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Abstract

Generative models for affiliation networks
condition the edges on the membership of
their nodes to communities. The problem of
community detection under these models is
addressed by inferring the membership pa-
rameters from the network structure. Cur-
rent models make several unrealistic assump-
tions to make the inference feasible, and are
mostly designed to work on regular graphs
that cannot handle multi-way connections
between nodes. While the models designed
for hypergraphs attempt to capture the lat-
ter, they add further strict assumptions on
the structure and size of hyperedges and are
usually computationally intractable for real
data. This paper proposes an efficient prob-
abilistic generative model for detecting over-
lapping communities that process hyperedges
without any changes or restrictions on their
size. Our model represents the entire state
space of the hyperedges, which is exponen-
tial in the number of nodes. We develop a
mathematical computation reduction scheme
that reduces the inference time to linear in
the volume of the hypergraph without sac-
rificing precision. Our experimental results
validate the effectiveness and scalability of
our model and demonstrate the superiority
of our approach over state-of-the-art commu-
nity detection methods.

1 INTRODUCTION

Graph theory enables the modeling of connections, re-
lations, and dependencies among entities. It has been
extensively used to study and analyze complex net-
works in a wide variety of domains, such as computer
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science, biology, telecommunications, digital circuits,
and social sciences. Graphs are characterized by a set
of nodes, which represent individuals or entities, and
edges, which represent connections between pairs of
nodes. Graphs are appropriate to model problems in
which connections are between pairs of nodes. How-
ever, some problems are characterized by larger units
of connection. For instance, in a co-authorship net-
work, the nodes represent authors and the connections
represent papers written by any number of authors. To
capture this kind of connection in a graph, the n-way
connection is typically reduced to pairwise connections
among the authors. A hypergraph is an extension of a
regular graph that preserves higher-order connection
information by utilizing hyperedges that can connect
any number of nodes. As such, for the co-authorship
graph, hypergraphs enable representing a paper as a
single hyperedge, thus avoiding information loss. Note
that one can represent a hypergraph using a bipar-
tite graph by associating each hyperedge with a new
node of type “hyper edge” and connecting all the hy-
pergraph nodes adjacent to the hyperedge to the new
node. Since the hypergraph representation fits better
to our context, and to avoid any confusions with a spe-
cific bipartite graph that will be discussed later in this
paper, we use the former representation.

Community detection is an important and widely stud-
ied problem in networks. A community is typically de-
fined as a collection of densely connected nodes. Differ-
ent objective functions have been introduced to guide
the discovery of communities (Fortunato and Hric,
2016), leading to fast, reliable, and scalable meth-
ods (Yang et al., 2013; Yang and Leskovec, 2013, 2014;
Abbe, 2017; Grover and Leskovec, 2016). Commu-
nity detection has also been studied in hypergraphs,
but progress has been limited. Most methods either
implicitly or explicitly transform a hypergraph into a
regular graph (Agarwal et al., 2005; Hagen and Kahng,
1992; Agarwal et al., 2006; Veldt et al., 2020), or
formulate a set of relaxations to define a simplified
hypergraph in terms of its graph counterpart (Zhou
et al., 2007; Hein et al., 2013; Yang et al., 2019; Huang
et al., 2019; Li and Milenkovic, 2017; Chodrow, 2019;
Chodrow and Mellor, 2020), and then find commu-
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nities therein using popular graph-based community
detection methods. Other approaches constrain the
size of hyperedges to some fixed value and apply a
graph community detection technique to the hyper-
graph’s adjacency d-tensor (Bulò and Pelillo, 2009;
Ghoshdastidar and Dukkipati, 2014; Kim et al., 2017;
Leordeanu and Sminchisescu, 2012). Given the afore-
mentioned limitations, existing hypergraph methods
are not widely applied to real-world data.

In this paper, we introduce Hypergraph Simultane-
ous Generators (HySGen), a probabilistic generative
model for discovering overlapping communities in hy-
pergraphs. Unlike previous work on community de-
tection in hypergraphs, HySGen directly leverages the
higher order relations captured by the hyperedges,
without enforcing constraints that may distort the
connection information. Our generative model fol-
lows the assumption of affiliation networks (Lattanzi
and Sivakumar, 2009) for the causality relation be-
tween communities and [hyper]edges, and our infer-
ence method estimates the degree of affiliation of the
nodes to the overlapping communities. The proposed
generative model and inference method are inspired
by Yang and Leskovec (2013), but include several key
distinctions. Although we define the affiliation of a
node to a community directly as a probability mea-
sure, unlike LDA-based approaches, we do not impose
any constraint that limits the membership to a com-
munity based on the memberships to other communi-
ties. This enables the inference process to find any de-
gree of overlap among communities. Furthermore, the
model accepts input hypergraphs with hyperedges of
any size. While this makes the complexity of the model
exponential in the number of nodes, we propose an al-
gebraic reduction scheme that provides a solution with
complexity proportional to the sum of the hyperedges’
degrees. Our experiments on synthetic and real-world
networks demonstrate the effectiveness of our model
in discovering ground-truth communities and its supe-
riority compared to popular baseline methods.

2 RELATED WORK

Generative models allow modeling complex assump-
tions about an underlying distribution of data in a
clear and interpretable way. Although they have
been extensively employed for community detection
in graphs (Jin et al., 2021; Abbe, 2017), progress in
developing such models for hypergraphs has been lim-
ited. One reason might be the computational burden
of inference algorithms, especially given the exponen-
tial size of the space of hyperedges. For this reason,
most previous work has placed strict constraints on hy-
peredge size, and/or made substantial relaxations and
approximations (Angelini et al., 2015; Ke et al., 2019).

For example, Kim et al. (2018) proposed a method
that only works on k-uniform, sparse, assortative hy-
pergraphs, and only when there are two equally sized
communities. Recently, Chodrow et al. (2021) tack-
led the computational intensity of their inference by
converting the procedure to maximizing a modular-
ity measure (Chodrow et al., 2021). Further, the au-
thors limit the hyperedge size in their experiments to
a maximum of 4, and their modularity maximization
approach includes reducing the hypergraph to a clique
transformed graph. Moreover, almost all the current
generative approaches for community detection in hy-
pergraphs formulate their model by extending a vari-
ation of Stochastic Block Models (SBM) for regular
graphs, so they can only partition the nodes, rather
than discovering overlapping communities.

Another class of generative models for graphs is based
on affiliation network models (Lattanzi and Sivaku-
mar, 2009). Affiliation networks provide a random
model for real-world social networks. They consist of
a bipartite graph that shows the connections between
actors and communities, and of a second graph that
shows the connection between pairs of actors; the two
graphs evolve together in the original model. One of
the most influential graph community detection meth-
ods based on affiliation networks is BigCLAM (Yang
and Leskovec, 2013). BigCLAM introduces a genera-
tive model on the bipartite graph to discover overlap-
ping communities based on the connections in the ac-
tors’ graph. Despite its advantages, this model makes
ad-hoc choices (e.g. edge probability formulation),
which result in poor interpretability and weak theoret-
ical underpinning. To the best of our knowledge, HyS-
Gen is the first community detection method for hy-
pergraphs based on an affiliation network model, and
it does not suffer from the aforementioned limitations
of BigCLAM. Unlike any other hypergraph generative
models for community detection, HySGen is not based
on SBMs, it does not constrain the size of hyperedges,
and its generative model and inference algorithm do
not have any kind of lossy relaxations or approxima-
tions. Nonetheless, it performs the iterations for in-
ferring N ×C node membership parameters as fast as
O(C × volH), where N is the number of nodes, C is
the number of communities, and volH is the sum of
degrees of the hyperedges. We explain the details of
HySGen in the next section.

3 GENERATIVE MODEL

A network under our model is an undirected, un-
weighted hypergraph H(V,E) with N nodes V =
{v1, ..., vN} and M hyperedges E = {e1, ..., eM}. A
hyperedge e ∈ E represents a connection between a set
ofm nodes, wherem ≥ 2. We define the degree of a hy-
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peredge deg(e) as the number of nodes in e, and the de-
gree of a node deg(v) as the number of hyperedges that
have v as a member. The volume of the hypergraph
volH is the sum of the degrees of all the hyperedges
or the nodes: volH =

∑
e∈E deg(e) =

∑
v∈V deg(v). A

hyperedge space Υ in our model is the set of all poten-
tial hyperedges Υ = {e|e ⊆ V, |e| ≥ 2}. While E is a
subset of Υ that exist in H, the set of non-hyperedges
Ē is defined as the subset of Υ that do not exist in H,
which can be seen as the complement of E with respect
to Υ: Ē = {ē|ē ∈ Υ, ē /∈ E}. To improve the clarity
of formulations later in this section, for any node v we
also define the set Ev = {e|e ∈ E, v ∈ e} as the sub-
set of edges that include node v, and similarly the set
Ēv = {ē|ē ∈ Ē, v ∈ ē} as the subset of non-hyperedges
that include v. An Extended hyperedge space Υ′ is also
defined similarly by adding the isolated nodes in the
hyperedge space Υ′ = {x|x ⊆ V, |x| ≥ 1} = {Υ ∪ V },
and will be used later in section 5.

For each ε ∈ Υ, we define an indicator variable hε,
which equals 1 when ε ∈ E and 0 otherwise. We as-
sume there are C communities [C] = {1, ..., C} in the
network, and the primary goal in this paper is to dis-
cover those communities. Each node v ∈ V may be
simultaneously affiliated to any community c ∈ [C]
with probability Svc ∈ R[0,1], which also specifies the

strength or weight of this affiliation. S ∈ R[0,1]
N×C is

the set of all the community membership parame-
ters, where Svc = 0 shows no affiliation and Svc = 1
shows the strongest affiliation. The proposed gener-
ative model assumes that the joint affiliation of any
subset ε of nodes to a community c is positively as-
sociated with their tendency to connect together and
form a hyperedge. The probability of community c
generating a hyperedge for ε is given by:

πεc =
∏
v∈ε

Svc (1)

With this formulation, for a community c to have a
high chance of generating a hyperedge for ε, all the
nodes in ε must have a high affiliation to c. The prob-
ability in (1) decreases dramatically if at least one of
the nodes has a low weight. Big hyperedges are dis-
couraged by this function, but large clusters of nodes
with strong enough affiliation to a community are still
likely to create a hyperedge.

We assume the nodes can be members of more than
one community at the same time. We develop our gen-
erative model in a way to allow many communities to
simultaneously contribute in generating a hyperedge.
This means that in order for a hyperedge to connect
the nodes in ε, it must be generated by at least one of
the communities. A direct formulation of the overall
probability of generating a hyperedge based on this as-
sumption requires incorporating 2C − 1 possible cases

where each community does or does not contribute in
generating the hyperedge. Instead, we formulate this
probability with only C terms considering the fact that
the probability of not generating a hyperedge corre-
sponds to the joint probability that none of the com-
munities contribute. Incorporating the independence
assumption for the effect of each community, this prob-
ability is computed as:

P (hε = 1) = 1 −
C∏

c=0

(1 − πεc) (2)

This kind of formulation has been previously used in
the context of Bayesian networks, where it is known as
noisy-OR model (Heckerman, 1993). The formulation
in (2) also includes a background probability for gener-
ating random hyperedges that is represented here as a
null community with index c = 0, to which every node
has a fixed small affiliation. This allows some hyper-
edges to be generated without having an affiliation to
any of the target communities.

Figure 1 is a graphical representation of our hyper-
graph model. We also assumed a truncated gamma
prior distribution for the parameters in S with shape
α and scale λ−1, and we set the random variable up-
per bound to 1. The generative process for creating
the hyperedges is specified as follows:

1. Repeat: Do for every node v and com-
munity c ∈ {1, ...C}: Choose Svc ∼
TruncatedGamma(α, λ−1|Svc ≤ 1).

2. Repeat: Do for every potential hyperedge ε ∈ Υ:

(a) Compute Pε = P (hε = 1) as specified in (2).

(b) Choose hyperedge e ∼ Bernouli(Pε).

Given a hypergraph H, the problem of discovering
the communities will be to infer the parameters in S,
which is discussed in the next section.

4 INFERENCE

Exact inference of the posterior distribution P (S|E) in
a fully Bayesian setting is intractable. As we discuss
in section 5, even a point estimate solution for S based
on a direct formulation of the problem is not scalable.
Nonetheless, we start developing our inference algo-
rithm with a direct formulation of the log-posterior
distribution of the model to obtain a Maximum A-
Posteriori (MAP) solution for S. We set the shape pa-
rameter of the prior distribution α to 1, and to avoid
any randomness bias toward certain hyperedges, we
give equal background probabilities to all the nodes
(∀v ∈ V : Sv0 = S0). Additionally, since learning
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Svc

v = 1, .., N

c = 1, .., C

ε ∈ Υ

hε

α, λ Sv0

v = 1, .., N

Figure 1: Plate model displays a graphical represen-
tation of the proposed generative model for a given
hypergraph. Shaded circles are the observations and
fixed parameters, and white circles are the model pa-
rameters. For each potential hyperedge ε, the commu-
nity membership weights Svc of the nodes v ∈ ε specify
the probability of generating a hyperedge for ε. The
parameters Sv0 show the affiliation of the nodes to a
null community that represents a background proba-
bility for generating random hyperedges.

S0 from the data interprets the null community as a
target community and captures some shared pattern
among the nodes, we set it as a fixed parameter. This
parameter’s precise value assignment will be explored
in detail in appendix C. Our solution is determined by
maximizing the log-posterior distribution of S:

Ŝ = argmax
0≤S≤1

{
logP (E|S) − λ

∑
v∈V

c∑
c=1

Svc + f(λ, S0)

}
(3)

where f(λ, S0) is the part of the prior logP (S|λ) that
does not depend on the target parameters and can be
removed without affecting the solution. The term with
the λ coefficient corresponds to the prior distribution
of the hyperedges. Our choice of prior formulation has
made it equivalent to applying a L1-regularization on
the values of S that encourages sparsity of the solution.
We define LH(S) as the part of the log posterior that
is used in the computation for optimizing (3):

LH(S) =
∑
e∈E

log

(
1 −

C∏
c=0

(
1 −

∏
v∈e

Svc

))

+
∑
ē∈Ē

C∑
c=0

log

(
1 −

∏
v∈ē

Svc

)
− λ

∑
v∈V

C∑
c=1

Svc

(4)

LH(S) is concave in each vector Sv., assuming the val-
ues of S as constant for the rest of the nodes. As such,
we apply gradient ascent on each Sv. one node at a
time, as part of an iterative Block Coordinate Ascent
scheme. Under this scheme, we can update a Sv. vector

by maximizing a subproblem of (4) that only includes
the terms with components of Sv.:

LH(Sv.) =
∑
{e∈E
|v∈e}

log

(
1 −

C∏
c=0

(
1 −

∏
u∈e

Suc

))

+
∑
{ē∈Ē
|v∈ē}

C∑
c=0

log

(
1 −

∏
u∈ē

Suc

)
− λ

C∑
c=1

Svc

(5)

where LH(Sv.) is the part of LH that depends on Sv..

To apply gradient ascent on Sv., we compute the

gradient vectors ∇LH(Sv.) = [∂LH(Sv1)
∂Sv1

, ..., ∂LH(SvC)
∂SvC

]
for node v by calculating the partial derivatives of
LH(Sv.) against Svc, for each c ∈ [C]:

∂LH(Svc)

∂Svc
=

∑
{e∈E
|v∈e}

∏
m∈(e−{v}) Smc

∏
b∈([C]−{c})

(
1 −

∏
u∈e Sub

)
1 −

∏C
b=0

(
1 −

∏
u∈e Sub

)
−
∑
{ē∈Ē
|v∈ē}

∏
m∈(ē−{v}) Smc

1 −
∏

u∈ē Suc
− λI1(Svc)

(6)

where I1(x) is an indicator function which gives the
value 1 if Svc ≥ 1 and 0 if its value is 0. Having (6)
computed for all communities, the updating formula
for optimizing the rows of S is as follows:

Snew
v. = Sold

v. + α

(
∇LH(Sv.)

)
(7)

where α is a learning rate parameter for optimization.
Although the updating formula in (7) could potentially
be used for the inference, in practice it is computa-
tionally too expensive. In fact, any conventional de-
terministic or approximate inference technique for the
parameters in our model needs at least one round of
calculations for each hyperedge e ∈ E and each non-
hyperedge ē ∈ Ē, for a total processing of 2N −(N+1)
potential hyperedges. Next we propose a solution to
this problem to make our approach scalable for large
hypergraphs.

5 COMPUTATION REDUCTION

A one-time computation for any of (4) to (6) includes
enumerating the complete hyperedge space Υ and it
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Table 1: The list of sets defined for Section 5.
Symbol definition Description

Υc = {ε|ε ∈ Υ,∀u ∈ ε : Suc > 0} Hyperedge space within community c
Υvc = {ε|ε ∈ Υc, v ∈ ε} Members of Υc that have node v
Υvc = {ε|ε ∈ Υc, v /∈ ε} Members of Υc that do not have node v
Υ′ = {x|x ⊆ V, |x| ≥ 1} = {Υ ∪ V } Extended hyperedge space: Includes isolated nodes
Υ′

c = {ε|ε ∈ Υ′,∀u ∈ ε : Suc > 0} Extended hyperedge space within community c
Υ′

vc = {ε|ε ∈ Υ′
c, v ∈ ε} Members of Υ′

c that have node v
Υ′

vc = {ε|ε ∈ Υ′
c, v /∈ ε} Members of Υ′

c that do not have node v

takes O(C2 × N2 × 2N−2) computations. Each of
those equations consists of two summations, one for
the hyperedges E and the other for the non-hyperedges
Ē. Since a hypergraph is very sparse in practice
(M ≪ |Υ|), it is the summation over ē ∈ Ē that makes
the computational complexity exponential. To address
this complication, in this section, we reformulate the
summations over Ē to reduce the exponential enumer-
ation. With the new formulations, a value is initialized
for those summations once in O(1) and then will be
updated, again in O(1) at each optimization iteration.
The new formulation is virtually lossless and does not
sacrifice any precision. We also apply an initialization-
update routine for the observed hyperedges to further
reduce the worst-case complexity. This routine, along
with a detailed complexity analysis discussion, is ex-
plained in appendix B, where we show that these re-
formulations reduce the overall complexity of our in-
ference algorithm to O(C × volH).

5.1 Reformulations

Our goal in this section is to find an alternative for-
mulation for the ē ∈ Ē summations in (5) and (6) so
that a tractable product of Svc can be factorized out
of the summation. With that, we can update the value
of those summations in a tractable time after a new
Svc value is determined as discussed in section 5.2. We
extend our notation in table 1 for a more clear formu-
lation in this section. We start by working toward
finding a transformation for (5), then we develop a
transformation for (6) in a similar fashion.

We define the function Ψ(A, c) to use for developing
our reformulations:

Ψ(A, c) =
∑
ε∈A

log

(
1 −

∏
u∈ε

Suc

)
(8)

where A can be any given subset of the nodes. Using
(8) to represent the summation over non-hyperedges,
(5) can be rewritten as:

LH(Sv.) =
∑
{e∈E
|v∈e}

log

(
1 −

C∏
c=0

(
1 −

∏
u∈e

Suc

))

+

C∑
c=0

Ψ({ē∈Ē
|v∈ē}, c) − λS

C∑
c=1

Svc

(9)

As Ψ({ē∈Ē
|v∈ē}, c) = Ψ(Υvc, c) − Ψ({e∈E

|v∈e}, c), (5) can be

computed in a tractable time if we have a tractable
way to compute Ψ(Υvc, c).

Since
∏

u∈ε Suc is bounded in the range [0, 1], if we
prevent it from becoming exactly 1, we can replace
log
(
1 −

∏
u∈ε Suc

)
in (8) with its Taylor expansion

around zero (Maclaurin expansion). Note that the
only situation in which

∏
u∈ε̂ Suc for some ε̂ becomes 1

is if all the nodes in ε̂ have a membership weight of 1 to
the community c. But under our model, this can only
happen if all subsets of ε̂ with size 2 or more have a
corresponding hyperedge in the hypergraph H. Since
Ψ is only computed to be used for non-hyperedge sum-
mations, in that case we can dismiss including such ε̂
and its subsets from the computations.

Replacing log
(
1 −

∏
u∈ε Suc

)
in (8) with its equivalent

Taylor expansion, we have:

Ψ(A, c) =
∑
ε∈A

n∞∑
n=1

−1

n

(∏
u∈ε

Suc

)n

=

n∞∑
n=1

ψn(A, c)

(10)
where n∞ is an upper bound for the order of the series.
It theoretically goes to ∞, but in practice the terms
in the series converge to 0 quickly and a very accurate
estimate is yielded by setting n∞ to a finite O(1) num-
ber. We show the nth term of the expansion in (10)
with the function ψn(A, c) = −1

n

∑
ε∈A

(∏
u∈ε Suc

)n
.

Applying the transformation in (10) to Ψ(Υvc, c) we
have Ψ(Υvc, c) =

∑n∞
n=1 ψn(Υvc, c). Having the trans-

formed formulation, Svc can be completely factorized
out of ψn(Υvc, c):

ψn(Υvc, c) = Svc
nψn(Υ′

vc, c) (11)

It is trivial to show that for every node v and commu-
nity c the following equality holds:

ψn(Υ′
c, c) = ψn(Υ′

vc, c) + ψn(Υvc, c) −
1

n
Svc

n (12)

where the last term is added to count for the case of
ε′ = {v}, which is counted in ψn(Υ′

c, c), but is neither
in ψn(Υ′

vc, c) nor in ψn(Υvc, c). Using (11) to replace
the ψn(Υ′

vc, c) in (12) by its equivalent in terms of
ψn(Υvc, c), the following equivalency can be derived:

ψn(Υvc, c) =
Svc

n

Svc
n + 1

(ψn(Υ′
c, c) +

1

n
Svc

n) (13)
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This means by having one value of ψn(Υ′
c, c) for each

community c, we can compute ψn(Υvc, c) and conse-

quently Ψ({ē∈Ē
|v∈ē}, c) for every v ∈ V in O(1). As we

show in section 5.2, our formulation provides an O(1)
access time to the updated value of ψn(Υ′

c, c) for any
community c, which lets the computation of the like-
lihood in (5) to be done in O(1).

We follow a similar procedure to reduce the compu-
tation for (6). As explained in appendix A, the non-
hyperedge summation for any input in (6) can be com-
puted in O(1) from the same ψn(Υ′

c, c) that is calcu-
lated for (13) and no additional updating during the
iterations are required for it.

5.2 Initialization and Updating

Given the reformulations in section 5.1, we only need
a tractable access to ψn(Υ′

c, c) to overcome the expo-
nential computations. Our overall scheme to solve this
problem is to initialize these values in the beginning,
store them, and update them after any Svc value is
updated during the inference iterations. In this sec-
tion, we provide O(1) solutions to both initialization
and updating steps. To avoid terminology confusion
in this section, we use derivations of the word initialize
to refer to initializing ψn(Υ′

c, c) values, and preset in
reference to initializing the Svc values.

The under-determined solution space of our model
makes a good preset an integral part of a successful
community inference. Our inference method allows
any arbitrary preset for the community memberships
values Svc. Still, if an informed preset is not available,
one can start the learning iterations by randomly as-
signing nodes to the communities and giving the mem-
bers an equal arbitrary membership weight.

Any community preset partitions the network into
member and non-member nodes for each community
c. Then every potential hyperedge ε would have one of
the two following states with respect to the community
according to (8):

1. ∃u ∈ ε : Suc = 0, then the term corresponding to
ε in ψn(Υ′

c, c) collapses to zero.

2. ∀u ∈ ε : Suc > 0, then the term corresponding to
ε in ψn(Υ′

c, c) becomes nonzero.

So the initialization of ψn(Υ′
c, c) values for each c in-

cludes only the possible hyperedges that all the includ-
ing nodes have a non-zero membership to community
c. That means a direct computation of ψn(Υ′

c, c) in-
cludes summing over all subsets of the nodes in c. To
find an O(1) analytical solution, even if the informed
community preset gives different membership weights

to the nodes, we start with an equal value of S0 for
all {Svc|v ∈ c}. Then we can run a round of updat-
ing as explained later in (15) to replace S0 with the
specific preset Svc values for each node. Taking this
initial value S0 > 0, for each n ≥ 1 we have:

ψn(Υ′
c,c)

(0) =
−1

n

∑
{ε′∈Υ′

c}

(
S0

|e′|
)n

=
−1

n

[ Nc∑
m=0

(
Nc

m

)
(S0

n)
m −

(
Nc

0

)
(S0

n)
0

]
=

−1

n

[
(S0

n + 1)
Nc − 1

]
(14)

where Nc is the number of nodes in community c.

The next task is to develop an updating formula for
ψn(Υ′

c, c). Our approximate inference algorithm iter-
atively updates the values of Svc. At each iteration
t, after a new value Svc

(t)s is computed in (7), we
need to update ψn(Υ′

c, c) with the new values for each

n = 1, . . . , n∞. Taking S
(t−1)
vc as the membership value

from previous iteration and S
(t)
vc as the updated value

that is computed in current iteration, our goal is to

isolate the terms with S
(t−1)
vc in ψn(Υ′

c, c) and replace

them with the new values S
(t)
vc to get the updated value

of ψ
(t)
n (Υ′

c, c). Constructing on (11) and (12), and the
definition of ψn(A, c) in (10), the updating formula for
ψn(Υ′

c, c) is derived as:

ψ(t)
n (Υ′

c, c) =
S
(t)
vc

n
+ 1

S
(t−1)
vc

n
+ 1

(
ψ(t−1)
n (Υ′

c, c)

+
1

n
S(t−1)
vc

n
)
− 1

n
S(t)
vc

n

(15)

6 EXPERIMENTAL RESULTS

6.1 Experimental Design

We implemented1 our algorithm using C++ and ex-
tended the SNAP open-source C++ library (Leskovec
and Sosič, 2016). We also implemented an efficient
data structure for hypergraphs to be added to the
standard Graph library in SNAP. We show the per-
formance of our model by running it on both syn-
thetic and real-world data. To compare against graph
community detection methods, we created a graph for
each hypergraph by turning every hyperedge e into
a deg(e)-clique. We evaluate the performance of our
model against popular community detection methods

1Full implementation of HySGen and the data
used in our experiments can be accessed at
https://github.com/bpedrood/HySGen.

https://github.com/bpedrood/HySGen
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Table 2: Real world datasets used in the experiments.
N: Number of nodes, H: Number of hyperedges, MH:
Maximum hyperedge size, E: Number of edges in
the regular graph converted from the hypergraph, C:
Number of ground truth communities.

Dataset N H MH E C

NSF 8,167 6,221 14 38,206 309
Scratch 5,985 5,842 40 139,570 1,174
DBLP 6,129 6,261 9 9,708 14

by measuring the similarity of discovered communities
from each method against the ground truth in real-
world networks. To quantify the similarities, we use
the following performance measure, as done by Yang
and Leskovec (2013); Yang et al. (2013):

F (δ, C,C∗) =
1

2|C∗|
∑

C∗
i ∈C∗

max
Cj∈C

δ(C∗
i , Cj)+

1

2|C|
∑
Cj∈C

max
C∗

i ∈C∗
δ(C∗

i , Cj)

(16)

where C∗ represents the ground truth communities
and C the detected communities. δ(C∗

i , Cj) is the F1
score or Jaccard index between the two sets C∗

i and
Cj . Other similarity measures can also be used.

Our model has a large number of parameters; as such,
the solution space is under-determined and our infer-
ence model is prone to converging to local maxima. A
good community initialization helps the inference pro-
cedure to find a better solution. Our inference method
allows any arbitrary initialization method to deter-
mine the initial community membership weights. To
avoid any bias and advantage over the baseline meth-
ods, we use locally minimized neighborhoods (Gleich
and Seshadhri, 2012), which is the same initialization
method used in BigCLAM (Yang and Leskovec, 2013).
Further details on our optimization process and pa-
rameter assignments are given in appendix C.

6.2 Synthetic Data Experiment

The goal of this experiment is to show how HySGen is
capable of leveraging the hypergraph structure when
no graph community detection method can perform
well. We synthesized a hypergraph with 87 nodes and
55 hyperedges for an imaginary example of a school,
where the nodes are individuals and hyperedges repre-
sent the meetings they attended. There are two ground
truth communities: Computer Science and History
students, shown as nodes with shades of blue and red,
respectively, in fig. 2a. In all the sub-figures of fig. 2,
the membership weights of nodes are shown with a
heat-map that displays larger weights with darker col-
ors and smaller weights with lighter colors. The yellow

Table 3: Performance comparison on real-world
datasets over average F1 score and average Jaccard
Index measures.

F1 Score Jaccard Index
Method NSF Scratch DBLP NSF Scratch DBLP

HySGen 0.200 0.441 0.117 0.117 0.322 0.064
BigCLAM 0.168 0.372 0.063 0.095 0.256 0.034
CoDA 0.163 0.396 0.035 0.091 0.284 0.021
MotifCluster 0.161 0.303 0.093 0.096 0.209 0.054
Node2vec 0.172 0.351 0.124 0.097 0.237 0.068
Link Clust. 0.073 0.250 0.004 0.046 0.157 0.002

nodes in fig. 2a are not students and do not belong to
any community. Out of 22 members of the blue com-
munity, 15 are senior students with strong affiliation to
their community and are shown with dark blue, while
7 are freshmen who had very little activity.The same
situation exists with old and new members in the red
community. The hyperedges of the network are shown
as colored contours around the nodes in fig. 2b. A
high density of hyperedges can be observed around the
strong members of each community. There are also
two big hyperedges of size 43 and 44 that correspond
to two welcome parties held by the school and students
are assigned randomly to one of the parties. Students
are allowed to bring guests and that is why there are
several yellow nodes in fig. 2a with no community affili-
ation. These very large hyperedges carry no meaning-
ful information about the ground-truth communities
and are included to investigate the resilience of our
method to noisy hyperedges.

The nodes’ colors in fig. 2b show the results of running
HySGen on this hypergraph, with a 0.1 cutoff on the S
values. The regular graph representation of the hyper-
graph is shown in fig. 2c, where the edges are shown
with straight lines connecting pairs of nodes. We can
see that using hyperedges allows HySGen to discover
communities that are very close to the ground-truth.
However, when the hypergraph is converted to a graph,
the two big hyperedges overshadow all the other con-
nections, causing graph-based methods to infer incor-
rect communities.

6.3 Real World Data Experiments

6.3.1 Dataset Description

We extracted three hypergraphs from real-world
datasets for our experiments. The pre-processing and
hypergraph extraction procedures for NSF and Scratch
follow the same steps as is done by Revelle et al.
(2015). DBLP is extracted from a dataset provided by
Kamiński et al. (2019). For each of these hypergraphs,
we took the largest connected component to be used
in our experiments and filtered out the communities
with fewer than three members. The statistics of the
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Figure 2: Synthetic example: A hypergraph where nodes are individuals and hyperedges show the recorded
gatherings. The nodes are copied in the same location in each sub-figure. a) The ground truth for the hypergraph:
Two main communities of CS students (red nodes) and history students (blue nodes), while yellow nodes belong
to no community. b) The hypergraph’s hyperedges are shown as contours that are colored for better visibility,
and the discovered communities as colored nodes with darker blue and red colors show stronger affiliation. The
yellow nodes have affiliation less than a threshold to any community. c) The edges of the graph equivalent of
the hypergraph are shown as black lines, and the communities inferred form the graph are colored the same way
as it is done in (b).

largest connected component of each real-world data
is provided in table 2. A summary of each dataset is
provided in appendix D.

6.3.2 Comparison Results

We evaluate HySGen against a range of baseline meth-
ods by comparing the performance of each method on
the real-world datasets. All these methods run on the
graph equivalent of the data. BigCLAM (Yang and
Leskovec, 2013) is the closest graph algorithm to HyS-
Gen and finds the overlapping communities by fitting
a generative model to the graph. CoDA (Yang et al.,
2014) finds communities that are characterized either
by dense inner-connections, or through a two-step dis-
tance. Link Clustering (Ahn et al., 2010) creates a
dendrogram based on edge similarities for a hierarchi-
cal clustering scheme. We set the threshold on the
dendrogram so that the number of discovered commu-
nities matches the number of the ground truth com-
munities. Motifcluster (Benson et al., 2016) creates a
motif adjacency matrix based on the higher-order con-
nection patterns in the graph, and uses spectral clus-
tering to provide a node embedding for the graph. The
communities are then found by applying k-means clus-
tering on the nodes’ features. Node2vec (Grover and
Leskovec, 2016) also provides a node embedding, but
it leverages a neural network approach to capture the
connection patterns. As in MotifCluster, Node2vec
finds the communities by applying k-means on the
node features.

Table 3 shows the results of applying the methods to
the real-world datasets. The numbers in the table
are computed by using (16) to compare each method
against the ground truth communities. To have a more
solid comparison, we produced two performance mea-
sures based on F1-score and Jaccard similarity. The
results show that HySGen outperforms the baselines in
both measures for the NSF and Scratch datasets. In
DBLP, Node2vec has a narrow lead over our method,
but HySGen still outperforms the other baselines with
a noteworthy margin. Compared to NSF and Scratch,
DBLP has a comparable number of nodes, but it has
significantly fewer hyperedges and ground truth com-
munities. One may argue that the high-dimensional
embedding of Node2vec is able to better capture the
relatively little amount of connection information pro-
vided in this data. HySGen can still outperform
Node2vec when the hypergraph is not too sparse. Con-
firming this conjecture requires further investigation
and experiments.

7 CONCLUSION

We proposed Hypergraph Simultaneous Generators
(HySGen), a probabilistic model for discovering over-
lapping communities in hypergraphs. We showed that
our proposed inference method can accurately detect
communities by leveraging the higher order connec-
tions of the hyperedges. Thanks to the proposed com-
putation reduction scheme and our efficient implemen-
tation, the method is relatively fast and scalable to
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large hypergraphs with tens of thousands of hyper-
edges. Nevertheless, the inference can be slow when
the hypergraph has millions of hyperedges and tens of
thousands of communities are to be discovered. Since
most of the computations in each iteration go for the
line search in practice, this problem can be signifi-
cantly improved by developing a parallel processing
implementation of the updating algorithm for the com-
munity membership values of each node independently
and then using those values for a fast sequential up-
dating of ψn via (15). HySGen is the first method
of its kind that is based on affiliation networks, and
can be used as a basis to develop many other methods
by changing the generative model’s assumptions and
structure. It is developed for simple, unweighted, and
undirected hypergraphs, and can be extended to be
applied to other types of hypergraphs.
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Supplementary Material:
Hypergraph Simultaneous Generators

A PARTIAL DERIVATIVES COMPUTATION REDUCTION FORMULATION

As discussed in section 5, to have a computationally tractable inference of the communities, we need to develop
an efficient way to compute the summations on ē ∈ Ē in both (5) and (6). In section 5.1, we developed a
mathematical transformation for the summation on ē ∈ Ē in (5) to make it accessible as a function of ψn(Υ′

c, c)
in O(1). The formulations were completed by developing an O(1) procedure to compute updated values of each
ψn(Υ′

c, c) in section 5.2. In this section, we follow similar steps to the ones in section 5.1 toward developing an
O(1) procedure for computing the summation on ē ∈ Ē in (6). We start with rewriting (6) as:

∂LH(Svc)

∂Svc
=

∑
{e∈E
|v∈e}

∏
m∈(e−{v})

Smc

∏
b∈([C]−{c})

(
1 −

∏
u∈e Sub

)
1 −

∏C
b=1

(
1 −

∏
u∈e Sub

)
− Ψ(∂)({ē∈Ē

|v∈ē}, c) − λSI1(Svc)

(A.1)

where Ψ(∂)(A, c) is the partial derivative equivalent of (8) and defined as given below:

Ψ(∂)(A, c) =
1

Svc

∑
ε̂∈A

∏
u∈ε̂ Suc

1 −
∏

u∈ε̂ Suc
(A.2)

Taking the same considerations for
∏

u∈ε Svc as we did in section 5.1 for (10), a Taylor expansion representation

for Ψ(∂)(A, c) is yielded as:

Ψ(∂)(A, c) =
1

Svc

∑
ε∈A

n∞∑
n=1

(∏
u∈ε

Suc

)n

=
−1

Svc

n∞∑
n=1

n× ψn(A, c)

(A.3)

where ψn(A, c) is the same function that is used in (10).

It is trivial to show that Ψ(∂)({ē∈Ē
|v∈ē}, c) = Ψ(∂)(Υvc, c) − Ψ(∂)({e∈E

|v∈e}, c). Analogous to the discussion in section 5.1,

the key to reducing the time complexity of computing Ψ(∂)({ē∈Ē
|v∈ē}, c) is to compute Ψ(∂)(Υvc, c). As (A.3) indicates,

the latter can be computed in O(1) by applying (13) to the same Ψ(∂)(Υ′
c, c) values that are initialized and

updated in section 5.2. This means that, for an efficient computation of the gradient vectors, we only need what
we have already computed, and no additional initialization and updating steps are necessary. Note that for (A.3)
to work, we should have Sold

vc > 0. However, if Sold
vc = 0, its value can be computed by only taking the n = 1st

term of the Taylor expansion as Ψ(∂)(S, c) = −ψ1(Υ′
c, c).

B COMPLEXITY ANALYSIS

Our inference algorithm (sections 4 and 5) iteratively updates the community membership values until reaching
a local maximum for (4). At each iteration, we should update the Svc values for all N nodes and C communities.
To update each Svc, since we are using the method of coordinate ascent, we should compute the partial derivatives
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in (6); and because we use Armijo-Goldstein’s backtracking line search (Armijo, 1966) for finding the step sizes,
we should also compute (5). We proceed the analysis with (6) as it is the computationally dominant formula and
has more operations for each output Svc component. Without the computation reduction platform in section 5,
computing (6) includes 2N−1 summation terms for each potential hyperedge adjacent to v. Each term in the
summation corresponding to the hyperedges includes a product of C sub-terms, and each sub-term includes
multiplying as many items as the size of the hyperedge. Considering the closed-form evaluation of the sum
of the sizes of all possible hyperedges adjacent to v (Boros and Moll, 2004), computing (6) takes O(CN2N−2)
operations. Since this should be computed for all the nodes and communities, a complete inference iteration is
done in O(C2N22N−2).

By introducing the computation reduction scheme in sections 5.1 and 5.2, we still have to update C×N values of
Svc at each iteration. But the change in the complexity order comes from reducing the number of computations
for updating each Svc. This reduction is two-fold, one for the summations over {e ∈ E} and the other for the
summations over {ē ∈ Ē} in (4) and (6).

For the {e ∈ E} summation, instead of directly computing all parts of a term, we follow an initialization+update

scheme for the following subformulas: 1)
∏

u∈e Suc forM hyperedges and C communities, 2)
∏C

c=0

(
1 −

∏
u∈e Suc

)
for M hyperedges, and 3)

∑C
c=0 log

(
1 −

∏
u∈ē Suc

)
for M hyperedges. Initializing these subformulas with a fixed

Svc value for the initially assigned members of the communities takes a total of O(C×M) calculations. Then for

every new S
(t)
vc value computed during a parameter inference iteration, the saved values for the above subformulas

that include Svc should be updated. It is trivial to show that updating each one of them can be done in O(1). In
a complete iteration, the terms corresponding to all hyperedges should be updated, and for each hyperedge, the
corresponding term is updated as many times as the size of the hyperedge. Consequently, the overall complexity
of updating these terms in an iteration is O(C × volH).

For the {ē ∈ Ē} summation, the analytical initialization solution in (14) and updating formula in (15) for

ψn(Υ′
c, c) are both done in O(1). For every newly computed S

(t)
vc , n∞ number of ψn(Υ′

c, c) values should be
updated. However, the terms of the Taylor expansion approach zero after few terms, and setting n∞ to a small
constant at the beginning of the inference gives sufficient precision. In our experiments we set this parameter
to 30 and the 30th term has never exceeded 10−5 (most of the times it goes to zero in much less terms). This
means the total computational cost of updating the ψn(Υ′

c, c) values for all n = 1, . . . , n∞ is O(1). We should
also emphasize that while we set n∞ = 30 in our implementation, setting a larger value 1) does not have any
affect on the output for the hypergraphs used in our experiments, and 2) has virtually no effect on the inference
speed, as the algorithm stops going to n + 1 after ψn(Υ′

c, c) becomes less than a threshold (which is set to
10−5 in our implementation. As explained in section 5 and appendix A, all the intermediate steps from (13)

up to computing Ψ({ē∈Ē
|v∈ē}, c) and Ψ(∂)({ē∈Ē

|v∈ē}, c) also take O(1) operations. So the total computational cost for

the {ē ∈ Ē} summations in (4) and (6) is O(C × N), which is dominated by the cost of {e ∈ E} summations.
This means the total computational cost of one updating iteration in our inference algorithm is reduced to
O(C × volH).

C OPTIMIZATION AND PARAMETER ASSIGNMENTS

Our inference method uses Block Coordinate Ascent to update the community membership values S as explained
in section 4. In each round of the updating iterations, the nodes are shuffled in a random order, then each node
v is chosen one at a time to update the vector Sv.. At each iteration, our inference follows a stochastic gradient
ascent scheme: after calculating the new value for v, the change is applied on S and the stored term mentioned
in section 5.2 and appendix B are updated, for the next nodes in the agenda. To update each Sv. in (7), we use
the Backtracking Line Search method to find the α coefficients. The solution space for S is constrained and each
0 ≤ Svc ≤ 1. It can be shown that the Karush-Kuhn-Tucker (KKT) conditions satisfy the subproblem of (5) for
all its associated inequality constraints. We incorporated the second KKT condition (Complimentary Slackness)
in our updating iterations and allow the components of Sv. to adjust their update in (7) according to their
binding or non-binding standing. Specifically, we start the search direction as p = ∇LH(Sv.) for every α that
has to be tried during the line search. Then if Svc + αpc exceeds an inequality constraint for some component
c, we set pc so that Svc + αpc becomes binding to that constraint. After a satisfying pc is chosen, we change its
corresponding component in p to the new value and use the vector p instead of the original ∇LH(Sv.) in (7), to
update Sv..
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The value we set for the null community parameter reflects our judgement about the noise level of the hyperedges.
We set this parameter to S0 = 1

N for all the datsets. The L1 regularization term λ, along with many other
parameters, are set as inputs to our method, and the values are adjusted over many trials to yield the highest
log-posterior value at the end of the iterations. The reported values in table 3 for our method are set by running
it ten times with the same input parameters and yielding the results with the highest log-posterior. Since the
performance measure that we used does not acknowledge the soft membership weights inferred by HySGen, we
put a cutoff value of 0.1 for our computed membership values for the NSF and Scratch datasets, and 0.0 for
DBLP.

D REAL-WORLD DATASETS

• NSF: This dataset is gathered from NSF awards conceded between 1995 and 2014 by the NSF’s Directorate
for Computer and Information Science and Engineering (CISE). The award archive is accessible on the NSF
website2. A collaboration hypergraph was extracted from the data by taking the researchers as nodes, and
each awarded proposal as a hyperedge to connect the researchers who collaborated in writing the proposal.
The researchers are associated with programs, so we took the programs with at least three researchers as
the ground truth communities.

• Scratch: It is an online community for software developers to share code and collaborate on projects. An
archival dataset of five years of public activity in this community is accessible through Harvard Dataverse
repository3. In this environment, users can remix a project by copying and modifying it. We created a
co-remix hypergraph from the interactions recorded in the year 2009. We assigned the users to nodes and
their co-remixing projects to hyperedges. Project galleries are collections of selected projects created by a
user who moderates the requests for adding new projects to the gallery. We used galleries corresponding to
three or more users as ground truth communities.

• DBLP: This dataset is introduced by Kamiński et al. (2019) and is accessible at the authors’ GitHub
repository4. The actual hypergraph statistics extracted from the data do not match the description provided
in the repository description and its corresponding paper. The dataset provides a fully connected citation
hypergraph where the nodes are authors and hyperedges are papers. The 14 ground truth communities
partition the nodes into non-overlapping groups, where the smallest has five members, and the largest has
2467 members.

2https://www.nsf.gov/awardsearch/download.jsp
3https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/KFT8EZ
4https://gist.github.com/pszufe/02666497d2c138d1b2de5b7f67784d2b
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