Table 3. Notice that the intermediate summation
tensors (row sum, colum sum, diagonal) get re-used in multiple operations.

Partition Pattern Update Description
1 {1, 2, 3, 4} (i1, i1, | i1, i1) [T2]ii ← λ1[T1]ii Diag of T1 sent to diag of T2
2 {1}, {2, 3, 4} (i1, i2, | i2, i2) [T2]ij ← λ2[T1]jj Diag of T1 sent to rows of T2
3 {2}, {1, 3, 4} (i1, i2, | i1, i1) [T2]ij ← λ3[T1]ii Diag of T1 sent to cols of T2
4 {3}, {1, 2, 4} (i1, i1, | i2, i1) [T2]ii ← λ4

∑
j [T1]ji Row sum of T1 sent to diag of T2

5 {4}, {1, 2, 3} (i1, i1, | i1, i2) [T2]ii ← λ5
∑
j [T1]ij Col sum of T1 sent to diag of T2

6 {1, 2}, {3, 4} (i1, i2, | i3, i4) [T2]ii ← λ6
∑
j [T1]jj Diag sum of T1 sent to diag of T2

7 {2, 3}, {1, 4} (i1, i2, | i2, i1) [T2]ij ← λ7[T1]ji Transpose of T1 sent to T2
8 {1, 3}, {2, 4} (i1, i2, | i1, i2) [T2]ij ← λ8[T1]ij T1 sent to T2
9 {1}, {2}, {3, 4} (i1, i2, | i3, i3) [T2]ij ← λ9

∑
k[T1]kk Diag sum of T1 sent to T2

10 {1}, {3}, {2, 4} (i1, i2, | i3, i2) [T2]ij ← λ10
∑
k[T1]kj Row sum of T1 sent to cols of T2

11 {1}, {4}, {2, 3} (i1, i2, | i2, i3) [T2]ij ← λ11
∑
k[T1]jk Col sum of T1 sent to cols of T2

12 {3}, {4}, {1, 2} (i1, i1, | i3, i4) [T2]ii ← λ12
∑
k,l[T1]kl Sum of all of T1 sent to diag of T2

13 {2}, {4}, {1, 3} (i1, i2, | i1, i3) [T2]ij ← λ13
∑
k[T1]ik Col sum of T1 sent to rows of T2

14 {2}, {3}, {1, 4} (i1, i2, | i3, i1) [T2]ij ← λ14
∑
k[T1]ki Row sum of T1 sent to rows of T2

15 {1}, {2}, {3}, {4} (i1, i2, | i3, i4) [T2]ij ← λ15
∑
kl[T1]kl Sum of all of T1 sent to T2

Table 3: Operations to construct the broadcast tensors in a 2 to 2 layer

A.1 Complexity of Operations

There are two parts to computing a k1’th to k2’th order equivariant layer: computing the intermediate broadcast
tensors and computing the linear mixing of these layers. In general, for a k1th to k2th order layer, we first
construct intermediate summation tensors of order k1 − ns where ns ≤ k1 is the number of summation indices.
The complexity of this constructing this summation tensor involves summing over the ns summation indices
which is a O(nns) operation. Recall from the main body of our paper that if we have ns summation indices,
there are

(
k1
ns

)
B(ns) total summation tensors. So the cost of computing all required summation tensors is:∑k1

ns=0

(
k1
ns

)
B(ns)O(nns).

The complexity of the constructing the broadcast tensor from a given summation tensor is not quite as obvious.
Most of the broadcast tensors are constructed by applying torch.expand on the relevant summation tensor to
broadcast the summation tensor across various dimensions of the output tensor. torch.expand (in contrast to
torch.repeat or torch.tile) does not allocate new memory - it only changes the view of a tensor, which is a
constant time operation. The computation cost for doing the appropriate broadcasting operations is dominated
by the cost of constructing the summation tensors, and the cost of the linear mixing of the broadcast tensors.
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A.2 Linearly Mixing the Broadcast Tensors

Suppose our input for a k1 → k2 permutation equivariant layer is a tensor living in Rb×nk1×din , where b is the
batch size. After constructing all possible broadcast tensors, we have a tensor of shape b×nk2×din×B(k1 +k2).
This can now be mixed with a linear layer that mixes the d×B(k1 + k2) features amongst themselves. Let the
output dimension be dout. We apply an Einstein summation to perform the linear mixing. For instance:

• For a 2→ 2 permutation equivariant layer, the input X of the layer has shape b× n× n× din. After con-

structing and stacking the B(2 + 2) = 15 broadcast tensors, we have a tensor of shape X̂ ∈ Rb×n×n×din×15.
Let M ∈ Rdin×15×dout be the coefficient matrix that linearly mixes the broadcast tensors. Our output 2nd
order tensor would be the result of the following Einstein summation:

Xout = einsum("bijde,def->bijf", X̂,M)

• For a 3→ 3 permutation equivariant, the input X has shape b×n×n×n×din. The stack of broadcast tensors

will be X̂ ∈ Rb×n×n×n×din×203 (B(3 + 3) = 203). The coefficient matrix is M ∈ Rdin×203×dout . Similar to
the 2→ 2 case, our output 3nd order tensor would be the result of the following Einstein summation:

Xout = einsum("bijkde,def->bijkf", X̂,M)

Theorem 3. Linear combinations of kth order permutable tensors of size Rnk×1 are still kth order permutable
tensors.

Proof. Taking the scalar multiple of a permutable tensor is an elementwise operation. Taking the sum of two
permutable tensors is also an elementwise operation. Elementwise operations commute with the permutation
action so we are done.

This theorem tells us we can freely take linear combinations of broadcast tensors without worrying about breaking

permutation equivariance. All of our writing on kth order permutable tensors of size Rnk×1 extends to permutable

tensors of arbitrary feature dimension size Rnk×d.

B ARCHITECTURE

Recall that the layers we propose take in as input a k1th order permutable tensor and return a k2th order
permutable tensor. In most cases we will want k1 = k2 and we can view the layer as a linear mapping that can
replace row-wise linear layers. If our data comes in the form of kth order permutable tensors then we can simply
use them necessary and treat them as a linear layer that is more expressive than a row-wise linear layer. Generally
our data does come in the fomr of first order permutable tensors. In the set learning case, for each instance
of data, we might have a d-dimensional feature vector associated with each entitty. Our data comes in pairs

(Xi, yi), where Xi = {x(i)1 , x
(i)
2 , . . . , x

(i)
n } is a set of items. yi ∈ R for a regression task or yi ∈ {0, 1, . . . ,M − 1}

for a M -way multiclass classfication task. We can trivially construct kth order tensors by taking a k-way outer
product of the entities.

For our second order and third order architectures, we followed the following general architecture:

1. encode each item of the set (ex: a resnet for images, row-wise MLP, row-wise linear layer, etc)

2. construct a 2nd (or 3rd) order tensor through a 2nd(or 3rd) order outer product:

second order = torch.einsum("bid,bjd->bijd", x, x)

third order = torch.einsum("bid,bjd,bkd->bijkd", x, x, x)

3. apply 2→ 2 (or 3→ 3) permutation equivariant layer, followed by a ReLU

4. use a permutation invariant pooling operation (sum or mean) over the entity indices to get an embedding
vector of the entire set

5. decode the set embedding vector with a linear layer or MLP to get the final output

In the models used in our experiments, we used two permutation equivariant layers in step 3 above.
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C UNIQUE CHARACTERS EXPERIMENT

In the unique characters experiment, we receive as input a set of images sampled from the Omniglot (Lake et al.,
2015) dataset. The goal is to then predict the number of unique characters in this set of images.

Each minibatch of data is generated in the following way:

• Sample a set length n for the batch uniformly at random from {6, 7, . . . , 10} from the Omniglot dataset

• For the ith example of the batch, sample a unique character count ci ∈ {1, 2, . . . , n}

• Sample exactly n images such that among the n images, there are exactly ci unique characters for the ith
example of the batch.

C.1 Training Details

We follow the same experimental procedure as Lee et al. (2019); Shi et al. (2020) and perform Poisson regression
by having the network return a 1-dimensional output for the λ parameter of the predicted Poisson distribution.
We use the log likelihood as the loss function to optimize over during training.

We trained the models with a fixed batch size of 32, and a constant learning rate of 10−3 using ADAM as the
optimizer (Kingma and Ba, 2014). We had experimented with learning rates between 10−4 and 10−3 and found
that the learning rate did not meaningfully affect the results. For all models, we trained for at most 200, 000
minibatches. We used the same basic CNN encoder for all the models we experimented with. The architecture
used for the CNN is the same one used by Shi et al. (2020) except with the number of channels set to 12 in each
of the convolutional layers. Using additional channels, and additional layers in the CNN embedding module did
not affect the prediction accuracy much so we kept the CNN embedding module’s architecture the same for all
experiments.

The main hyperparameters to tune were the embedding dimension of the CNN (also the input dimension of
the permutation equivariant layers) and the output dimension of the permutation equivariant layer. We tested
embedding and output dimension sizes from 32, 64, 96, 128, and 256 by training for 1000 minibatches and using
the embedding/output size settings that had the best training accuracy up to that point.

Table 2 details the misceallaenous hyperparameter settings. All experiments were run on an Nvidia GeForce
GTX 1080 Ti GPU.

Table 4: Misc. hyperparameters for unique characters experiments
Model Batch Size Dropout Embedding dim Output dim

Deep Sets 32 0 256 256
Set Transformer 32 0 128 128

2nd Order Network (ours) 32 0 64 128
3nd Order Network (ours) 32 0 64 128

D DRUG COMBINATION EXPERIMENT

In the drug combinations experiment, we receive as input a set of drugs that was applied to inhibit the growth of
pathogenic ecoli. The goal is to then predict the efficacy of this drug combination in terms of the proportion of
growth exhibited by the specimen compared to a control experiment (where no drugs were applied). We used the
data of drug combination experiments on E.coli released by Tekin et al. (2018). The data is originally released
in pdf format so we parsed the pdf to csv format to extract the data. As mentioned in the main body of the
paper, the training data consisted of: all drug experiments with up to 4 drugs and 80% of the experiments on 5
drugs. The remaining 20% of five drug experiment data was used as the test set.

We zero pad the data so that each batch of data comes in as a tuple of int tensor and float tensor of uniform
shape: (b × 5, b × 5), where b is the batch size. The int tensor contains the identities of each drug used in the
experiment (expressed as an integer between 0 and 8). The float tensor contains the dosage levels of each drug
used.
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D.1 Training Details

We trained all models for at most 12, 000 epochs, with a batch size of 512, and a learning rate 10−3 using ADAM
(Kingma and Ba, 2014). Our models minimized mean squared error loss.

The main parameter to tune here, as in the unique characters experiment, were the input and output dimensions
(denoted hidden size and output size in Table 3) of the permutation equivariant layers for our models.

Before honing in on a specific architecture that used our 2nd and 3rd order equivariant layers, we tested other
architectures that used more equivariant layers, or a multilayer perceptron (instead of a linear layer) output on
shorter training schedules (around 1000 epochs). We found that using dropout (with p = 0.50) was crucial to
avoid overfitting to the training set in our 2nd and 3rd order networks. We also tried using batch normalization
but found that it only slowed training without offering much if any improvements in training/test error.

Table 5: Misc. hyperparameters for drug combination efficacy experiments
Model Batch Size Dropout Embed dim Hidden Dimension Output dim

Deep Sets 512 0 32 512 512
Set Transformer 512 0 32 256 512

2nd Order Network (ours) 512 0.50 32 256 512
3nd Order Network (ours) 512 0.50 32 256 256

Third order networks are still a bit hard to train and take a bit more time than the 2nd order network. This is
not surprising since the forward pass of the third order network requires an expensive 3rd order outer product.

E CODE

For the full implementation of our model and experiments, please see our repository: https://github.com/

horacepan/permeqlayers/.

https://github.com/horacepan/permeqlayers/
https://github.com/horacepan/permeqlayers/
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