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Abstract

As machine learning (ML) models become
more widely deployed in high-stakes appli-
cations, counterfactual explanations have
emerged as key tools for providing actionable
model explanations in practice. Despite the
growing popularity of counterfactual expla-
nations, a deeper understanding of these
explanations is still lacking. In this work,
we systematically analyze counterfactual
explanations through the lens of adversarial
examples. We do so by formalizing the
similarities between popular counterfactual
explanation and adversarial example gener-
ation methods identifying conditions when
they are equivalent. We then derive the up-
per bounds on the distances between the so-
lutions output by counterfactual explanation
and adversarial example generation methods,
which we validate on several real world data
sets. By establishing these theoretical and
empirical similarities between counterfactual
explanations and adversarial examples, our
work raises fundamental questions about
the design and development of existing
counterfactual explanation algorithms.

1 INTRODUCTION

With the increasing use of Machine learning (ML)
models in critical domains, such as health care and
law enforcement, it becomes important to ensure that
their decisions are robust and explainable. To this end,
several approaches have been proposed in recent litera-
ture to explain the complex behavior of ML models (Si-
monyan et al., 2013; Ribeiro et al., 2016; Lundberg and
Lee, 2017; Sundararajan et al., 2017). One such pop-
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ular class of explanations designed to provide recourse
to individuals adversely impacted by algorithmic deci-
sions are counterfactual explanations (Wachter et al.,
2017; Ustun et al., 2019; Barocas et al., 2020; Venkata-
subramanian and Alfano, 2020). For example, in a
credit scoring model where an individual loan applica-
tion is denied, a counterfactual explanation can high-
light the minimal set of changes the individual can
make to obtain a positive outcome (Pawelczyk et al.,
2020a; Karimi et al., 2020c). Algorithms designed
to output counterfactual explanations often attempt
to find a closest counterfactual for which the model
prediction is positive (Wachter et al., 2017; Ustun
et al., 2019; Pawelczyk et al., 2020a; Karimi et al.,
2020c).

Adversarial examples, on the other hand, were pro-
posed to highlight how vulnerabilities of ML models
can be exploited by (malicious) adversaries (Szegedy
et al., 2013; Ballet et al., 2019; Cartella et al., 2021).
These adversarial examples are usually also obtained
by finding minimal perturbations to a given data in-
stance such that the model prediction changes (Good-
fellow et al., 2014; Carlini and Wagner, 2017; Moosavi-
Dezfooli et al., 2016).

Conceptually, adversarial examples and counterfac-
tual explanations solve a similar optimization prob-
lem (Freiesleben, 2020; Wachter et al., 2017; Cartella
et al., 2021). Techniques generating adversarial exam-
ples and counterfactual explanations use distance or
norm constraints in the objective function to enforce
the notion of minimal perturbations. While adversar-
ial methods generate instances that are semantically
indistinguishable from the original instance, counter-
factual explanations or algorithmic recourse1, encour-
age minimal changes to an input so that so that a

1Note that counterfactual explanations, contrastive ex-
planations, and recourses are used interchangeably in prior
literature. Counterfactual/contrastive explanations serve
as a means to provide recourse to individuals with unfa-
vorable algorithmic decisions. We use these terms inter-
changeably as introduced and defined by Wachter et al.
(2017).



Exploring Counterfactual Explanations Through the Lens of Adversarial Examples

user can readily act upon these changes to obtain the
desired outcome. In addition, some methods in both
lines of work use manifold-based constraints to find
natural adversarial examples (Zhao et al., 2018) or re-
alistic counterfactual explanations by restricting them
to lie on the data manifold (Joshi et al., 2019; Pawel-
czyk et al., 2020a,b).

While the rationale of producing a counterfactual close
to the original instance is motivated by the desidera-
tum that counterfactuals should be actionable and eas-
ily understandable, producing close instances on the
other side of the decision boundary could just as eas-
ily indicate adversarial activity. This begs the ques-
tion to what extent do counterfactual explanation al-
gorithms return solutions that resemble adversarial ex-
amples. However, there has been little to no work on
systematically analyzing the aforementioned connec-
tions between the literature on counterfactual expla-
nations and adversarial examples.

Present Work. In this work, we approach the
study of similarities between counterfactual explana-
tions and adversarial examples from the perspective of
counterfactual explanations for algorithmic recourse.
Therefore, we consider consequential decision prob-
lems (e.g., loan applications) commonly employed in
recourse literature and our choices of data modalities
(i.e., tabular data) and algorithms are predominantly
motivated by this literature. In particular, we make
one of the first attempts at establishing theoretical and
empirical connections between state-of-the-art coun-
terfactual explanation and adversarial example gener-
ation methods.

More specifically, we analyze these similarities by
bounding the distances between the solutions of salient
counterfactual explanation and popular adversarial ex-
ample methods for locally linear approximations. Our
analysis demonstrates that several popular counter-
factual explanation and adversarial example genera-
tion methods such as the ones proposed by Wachter
et al. (2017) and Carlini and Wagner (2017); Moosavi-
Dezfooli et al. (2016), are equivalent for certain hy-
perparameter choices. Moreover, we demonstrate that
C-CHVAE and the natural adversarial attack (NAE)
(Zhao et al., 2018) provide similar solutions for certain
generative model choices.

Finally, we carry out extensive experimentation with
multiple synthetic and real-world data sets from di-
verse domains such as financial lending and criminal
justice to validate our theoretical findings. We fur-
ther probe these methods empirically to validate the
similarity between the counterfactuals and adversarial
examples output by several state-of-the-art methods.
Our results indicate that counterfactuals and adversar-

ial examples output by manifold-based methods such
as NAE and C-CHVAE are more similar compared to
those generated by other techniques. By establishing
these and other theoretical and empirical similarities,
our work raises fundamental questions about the de-
sign and development of existing counterfactual expla-
nation algorithms.

2 RELATED WORK

This work lies at the intersection of counterfactual ex-
planations and adversarial examples in machine learn-
ing. Below we discuss related work for each of these
topics and their connection.

Adversarial examples. Adversarial examples are
obtained by making infinitesimal perturbations to in-
put instances such that they force a ML model to
generate adversary-selected outputs. Algorithms de-
signed to successfully generate these examples are
called Adversarial attacks (Szegedy et al., 2013; Good-
fellow et al., 2014). Several attacks have been pro-
posed in recent literature depending on the degree
of knowledge/access of the model, training data, and
optimization techniques. While gradient-based meth-
ods (Goodfellow et al., 2014; Kurakin et al., 2016;
Moosavi-Dezfooli et al., 2016) find the minimum ℓp-
norm perturbations to generate adversarial examples,
generative methods (Zhao et al., 2018) constrain the
search for adversarial examples to the training data-
manifold. Finally, some methods (Cisse et al., 2017)
generate adversarial examples for non-differentiable
and non-decomposable measures in complex domains
such as speech recognition and image segmentation.
We refer to a well-established survey for a more com-
prehensive overview of adversarial examples (Akhtar
and Mian, 2018).

Counterfactual explanations. Counterfactual ex-
planation methods aim to provide explanations for
a model prediction in the form of minimal changes
to an input instance that changes the original pre-
diction (Wachter et al., 2017; Ustun et al., 2019;
Van Looveren and Klaise, 2019; Karimi et al., 2020b).
These methods are categorized based on the access
to the model (or gradients), sparsity of the gener-
ated explanation and whether the generated explana-
tions are constrained to the manifold (Verma et al.,
2020; Karimi et al., 2020b). To this end, Wachter
et al. (2017) proposed a gradient-based method to ob-
tain counterfactual explanations for models using a
distance-based penalty and finding the nearest coun-
terfactual explanation. Further, restrictions on at-
tributes such as race, age, and gender are generally en-
forced to ensure that the output counterfactual expla-
nations are realistic for users to act on them. In addi-
tion, manifold-based constraints are imposed in many
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methods (Pawelczyk et al., 2020a; Joshi et al., 2019)
so that the counterfactual explanations are faithful to
the data distribution. Finally, causal approaches have
recently been proposed to generate counterfactual ex-
planations that adhere to causal constraints (Karimi
et al., 2020a; Barocas et al., 2020; Karimi et al., 2021,
2020c).

Connections between adversarial examples and
counterfactual explanations. Conceptual connec-
tions between adversarial examples and counterfactual
explanations have been previously identified in the lit-
erature (Freiesleben, 2020; Browne and Swift, 2020).
While Freiesleben (2020) highlight conceptual differ-
ences in aims, formulation and use-cases between both
sub-fields suggesting that counterfactual explanations
represent a broader class of examples of which adver-
sarial examples represent a subclass, Browne and Swift
(2020) focus on discussing the differences w.r.t seman-
tics hidden layer representations of DNNs. Our goal,
on the other hand, is to theoretically formalize and
empirically analyze the (dis)similarity between these
fields.

3 PRELIMINARIES

Notation. We denote a classifier h : X→Y mapping
features x ∈ X to labels Y. Further, we define
h(x)=g(f(x)), where f : X→R is a scoring function
(e.g., logits) and g : R→Y an activation function that
maps output logit scores to discrete labels. Below
we describe some representative methods used in this
work to generate counterfactual explanations and
adversarial examples.

3.1 Counterfactual explanation
methods

Counterfactual explanations provide recourses by
identifying which attributes to change for reversing a
models’ adverse outcome. Methods designed to output
counterfactual explanations find a counterfactual x′

that is ”closest” to the original instance x and changes
the models’ prediction h(x′) to the desired label.
While several of these methods incorporate distance
metrics (e.g., ℓp-norm) or user preferences (Rawal and
Lakkaraju, 2020) to find the desired counterfactuals,
some efforts also impose causal (Karimi et al., 2020c)
or data manifold constraints (Joshi et al., 2019; Pawel-
czyk et al., 2020a,b) to find realistic counterfactuals.
We now describe counterfactual explanation methods
from two broad categories: 1) Gradient- (Wachter
et al., 2017) and 2) search-based (Pawelczyk et al.,
2020a).

Score CounterFactual Explanations (SCFE).
For a given classifier h and the corresponding scoring
function f , and a distance function d : X × X → R+,

Wachter et al. (2017) formulate the problem of finding
a counterfactual x′ for x as:

argmin
x′

(f(x′)− s)
2
+ λ d(x,x′), (1)

where s is the target score for x and λ is set to it-
eratively increase until f(x′)=s. More specifically, to
arrive at a counterfactual probability of 0.5, the target
score for g(x) for a sigmoid function is s=0, where the
logit corresponds to a 0.5 probability for y=1.

C-CHVAE. Let Iγ and Gθ denote the encoder and
decoder of the VAE model used by C-CHVAE (Pawel-
czyk et al., 2020a) to generate realistic counterfactuals.
Note that the counterfactuals for x are generated in
the latent space of the encoder Z, where Iγ : X → Z.
Let z and z̃ = z+δ denote the latent representation
and generated counterfactuals for the original instance
x. Intuitively, Gθ is a generative model that projects
the latent counterfactuals to the feature space and
Iγ allows to search for counterfactuals in the data
manifold. Thus, the objective function is defined as
follows:

δ∗ = argmin
δ∈Z

∥δ∥

s.t. h(Gθ(Iγ(x
f ) + δ),xp) ̸= h(xf ,xp),

(2)

where xp and xf indicate the protected and non-
protected features of x and Eqn. 2 finds the minimal
perturbation δ by changing the non-protected features
xm constrained to the data-manifold.

3.2 Adversarial example generation
methods

Similar to counterfactual explanation methods, most
methods generating adversarial examples also solve
a constrained optimization problem to find pertur-
bations in the input manifold that cause models to
misclassify. These methods are broadly categorized
into poisoning (e.g., Shafahi et al. (2018)) and ex-
ploratory (e.g., Goodfellow et al. (2014)) methods.
While poisoning methods attack the model during
training and attempts to learn, influence, and corrupt
the underlying training data or model, Exploratory
methods do not tamper with the underlying model
but instead generate specific examples that cause
the model to produce the desired output. Like
counterfactual explanation methods, evasion methods
also use gradient-based optimization to generate
adversarial examples. Below, we briefly outline three
evasion techniques considered in this work.

C&W Attack. For a given input x and classifier
h(·), Carlini and Wagner (2017) formulate the problem
of finding an adversarial example x′=x+δ such that
h(x′) ̸= h(x) as:

argmin
x′

c · ℓ(x′) + d(x,x′) s.t. x′ ∈ [0, 1]d (3)
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where c is a hyperparameter and ℓ(·) is a loss function
such that h(x′)=y if and only if ℓ(x′) ≤ 0. The con-
straint x′ ∈ [0, 1]d is applied so that the resulting x′ is
within a given data range.

DeepFool. For a given instance x, Deep-
Fool (Moosavi-Dezfooli et al., 2016) perturbs x by
adding small perturbation δDF at each iteration of the
algorithm. The perturbations from each iterations are
finally aggregated to generate the final perturbation
once the output label changes. The minimal pertur-
bation to change the classification model’s prediction
is the solution to the following objective:

δ∗DF(x) = argmin
δ

||δ||2

s.t. sign(f(x+ δ)) ̸= sign(f(x)),
(4)

where x is the input sample. The closed-
form step for each iteration is: δ∗DF= −
(f(x)/||∇f(x)||22)∇f(x).

Natural Adversarial Example (NAE). Similar to
C-CHVAE, Zhao et al. (2018) proposes NAE to search
for adversarial examples using a generative model Gθ

where the similarity is measured in the latent space of
Gθ. Thus, the objective is given by:

z∗ = argmin
z̃∈Z

∥z̃− Iγ(x)∥ s.t. h(Gθ(z̃)) ̸= h(x), (5)

where Iγ(x) corresponds to the latent representation
of x and Gθ(z̃) maps the latent sample to the feature
space. NAE separately trains an inverter function
from Gθ by enforcing the latent representation to be
normally distributed (i.e., corresponding to the noise
model of the generator) while minimizing the recon-
struction error of the feature space.

4 THEORETICAL ANALYSIS

In this section, we provide theoretical connections
between counterfactual explanation and adversarial
example methods by leveraging similarities in the
objective functions and optimization procedures. In
particular, we compare: 1) SCFE and C&W (Sec. 4.1),
2) SCFE and DeepFool (Sec. 4.2), and 3) C-CHVAE
and NAE (Sec. 4.3) due to their similarity in the
objective functions. We do these comparisons either
for a specific loss, solutions based on the classification
model, or constraints imposed during optimization.
We focus on locally linear model approximations as
these are often studied as a first step (Hardt and
Ma, 2017; Ustun et al., 2019; Rosenfeld et al., 2020;
Garreau and Luxburg, 2020) towards understanding
nonlinear model behaviour.

4.1 SCFE and C&W

Two popular gradient-based methods for generating
adversarial and counterfactual samples are the C&W

Attack and SCFE, respectively. Here, we first show
the closed-form solutions for the minimum pertur-
bation required by C&W (δ∗CW) and SCFE (δ∗SCFE)
to generate adversarial examples and counterfactu-
als. We then leverage these solutions to derive an
upper bound for the distance between the adversarial
and counterfactual samples. Using the loss function
ℓ∗(·)=max(0,maxi(f(x)i) − f(x)y) recommended by
Carlini and Wagner (2017), we derive an upper bound
for the distance between the counterfactuals and ad-
versarial examples generated using SCFE and C&W.
For the upper bound, we first state a lemma that de-
rives the closed-form solution for δ∗SCFE.

Lemma 1. (Optimal Counterfactual Perturbation)
For a scoring function with weights w the SCFE
method generates a counterfactual xSCFE for an in-
put x using the counterfactual perturbation δ∗SCFE such
that:

δ∗SCFE = m · (wwT + λI)−1w, (6)

where s is the target score for x, m=s−f(x) is the
target residual, f(x)=w⊤x + b is a local linear score
approximation, and λ is a given hyperparameter.

Proof Sketch. We derive the closed-form solution for
δ∗SCFE by formulating the SCFE objective in its vector
quadratic form. See Appendix B.1 for the complete
proof.

Using Lemma 1, we now formally state and derive the
upper bound for the distance between the counterfac-
tuals and adversarial examples.

Theorem 1. (Difference between SCFE and C&W)
Under the same conditions as stated in Lemma 1, the
normed difference between the SCFE counterfactual
xSCFE and C&W adversarial example xCW using the
loss function ℓ∗(·) is upper bounded by:

∥xSCFE − xCW∥p

≤
∥∥∥∥ 1λ

(
I− wwT

λ+ ∥w||22

)
(s− f(x))− cI

∥∥∥∥
p

||w||p.
(7)

Proof Sketch. We first derive the closed-form solution
for the perturbation used by C&W. Intuitively, this
solution is equivalent to shifting x in the direction of
the models’ decision boundary scaled by c. The up-
per bound follows by applying Lemma 1 and Cauchy-
Schwartz inequality. Moreover, choosing the hyper-
parameter such that λ −→ 0 and setting c=m/∥w∥22
yields equivalence, i.e., ||xSCFE − xCW||p−→ 0. See
Appendix B.3 for the complete proof.

We note that the upper bound is smaller when the
original score f(x) is close to the target score s, sug-
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gesting that xSCFE and xCW are more similar when x
is closer to the decision boundary.

4.2 SCFE and DeepFool

DeepFool is an adversarial attack that uses an itera-
tive gradient-based optimization approach to generate
adversarial examples. Despite the differences in the
formulations of SCFE and DeepFool, our theoretical
analysis reveals a striking similarity between the two
methods. In particular, we provide an upper bound
for the distance between the solutions output by coun-
terfactuals and adversarial examples generated using
SCFE and DeepFool, respectively.

Theorem 2. (Difference between SCFE and Deep-
Fool) Under the same conditions as stated in Lemma
1, the normed difference between the SCFE counter-
factual xSCFE and the DeepFool adversarial example
xDF is upper bounded by:

∥xSCFE − xDF∥p

≤
∥∥∥∥(I− wwT

λ+ ∥w||22

)
(s− f(x))

λ
+ I

f(x)

∥w∥22

∥∥∥∥
p

∥w∥p.

(8)

Proof Sketch. We show the similarity between SCFE
and DeepFool methods by comparing their closed-form
solutions for the generated counterfactual and adver-
sarial examples. Similar to Theorem 1, the results
follow from Cauchy-Schwartz inequality, (see Ap-
pendix B.4 for the complete proof). Moreover, choos-
ing the hyperparameter such that λ −→ 0 and setting
s:=0 yields equivalence, i.e., ||xSCFE−xDF||p−→ 0.

The right term in the inequality (Eqn. 8) entails that
the lp-norm of the difference between the generated
samples is bounded if: 1) the predicted score is closer
to the target score of a given input, and 2) the gradi-
ents with respect to the logit scores of the underlying
model are bounded.

4.3 Manifold-based methods

We formalize the connection between manifold-based
methods by comparing NAE to C-CHVAE as both
rely on generative models. While C-CHVAE uses vari-
ational autoencoders, NAE uses GANs, specifically
Wasserstein GAN (Arjovsky et al., 2017), to gener-
ate adversarial example. To allow a fair comparison,
we assume that both methods use the same generator
Gθ and inverter Iγ networks.

Proposition 1. Let p=∅ in C-CHVAE. Assuming
that C-CHVAE and NAE use the same generator Gθ

and inverter functions Iθ. Then the proposed objec-
tives of NAE and C-CHVAE are equivalent.

Proof. Since p=∅, equation 2 reduces to:

δ∗=argmin
δ∈Z

∥δ∥ s.t. h(Gθ(Iγ(x
f ) + δ)) ̸= h(xf ) (9)

Also, Iγ(x)=z. Replacing z̃−z=δ in eqn. 5, we get:

δ∗ = argmin
δ∈Z

∥δ∥ s.t. h(Gθ(Iγ(x) + δ)) ̸= h(x) (10)

Since xf=x, we get the equivalence.

Both C-CHVAE and NAE use search methods to gen-
erate adversarial examples or counterfactuals using the
above objective function. In particular, both NAE and
C-CHVAE samples z using an ℓp-norm ball of radius
range (rNAE,∆rNAE] and rC. z̃NAE denotes the so-
lution returned by Zhao et al. (2018) and z̃C the so-
lution returned by C-CHVAE. We denote r∗NAE and
r∗C as the corresponding radius parameters from NAE
and C-CHVAE, respectively, and restrict our analysis
to the class of L-Lipschitz generative models:

Definition 1. Bora et al. (2017): A generative model
Gθ(·) is L-Lipschitz if ∀ z1, z2 ∈ Z, we have,

∥Gθ(z1)− Gθ(z2)∥p≤ L∥z1 − z2∥p. (11)

Note that commonly used DNN models comprise of
linear, convolutional and activation layers, which sat-
isfy Lipschitz continuity (Gouk et al., 2021).

Lemma 2. (Difference between C-CHVAE and NAE)
Let z̃C and z̃NAE be the output generated by C-
CHVAE and NAE by sampling from ℓp-norm ball
in the latent space using an L-Lipschitz generative
model Gθ(·). Analogously, let xNAE=Gθ(z̃NAE) and
xC=Gθ(z̃C) generate perturbed samples by design of
the two methods. Let r∗NAE and r∗C be the correspond-
ing radii chosen by each algorithm such that they suc-
cessfully return an adversarial example or counterfac-
tual. Then, ∥xC − xNAE∥p≤ L(r∗C + r∗NAE).

Proof Sketch. The proof follows from triangle inequal-
ity, L-Lipschitzness of the generative model, and the
fact that the ℓp-norm of the method’s outputs are
known in the latent space. See Appendix B.5 for a
detailed proof.

Intuitively, the adversarial example and counter-
factual explanation generated by the methods are
bounded depending on the data manifold properties
(captured by the Lipschitzness of the generative
model) and the radius hyperparameters used by the
search algorithms.
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4.4 On the Underlying Assumptions

The analyzed counterfactual explanation objectives in
our analysis slightly differ from their original imple-
mentations. Hence, the following remarks are in place.
First, the original objective stated by Wachter et al.
(2017) includes the median absolute deviation (MAD)
for each input as a normalization term for the regular-
izer. However, the regularizer is independent of δ, and
can therefore be incorporated into Lemma 1 and Theo-
rem 1. Second, our analysis focuses on objective func-
tions from SCFE and C-CHVAE explanation meth-
ods which consider generic distance functions. Hence,
to facilitate a fair comparison across all counterfac-
tual explanation and adversarial example algorithms,
we use ℓ2-norm in our analysis. Finally, immutability
constraints can be readily incorporated. For instance,
instead of taking the derivative of the SCFE objec-
tive function with respect to all available features, we
take the derivative with respect to the mutable fea-
tures only.

5 EXPERIMENTS

We now present the empirical analysis to demonstrate
the similarities between counterfactual explanations
and adversarial examples. More specifically, we verify
the validity of our theoretical upper bounds using
real-world datasets and determine the extent to which
counterfactual explanations and adversarial examples
similar to each other.

5.1 Experimental Setup

We first describe the synthetic and real-world datasets
used to study the connections between counterfactual
explanations and adversarial examples, and then we
outline our experimental setup.

Synthetic Data. We generate 5000 samples from a
mixture of Gaussians with pdfsN (µ1=[1.0, 1.0],Σ1=I)
and N (µ2=[−1.0,−1.0],Σ2=I).

Real-world Data. We use three datasets in our
experiments. 1) The UCI Adult dataset (Dua and
Graff, 2017) consisting of 48842 individuals with de-
mographic (e.g., age, race, and gender), education (de-
gree), employment (occupation, hours-per-week), per-
sonal (marital status, relationship), and financial (cap-
ital gain/loss) features. The task is to predict whether
an individual’s income exceeds $50K per year or not.
2) The COMPAS dataset (Mattu et al., 2016) com-
prising of 10000 individuals representing defendants
released on bail. The task is to predict whether to re-
lease a defendant on bail or not using features, such
as criminal history, jail, prison time, and defendant’s
demographics. 3) The German Credit dataset from
the UCI repository (Dua and Graff, 2017) consisting
of demographic (age, gender), personal (marital sta-

tus), and financial (income, credit duration) features
from 1000 credit applications. The task is to predict
whether an applicant qualifies for credit or not.

Methods. Following our analysis in Sec. 4, we
compare the following pair of methods: i) SCFE
(Wachter et al., 2017) vs. C&W (Carlini and Wagner,
2017), ii) SCFE vs. DeepFool (Moosavi-Dezfooli et al.,
2016), and iii) C-CHVAE (Pawelczyk et al., 2020a)
vs. NAE (Zhao et al., 2018).

Prediction Models. For the synthetic dataset, we
train a logistic regression model (LR) to learn the
mixture component (samples and corresponding deci-
sion boundary shown in Fig. 1), whereas for real-world
datasets, we obtain adversarial examples and counter-
factuals using LR and artificial neural network (ANN)
models. See Appendix C for more details.

Implementation Details For all real-world data,
adversarial examples and counterfactuals are gener-
ated so as to flip the target prediction label from
unfavorable (y=0) to favorable (y=1). We use
ℓ2-norm as the distance function in all our experi-
ments. We partition the dataset into train-test splits
where the training set is used to train the predictor
models. Adversarial examples and counterfactuals are
generated for the trained models using samples in the
test splits. For counterfactual explanation methods
applied to generate recourse, all features are assumed
actionable for fair comparison with adversarial exam-
ple generation methods. See Appendix C for more
implementation details.

5.2 Results

Validating our Theoretical Upper Bounds. We
empirically validate the theoretical upper bounds ob-
tained in Sec. 4. To this end, we first estimate the
bounds for each instance in the test set according to
Theorems 1 and 2, and compare them with the em-
pirical estimates of the ℓ2-norm differences (LHS of
Theorems 1 and 2). We use the same procedure to
validate the bounds from Lemma 3.

SCFE vs. C&W and DeepFool. In Fig. 2, we
show the empirical evaluation of our theoretical
bounds for all real-world datasets. For each dataset,
we show four box-plots: empirical estimates (green)
and theoretical upper bounds (blue) of the distance
(ℓ2-norm) between the resulting counterfactuals and
adversarial examples for SCFE and C&W (labeled as
SCFE vs. CW), and SCFE and DeepFool (labeled as
SCFE vs. DF). Across all three datasets, we observe
that no bounds were violated for both theorems. The
gap between empirical and theoretical values is rela-
tively small for German credit dataset as compared
to COMPAS and Adult datasets. From Theorems 1
and 2, we see that the bound strongly depends on
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Figure 1: Similarity comparison of adversarial example and counterfactual explanation methods. Based on
synthetic data, we generate adversarial examples (in red) and counterfactual explanations (in green) for some
randomly chosen test set points (in blue) using methods described in Sec. 3. (Left) Both SCFE (in green) and
C&W (in red) samples are close to each other, indicating strong similarity between these methods. (Middle)
SCFE (in green) and DeepFool (in red) samples exactly coincide, indicating equivalence. (Right) C-CHVAE (in
green) and NAE (in red) samples are closer if the blue factual points are closer to the boundary.
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Figure 2: Verifying the theoretical bounds from The-
orems 1 and 2. The green boxplots correspond to the
empirical norm differences between SCFE (i.e., xCE)
and CW or DF (i.e., xAE). The blue boxplots show
the distribution of upper bounds, which we evaluated
by plugging in the necessary quantities (hyperparam-
eters, gradients, logit values) into equations 7 and 8.
No bounds are violated. For ANNs, the upper bounds
were computed using local linear model approxima-
tions.

the norm of the logit score gradient w=∇xf(x), e.g.,
for Adult dataset these norms are relatively higher
leading to less tight bounds.

C-CHVAE vs.NAE. In Fig. 3, we validate the
bounds obtained in Lemma 3 for all three datasets us-
ing an encoder-decoder framework. We observe that
our upper bounds are tight, thus validating our theo-
retical analysis for comparing manifold-based counter-
factual explanation (C-CHVAE) and adversarial ex-
ample generation method (NAE).
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Figure 3: Verifying the theoretical bounds from
Lemma 2. The green boxplots correspond to the em-
pirical norm differences between CCHVAE (i.e., xCE)
and NAE (i.e., xAE). The blue boxplots show the
distribution of upper bounds, which we evaluated by
plugging in the corresponding quantities (hyperparam-
eters, Lipschitz constant) into the upper bound from
Lemma 2. The Lipschitz constant is computed based
on decoders and encoders using Lemma 4. No bounds
are violated.

versarial examples. Here, we qualitatively and
quantitatively show the similarities between coun-
terfactuals and adversarial examples using several
datasets.

Analysis with Synthetic Data. In Fig. 1, we show
the similarity between counterfactual explanations
and adversarial examples generated for a classifier
trained on a two-dimensional mixture of Gaussian
datasets. Across all cases, we observe that most
output samples generated by counterfactual expla-
nation and adversarial example methods overlap. In
particular, for samples near the decision boundary,
the solutions tend to be more similar. These results
confirm our theoretical bounds, which depend on the
difference between the logit sample prediction f(x)
and the target score s. If points are close to the
decision boundary, f(x) is closer to s, suggesting that
the resulting counterfactual and adversarial example
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Figure 4: Analyzing to what extent different counter-
factual explanation methods and adversarial example
generation methods are empirically equivalent for the
logistic regression classifier. To do that, we compute
dmatch from Eqn. 12. Missing bars indicate that there
was no match.

will be closer as implied by Theorems 1 and 2.

Analysis with Real Data. For real-world datasets,
we define two additional metrics beyond those studied
in our theoretical analysis to gain a more granular un-
derstanding about the similarities of counterfactuals
and adversarial examples. First, we introduce dmatch

which quantifies the similarity between counterfactuals
(i.e., xCE) and adversarial examples (i.e., xAE):

dmatch =
1

n

n∑
i=1

I
[

1√
d
∥x(i)

CE − x
(i)
AE∥2 < θ

]
, (12)

where n is the total number of instances used in
the analysis and θ∈{0.02, 0.05, 0.1} is a threshold
determining when to consider counterfactual and
adversarial examples as equivalent. dmatch evaluates
whether counterfactuals and adversarial examples
are exactly the same with higher dmatch implying
higher similarity. Second, we complement dmatch by
Spearman rank ρ between δCE and δAE, which is a
rank correlation coefficient measuring to what extent
the perturbations’ rankings agree, i.e., whether adver-
sarial example generation methods and counterfactual
explanation methods deem the same dimensions
important in order to arrive at their final outputs.
Here, ρ(δCE, δAE)=1 implies that the rankings are
same, 0 suggests that the rankings are independent,
and −1 indicates reversely ordered rankings.

In Fig. 4, we compare a given counterfactual expla-
nation method to salient adversarial example gener-
ation methods (DeepFool, C&W, and NAE) using
dmatch. We show the results for Adult and COM-
PAS datasets using LR models and relegate results
for German Credit as well as neural network classifiers
to Appendix D. Our results in Fig. 4 validate that
the SCFE method is similar to DeepFool and C&W

(higher dmatch for lower θ). Across all datasets, this
result aligns and validates with the similarity analysis
in Sec. 4. Similarly, manifold-based methods demon-
strate higher dmatch compared to non-manifold meth-
ods (right panels in Fig. 4). Additionally, we show
the results from the rank correlation analysis in Ta-
ble 1 and observe that the maximum rank correlations
(between 0.90 and 1.00) are obtained for methods that
belong to the same categories, suggesting that the con-
sidered counterfactuals and adversarial examples are
close to being equivalent.

6 CONCLUSION

In this work, we formally analyzed the connections be-
tween state-of-the-art adversarial example generation
methods and counterfactual explanation methods. To
this end, we first highlighted salient counterfactual ex-
planation and adversarial example methods in litera-
ture, and leveraged similarities in their objective func-
tions, optimization algorithms and constraints utilized
in these methods to theoretically analyze conditions
for equivalence and bound the distance between the
solutions output by counterfactual explanation and ad-
versarial example generation methods. For locally lin-
ear models, we bound the distance between the solu-
tions obtained by C&W and SCFE using loss functions
preferred in the respective works. We obtained similar
bounds for the solutions of DeepFool and SCFE. We
also demonstrated equivalence between the manifold-
based methods of NAE and C-CHVAE and bounded
the distance between their respective solutions. Fi-
nally, we empirically evaluated our theoretical findings
on simulated and real-world data sets.

By establishing theoretically and empirically that sev-
eral popular counterfactual explanation algorithms are
generating extremely similar solutions as those of well
known adversarial example algorithms, our work raises
fundamental questions about the design and devel-
opment of existing counterfactual explanation algo-
rithms. Do we really want counterfactual explanations
to resemble adversarial examples, as our work sug-
gests they do? How can a decision maker distinguish
an adversarial attack from a counterfactual explana-
tion? Does this imply that decision makers are trick-
ing their own models by issuing counterfactual expla-
nations? Can we do a better job of designing counter-
factual explanations? Moreover, by establishing con-
nections between popular counterfactual explanation
and adversarial example algorithms, our work opens
up the possibility of using insights from adversarial ro-
bustness literature to improve the design and develop-
ment of counterfactual explanation algorithms.

We hope our formal analysis helps carve a path for
more robust approaches to counterfactual explana-
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Table 1: Average Spearman rank correlation between counterfactual and adversarial perturbations. For every
input x, we compute the corresponding adversarial perturbation δAE and the counterfactual perturbation δCE.
We then compute Spearman’s ρ(δAE, δCE) and report their means (gradient-based: (g); manifold-based: (m)).

COMPAS Adult

LR ANN LR ANN

Model SCFE (g) CCHVAE (m) SCFE (g) CCHVAE (m) SCFE (g) CCHVAE (m) SCFE (g) CCHVAE (m)

CW (g) 0.88± 0.16 0.67± 0.30 0.93± 0.10 0.67± 0.22 0.95± 0.06 0.86± 0.10 0.92± 0.09 0.70± 0.16
DF (g) 0.91± 0.12 0.68± 0.31 0.97± 0.03 0.65± 0.22 0.92± 0.06 0.80± 0.13 0.93± 0.08 0.63± 0.20
NAE (m) 0.57± 0.35 0.94± 0.08 0.71± 0.19 1.00± 0.00 0.83± 0.12 0.90± 0.10 0.74± 0.13 0.98± 0.02

tions, a critical aspect for calibrating trust in ML.
Improving our theoretical bounds using other strate-
gies and deriving new theoretical bounds for other ap-
proaches is an interesting future direction.
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Supplementary Material:
Exploring Counterfactual Explanations Through the Lens of
Adversarial Examples: A Theoretical and Empirical Analysis

APPENDIX SUMMARY

Section A provides a categorization of counterfactual explanation and adversarial example methods. In Section B,
we provide detailed proofs for Lemmas 1 and 3, and Theorems 1 and 2. In Section C, we provide implementation
details for all models used in our experiments including (i) the supervised learning models, (ii) the counterfactual
explanation and adversarial example methods, and the (iii) generative models required to run the manifold-based
methods. Finally, in Section D, we present the remaining experiments we referred to in the main text.

A TAXONOMY OF COUNTERFACTUAL AND ADVERSARIAL EXAMPLE
METHODS

In order to choose methods to compare across counterfactual explanation methods and adversarial example
generation methods, we surveyed existing literature. We use a taxonomy to categorize each subset of methods
based on various factors. The main characteristics we use are based on type of method, based on widely accepted
terminology and specific implementation details. In particular, we distinguish between i) constraints imposed
for generating adversarial examples or counterfactual explanations, ii) algorithms used for generating them.
For the class of adversarial example generation methods, we further distinguish between poisoning attacks and
evasion attacks and note that evasion attacks are most closely related to counterfactual explanation methods.
The taxonomy for counterfactual explanation methods is provided in Table 2 and that for adversarial example
generation methods is provided in Table 3.

The main algorithm types used for counterfactual explanation methods are search-based, gradient-based and one
method that uses integer programming (Ustun et al., 2019). The main constraints considered are actionability
i.e., only certain features are allowed to change, and counterfactual explanations are encouraged to be realistic
using either causal and/or manifold constraints. Similarly, for adversarial example generation methods primarily,
Greedy search-based and gradient-based methods are most common. Manifold constraints are also imposed in
a few cases where the goal is to generate adversaries close to the data-distribution. Based on this taxonomy, we
select the appropriate pairs of counterfactual explanation method and adversarial example generation method
to compare to each other for theoretical analysis. This leads us to compare gradient-based methods SCFE
and C&W attack, SCFE and DeepFool and finally, manifold-based methods C-CHVAE and NAE with their
search-based algorithms.

Table 2: Taxonomy of counterfactual explanation methods

Algorithm Constraints Method

Search-based
Causal, Actionability
Manifold, Actionability

MINT (Karimi et al., 2020c)
C-CHVAE (Pawelczyk et al., 2020a)

Gradient-based
Actionability
Manifold, Actionability

CFE, SCFE Wachter et al. (2017)
REVISE (Joshi et al., 2019)

Integer-programming Actionability/Linear black-box AR (Ustun et al., 2019)
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Table 3: Taxonomy of adversarial example generation methods

Algorithm Constraints Method

Poisoning
Attacks

Greedy Search Manifold Adv. Data Poisoning (Tavallali et al., 2021)
Gradient-based Data-domain SVM-attack (Biggio et al., 2012)

One-Shot Kill (Shafahi et al., 2018)

Evasion
Attacks

Search-based Manifold NAE (Zhao et al., 2018)
Gradient-based Data-domain DeepFool (Moosavi-Dezfooli et al., 2016)

C&W Attack (Carlini and Wagner, 2017)

B PROOFS OF SECTION 4

B.1 Proof of Lemma 1

Lemma 1. For a linear score function f(x) = w⊤x + b, the SCFE counterfactual for x on f is x′ = x + δ∗

where
δ∗ = (wwT + λI)−1(s−wTx− b)w.

Proof. Reformulating Equation 1 using l2-norm as the distance metric, we get:

min
x′

(wTx′ + b− s)2 + λ||x′ − x||22.

We can convert this minimization objective into finding the minimum perturbation δ by substituting x′ = x+ δ,
i.e.,

min
δ

(wTx+wT δ + b− s)2 + λ||x′ − x||22. (13)

Using s−wTx− b = m as a dummy variable and x′ − x = δ, we get:

min
δ

(wT δ −m)2 + λ||δ||22

min
δ

(wT δ −m)T (wT δ −m) + λδT δ

min
δ

(δTw −m)(wT δ −m) + λδT δ (m is a scalar, hence mT = m)

min
δ

δTwwT δ − 2mδTw +m2 + λδT δ

min
δ

δT (wwT + λI)δ − 2mδTw +m2

min
δ

δTMδ − 2mwT δ +m2 (where M = wwT + λI)

min
δ

δTMδ − 2ηT δ +m2 (where mw = η)

min
δ

δTMδ − 2ηT δ + ηTM−1η − ηTM−1η +m2

min
δ

(δ −M−1η)TM(δ −M−1η)− ηTM−1η +m2

The closed form solution is given by,
δ∗ = M−1η, (14)

where M = wwT + λI.

The expression in equation 14 can further be simplified:

δ∗ =
m

λ

(
I− wwT

λ+ ∥w∥22

)
w (Sherman-Morrison Formula)

=
m

λ

(
Iw −w

∥w∥22
λ+ ∥w∥22

)
=

m

λ
· λ

λ+ ∥w∥22
·w =

m

λ+ ∥w∥22
·w, (15)
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where m := s−wTx− b. Finally, we note that as λ −→ 0, we have:

δ∗∗ =
m

∥w∥22
·w. (16)

B.2 Proof of Lemma 3

Lemma 3. For a binary classifier h(x) = g(f(x)) such that f(x) = w⊤x + b, g(x) = σ(x), and h(x) is the
probability that x is in the class y = 1,

ℓ∗(x) = max(0,−2(w⊤x+ b))

.

Proof. Given our formulation of h(x), f(x) is the score corresponding to class y = 1. By the definition of σ(x),

f(x) = ln
h(x)

1− h(x)
= lnh(x)− ln (1− h(x))

Then the score corresponding to the class y = 0 is

ln
1− h(x)

1− (1− h(x))
= ln

1− h(x)

h(x)
= ln (1− h(x))− lnh(x) = −f(x)

Substituting back into definition of ℓ∗(x),

ℓ∗(x) = max(0,max
i

(f(x)i)− f(x)y)

= max(0, (−f(x)− f(x))

= max(0, (−2f(x))

= max(0,−2(w⊤x+ b)).

B.3 Proof of Theorem 1

Theorem 1. For a linear classifier h(x) = g(f(x)) such that f(x) = wTx+ b, the difference between the SCFE
counterfactual example xSCFE and the C&W adversarial example xCW using the recommended loss function
ℓ∗(·) = max(0,maxi(f(x)i)− f(x)y) is given by:

∥xSCFE − xCW∥p ≤
∥∥∥∥ 1λ

(
I− wwT

λ+wTw

)
(s− f(x))− cI

∥∥∥∥
p

∥w∥p

.

Proof. Consider a binary classifier h(x) = g(f(x)) such that f(x) = w⊤x + b, g(x) = σ(x), and h(x) is the
probability that x is in the class y = 1. Then by Lemma 3 and using ℓ2-nrom as the distance metric, we can
write the C&W Attack objective as

argmin
x′

cmax(0,−2(w⊤x′ + b)) + ∥x− x′∥22

We can convert this minimization objective into finding the minimum perturbation δ by substituting x′ = x+ δ,

argmin
δ

cmax(0,−2(w⊤x+w⊤δ + b)) + ∥δ∥22

The subgradients of this objective are{
2δ when − 2(w⊤x+w⊤δ + b) < 0

−2cw + 2δ otherwise
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By Lemma 3, −2(w⊤x+w⊤δ + b) = −f(x)− f(x) < 0. This implies that f(x) > −f(x), i.e that the score for
class y = 1 is greater than the score for y = 0. As this indicates an adversarial example has already been found,
we focus on minimizing the other subgradient. Setting this subgradient equal to 0,

0 = −2cw + 2δ

δ = cw

Thus the minimum perturbation to generate and adversarial example using the C&W Attack is

δ∗CW = cw

Now, taking the difference between the minimum perturbation to generate a SCFE counterfactual (Lemma 1)
and DeepFool (equation 18), we get:

δ∗SCFE − δ∗CW = (wwT + λI)−1(s−wTx− b)w − cw

= ((wwT + λI)−1(s− f(x))− cI)w

=

(
1

λ

(
I− wwT

λ+wTw

)
(s− f(x))− cI

)
w (Using Sherman–Morrison formula)

Taking the lp-norm on both sides, we get:

∥δ∗SCFE − δ∗CW∥p =

∥∥∥∥( 1

λ

(
I− wwT

λ+wTw

)
(s− f(x))− cI

)
w

∥∥∥∥
p

≤
∥∥∥∥ 1λ

(
I− wwT

λ+wTw

)
(s− f(x))− cI

∥∥∥∥
p

∥w∥p (Using Cauchy-Schwartz)

Adding and subtracting the input instance x in the left term, we get:

∥x+ δ∗SCFE − (x+ δ∗CW)∥p ≤
∥∥∥∥ 1λ

(
I− wwT

λ+wTw

)
(s− f(x))− cI

∥∥∥∥
p

∥w∥p

∥xSCFE − xCW∥p ≤
∥∥∥∥ 1λ

(
I− wwT

λ+wTw

)
(s− f(x))− cI

∥∥∥∥
p

∥w∥p,

where the final equation gives an upper bound on the difference between the SCFE counterfactual and the
C&W adversarial example.

Furthermore, we ask under which conditions the normed difference becomes 0. We start with:

δ∗SCFE − δ∗CW =
m

λ+ ∥w∥22
·w − c ·w

Taking the lp-norm on both sides, we get:

∥δ∗SCFE − δ∗CW∥p =

∣∣∣∣ m

λ+ ∥w∥22
− c

∣∣∣∣ · ∥w∥p

If we were to choose λ −→ 0 we would get:

∥δ∗∗SCFE − δ∗CW∥p =

∣∣∣∣m− c · ∥w∥22
∥w∥22

∣∣∣∣ · ∥w∥p,

where equality holds when the hyperparameter is chosen so that c := m
∥w∥2

2
.

B.4 Proof of Theorem 2

Theorem 2. For a linear classifier h(x) = g(f(x)) such that f(x) = wTx + b, the difference between the
counterfactual example xSCFE generated by Wachter et al. (2017) and the adversarial example xDF generated by
Moosavi-Dezfooli et al. (2016) is given by:

||xSCFE − xDF||p≤
∥∥∥∥ 1λ

(
I− wwT

λ+wTw

)
(s− f(x)) +

(
I
f(x)

∥w∥22

)∥∥∥∥
p

· ||w||p, (17)
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Proof. The minimal perturbation to change the classifier’s decision for a binary model f(x) is given by the
closed-form formula (Moosavi-Dezfooli et al., 2016):

δ∗DF = − f(x)

||w||22
w. (18)

Now, taking the difference between the minimum perturbation added to an input instance x byWachter algorithm
(Lemma 1) and DeepFool (equation 18), we get:

δ∗SCFE − δ∗DF = (wwT + λI)−1(s−wTx− b)w −
(
− f(x)

||w||22
w

)
δ∗SCFE − δ∗DF =

(
(wwT + λI)−1(s− f(x)) +

f(x)

||w||22

)
w

δ∗SCFE − δ∗DF =

(
1

λ

(
I− wwT

λ+wTw

)
(s− f(x)) +

f(x)

||w||22

)
w (Using Sherman–Morrison formula)

Taking the lp-norm on both sides, we get:

∥δ∗SCFE − δ∗DF∥p =

∥∥∥∥( 1

λ

(
I− wwT

λ+wTw

)
(s− f(x)) + I

f(x)

∥w∥22

)
w

∥∥∥∥
p

≤
∥∥∥∥ 1λ

(
I− wwT

λ+wTw

)
(s− f(x)) + I

f(x)

∥w∥22

∥∥∥∥
p

∥w∥p (Using Cauchy-Schwartz)

Adding and subtracting the input instance x in the left term, we get:

∥x+ δ∗SCFE − (x+ δ∗DF)∥p ≤
∥∥∥∥ 1λ

(
I− wwT

λ+wTw

)
(s− f(x)) + I

f(x)

∥w∥22

∥∥∥∥
p

∥w∥p

∥xSCFE − xDF∥p ≤
∥∥∥∥ 1λ

(
I− wwT

λ+wTw

)
(s− f(x)) + I

f(x)

∥w∥22

∥∥∥∥
p

∥w∥p,

where the final equation gives an upper bound on the difference between the SCFE counterfactual and the
adversarial example from DeepFool (Moosavi-Dezfooli et al., 2016).

Furthermore, we ask under which conditions the normed difference becomes 0. If we were to choose λ −→ 0 we
would get:

∥δ∗∗SCFE − δ∗DF∥p =

∥∥∥∥−f(x) + s

∥w∥22
·w +

−f(x)

∥w∥22
·w

∥∥∥∥
p

=
|s|

∥w∥22
· ∥w∥p,

where equality holds when the target score is chosen so that s=0, which corresponds to a probability of Y=1 of
0.5.

B.5 Proof of Lemma 2

Lemma 2. Let z̃NAE be the solution returned Zhao et al. (2018, Algorithm 1) and z̃C the solution returned by
the counterfactual search algorithm of Pawelczyk et al. (2020a) by sampling from ℓp-norm ball in the latent space
using an L-Lipschitz generative model Gθ(·). Analogously, let xNAE = Gθ(z̃NAE) and xC = Gθ(z̃C) by design
of the two algorithms. Let r∗NAE and r∗C be the corresponding radius chosed by each algorithm respectively that
successfully returns an adversarial example or counterfactual explanation. Then, ∥xNAE − xC∥≤ L(r∗NAE + r∗C).
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Proof. The proof straightforwardly follows from triangle inequality and L-Lipschitzness of the Generative model:

∥xNAE − xC∥ = ∥Gθ(z̃NAE)− Gθ(z̃C)∥p (19)

≤ ∥Gθ(z̃NAE)− x+ x− Gθ(z̃C)∥p (20)

≤ ∥Gθ(z̃NAE)− x∥p+∥x− Gθ(z̃C)∥p (21)

= ∥Gθ(z̃NAE)− Gθ(z)∥p+∥Gθ(z)− Gθ(z̃C)∥p (22)

≤ L∥z̃NAE − z∥p+L∥z− z̃C∥p (23)

≤ L{r∗NAE + r∗C} (24)

where equation 20 follows from triangle inequality in the ℓp-norm, equation 23 follows from the Lipschitzness
assumption and equation 24 follows from properties of the counterfactual search algorithms.

In the following we outline a lemma that allows us to estimate the Lipschitz constant of the generative model.
This will be used for empirical validation of our theoretical claims.

Lemma 4 (Bora et al. (2017)). If G is a d-layer neural network with at most c nodes per layer, all weights ≤ wmax

in absolute value, and M -Lipschitz non-linearity after each layer, then G(·) is L -Lipschitz with L = (Mcwmax)
d
.

C EXPERIMENTAL SETUP

C.1 Implementation Details for Counterfactual Explanation and Adversarial Example
Methods

For all datasets, categorical features are one-hot encoded and data is scaled to lie between 0 and 1. We partition
the dataset into train-test splits. The training set is used to train the classification models for which adversarial
examples and counterfactual explanations are generated. adversarial examples and counterfactual explanations
are generated for all samples in the test split for the fixed classification model. For counterfactual explanation
methods applied to generate recourse examples, all features are assumed actionable for comparison with ad-
versarial examples methods. Adversarial examples and counterfactuals are appropriately generated using the
prescribed algorithm implementations in each respective method. Specifically,

i) SCFE: As suggested in Wachter et al. (2017), an Adam optimizer (Kingma and Ba, 2014) is used to obtain
counterfactual explanations corresponding to the cost function of equation 14. We have based our implementation
on the implementation provided by Pawelczyk et al. (2021).

ii) C-CHVAE: A (V)AE is additionally trained to model the data-manifold as prescribed in Pawelczyk et al.
(2020a). As suggested in Pawelczyk et al. (2020a), a counterfactual search algorithm in the latent space of
the (V)AEs. Particularly, a latent sample within an ℓp-norm ball with a fixed search radius is used until
a counterfactual example is successfully obtained. The search radius of the norm ball is increased until a
counterfactual explanation is found. The architecture of the generative model is provided in Appendix C.3. We
have based our implementation on the implementation provided by Pawelczyk et al. (2021).

iv) C&W Attack: As prescribed in Carlini and Wagner (2017), we use gradient-based optimization to find
Adversarial Examples using this attack.

v) DeepFool: We implement Moosavi-Dezfooli et al. (2016, Algorithm 1) to generate Adversarial Examples
using DeepFool.

vi) NAE: This method trains a generative model and an inverter to generate Adversarial Examples. For
consistency of comparison with C-CHVAE, we use the decoder of the same (V)AE as the generative model for
this method. The inverter then corresponds to the encoder of the (V)AE. We use Zhao et al. (2018, Algorithm 1)
which uses an iterative search method to find natural adversarial examples. The algorithm searches for adversarial
examples in the latent space with radius between (r, r +∆r]. The search radius is iteratively increased until an
Adversarial Example is successfully found.

We describe architecture and training details for real-world data sets in the following.
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C.2 Supervised Classification Models

All models are implemented in PyTorch and use a 80− 20 train-test split for model training and evaluation. We
evaluate model quality based on the model accuracy. All models are trained with the same architectures across
the data sets:

Neural Network Logistic Regression

Units [Input dim. , 18, 9, 3, 1] [Input dim. , 1]
Type Fully connected Fully connected
Intermediate activations ReLU N/A
Last layer activations Sigmoid Sigmoid

Table 4: Classification model details

Adult COMPAS German Credit

Batch-size NN 512 32 64

Logistic
Regression

512 32 64

Epochs NN 50 40 30

Logistic
Regression

50 40 30

Learning rate NN 0.002 0.002 0.001

Logistic
Regression

0.002 0.002 0.001

Table 5: Training details

Adult COMPAS German Credit

Logistic Regression 0.83 0.84 0.71
Neural Network 0.84 0.85 0.72

Table 6: Performance of models used for generating adversarial examples and counterfactual explanations

C.3 Generative model architectures used for C-CHVAE and NAE

For the results in Lemma 3, we used linear encoders and decoders. For the remaining experiments, we use the
following architectures.

Adult COMPAS German Credit

Encoder layers [input dim, 16, 32, 10] [input dim, 8, 10, 5] [input dim, 16, 32, 10]
Decoder layers [10, 16, 32, input dim] [5, 10, 8, input dim] [10, 16, 32, input dim]
Type Fully connected Fully connected Fully connected
Intermediate activations ReLU ReLU ReLU
Loss function MSE MSE MSE

Table 7: Autoencoder details
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D ADDITIONAL EMPIRICAL EVALUATION

D.1 Remaining Empirical Results from Section 5

In Table 8, we show the remaining results on the German Credit data pertaining to the Spearman rank correlation
experiments, while Figure 5 depicts the remaining dmatch results for the German Credit data set on the logistic
regression classifier.

German Credit

LR ANN

Model SCFE CCHVAE SCFE CCHVAE

CW 0.92± 0.04 0.52± 0.08 0.98± 0.02 0.72± 0.13
DF 0.92± 0.04 0.57± 0.08 0.97± 0.02 0.72± 0.13
NAE 0.44± 0.11 0.99± 0.01 0.71± 0.19 0.99± 0.01

Table 8: Average Spearman rank correlation between counterfactual perturbations and adversarial perturba-
tions. For every input x, we compute the corresponding adversarial perturbation δAE and the counterfactual
perturbation δCE. We then compute the rank correlation of δAE and δCE and report their means. The maximum
rank correlation is obtained for methods that belong to the same categories (gradient based vs. manifold-based).
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Figure 5: Analyzing to what extent different counterfactual explanation methods and adversarial example gen-
eration methods are empirically equivalent for the logistic regression classifier with German Credit data. We
compute dmatch from equation 12 with varying thresholds θ = {0.02, 0.05, 0.1}. Missing bars indicate that there
was no match.

We also include results for Neural Networks in Appendix D.2.
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D.2 Empirical Evaluation with ANN
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Figure 6: Analyzing to what extent different counterfactual explanations and adversarial examples are empirically
equivalent for the 2-layer ANN classifier. To do that, we compute dmatch from equation 12 with varying thresholds
θ = {0.02, 0.05, 0.1}. Missing bars indicate that there was no match.
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Figure 7: Distribution of instance wise norm comparisons for the logistic regression model. We show the dis-
tribution of cost comparisons across negatively predicted instances (ŷ = 0) for which we computed adversarial
examples and counterfactual explanations.
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Figure 8: Distribution of instance wise norm comparisons for the 2-layer ANN. We show the distribution of
cost comparisons across negatively predicted instances (ŷ = 0) for which we computed adversarial examples and
counterfactual explanations.
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