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Abstract

Fully Bayesian approaches to sequential
decision-making assume that problem pa-
rameters are generated from a known prior.
In practice, such information is often lack-
ing. This problem is exacerbated in setups
with partial information, where a misspeci-
fied prior may lead to poor exploration and
performance. In this work we prove, in
the context of stochastic linear bandits and
Gaussian priors, that as long as the prior is
sufficiently close to the true prior, the per-
formance of the applied algorithm is close to
that of the algorithm that uses the true prior.
Furthermore, we address the task of learn-
ing the prior through metalearning, where
a learner updates her estimate of the prior
across multiple task instances in order to im-
prove performance on future tasks. We pro-
vide an algorithm and regret bounds, demon-
strate its effectiveness in comparison to an
algorithm that knows the correct prior, and
support our theoretical results empirically.
Our theoretical results hold for a broad class
of algorithms, including Thompson Sampling
and Information Directed Sampling.

1 INTRODUCTION

Stochastic bandit problems involve sequential
decision-making in the face of partial feedback, aim-
ing to maximize cumulative reward or minimize regret
gained over a series of interactions with the environ-
ment (for a comprehensive overview see Lattimore and
Szepesvári (2020)). Bandit algorithms often differ in
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their prior knowledge about the nature of the rewards.
In a frequentist setting, one assumes a reward distri-
bution with fixed, but unknown parameters, while in
a Bayesian setting, these parameters are generated
from a known prior. While much effort has been
devoted to devising effective algorithms with provably
low regret in both settings, the situation is far less
clear in a mixed setup, where the reward parameters
are drawn from some unknown or partially known
prior distribution. A particular challenge in this
case is that exploration based on an incorrect prior
assumption may lead an algorithm to waste resources
by exploring irrelevant actions or, on the other hand,
to disregard good ones (for earlier discussions of the
influence of prior choice see Chapelle and Li (2011);
Bubeck and Liu (2013); Honda and Takemura (2014);
Liu and Li (2016)).

In the frequentist settings, for algorithmic reasons,
some algorithms treat the parameters as if they arise
from a prior distribution even though it does not reflect
nature (Agrawal and Goyal, 2013; Abeille and Lazaric,
2017). Although these algorithms can be applied in the
mixed setup, it is natural to expect improved perfor-
mance when an adequate estimate of the prior exists.
In this work we demonstrate in Theorem 1, for Gaus-
sian prior distributions, that as long as the prior esti-
mate is sufficiently accurate, the performance of an al-
gorithm that uses the approximate prior is close to that
of the same algorithm that uses the true prior. This
analysis is challenging, since it compares two learning
algorithms, both evolving throughout their interaction
with the environment.

One natural approach to acquire a good prior estima-
tion is based on metalearning. We study d-dimensional
linear bandits in a metalearning setup where, at the
beginning of each one of the N instances, each of du-
ration T , a linear bandit task is sampled from an un-
known prior distribution. The meta-learner maintains
a continually updated meta-prior estimator across in-
stances, and uses it as a prior for each instance. Then,
within an instance, she selects actions in pursuance
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of maximizing accumulated rewards, based on an up-
dated within-instance posterior. We provide an ex-
plicit algorithm and establish regret bounds with re-
spect to (WRT) the algorithm that knows the prior.

The main contributions of this work are the following:

• In the single instance setting, we prove that when
the prior deviation is small, an algorithm’s regret
is close, up to a multiplicative constant, to the
regret of the same algorithm that uses the cor-
rect prior. This result holds even when the prior
deviation is not restricted by a function of the in-
stance duration as implied in previous works, e.g.,
(Bastani et al., 2021).

• We present a class of algorithms that can use
any single-instance prior-based approach in a
metalearning setup to derive regret bounds with
Õ(
√
NT ) regret, as opposed to previous results

with Õ(
√
NTα) regret, α ≥ 3/2. As far as we are

aware, our results provide the first regret bounds
of order Õ(

√
NT ) when both the prior mean and

covariance are unknown.

• Technically, we develop a two-stage approach to
compare algorithms using different priors, and
hence different actions along the run. This signif-
icantly reduces the time-dependence of the regret
bounds, and allows us to deal with the uncertainty
in both the mean and covariance of the prior (See
Table 1).

• We demonstrate empirically the importance of
meta-prior learning in general, and covariance es-
timation in particular.

2 PRELIMINARIES AND SETTING

We use the following convention: variables appear
with small letters x, vectors with capital letters X
and matrices with bold capital letters X. For X ∈
Rd,A,B ∈ Rd×d, ‖X‖p is the lp norm, ‖X‖ is the
l2 norm and ‖A‖op is the l2 operator norm. The
smallest and largest eigenvalues of a matrix A are
λmin (A) , λmax (A) and A � B represents that A−B
is PSD. The unique square root of a PSD matrix A
is A1/2. We introduce the notation A[B], when we
wish to emphasize that A is a function of a matrix B.
This notation is used for vectors and variables as well.
The set {1, . . . , n} is denoted by [n] for n ∈ N and the
indicator function is denoted by 1 {·}. Finally Õ rep-
resents the O notation up to polylogarithmic factors
and so does Ω̃ and Ω.

2.1 Setting and Assumptions

We consider a metalearning problem where a learner
interacts with N instances sequentially. At the start
of each instance n ∈ [N ], a random vector θn ∈ Rd
is sampled from a multivariate Gaussian distribution
N (µ∗,Σ∗) with unknown parameters. At each time
t ∈ [T ], the learner chooses an action An,t ∈ Rd
from a subset of available actions An,t presented to
her and receives a reward xn,t [An,t] = A>n,tθn + ξn,t,
where ξn,t is a noise term sampled independently from
a known distribution N (0, σ2). We also define the vec-
tor Xn,t = [xn,1, . . . , xn,t] and the matrix An,t, which

is formed by concatenating the vectors
{
A>n,s

}t
s=1

in
its rows.

The following technical assumptions are required for
the proofs. We first define Ba(0) as a d-dimensional
ball of radius a centered at 0 and the density function
fA (A) , f̃A (A)1 {‖A‖ ≤ a} /Za for some function f̃A
and an appropriate normalization constant Za.

Assumption 1. The set of actions can be either de-
terministic, An,t = Ba(0), or a set of actions of any
size, An,t ⊂ Ba(0), each of which is sampled i.i.d. from
a distribution fA with a covariance matrix whose min-
imal eigenvalue is lower bounded by a known constant
λmin (ΣA) ≥

¯
λΣA > 0. The function f̃A(A), can be

either a zero mean Gaussian distribution or one which
satisfies monotonicity, i.e., for every ‖A1‖ ≤ ‖A2‖ in
the support of fA, f̃A(A1) ≥ f̃A(A2).

Assumption 2. The minimal and maximal eigenval-
ues of the prior covariance matrix are lower and up-
per bounded by known constants, λmin (Σ∗) ≥

¯
λΣ∗ >

0, λmax (Σ∗) ≤ λ̄Σ∗ .

Assumption 3. The norm of the prior mean is upper
bounded by a known constant, ‖µ∗‖ ≤ m.

Regarding Assumption 1, only the boundedness of the
actions is necessary during all time-steps, while the
monotonicity and the eigenvalues bound are used just
during the exploration steps of the algorithm.

2.2 QBτ Algorithms and Regret Definition

While optimal Bayesian approaches operate by an ex-
act computation of predictive distributions, we con-
sider algorithms that work with posterior estimates,
and which are not committed to Bayesian optimal-
ity. We refer to such algorithms as Quasi-Bayesian
(QB), including, for example, Thompson Sampling
(TS) (Thompson, 1933; Russo and Van Roy, 2014),
and Information Directed Sampling (IDS) (Russo and
Van Roy, 2018). The Bayesian regret of a QB algo-
rithm that uses a prior N (µn,Σn) in the nth instance
is defined WRT an oracle that chooses at each step
the action that yields the highest expected reward, i.e.,
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A∗n,t = argmaxAn,t∈An,t A
>
n,tθn,

E
[
R∗QB (µn,Σn, T )

]
,

T∑
t=1

E
[
xn,t

[
A∗n,t

]
− xn,t [An,t]

]
.

(1)

The expectation is taken over the prior used by the
learner, which may be random, due to previous ob-
servations, the realization of θn, the actions that were
presented during the instance, the randomness of the
algorithm and the received noise terms.

We analyze algorithms that use the first τ steps of each
instance to explore the actions uniformly at random in
order to gain information. We refer to such algorithms
as QBτ (for example TSτ , IDSτ ) and select τ so as to
minimally affect the regret.

For clarification, there are three degrees of knowledge
in this problem setup. The highest one is direct knowl-
edge of the realization of each instance {θn}Nn=1. The
oracle which knows these realizations always chooses
the best actions A∗n,t and does not need to learn any-
thing in the environment. The second level is knowl-
edge of the prior. We use the term KQBτ for the
special version of each QBτ algorithm that knows the
true prior and denote its actions by AK

n,t. Such algo-
rithms attempt to learn the realization of θn within
the instance, but do not need to learn the meta en-
vironment between the instances. Hence their regret
scales linearly in the number of instances N . This
type of algorithm is the one usually analyzed under
the Bayesian setting, e.g., (Russo and Van Roy, 2014,
2018). The last level of knowledge includes general
QBτ algorithms that are unaware of the prior and the
realizations and may learn both within and between
instances.

The regret of a QBτ algorithm incurred by the incor-
rect prior is defined WRT KQBτ and essentially mea-
sures the cost of ‘not knowing’ the true prior. We refer
to it as the relative regret,

E
[
RK

QBτ
(µn,Σn, T )

]
,

T∑
t=1

E
[
xn,t

[
AK
n,t

]
− xn,t [An,t]

]
(2)

= E
[
R∗QBτ

(µn,Σn, T )− R∗QBτ
(µ∗,Σ∗, T )

]
.

Note that a naive approach that uses the same ini-
tial prior, without transferring knowledge between in-
stances, yields a relative regret linear in N .

By rewriting (2), we can view the Bayesian regret of
a QBτ algorithm as a sum of the ‘cost of not knowing
the realization of θn when the prior is known’ and the

‘cost of not knowing the prior’,

E
[
R∗QBτ

(µn,Σn, T )
]

= E
[
R∗QBτ

(µ∗,Σ∗, T ) + RK
QBτ

(µn,Σn, T )
]
.

(3)

For brevity, we now omit the index n until presenting
the meta setting in Section 4. Given an assumed prior
N (µ,Σ) at the beginning of an instance, a QBτ al-
gorithm updates its posterior at time t based on the
actions taken and the rewards received,

Σt =

(
Σ−1 +

1

σ2
Vt−1

)−1

,

µt = Σt

(
Σ−1µ+

1

σ2
A>t−1Xt−1

)
,

(4)

for the Gram matrix Vt , A>t At. We remind the
reader that At, Xt contain the actions and rewards
up to time t respectively. The full derivation of the
posterior calculation can be found in Appendix B.

Algorithm 1 presents a general scheme of a QBτ algo-
rithm. The specific mechanism of each algorithm is re-
flected in Line 6. For example, at time t > τ , TSτ sam-
ples from the posterior θ̃ ∼ P (µt,Σt) and then plays
the best action given that sample, argmaxAt∈At A

>
t θ̃.

Algorithm 1: QBτ (µ,Σ, τ, σ)

Inputs : µ, Σ, τ , σ
Outputs: Aτ , Xτ // for meta estimation

1 Initialization: empty matrix A0 and vector X0

2 for t = 1, . . . , T do
3 if t ≤ τ then // within instance exploration
4 Sample At uniformly from At, observe a

reward xt
5 else
6 Play At according to the specific algorithm

scheme, observe a reward xt

7 Concatenate the actions and rewards
At ← At−1 ◦At, Xt ← Xt−1 ◦ xt

8 Update the posterior N (µt+1,Σt+1) by (4)

3 SINGLE INSTANCE REGRET

Our main result, Theorem 1, bounds the relative re-
gret (2) of any QBτ algorithm in a Gaussian prior
setting. In order to establish the result, we follow
common practice in the bandit literature of dividing
random events into the set of ‘good events’ and their
complement, e.g., (Lattimore and Szepesvári, 2020).
The former refers to situations where the various esti-
mates are ‘reasonably’ close to their true or expected
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values, and the latter is the complementary event that
is shown to occur with low probability. The bulk of
the proof consists of bounding the regret for the good
event. In our setting, the good event E is defined as
the intersection of four basic events for δ > 0,

Eθ ,

{∥∥∥Σ−1/2
∗ (θ − µ∗)

∥∥∥2

∞
≤ 2 ln

(
d2T

δ

)}
,

Ev ,

{
λmin (Vτ ) ≥ ¯

λΣAd

2

}
,

Em ,
{
‖µ̂− µ∗‖ ≤

√
fmδ

}
, (5)

Es ,

{∥∥∥Σ̂−Σ∗

∥∥∥
op
≤
√
fsδ, Σ̂ � Σ∗

}
,

E , {Eθ ∩ Ev ∩ Em ∩ Es} .

The event Eθ is an instance-based event, unrelated
to the performed algorithm, and represents the event
that the realization of θ is not too far from its mean.
The event Ev indicates that the QBτ algorithm ex-
plores sufficiently in all directions during the explo-
ration steps. The events Em, Es represent the distance
between the prior of the QBτ algorithm N (µ̂, Σ̂) and
the true unknown prior N (µ∗,Σ∗). The arguments
fm and fs, introduced in (5), quantify these distances.
Moreover, the event Es specifies that the estimated
covariance is wider than the true covariance, reflect-
ing the learner’s lower level of certainty compared to
an oracle that knows the true prior and thus prevents
under-exploration. This issue can be also realized from
a Bayesian point of view, where in the case that both
the mean and covariance are unknown, the posterior
mean distribution is broader compared to the case that
only the mean is unknown (see section 4.6 in Murphy
(2012)). The arguments fm, fs, as well as τ , may de-
pend on the dimension and the horizon, and may also
depend logarithmically on 1/δ.

Theorem 1. Let θ ∼ N (µ∗,Σ∗) and let N (µ̂, Σ̂) be
the prior of a QBτ algorithm. For τ < T , if for some
0 < δ ≤ 1/M the event E holds with probability larger
than 1− 9δ

dT , then the relative regret is bounded by,

E
[
RK

QBτ

(
µ̂, Σ̂, T

)]
︸ ︷︷ ︸

cost of not knowing
the prior

≤ k1 · E
[
R∗QBτ

(µ∗,τ+1,Σ∗,τ+1, T − τ)
]

︸ ︷︷ ︸
cost of not knowing the realization of θ

when the prior is known

+
cbadδ√
d︸ ︷︷ ︸

bad
event

,

where M ∈ Õ
(
fm + τ2fs

)
, k1 ∈ Õ

(√
fmδ + τ

√
fsδ
)
.

The definitions of M,k1 and cbad are in (21) in Ap-
pendix C as well as further details. The relationship
between the performance of the algorithm and the ini-
tial prior deviation in the events Em and Es is repre-
sented by k1. The term M ties δ to the arguments fm

and fs, thus forcing the prior deviations to be small,
and cbad ∈ Õ(1) stems from the bad event.

An immediate consequence of Theorem 1 and (3) is
a bound on the Bayesian regret (1) of any QBτ algo-
rithm,

E
[
R∗QBτ

(
µ̂, Σ̂, T

)]
︸ ︷︷ ︸

cost of not knowing both the
realization of θ and the prior

(6)

≤ (1 + k1)E
[
R∗QBτ

(µ∗,τ+1,Σ∗,τ+1, T − τ)
]

+ Õ(τ).

Note that for τ ∈ Õ (d), ‖µ̂− µ∗‖ ∈ Õ (1) and∥∥Σ̂−Σ∗
∥∥

op
∈ Õ (1/d), QBτ is a (1+α)-approximation

of KQBτ for some constant α > 0 which is determined
by the constants in τ , ‖µ̂− µ∗‖ and

∥∥Σ̂−Σ∗
∥∥

op
. See

Appendix C.6 for a concrete example.

Having bounded the regret of a QBτ algorithm by the
standard Bayesian regret of KQBτ , we can leverage
previous results for Bayesian algorithms. For example,
proposition 6 and Lemma 7 in Lu and Van Roy (2019),
adjusted to the Gaussian prior in Basu et al. (2021),
bound the prior-dependent Bayesian regret for TS and
a Bayesian version of UCB (Upper Confidence Bound)
in the case of finite action spaces. Plugging this bound
with δ = 1/T 2 into (6) we get,

E
[
R∗QBτ

(
µ̂, Σ̂, T

)]
≤ (1 + k1)

[
4

√√√√ λ̄Σ∗a
2

ln
(

1 +
λ̄Σ∗a

2

σ2

) ln (4 |A|T 2) (7)

×

√
1

2
dT ln

(
1 +

λ̄Σ∗T

σ2

)
+
√

2λ̄Σ∗a
2

]
+ Õ(τ).

An interesting implication of Theorem 1 is for the of-
fline learning setup. With the increasing amount of
data available, the opportunity arises to form more in-
formative priors, which are guaranteed by the theorem
to have the same regret (up to constants) as any KQBτ
algorithm in a single instance. Another implication is
for sequential settings, where N instances are sampled
from the same distribution one by one. We elaborate
on the latter in Section 4 and show that the suggested
meta-algorithm produces the conditions for the good
event to hold with high probability.

Proof sketch The difficulty in bounding the regret
based on the comparison between an algorithm that
knows the prior (KQBτ ) and another that estimates
it (QBτ ), is twofold. First, since the posteriors of
both algorithms depend on the actions and the re-
wards throughout the instance, it is hard to track the
distance between the posteriors as the instance pro-
gresses. Second, although regret bounds on TS with
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a known prior are proved to be tighter as the prior
is more informative (Russo and Van Roy, 2016; Dong
and Van Roy, 2018), an improved bound does not en-
sure an actual improvement in the regret of the algo-
rithm. Therefore, establishing low estimation error at
the start or during the instance, does not suffice.

To establish a within-instance regret bound between
QBτ and KQBτ , we adapt the idea of mean alignment
from Bastani et al. (2021) and adjust it to cover co-
variance alignment as well. This analytic tool is used
to cause the two algorithms to mathematically posses
an identical posterior at a specific time and thus to
behave identical (on average) until the end of the in-
stance. Specifically, with a two stage technique, we use
the randomness of the first τ exploration steps to align
both the means and the covariance matrices at time
τ + 1. Since the two compared algorithms start with
different covariance matrices, they can only align if the
learners would take different actions (see (4)). Prac-
tically, for every set of actions chosen by QBτ with a
certain probability, there is a nonzero probability for
KQBτ to choose the set of actions that would give rise
to covariance alignment. This occurs due to the ran-
domness in the actions selection and due to the action
space properties in Assumption 1. The cost of ana-
lytically switching between these two probabilities in
order to align the covariance matrices is termed covari-
ance alignment cost and it is reduced as a function of
the distance between the covariance matrices at the
beginning of the instance. The covariance alignment
is analyzed in Appendix C.2.1.

Yet, aligning the covariance matrices does not imply
mean alignment as well, but rather leads to an align-
ment with a surrogate algorithm, that has started the
interaction with the true covariance but with an incor-
rect mean. Since the mean is a function of the actions
taken and the reward noise received, after using the
randomness in the actions to align the covariance ma-
trices, we can use the noise terms to align the different
means (Appendix C.2.2) and thus to align the surro-
gate algorithm to KQBτ at time τ + 1. See the full
proof in Appendix C.

4 MQBτ ALGORITHM

QB algorithms are designed to minimize the regret
within a single instance, by refining their estimation
of θ, while exploiting their knowledge, as the interac-
tion with the instance proceeds. Using the same line
of thought, MQBτ aims to minimize the regret along
multiple instances by learning the meta-prior, while
using the improved prior to reduce the per-instance re-
gret. Since the prior distribution is Gaussian, one may
think to form MLE estimators for the mean and covari-

ance prior to the nth instance. However, it is inapplica-
ble in the linear bandits environment, since the learner
has no access to the true realizations of {θj}n−1

j=1 . A
simple approach would be to utilize the inner-instance
estimation of the QB algorithm. This straightforward
approach has two problems that the MQBτ algorithm
solves, using two levels of exploration.

The first problem rises from the adaptive nature of
bandit algorithms, which leads to biased instance-
estimators, as discussed in Shin et al. (2019). This in
turn, would lead to an inconsistent meta-estimation of
the prior. The solution is within-instance exploration.
At the beginning of each instance the learner performs
τ exploration steps, in which she chooses actions uni-
formly at random to ensure sufficient estimation of θ in
all directions. The information from steps τ +1, . . . , T
is ignored during the meta-estimation to keep it un-
biased. The inner mechanism of the QBτ algorithm
remains the same, i.e., all the actions taken during the
instance participate in the inner estimation of θ. The
number of exploration steps, defined so as to balance
the regret incurred and the quality of the estimators,
is set to

τ = max

{
d,

8a2

¯
λΣA

ln(d2N2T )

}
. (8)

The second problem is the limited amount of knowl-
edge on the meta-prior during the first instances. Us-
ing the inaccurate meta-prior in these instances may
result in poor performance as compared to an algo-
rithm with frequentist guarantees which by its nature
explores sufficiently in arbitrary environments. Hence,
the MQBτ algorithm uses a second level of exploration
and during the first N0 exploration instances gath-
ers information on the environment without exploiting
it yet. The number of exploration instances, derived
from several requirements along the regret proof, is
discussed in Section 5.

The full scheme of the MQBτ algorithm is presented in
Algorithm 2. Next, we elaborate on the main idea be-
hind the prior estimation. We use the Ordinary Least
Squares (OLS) estimator to obtain a meta estimation
for θj in every instance,

θ̂j =

(
τ∑
t=1

Aj,tA
>
j,t

)−1 τ∑
t=1

Aj,txj,t = V−1
j,τA

>
j,τXj,τ .

(9)
The estimator for the mean before the nth instance,
µ̂n, uses these estimations from all previous instances,

µ̂n =
1

n− 1

n−1∑
j=1

θ̂j . (10)

The bias-corrected MLE for the covariance before the
beginning of the nth instance would be 1

n−2

∑n−1
j=1 (θ̂j−
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µ̂n)(θ̂j− µ̂n)>. However, as we show in Appendix D.3,

the estimation errors of {θj}n−1
j=1 cause it to converge

to Σ∗+ σ2

n−1

∑n−1
j=1 E

[
V−1
j,τ

]
. In order to cancel out the

added variance, we add a further term,

Σ̂n =
1

n− 2

n−1∑
j=1

(
θ̂j − µ̂n

)(
θ̂j − µ̂n

)>
−GΣ, (11)

where GΣ = σ2

n−1

∑n−1
j=1 V−1

j,τ . Although this estimator
is unbiased, in practice it can be wider or narrower
than the true covariance, and, as explained in Sec-
tion 3, we aim for the former. Hence we use a widened
version of the covariance as suggested by Bastani et al.
(2021) and proved in Lemma 25. Given the initial es-

timation Σ̂n and a confidence level
∥∥Σ̂n −Σ∗

∥∥
op
≤ s,

the widened version is given by Σ̂w
n , Σ̂n + s · I,

which ensures that Σ̂w
n � Σ∗ with high probability.

In Lemma 1 in Section 5 we show that the confidence
level prior to the nth instance dictates,

Σ̂w
n = Σ̂n + cw ·

√
5d+ 2 ln (dnT )

n− 1
I, (12)

where cw = 50
(

2σ2

¯
λΣAd

+ λ̄Σ∗

)
. To align with the

MQBτ scheme, we adjust the QBτ algorithm to out-
put the actions taken and the rewards received during
the first τ steps. Any algorithm can be used in Line 3,
as long as it is adapted to perform τ exploration steps
and to return Aτ , Xτ .

Algorithm 2: MQBτ

Inputs: N , T , a,
¯
λΣA ,

¯
λΣ∗ , λ̄Σ∗ , m, σ

1 Initialization: set τ by (8)
2 for n = 1, . . . , N0 do // meta exp. instances
3 (An,τ , Xn,τ )← Run any QBτ algorithm with

frequentist guarantees
4 Compute θ̂n by (9)

5 for n = N0 + 1, . . ., N do
6 Update µ̂n by (10)

7 Update Σ̂n by (11) and Σ̂w
n by (12)

8 (An,τ , Xn,τ )← QBτ

(
µ̂n, Σ̂

w
n , τ, σ

)
9 Compute θ̂n by (9)

5 MQBτ REGRET

The meta algorithm consists of two key phases, as de-
picted in Figure 1:

1. Within-instance phase, where actions are taken
based on the estimated meta-prior and on the
within-instance updated posterior.

2. Between-instance phase, where the estimated
meta-prior is updated based on information from
previous instances.

Figure 1: MQBτ algorithm and regret scheme. See
Section 3 for the regret analysis in a single instance,
and Section 4 for the complete algorithm scheme.
Rsing is defined later in the section.

We address the first in Theorem 1, which bounds the
per-instance relative regret given a bound on the de-
viations between the estimated and the true prior.
The second, addressed in Lemma 1, explained be-
low, demonstrates that as the number of instances in-
creases, these prior deviations approach zero. Finally,
Theorem 2 combines these two basic components in
order to establish a regret bound for MQBτ over N
instances. In order to emphasize the instance depen-
dence, we denote in this section several of the argu-
ments with a subscript n.

Next, we present Lemma 1, which provides bounds on
the distance between the prior constructed by MQBτ
and the true prior. In particular, we show that be-
fore the nth instance, MQBτ meets the events Em, Es
defined in (5) with δn , 1/(n − 1) and closed-form
expressions of fm,n, fs,n ∈ Õ(d) (see Appendix D.1).
We denote this adjusted per instance good event by
En(MQBτ ). The adjusted formalization and the proof
of Lemma 1 can be found in Appendix D.1, based on
the mean estimation error (Appendix D.2) and the co-
variance estimation error (Appendix D.3).

Lemma 1. (MQBτ conditions) For every instance
n > 10d+ 4 ln (16dT ), P

(
En(MQBτ )

)
≥ 1− 8/dnT .

The expressions of fm,n, fs,n, δn and the expression of
τ in (8) define M and k1 in Theorem 1 as a function of
n, i.e. Mn, k1,n. We define the number of exploration

instances for MQBτ as N0 , dMN+1e, which ensures
for every n > N0 that δn < 1/Mn. Having established
the two components described at the beginning of this
section, we can bound the regret incurred by the incor-
rect prior of MQBτ using the following theorem. The
single instance regret of the algorithm used during the
first N0 instances is denoted by Rsing.
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Theorem 2. For N0 ≤ N , the MQBτ N -instance
relative regret is bounded by,

N∑
n=1

E
[
RK

QBτ

(
µ̂n, Σ̂

w
n , T

)]
≤ k2

√
NE

[
R∗QBτ

(µ∗,τ+1,Σ∗,τ+1, T − τ)
]︸ ︷︷ ︸

regular
instances

+ N0Rsing︸ ︷︷ ︸,
exploration
instances

where k2 ∈ Õ
(
d3/2

)
, N0 ∈ Õ

(
d3
)
. The definitions

of k2 and N0 are in (82) and the proof is in (83) in
Appendix E.

During the first N0 instances, MQBτ suffers as much
regret as the frequentist algorithm it chooses, for ex-
ample when using the IDS algorithm of Kirschner and
Krause (2018), Rsing ∈ Õ(d

√
T ).

An immediate consequence of Theorem 2 is a bound
on the Bayesian regret (1) of the MQBτ algorithm,

N∑
n=1

E
[
R∗QB

(
µ̂n, Σ̂

w
n , T

)]
(13)

≤
(
N + k2

√
N
)
E
[
R∗QBτ

(µ∗,τ+1,Σ∗,τ+1, T − τ)
]

+ Õ (N0Rsing +Nd) .

The multiplicative factor
(
N + k2

√
N
)

is a sum of

two parts; N , that stems from the inherent regret
of the KQBτ algorithm and cannot be avoided, and
k2

√
N which represents the price of the ‘prior align-

ment’. The second term on the right-hand-side of the
inequality is the ‘cost’ of the two exploration levels.
Both the ‘prior alignment’ and the exploration costs
become vanishingly small WRT the inherent regret as
N and T increase, implying negligible cost for ‘not
knowing the prior’.

Using the same prior-dependent bound as in (7), now
with δ = 1/(NT )2, (13) can be further extended to a
prior-dependent bound,

N∑
n=1

E
[
R∗QB

(
µ̂n, Σ̂

w
n , T

)]

≤
(
N + k2

√
N
)√√√√8λ̄Σ∗a

2 ln (4 |A| (NT )2)

ln
(

1 +
λ̄Σ∗a

2

σ2

) (14)

×

√
ln

(
1 +

λ̄Σ∗T

σ2

)
dT

+ Õ (N0Rexp +Nd) .

Note that a simple policy that runs all the tasks sepa-
rately will incur regret of Õ(Nd

√
T ) regardless of the

“informativeness” of the correct prior. On the other

hand, for the MQBτ algorithm with TS as a sub-
routine, as the prior is more informative, the regret
is lower, and in the extreme case (λmax(Σ∗) → 0 and
N becomes large), only the inner exploration cost re-
mains, i.e., Õ(Nd).

6 RELATED WORK

While a significant amount of empirical and theoretical
work has been devoted to metalearning in the domain
of supervised learning (see recent review in Hospedales
et al. (2021)), including methods based on prior update
(Pentina and Lampert, 2014; Amit and Meir, 2018),
there has been far less theoretical work on this topic
in sequential decision-making problems (for a recent
survey of algorithmic issues, see Ortega et al. (2019)).

We mention several works that deal with metalearning
of stochastic bandits. Cella et al. (2020) consider linear
bandits tasks drawn from a more general prior distri-
bution, but assume a known variance. They establish
prior-dependent regret bound for their proposed regu-
larized optimism-based algorithm, similar to (7). How-
ever, our result is a consequence of the tighter bound
in Theorem 1 that holds for every QBτ algorithm rel-
atively to its best scenario when the prior is known.
Two recent papers that answer a question similar to
Theorem 1 are Kveton et al. (2021) and Bastani et al.
(2021), both suggest TS based meta-algorithms. The
main difference between the approaches is the analy-
sis technique, leading to the gap in the regret bounds,
summarized in Table 1.

Kveton et al. (2021) focus on a fully Bayesian multi-
armed bandits (MAB) setting, where tasks are drawn
from a Gaussian prior. The prior is parameterized
by a known scalar covariance and an unknown mean,
that is itself drawn from a known hyper-prior. The
authors derive a regret bound which depends on T
as Õ(T 2). Our result preserves their linear depen-
dence in the initial mean deviation, while keeping the
same time dependence as the algorithm that knows
the prior. When using TS, this leads to a worst-case
regret whose T dependence is Õ(

√
T ). Note that in

the setting of known covariance, it is possible to use
our proof scheme and still achieve the same regret
guarantee of Õ(

√
T ), even if we drop the somewhat

restrictive action assumption (Assumption 1). Bas-
tani et al. (2021) consider contextual linear bandits in
a dynamic pricing setting. Their Õ(d4

√
NT 3/2) re-

gret bound is effective after N0 ∈ Õ(d4T 2) instances,
while we obtain Õ(d5/2

√
NT ) regret, effective after

N0 ∈ Õ(d3) instances in which the learner suffers re-
gret of Rsing ∈ Õ(d

√
T ).

Finally, three very recent papers warrant mention.
Basu et al. (2021) assume a fully Bayesian framework
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Table 1: Comparison of worst-case relative regret bounds for state-of-the-art meta TS algorithms

SETTING
ACTIONS

ASSUMPTIONS
COVARIANCE
ASSUMPTIONS

MEAN
ASSUMPTIONS

RELATIVE
REGRET

Kveton et al.
(2021)

K-arms
MAB

—irrelevant—
Known
c · I

Bayesian, known
hyper-prior Õ(K

√
NT 2)

Bastani et al.
(2021)

Dynamic
pricingi

known bounds
on actions

and eigenvalues
(Assumption 1ii)

Unknown,
known bounds
on eigenvalues

(Assumption 2)

Unknown,
known bound

(Assumption 3)

Õ(d4
√
NT 3/2),

N0 ∈ Õ(d4T 2)

Ours,
MQBτ

iii
Linear
bandits

Õ(d5/2
√
NT ),

N0 ∈ Õ(d3)

iAdapting the analysis to a linear bandits setting results in a reduction of Õ(
√
d) from the regret.

iiIn our work there exists an extra requirement on the distribution ‘monotonicity’.
iiiWith an exploration algorithm for which Rsing ∈ Õ(d

√
T ), for example IDS (Kirschner and Krause, 2018).

where the covariance is known and the mean is sam-
pled from a known Gaussian distribution. These as-
sumptions allow the authors to elegantly expand the
information theory analysis previously used in the sin-
gle instance setup (Lu and Van Roy, 2019) to the
new framework of multiple instances. However, re-
laxing the assumption of a known covariance within
their Bayesian setting complicates their analysis sig-
nificantly and was not pursued in their paper. They
establish a prior-dependent regret bound whose worst-
case dependence on T is Õ(

√
T ). Simchowitz et al.

(2021) bound the single instance misspecification er-
ror for a wide class of priors and settings and achieve
an upper-bound of Õ(εT 2), where ε is the initial total-
variation prior estimation error, while our bound from
Theorem 1 is Õ(

√
T ). In addition, they derive a lower

bound of Ω̃(εT 2) for MAB with T � |A| (|A| is the
number of actions). To the best of our knowledge, this
is the only lower bound in the literature, and it is not
applicable for most settings, including ours. For mul-
tiple instances, they derive a bound only for the MAB
setting. Wan et al. (2021) studies a generalized version
of a meta MAB environment, in which they allow the
distribution to depend on task-specific features. Their
algorithm uses TS in a Bayesian hierarchical model.

We briefly highlight differences in the proof techniques.
Kveton et al. (2021) performs history alignment, focus-
ing on the probability that the two algorithms have the
same history. The alignment process separates each
time-step into two events. (i) Both algorithms per-
form the same action and receive the same reward,
hence have zero regret WRT each other. (ii) The
algorithms perform different actions that violate the
alignment, and therefore suffer a worst case regret of
Õ(T ) over the rest of the instance. Summation over
the time-steps leads to regret of Õ(T 2). Bastani et al.
(2021) first performs τ exploration steps, in which the
two algorithms choose the same actions but receive
different rewards due to noise, thus enabling the mean

alignment. From this point, the proof continues using
tools from importance sampling (Precup et al., 2000).
We believe this technique has a shortcoming. While
aligning the means in the first τ steps facilitates the
analysis at time τ + 1, the resulting posterior updates
of the means do not render them equal in subsequent
steps, even if the two algorithms choose the same ac-
tions, since the covariance matrices differ (see (4)).
Our work aligns both the means and covariance ma-
trices. This line of proof establishes at a specific time a
full prior alignment at a single cost that scales with the
distances between the priors, while the two other tech-
niques are applied separately for each step, thus their
per-step cost is multiplied by the horizon. These dif-
ferences lead to a significant gap in the upper bounds.

7 EXPERIMENTS

We demonstrate the effectiveness of MQBτ with TS as
a subroutine (MTSτ ) in a synthetic environment as in
Kveton et al. (2021); Simchowitz et al. (2021), compar-
ing it to several baselines. (i) TS algorithm that does
not know the prior and uses a zero vector as µ and a
diagonal covariance matrix Σ with λmax (Σ∗) in its di-
agonal (UKTS); (ii) TS algorithm that knows the cor-
rect mean and uses the above covariance Σ (KMTS);
(iii) TS algorithm that knows the correct prior (KTS).
None of the above perform any forced exploration.
Other metalearning algorithms in the literature, which
do not assume known covariance, mostly differ from
our work in their settings and analysis. Adapting the
algorithms to our setting with empirical adjustments
results in an algorithm similar to ours. Therefore we
do not use them as baselines.

We compare three versions of the algorithm. The first,
Th-MTSτ , uses only the first τ steps in each instance
to form the meta estimator as suggested by theory;
the second, All-MTSτ , still performs the τ exploration
steps which ensures an invertible Gram matrix Vj,τ ,
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however it uses the information gathered from all time-
steps for the meta estimation; the third, All-MTS,
is similar to All-MTSτ , but does not perform inner-
instance exploration (exploration is only used towards
the end of an instance in case that the Gram matrix
Vj,t remains singular). Since in realistic environments
the learner is often unaware of T and N , τ was ad-
justed to be the first time in each instance in which
λmin

(
1
σ2 Vj,t

)
≥ 0.03. We also set N0 to be d3 instead

of the exact definition of N0 ∈ Õ(d3) and the covari-
ance widening constant cw to be 10 for Th-MTSτ and
1 for the versions that use all samples.

We use a linear bandits framework with d = 5 and
N = 10,000 instances all drawn from a Gaussian dis-
tribution N (µ∗,Σ∗), where µ∗ = [2, 2, 2, 2, 2] and Σ∗
is a non-diagonal covariance matrix, with ones along
the diagonal and 0.8 elsewhere. The horizon is T = 200
and in each time-step, 20 actions are available to the
learners, all sampled from a uniform distribution over
an a = 0.25 radius ball. The reward observed by
the learners is corrupted by a standard Gaussian noise
N (0, 1).

Figure 2: Comparing MQBτ using TS as a sub-routine
to several baselines, averaged over 10 runs with error
bars equivalent to one std (hardly noticeable in the
scale of the plots). The Bayesian regret is normalized
by the KTS regret, such that its maximal regret is
equal to 1. The prior convergence graphs ((b) and
(c)) are in logarithmic scale.

As can be seen in Figure 2(a), all versions of the MTSτ
algorithm achieve better results than UKTS, indicat-
ing the importance of prior learning. Meta algorithms
that assume a known covariance (Kveton et al., 2021;
Basu et al., 2021) may achieve good results WRT KTS
when their assumed covariance is correct. However
in realistic environments when the covariance is un-
known, KMTS represents their best scenario of es-
timating the mean alone. The results of the MTSτ
versions that reach and even outperform this oracle
that knows the correct mean, demonstrate the signif-
icance of covariance learning. As can be seen in Fig-
ure 2(b) the mean of Th-MTSτ approaches the true

prior mean, in contrast to the other two versions that
used all the samples, and incur the known bias of
adaptive algorithms (Shin et al., 2019). However, due
to scarcity of samples, the covariance convergence is
slower (Figure 2(c)) and results in higher regret com-
pared to All-MTSτ . This, and the additional ‘cost’
of exploration, as demonstrated by the gap between
All-MTSτ and All-MTS, suggest that empirical ad-
justments are needed for purely theoretically justified
algorithms, perhaps using advances in bias reducing
techniques, e.g., (Deshpande et al., 2018).

8 CONCLUSIONS

We presented algorithms and expected regret bounds
for stochastic linear bandits where the expected re-
wards originate from a vector θ, sampled from a Gaus-
sian distribution with unknown mean and covariance.
For QBτ algorithms with a good estimation of the
prior, we derived single instance regret bounds, which
are a multiplicative constant away from the regret of
the algorithm that uses the true prior. For TS and
IDS in the metalearning setup we established a rel-
ative regret of Õ(d5/2

√
NT ) when using frequentist

IDS during the exploration instances, a multiplica-
tive improvement of Õ(d3/2T ) from previous results of
Õ(d4

√
NT 3/2). Two limitations of our approach are

the somewhat restrictive Assumption 1 and the need to
compare with algorithms whose first τ within-instance
steps are purely exploratory. We believe that Assump-
tion 1 can be made more flexible without harming per-
formance. Removing the initial τ exploratory steps, in
a theoretically justifiable way, is left as an open prob-
lem.
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Supplementary Material:
Metalearning Linear Bandits by Prior Update

A SUMMARY OF NOTATION

Some additional notations we use in the appendix are the trace and the determinant of a matrix A, Tr (A) and

Det (A), respectively. We use ‖X‖A =
√
X>AX for the weighted norm matrix of a PD matrix A. We define

the vector Ξn,t = [ξn,1, . . . , ξn,t] and often use
∫
E

with an abuse of notation to indicate that we are integrating
over all the terms that maintain the event E. Next, we summarize the notation used along the paper.

An,t The actions available to the learner at the nth instance at time-step t.

a Bound on the actions available to the learner.

ΣA The action covariance matrix.

A∗n,t The optimal action at the nth instance at time-step t.

AK
n,t The action taken by KQBτ at the nth instance at time-step t.

An,t The action taken by the QBτ learner at the nth instance at time-step t.

An,t A matrix formed by concatenating the vectors
{
A>n,s

}t
s=1

in it’s rows.

Vn,t The Gram matrix
∑T
t=1An,sA

>
n,s = A>n,tAn,t.

xn,t The reward at the nth instance at time-step t.

Xn,t A vector containing all the rewards at the nth instance up to time-step t.

ξn,t The reward noise at the nth instance at time-step t, sampled from N (0, σ2).

Ξn,t Vector containing all the reward noises at the nth instance up to time-step t.

Sn,t Summation of the action-noise terms
∑T
t=1An,sξn,s = A>n,sΞn,s.

τ The number of exploration time-steps taken in each instance.

θn The realization of θ at the nth instance.

θ̂n Meta approximation of θn using the rewards from the first τ time-steps.

ρn The inner nth instance error, θ̂n − θn = V−1
n,τ

∑τ
s=1An,sξn,s.

µ∗ The true unknown prior mean.

m Bound on the prior mean, ‖µ∗‖ ≤ m.

µ̂n The prior mean of the learner for the nth instance.

∆n The difference between the realization of the instance and its mean. Can be viewed as it were sampled
from N (0,Σ∗).

Σ∗ The true unknown prior covariance.

Σ̂n The estimated prior covariance for the nth instance
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Σ̂w
n The widend prior covariance for the nth instance.

B Represents the error between the covariance matrices that should be canceled during the covariance
alignment phase.

A1/2 The unique square root of a PSD matrix A.

A[B] Represents the matrix A as a function of the matrix B, used for vectors and scalars as well.

A � B Represents that A−B is PSD.

‖X‖p The lp norm.

‖X‖ The l2 norm.

‖X‖A The weighted norm matrix for a PD matrix A,
√
X>AX.

‖A‖op The l2-operator norm.

λj (A) , σj (A) The jth eigenvalue and singular value of a matrix A respectively, arranged in a decreasing
manner.

λmin (A) , λmax (A) Smallest and largest eigenvalues of a matrix A respectively.

¯
λA, λ̄A Bounds on the smallest and largest eigenvalues of a matrix A respectively.

R∗QBτ
(µ,Σ, t) The regret of QBτ with mean µ, covariance Σ and remaining horizon t WRT the optimal

algorithm (an oracle that knows the true realization of θn).

RK
QBτ

(µ,Σ, t) The relative regret of QBτ with mean µ, covariance Σ and remaining horizon t WRT the
KQBτ algorithm.

B WITHIN INSTANCE POSTERIOR CALCULATIONS

We recall a basic result from Bayesian statistics.

Lemma 2. (Bayes rule for linear Gaussian systems - Theorem 4.4.1 in Murphy (2012))

Suppose we have two variables, X and Y . Let X ∈ RDx be a hidden variable and Y ∈ RDy be a noisy observation
of X. Let us assume we the the following prior and likelihood:

P (X) = N (µX ,ΣX) , P (Y | X) = N (AX +B,ΣY) .

The posterior P (X | Y ) is given by the following:

P (X | Y ) = N
(
µX|Y ,ΣX|Y

)
,

Σ−1
X|Y = Σ−1

X + A>Σ−1
Y A,

µX|Y = ΣX|Y
(
Σ−1

X µX + A>Σ−1
Y (Y −B)

)
.

Given a prior N (µn,Σn) and using Lemma 2, the prior before choosing an action at time-step t is,

Σn,t =

(
Σ−1
n,t−1 +

1

σ2
An,t−1A

>
n,t−1

)−1

=

(
Σ−1
n +

1

σ2

t−1∑
s=1

An,sA
>
n,s

)−1

=

(
Σ−1
n +

1

σ2
A>n,t−1An,t−1

)−1

=

(
Σ−1
n +

1

σ2
Vn,t−1

)−1

,

(15)
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µn,t = Σn,t

(
Σ−1
n,t−1µn,t−1 +

1

σ2
An,t−1xn,t−1

)
= Σn,t

(
Σ−1
n µn +

1

σ2
A>n,t−1Xn,t−1

)
= Σn,t

(
Σ−1
n µn +

1

σ2
Vn,t−1θn +

1

σ2

t−1∑
s=1

An,sξn,s

)

= Σn,t

(
Σ−1
n µn +

1

σ2
Vn,t−1θn +

1

σ2
A>n,t−1Ξn,t−1

)
.

(16)

Specifically, for MQBτ , the meta-prior is N
(
µ̂n, Σ̂

w
n

)
, hence the inner-instance posterior is,

Σ̂w
n,t =

((
Σ̂w
n

)−1

+
1

σ2
Vn,t−1

)−1

, (17)

µ̂n,t = Σ̂w
n,t

((
Σ̂w
n

)−1

µ̂n +
1

σ2
Vn,t−1θn +

1

σ2
A>n,t−1Ξn,t−1

)
. (18)

For KQBτ , the prior is N (µ∗,Σ∗) and the inner-instance posterior is,

Σ∗,t =

(
Σ−1
∗ +

1

σ2
VK
n,t−1

)−1

, (19)

µ∗,t = Σ∗,t

(
Σ−1
∗ µ∗ +

1

σ2
VK
n,t−1θn +

1

σ2

(
AK
n,t−1

)>
ΞK
n,t−1

)
. (20)

C SINGLE INSTANCE REGRET PROOF

In this section we prove Theorem 1, which bounds the regret incurred by the incorrect prior within a single
instance. We do so by decomposing the regret (Appendix C.1) into the good and bad events defined in (5). By
(85) in Lemma 29 and a union bound argument, we have that P (Eθ) > 1 − δ

dT . Thus, if the QBτ algorithm

maintains P (Ev ∩ Em ∩ Es) ≥ 1− 8δ
dT the conditions for Theorem 1 hold.

Theorem 1. Let θ ∼ N (µ∗,Σ∗) and let N (µ̂, Σ̂) be the prior of a QBτ algorithm. For τ < T , if for some
0 < δ ≤ 1/M the event E holds with probability larger than 1− 9δ

dT , then the relative regret is bounded by,

E
[
RK

QBτ

(
µ̂, Σ̂, T

)]
︸ ︷︷ ︸

cost of not knowing
the prior

≤ k1 · E
[
R∗QBτ

(µ∗,τ+1,Σ∗,τ+1, T − τ)
]

︸ ︷︷ ︸
cost of not knowing the realization of θ

when the prior is known

+
cbadδ√
d︸ ︷︷ ︸

bad
event

,

M = max
{

3, c2sτ
2fs, 18c2ξcs

(
fm +

(
c1d+ c2ξcs/36

)
fs
)}
,

k1 = 12
√
c2ξcs

√
fmδ +

(
csτ + 12

√
c2ξcsc1d+ 2c2ξcs

)√
fsδ, (21)

cs =
2σ2

¯
λ2

Σ∗¯
λΣA

, cξ = σ

√
5 ln

(
dT

δ

)
, c1 =

2

¯
λΣ∗

ln

(
d2T

δ

)
, cbad = 22a

(
m+

√
4λ̄Σ∗ ln

(
d2T

δ

))
.

Note The expression for M depends polylogarithmicly on 1/δ, which in turn has to satisfy 0 < δ ≤ 1/M, leading
to an implicit inequality for δ. We show in Appendix C.3 that there exist M̃ ≥M , independent of δ, such that
0 < δ ≤ 1/M̃ ≤ 1/M is well defined, while maintaining the same asymptotic behavior.
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The expectation in the regret analysis includes all sources of randomness in the problem: the prior of the QBτ
algorithm at the start of the instance, the realization of θ, the actions that were presented to the learners during
the instance, the randomness of the algorithms and the received noises. It is worth mentioning that in this work
both the actions and the noises can differ between the algorithms compared. In most sections we abbreviate
some or all of the notations to improve readability.

E = Ê
µ
Ê
Σ
E
θ
E
Aτ

E
AK
τ

E
Aτ

E
AK
τ

E
Ξτ

E
ΞK
τ

.

Intuition on Theorem 1

In order to provide intuition on Theorem 1 we analyze the demand 0 < δ ≤ 1/M. To do so, we start from the
equivalent demand, 0 < δM ≤ 1 and derive a stricter version of it. Plugging the definition of M and rearranging,

0 < max
{

3δ, c2sτ
2fsδ, 18c2ξcs

(
fmδ +

(
c1d+ c2ξcs/36

)
fsδ
)}
≤ 1.

Splitting into two demands,

0 < max
{
c2sτ

2fsδ, 18c2ξcs
(
fmδ +

(
c1d+ c2ξcs/36

)
fsδ
)}
≤ 1; 0 < δ ≤ 1/3.

Focusing on the first demand, since all the terms are positive, using max {a, b} ≤ a+b yields the stricter demand,

18c2ξcsfmδ +
(
c2sτ

2 + 18c2ξcs
(
c1d+ c2ξcs/36

))
fsδ ≤ 1.

Taking the square root, using
√
a+ b ≤

√
a+
√
b, and demanding a stricter condition,√

18c2ξcs
√
fmδ +

(
csτ +

√
18c2ξcsc1d+

1√
2
c2ξcs

)√
fsδ ≤ 1.

From the similarity between the above expression and that for k1 we can conclude the following. First, every
δ that meets the demand, dictates k1 to be bounded by a constant. Second, the initial prior deviations in (5)
are bounded by

√
fmδ and

√
fsδ, therefore k1 and hence the relative regret have linear dependence in the initial

prior deviations. Third, by Lemma 24, τ ∈ Õ(d) meets the event Ev, thus the demand holds for ‖µ̂− µ∗‖ ∈ Õ (1)

and
∥∥Σ̂−Σ∗

∥∥
op
∈ Õ (1/d).

C.1 Single Instance Regret Decomposition

E
[
RK

QBτ

(
µ̂, Σ̂, T

)]
= E

[
RK

QBτ

(
µ̂τ+1, Σ̂τ+1, T − τ

)]
= E

[
R∗QBτ

(
µ̂τ+1, Σ̂τ+1, T − τ

)]
︸ ︷︷ ︸

QBτ

− E
[
R∗QBτ

(µ∗,τ+1,Σ∗,τ+1, T − τ)
]︸ ︷︷ ︸

KQBτ

. (22)

The first equality uses that the QBτ algorithm does not incur regret during the exploration time-steps WRT
KQBτ since both algorithms choose actions randomly with the same distribution and for the same period of
time. Decomposing the regret of QBτ in (22) based on the event E ,

E
[
R∗QBτ

(
µ̂τ+1, Σ̂τ+1, T − τ

)]
= E

[
R∗QBτ

(
µ̂τ+1, Σ̂τ+1, T − τ

)
1
{
Ē
}]

︸ ︷︷ ︸
“Bad event”

+ E
[
R∗QBτ

(
µ̂τ+1, Σ̂τ+1, T − τ

)
1 {E}

]
︸ ︷︷ ︸

“Good event”

.

(23)
In (76) in Section C.5 we bound the regret incurred under the bad event. We state here the final result,

E
[
R∗QBτ

(
µ̂τ+1, Σ̂τ+1, T − τ

)
1
{
Ē
}]
≤ 9cbadδ

11
√
d
, cbad , 22a

(
m+

√
4λ̄Σ∗ ln

(
d2T

δ

))
. (24)

Next, we bound the single instance regret under the good event.
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C.2 Regret Incurred Under the “Good event”

Before the beginning of the instance, the learner possesses a prior mean µ and a prior covariance Σ. Within the
instance, this prior is being used by the learner, regardless its origin, whether it is an estimation, heuristics or
comes from previous knowledge. At time-step t, given θ and these priors, the covariance matrix of the learner is
only influenced by the actions taken (15), while the mean is influenced by both the actions and the noise terms
received (16). Thus, we denote,

Σt [At−1] =

(
Σ−1 +

1

σ2
A>t−1At−1

)−1

=

(
Σ−1 +

1

σ2
Vt−1

)−1

,

µt [At−1,Ξt−1] = Σt [At−1]

(
Σ−1µ+

1

σ2
A>t−1At−1θ +

1

σ2
A>t−1Ξt−1

)
.

We adapt the notations for the specific case of QBτ and KQBτ summarized in (17), (18), (19), (20).

C.2.1 Covariance Alignment

The first step towards bounding the regret incurred under the “Good event” is the alignment of the covariance
matrices of QBτ and KQBτ . For each set of actions Aτ , we define AK

τ [Aτ ] as a specific set of actions that may
be taken by KQBτ and brings (17) and (19) into equality. This requires,

VK
τ [Aτ ] = Vτ −B ; B , σ2

(
Σ−1
∗ − Σ̂−1

)
. (25)

Even though this requirement is not unique, we may choose a specific mapping between the two set of actions,

AK
τ [Aτ ] , Aτ

(
A>τ Aτ

)−1/2 (
A>τ Aτ −B

)1/2
= AτV

−1/2
τ (Vτ −B)

1/2
. (26)

We first prove that Vτ � B under the event Ev and for δ ≤ 1/M, thus the square root and the inverse exist and
AK
τ [Aτ ] is well defined,

λmin (Vτ −B) ≥
(a)

λmin (Vτ ) + λmin (−B) =
(b)
λmin (Vτ )− ‖B‖op ≥

(c)
¯
λΣAd

2
− σ2

√
fsδ

¯
λ2

Σ∗

>
(d)

0, (27)

where (a) uses Weyl’s inequality, (b) uses that B is PSD by Lemma 33 and that for PSD matrices under the
l2-operator norm λmax (A) = σmax (A) = ‖A‖op, (c) uses Ev for the first term and Lemma 36, Es for the latter

and (d) uses that σ2√fsδ

¯
λ2

Σ∗
< ¯

λΣAd

2 for δ ≤ 1/M.

For AK
τ in the image of (26), VK

τ � 0, so we may define the inverse function,

Aτ

[
AK
τ

]
= AK

τ

(
VK
τ

)−1/2 (
VK
τ + B

)1/2
. (28)

Since every action in the first τ time-steps is chosen independently from the previous actions, we may view the
actions as they are drawn from the following distribution, fA (A) =

∏τ
t=1 fA(At). We continue from (23) by

evaluating the integral of the good event over the action space. Since the actions in the first τ time-steps are
independent of Eθ, Em, Es we often omit them to improve readability.

E
[
R∗QBτ

(
µ̂τ+1, Σ̂τ+1, T − τ

)
1 {E}

]
= E

∫
Ev

fA (Aτ ) R∗QBτ

(
µ̂τ+1 [Aτ ,Ξτ ] , Σ̂τ+1 [Aτ ] , T − τ

)
dAτ

≤ E

max
Ev

{
fA (Aτ )

fA (AK
τ [Aτ ])

}
︸ ︷︷ ︸

Term A

·
∫
Ev

fA

(
AK
τ [Aτ ]

)
R∗QBτ

(
µ̂τ+1 [Aτ ,Ξτ ] , Σ̂τ+1 [Aτ ] , T − τ

)
dAτ

︸ ︷︷ ︸
Term B

 ,
(29)

where the inequality uses that the regret is non-negative.
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Analyzing “Covariance alignment” - Term A

In order to bound term A, we first prove two auxiliary lemmas. The first lemma proves that for At in the support

of fA, AK
t is in the support as well, where A>t ,

(
AK
t

)>
are the tth rows of the matrices Aτ ,A

K
τ [Aτ ], respectively.

Lemma 3. For every t ≤ τ ,
1 {‖At‖ ≤ a}
1
{∥∥AK

t

∥∥ ≤ a} ≤ 1.

Proof. ∥∥AK
t

∥∥2
= A>t V−1/2

τ (Vτ −B) V−1/2
τ At

=
(a)
‖At‖2 −A>t V−1/2

τ BV−1/2
τ At

≤ ‖At‖2

Where (a) uses that Vτ is PD and B is PSD by Lemma 33, thus V
−1/2
τ BV

−1/2
τ is PSD.

The second lemma implies that the probability to sample the set of actions Aτ is lower than the probability to
sample AK

τ [Aτ ],

Lemma 4.

τ∏
t=1

(
f̃A
(
At
)

f̃A
(
AK
t

)) ≤ 1 (30)

Proof. For f̃A(A), s.t. for every ‖A1‖ ≤ ‖A2‖ in the support of fA, f̃A(A1) ≥ f̃A(A2) the result can be obtained
directly from the proof of Lemma 3. For the case where f̃A = N (0,Σ), for some general Σ,

τ∏
t=1

(
f̃A
(
At
)

f̃A
(
AK
t

)) =

τ∏
t=1

 exp
(
− 1

2A
>
t Σ−1At

)
exp

(
− 1

2

(
AK
t

)>
Σ−1AK

t

)


=
exp

(
− 1

2

∑τ
t=1A

>
t Σ−1At

)
exp

(
− 1

2

∑τ
t=1

(
AK
t

)>
Σ−1AK

t

)
=
(a)

exp
(
− 1

2

∑τ
t=1 Tr

(
A>t Σ−1At

))
exp

(
− 1

2

∑τ
t=1 Tr

((
AK
t

)>
Σ−1AK

t

))
=
(b)

exp
(
− 1

2Tr
(∑τ

t=1 Σ−1AtA
>
t

))
exp

(
− 1

2Tr
(∑τ

t=1 Σ−1AK
t

(
AK
t

)>))
=

exp
(
− 1

2Tr
(
Σ−1Vτ

))
exp

(
− 1

2Tr (Σ−1VK
τ )
)

=
(c)

exp

(
−1

2
Tr
(
Σ−1B

))
≤
(d)

1,

(31)

where (a) applies trace on a scalar, (b) uses Tr
(
A>B

)
= Tr

(
BA>

)
and the linearity of the trace, (c) uses the

definition of VK
τ in (25) and (d) uses Lemma 32.

Term A is finally bounded by Lemma 3 and Lemma 4,

max
Ev

{
fA (Aτ )

fA (AK
τ [Aτ ])

}
= max
Ev

{
τ∏
t=1

(
f̃A
(
At
)

f̃A
(
AK
t

) 1 {‖At‖ ≤ a}
1
{∥∥AK

t

∥∥ ≤ a}
)}
≤ 1, (32)
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Analyzing “Covariance alignment” - Term B

Term B in (29) is an integration over Aτ . Denote JA =
∂AK

τ

∂Aτ
as the Jacobian matrix that transforms the integral

to AK
τ . We further refer to JA as the actions Jacobian.∫
Ev

fA

(
AK
τ [Aτ ]

)
R∗QBτ

(
µ̂τ+1 [Aτ ,Ξτ ] , Σ̂τ+1 [Aτ ] , T − τ

)
dAτ

≤ max
Ev

{
1

|Det (JA)|

}
︸ ︷︷ ︸

The Jacobian

·
∫
Ev

fA

(
AK
τ [Aτ ]

)
R∗QBτ

(
µ̂τ+1 [Aτ ,Ξτ ] , Σ̂τ+1 [Aτ ] , T − τ

)
|Det (JA)| dAτ

︸ ︷︷ ︸
The integral

,
(33)

where the inequality uses that the regret is non-negative.

Analyzing “Covariance alignment” - Term B - The Jacobian

The following lemma bounds the determinant of the actions Jacobian.

Lemma 5. Let matrices X ∈ Rn×d,B ∈ Rd×d, such that B � 0,X>X � B.

Define the matrix U , X
(
X>X

)−1/2 (
X>X−B

)1/2
and denote the Jacobian matrix J = ∂U

∂X , then

1

|Det (J)|
≤

(
Det

(
X>X

)
Det (X>X−B)

)n/2
.

Lemma 5 is highly important in the proof, since it allows later to perform a change of measure over the actions
space. The proof is mostly technical and uses properties of Kronecker product and PSD matrices. Due to its
length, it can be found in Appendix C.4.

Define cs , 2σ2

¯
λ2

Σ∗¯
λΣA

, bounding the Jacobian term in (33),

max
Ev

{
1

|Det (JA)|

}
≤
(a)

max
Ev

{(
Det (Vτ )

Det (Vτ −B)

)τ/2}

≤
(b)

max
Ev


( ∏d

j=1 λj (Vτ )∏d
j=1 (λj (Vτ ) + λj (−B))

)τ/2
= max
Ev


 d∏
j=1

(
1 +

λj (−B)

λj (Vτ )

)−τ/2


≤
(c)

max
Ev

{(
1− λmax (B)

λmin (Vτ )

)−dτ/2}

=
(d)

max
Ev

{(
1−

‖B‖op

λmin (Vτ )

)−dτ/2}

≤
(e)

(
1− cs

d

∥∥∥Σ̂−Σ∗

∥∥∥
op

)−dτ/2
≤
(f)

(
1− cs

d

√
fsδ
)−dτ/2

≤
(g)

(
1− csτ

2

√
fsδ
)−1

= 1 +
csτ
√
fsδ

2− csτ
√
fsδ
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≤
(h)

1 + csτ
√
fsδ, (34)

where (a) uses Lemma 5 and (27), (b) uses Lemma 35, that both matrices are symmetric and (27), (c) uses
that both B and Vτ are PSD matrices, (d) uses that for PSD matrices under the l2-operator norm λmax (A) =
σmax (A) = ‖A‖op, in (e) the numerator uses Lemma 36 and the denominator uses the event Ev, (f) uses event

Es, (g) uses Bernoulli inequality and that csτ
√
fsδ < 2 for δ ≤ 1/M and (h) uses that csτ

√
fsδ ≤ 1 for δ ≤ 1/M.

Analyzing “Covariance alignment” - Term B - The integral

Imagine a QBτ algorithm with the correct prior covariance Σ∗ and a prior mean µ̃ which is defined by the following
scenario: If this algorithm would have taken the specific set of actions AK

τ [Aτ ] and would have received the
specific set of noises Ξτ , it would end up with the same mean as QBτ at time-step τ + 1, i.e. the vector that
brings the following two equations to equality,

µ̂τ+1 = Σ̂τ+1 [Aτ ]

(
Σ̂−1µ̂+

1

σ2
Vτθ +

1

σ2
A>τ Ξτ

)
,

µ̃τ+1 = Σ∗,τ+1

[
AK
τ [Aτ ]

](
Σ−1
∗ µ̃+

1

σ2
VK
τ [Aτ ] θ +

1

σ2

(
AK
τ [Aτ ]

)>
Ξτ

)
.

Describing µ̃ as a function of the terms determined during the instance,

µ̃ [Aτ ,Ξτ ] = Σ∗

(
Σ̂−1µ̂+

1

σ2
Bθ +

1

σ2

(
Aτ −AK

τ [Aτ ]
)>

Ξτ

)
, (35)

µ̃
[
AK
τ ,Ξτ

]
= Σ∗

(
Σ̂−1µ̂+

1

σ2
Bθ +

1

σ2

(
Aτ

[
AK
τ

]
−AK

τ

)>
Ξτ

)
. (36)

Analyzing the integral in (33),∫
Ev

fA

(
AK
τ [Aτ ]

)
R∗QBτ

(
µ̂τ+1 [Aτ ,Ξτ ] , Σ̂τ+1 [Aτ ] , T − τ

)
|Det (JA)| dAτ

≤
(a)

∫
Vτ�B

fA

(
AK
τ [Aτ ]

)
R∗QBτ

(
µ̂τ+1 [Aτ ,Ξτ ] , Σ̂τ+1 [Aτ ] , T − τ

)
|Det (JA)| dAτ

=
(b)

∫
Vτ�B

fA

(
AK
τ [Aτ ]

)
R∗QBτ

(
µ̃τ+1

[
AK
τ [Aτ ] ,Ξτ

]
,Σ∗,τ+1

[
AK
τ [Aτ ]

]
, T − τ

)
|Det (JA)| dAτ

=
(c)

∫
VK
τ �0

fA

(
AK
τ

)
R∗QBτ

(
µ̃τ+1

[
AK
τ ,Ξτ

]
,Σ∗,τ+1

[
AK
τ

]
, T − τ

)
dAK

τ

= E
AK
τ

[
R∗QBτ

(
µ̃τ+1

[
AK
τ ,Ξτ

]
,Σ∗,τ+1, T − τ

)
1
{
VK
τ � 0

}]
,

(37)

where (a) uses (27) and that the regret is non-negative, (b) uses the definition of AK
τ [Aτ ] and (c) uses a change

of measure.

Plugging (32), (33), (34) and (37) back to (29), the regret incurred under the “Good event”,

E
[
R∗QBτ

(
µ̂τ+1, Σ̂τ+1, T − τ

)
1 {E}

]
≤
(

1 + csτ
√
fsδ
)

︸ ︷︷ ︸
Covariance

alignment cost

E E
AK
τ

[
R∗QBτ

(
µ̃τ+1

[
AK
τ ,Ξτ

]
,Σ∗,τ+1, T − τ

)
1
{
VK
τ � 0

}]
.

(38)

C.2.2 Mean Alignment

After the covariance alignment, in order to bound QBτ by KQBτ , we still need to align the mean. At this stage
of the proof, the actions at the exploration time-steps have already been determined, yet we still have a degree
of freedom in the randomness of the noise terms. In the Bayesian update rule for the mean (16) the noise terms
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appear only in the expression Aτ
>Ξτ . Since in this stage of the proof, both algorithms use the set of actions AK

τ ,

we denote Sτ ,
(
AK
τ

)>
Ξτ and SK

τ ,
(
AK
τ

)>
ΞK
τ . To comply with this definition we further denote µτ+1 [Sτ ]

instead of µτ+1

[
AK
τ ,Ξτ

]
. During the exploration time-steps, the actions are chosen independently of the rewards

achieved, hence, independent of the noise terms and of θ. Given these actions, Sτ is a Gaussian vector, i.e.

Sτ | AK
τ ∼ N

(
0,
(
AK
τ

)> E
[
ΞτΞ>τ

]
AK
τ

)
= N

(
0, σ2VK

τ

)
.

We denote by SK
τ [Sτ ] the vector SK

τ that brings the following equations to equality,

µ̃τ+1 [Sτ ] = Σ∗,τ+1

(
Σ−1
∗ µ̃+

1

σ2
VK
τ θ +

1

σ2
Sτ

)
,

µ∗,τ+1

[
SK
τ

]
= Σ∗,τ+1

(
Σ−1
∗ µ∗ +

1

σ2
VK
τ θ +

1

σ2
SK
τ

)
.

Define,

G , σ2Σ̂−1 (µ̂− µ∗) + B (θ − µ∗) . (39)

We get,

SK
τ [Sτ ] = Sτ + σ2Σ−1

∗ (µ̃− µ∗)

=
(a)

Sτ + σ2

(
Σ̂−1µ̂+

1

σ2
Bθ +

1

σ2

(
Aτ

[
AK
τ

]
−AK

τ

)>
Ξτ −Σ−1

∗ µ∗

)
= Sτ + σ2Σ̂−1µ̂+ Bθ + Aτ

[
AK
τ

]>
Ξτ − Sτ − σ2Σ−1

∗ µ∗

= σ2Σ̂−1 (µ̂− µ∗) + Bθ + Aτ

[
AK
τ

]>
Ξτ + σ2

(
Σ̂−1 −Σ−1

∗

)
µ∗

= G+ Aτ

[
AK
τ

]>
Ξτ

=
(b)
G+

(
VK
τ + B

)1/2 (
VK
τ

)−1/2
Sτ ,

(40)

where (a) uses the definition of µ̃ from (36) and (b) uses the definition of Aτ

[
AK
τ

]
from (28).

Mean Alignment - Regret Decomposition

Denote cξ , σ
√

5 ln
(
dT
δ

)
and the event,

Eξ ,
{
‖Sτ‖(VK

τ )−1 ≤ cξ
√
d
}
. (41)

By Lemma 28 with X = Ξτ and A =
(
VK
τ

)−1/2
AK
τ we have that,

P
(
Eξ
∣∣ AK

τ

)
> 1− δ

dT
. (42)

Continue from equation (38),

EE
Ξτ

E
AK
τ

R∗QBτ
(µ̃τ+1 [Sτ ] ,Σ∗,τ+1, T − τ) · 1

{
VK
τ � 0

}
= E E

AK
τ

∫
Eξ

e
− 1

2‖Sτ‖
2

(VK
τ )−1√

(2π)τDet (VK
τ )
· R∗QBτ

(µ̃τ+1 [Sτ ] ,Σ∗,τ+1, T − τ) dSτ

︸ ︷︷ ︸
small noise terms

· 1
{
VK
τ � 0

}

+ E E
AK
τ

E
Sτ

R∗QBτ
(µ̃τ+1 [Sτ ] ,Σ∗,τ+1, T − τ)1

{
Ēξ
}

︸ ︷︷ ︸
large noise terms

· 1
{
VK
τ � 0

}
.

(43)
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The second term complements the first, but uses an expectation notation. It is bounded by,

E
[
R∗QBτ

(µ̃τ+1 [Sτ ] ,Σ∗,τ+1, T − τ)1
{
Ēξ
}]
≤
(a)

E
[
max
Ξτ

{
R∗QBτ

(µ̃τ+1 [Sτ ] ,Σ∗,τ+1, T − τ)
} ∣∣∣∣ Eθ] · P (Ēξ | AK

τ

)
≤
(b)

δ

dT
E
[
max
Ξτ

{
R∗QBτ

(µ̃τ+1 [Sτ ] ,Σ∗,τ+1, T − τ)
} ∣∣∣∣ Eθ]

≤
(c)

cbadδ

11
√
d
,

(44)
where (a) uses that the regret is non-negative and (b) uses (42) and (c) uses the same derivations as Lemma 11.

Analyzing “Mean alignment” - small noise terms

We bound the small noise term by a change of measure of the integral. Given AK
τ ,

JS =
∂SK

τ

∂Sτ
=
(
VK
τ + B

)1/2 (
VK
τ

)−1/2
.

Hence,

|Det (JS)| =

∣∣∣∣∣
(
Det

(
VK
τ + B

))1/2
(Det (VK

τ ))
1/2

∣∣∣∣∣ =

(
Det

(
VK
τ + B

)
Det (VK

τ )

)1/2

≥ 1, (45)

where the last equality uses determinant laws and that both matrices are PD and the inequality uses B � 0.

∫
Eξ

e
− 1

2‖Sτ‖
2

(VK
τ )−1√

(2π)τDet (VK
τ )
· R∗QBτ

(µ̃τ+1 [Sτ ] ,Σ∗,τ+1, T − τ) dSτ

≤ max
Eξ

 e
− 1

2‖Sτ‖
2

(VK
τ )−1

e
− 1

2‖SK
τ [Sτ ]‖2

(VK
τ )−1

︸ ︷︷ ︸
Term A

·
∫
Eξ

e
− 1

2‖SK
τ [Sτ ]‖2

(VK
τ )−1√

(2π)τDet (VK
τ )

R∗QBτ
(µ̃τ+1 [Sτ ] ,Σ∗,τ+1, T − τ) |Det (JS)| dSτ

︸ ︷︷ ︸
Term B

,

(46)

where the inequality uses that the regret is non-negative and (45).

Analyzing “Mean alignment” - small noise terms - Term A

max
Eξ

 e
− 1

2‖Sτ‖
2

(VK
τ )−1

e
− 1

2‖SK
τ [Sτ ]‖2

(VK
τ )−1

 = max
Eξ

{
exp

(
1

2

∥∥SK
τ [Sτ ]

∥∥2

(VK
τ )−1 −

1

2
‖Sτ‖2(VK

τ )−1

)}

=
(a)

max
Eξ

{
exp

(
1

2

∥∥∥G+
(
VK
τ + B

)1/2 (
VK
τ

)−1/2
Sτ

∥∥∥2

(VK
τ )−1

− 1

2
‖Sτ‖2(VK

τ )−1

)}
≤
(b)

max
Eξ

{
exp

(
1

2
‖G‖2(VK

τ )−1 + ‖G‖(VK
τ )−1

∥∥∥(VK
τ + B

)1/2 (
VK
τ

)−1/2
Sτ

∥∥∥
(VK

τ )−1

+
1

2

∥∥∥(VK
τ + B

)1/2 (
VK
τ

)−1/2
Sτ

∥∥∥2

(VK
τ )−1

− 1

2
‖Sτ‖2(VK

τ )−1

)}
,

(47)
where (a) uses the definition of SK

τ [Sτ ] in (40) and (b) uses Cauchy–Schwarz inequality.
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Defining c1 , 2

¯
λΣ∗

ln
(
d2T
δ

)
and analyzing the first term of the exponent in (47),

‖G‖2(VK
τ )−1 =

(a)

∥∥∥σ2Σ̂−1
(

(µ̂− µ∗) +
(
Σ̂−Σ∗

)
Σ−1
∗ (θ − µ∗)

)∥∥∥2

(VK
τ )−1

≤
(b)

2σ4

λmin (VK
τ )

∥∥∥Σ̂−1
∥∥∥2

op

(
‖µ̂− µ∗‖2 +

∥∥∥(Σ̂−Σ∗

)
Σ−1
∗ (θ − µ∗)

∥∥∥2
)

≤
(c)

2cs
d

(
‖µ̂− µ∗‖2 +

∥∥∥Σ̂−Σ∗

∥∥∥2

op

∥∥∥Σ−1/2
∗

∥∥∥2

op

∥∥∥Σ−1/2
∗ (θ − µ∗)

∥∥∥2
)

≤
(d)

2csδ (fm + c1dfs)

d
,

(48)

where (a) uses the definition of G in (39) and B in (25), (b) uses Lemma 26, ‖AY ‖ ≤ ‖A‖op ‖Y ‖, triangle

inequality and (a + b)2 ≤ 2(a2 + b2), (c) uses the event Ev, that for PSD matrices ‖A‖op = λmax (A), Σ̂ � Σ∗,
Assumption 2, ‖AY ‖ ≤ ‖A‖op ‖Y ‖ and the sub-multiplicative norm property, (d) uses the triangle inequality,

(a+ b)2 ≤ 2(a2 + b2), the events Eθ, Em, Es, that for PSD matrices ‖A‖op = λmax (A), Σ̂ � Σ∗ and Assumption
2.

Analyzing the third term in the exponent in (47),∥∥∥(VK
τ + B

)1/2 (
VK
τ

)−1/2
Sτ

∥∥∥2

(VK
τ )−1

= S>τ
(
VK
τ

)−1/2 (
VK
τ + B

)1/2 (
VK
τ

)−1 (
VK
τ + B

)1/2 (
VK
τ

)−1/2
Sτ

≤
(a)

λmax

((
VK
τ + B

)1/2 (
VK
τ

)−1 (
VK
τ + B

)1/2) ‖Sτ‖2(VK
τ )−1

=
(b)
λmax

((
VK
τ

)−1/2 (
VK
τ + B

) (
VK
τ

)−1/2
)
‖Sτ‖2(VK

τ )−1

= λmax

(
I +

(
VK
τ

)−1/2
B
(
VK
τ

)−1/2
)
‖Sτ‖2(VK

τ )−1

=
(

1 + λmax

((
VK
τ

)−1/2
B
(
VK
τ

)−1/2
))
‖Sτ‖2(VK

τ )−1

≤
(c)

(
1 +

λmax (B)

λmin (VK
τ )

)
‖Sτ‖2(VK

τ )−1

≤
(d)

(
1 +

cs
d

∥∥∥Σ̂−Σ∗

∥∥∥
op

)
‖Sτ‖2(VK

τ )−1

≤
(e)

(
1 +

cs
d

√
fsδ
)
‖Sτ‖2(VK

τ )−1 ,

(49)

where (a) uses the same derivation as in Lemma 26, (b) uses Lemma 31, (c) uses Lemma 31 and sub-multiplicative
norm properties, (d) uses Lemma 36 and event Ev and (e) uses event Es.

Plugging (48), (49) to (47)

max
Eξ

 e
− 1

2‖Sτ‖
2

(VK
τ )−1

e
− 1

2‖SK
τ [Sτ ]‖2

(VK
τ )−1

 ≤(a)
exp

(
csδ (fm + c1dfs)

d
+ 2cξ

√
csδ (fm + c1dfs) +

c2ξcs
√
fsδ

2

)

≤
(b)

exp

(
3
√
c2ξcsδ (fm + c1dfs) +

c2ξcs
√
fsδ

2

)

≤
(c)

1 + 2

(
3
√
c2ξcsδ (fm + c1dfs) +

c2ξcs
√
fsδ

2

)
(50)

≤
(d)

1 + 6
√
c2ξcs

√
fmδ + 6

(√
c2ξcsc1d+ c2ξcs

)√
fsδ,

where (a) uses that 1 + cs
d

√
fsδ ≤ 2 for δ ≤ 1/M and (41), (b) uses that

√
csδ (fm + c1dfs) ≤ cξd for δ ≤ 1/M, (c)

uses Lemma 37 and
(

3
√
c2ξcs (fm + c1dfs) + 1

2c
2
ξcs
√
fs

)√
δ ≤ 1 for δ ≤ 1/M and (d) uses

√
a+ b ≤

√
a+
√
b.
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Analyzing “Mean alignment” - small noise terms - Term B

∫
Eξ

e
− 1

2‖SK
τ [Sτ ]‖2

(VK
τ )−1√

(2π)τDet (VK
τ )

R∗QBτ
(µ̃τ+1 [Sτ ] ,Σ∗,τ+1, T − τ) |Det (JS)| dSτ

≤
(a)

∫
e
− 1

2‖SK
τ [Sτ ]‖2

(VK
τ )−1√

(2π)τDet (VK
τ )

R∗QBτ
(µ̃τ+1 [Sτ ] ,Σ∗,τ+1, T − τ) |Det (JS)| dSτ

=
(b)

∫
e
− 1

2‖SK
τ [Sτ ]‖2

(VK
τ )−1√

(2π)τDet (VK
τ )

R∗QBτ

(
µ∗,τ+1

[
SK
τ [Sτ ]

]
,Σ∗,τ+1, T − τ

)
|Det (JS)| dSτ

=
(c)

E
[
R∗QBτ

(µ∗,τ+1,Σ∗,τ+1, T − τ)
]
,

(51)

where (a) uses that the regret is non-negative, (b) uses the definition of SK
τ [Sτ ] and (c) uses change of measure.

Denote k1 , 12
√
c2ξcs
√
fmδ+

(
csτ + 12

√
c2ξcsc1d+ 2c2ξcs

)√
fsδ and plugging equations (50), (51), (46) and (44)

back to (43) and (38) we get that the regret incurred under the “Good event”,

E
[
R∗QBτ

(
µ̂τ+1, Σ̂τ+1, T − τ

)
1 {E}

]
≤
(

1 + csτ
√
fsδ
)[(

1 + 6
√
c2ξcs

√
fmδ +

(
6
√
c2ξcsc1d+ c2ξcs

)√
fsδ
)
E
[
R∗QBτ

(µ∗,τ+1,Σ∗,τ+1, T − τ)
]

+
cbadδ

11
√
d

]
≤ (1 + k1)E

[
R∗QBτ

(µ∗,τ+1,Σ∗,τ+1, T − τ)
]

+
2cbadδ

11
√
d
,

(52)
where the last inequality uses that csτ

√
fsδ ≤ 1 for δ ≤ 1/M.

Plugging back the regret from the bad event (24) and the good event (52) to (23) and then to (22) the proof of
Theorem 1 follows.

C.3 Derivation of M

Along the proof of Theorem 1 there were several upper bounds on δ that hold for δ ≤ 1/M. Next, we summarize
them to derive the exact expression for M .

From (27), (50) (transition (a)):
σ2
√
fsδ

¯
λ2

Σ∗

< ¯
λΣAd

2
⇐⇒ δ <

(
¯
λ2

Σ∗¯
λΣAd

2σ2
√
fs

)2

⇐⇒ δ <
(i)

d2

c2sfs
,

From (34), (52) : csτ
√
fsδ < 1 ⇐⇒ δ <

(ii)

1

c2sτ
2fs

,

From (50) (transition (b)):
√
csδ (fm + c1dfs) ≤ cξd ⇐⇒ δ ≤

(iii)

c2ξd
2

cs (fm + c1dfs)

From (50) (transition (c)):

(
3
√
c2ξcs (fm + c1dfs) +

1

2
c2ξcs

√
fs

)√
δ ≤ 1

⇐⇒ δ ≤
(iv)

1(
3
√
c2ξcs (fm + c1dfs) + 1

2c
2
ξcs
√
fs

)2 . (53)
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Note that inequalities (i), (iii) in (53) are directly implied by inequalities (ii), (iv) respectively. To ensure
inequality (iv) we tighten its Right-Hand-Side (RHS),(

3
√
c2ξcs (fm + c1dfs) +

1

2
c2ξcs

√
fs

)2

≤
(v)

2

(
9c2ξcs (fm + c1dfs) +

1

4
c4ξc

2
sfs

)
= 2c2ξcs

(
9 (fm + c1dfs) +

1

4
c2ξcsfs

)
= 18c2ξcs

(
fm + c1dfs +

1

36
c2ξcsfs

)
= 18c2ξcs

(
fm +

(
c1d+

c2ξcs

36

)
fs

)
(54)

Using (ii), (v) and adding 3 to ensure that M ≥ e,

M = max
{

3, c2sτ
2fs, 18c2ξcs

(
fm +

(
c1d+ c2ξcs/36

)
fs
)}
.

In the remainder of the section, we emphasize the dependence of M on δ by M(δ), even though it is only poly-
logarithmic. Specifically, since the constants and fm, fs, τ have at most logarithmic dependence, the expression
for M is a p-degree polynomial of ln (1/δ), for p ≤ 3. By definition, M (δ) > e, thus δ < 1/e and ln (1/δ) > 1,
hence we can upper bound the expression by,

M(δ) ≤ a lnp
(

1

δ

)
+ b, for p ≤ 3,

for the minimal a, b that upper boundM (δ) and satisfy a ≥ 1/pp, b > 0. Next, we define M̃ , which is not a function
of δ, yet preserving the same asymptotic dependence, such that for δ ≤ 1/M̃, it follows that δ ≤ 1

a lnp ( 1
δ )+b

≤ 1
M(δ) .

δ−1 ≥ M̃ ,
(

4pa1/p ln
(

2pa1/p
)

+ 2b1/p
)p
⇐⇒ δ−1/p ≥ 4pa1/p ln

(
2pa1/p

)
+ 2b1/p.

Thus using Lemma 38 with x = δ−1/p, a1 = pa1/p, b1 = b1/p,

δ−1/p ≥ pa1/p ln
(
δ−1/p

)
+ b1/p = a1/p ln

(
1

δ

)
+ b1/p ≥

(
a lnp

(
1

δ

)
+ b

)1/p

,

where the last inequality uses that (x+ y)
1/p ≤ x1/p + y1/p for p ∈ N+ and x, y > 0. Since both sides are positive,

we can raise both sides to the power of −p and get,

δ ≤ 1

a lnp
(

1
δ

)
+ b
≤ 1

M (δ)
.

C.4 Action Jacobian

In this section we prove Lemma 5. The proof uses some technical matrix relations appearing in Section C.4.3.

Lemma 5. Let matrices X ∈ Rn×d,B ∈ Rd×d, such that B � 0,X>X � B.

Define the matrix U , X
(
X>X

)−1/2 (
X>X−B

)1/2
and denote the Jacobian matrix J = ∂U

∂X , then

1

|Det (J)|
≤

(
Det

(
X>X

)
Det (X>X−B)

)n/2
.

Proof.
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C.4.1 Jacobian Derivation

Using differentials,

dU = dX
(
X>X

)−1/2 (
X>X−B

)1/2
+ Xd

(
X>X

)−1/2 (
X>X−B

)1/2
+ X

(
X>X

)−1/2
d
(
X>X−B

)1/2
.

(55)

Applying vectorization (Lemma 6) on (55), where ⊗ is the Kronecker product and ⊕ is the Kronecker sum,

vec(dU) =
((

X>X−B
)1/2 (

X>X
)−1/2 ⊗ In

)
︸ ︷︷ ︸

,J1

vec(dX)

+
((

X>X−B
)1/2 ⊗X

)
︸ ︷︷ ︸

,J2a

vec
(
d
(
X>X

)−1/2
)

︸ ︷︷ ︸
term vec2

+
(
Id ⊗X

(
X>X

)−1/2
)

︸ ︷︷ ︸
,J3a

vec
(
d
(
X>X−B

)1/2)︸ ︷︷ ︸
term vec3

.

(56)

Define Nd , 1
2 (Id2 + Kd) as in page 55 in Magnus and Neudecker (2019), for the commutation matrix Kd and

analyzing term vec2,

vec
(
d
(
X>X

)−1/2
)

=
(a)
−
((

X>X
)−1/2 ⊗

(
X>X

)−1/2
)

vec
(
d
(
X>X

)1/2)
=
(b)
−
((

X>X
)−1/2 ⊗

(
X>X

)−1/2
)((

X>X
)1/2 ⊕ (X>X

)1/2)−1

vec
(
d
(
X>X

))
=
(c)
−
((

X>X
)−1/2 ⊗

(
X>X

)−1/2
)((

X>X
)1/2 ⊕ (X>X

)1/2)−1

2Nd

(
Id ⊗X>

)︸ ︷︷ ︸
,J2c

vec (dX)

=
(d)
−
(
Id ⊗

(
X>X

)−1/2
)((

X>X
)−1/2 ⊗ Id

)((
X>X

)1/2 ⊕ (X>X
)1/2)−1

J2c vec (dX)

=
(e)
−
(
Id ⊗

(
X>X

)−1/2
)((

X>X
)
⊗ Id +

(
X>X

)1/2 ⊗ (X>X
)1/2)−1

︸ ︷︷ ︸
,J2b

J2c vec (dX) .

(57)

Similarly for term vec3,

vec
(
d
(
X>X−B

)1/2)
=
(b)

((
X>X−B

)1/2 ⊕ (X>X−B
)1/2)−1

vec
(
d
(
X>X−B

))
=
(c)

((
X>X−B

)1/2 ⊕ (X>X−B
)1/2)−1

2Nd

(
Id ⊗X>

)
︸ ︷︷ ︸

,J3b

vec (dX) ,
(58)

where (a) uses table 9.7 in Magnus and Neudecker (2019), (b) uses Lemma 9, (c) uses table 9.6 in Magnus and
Neudecker (2019), (d) uses (67) in Lemma 7 and (e) uses (69), (67), (66) in Lemma 7.

Plugging back (57), (58) to (56) and using the definition of the Jacobian (bottom of page 196 in Magnus and
Neudecker (2019)),

J = J1 + J2aJ2bJ2c︸ ︷︷ ︸
,J2

+ J3aJ3b︸ ︷︷ ︸
,J3

.
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C.4.2 Non Negative Eigenvalues of C

Denote,

C ,
1

2
J−1

1 (J2 + J3). (59)

In order to use Corollary 2.2 in Zhan (2005) (Lemma 10) with A1 = J2 + J3 and B1 = J1, we need to prove
that the matrix C has non negative eigenvalues. We start by deriving an expression for the matrix C and then
show that its eigenvalues are the same as the eigenvalues of a multiplication of two PSD matrices G1G2, defined
later in the proof.

Finding a Matrix With the Same Eigenvalues as C

Starting with the following auxiliary expressions,

D1 , J−1
1

((
X>X−B

)1/2 ⊗X
)(

Id ⊗
(
X>X

)−1/2
)

=
((

X>X−B
)1/2 (

X>X
)−1/2 ⊗ In

)−1 ((
X>X−B

)1/2 ⊗X
)(

Id ⊗
(
X>X

)−1/2
)

=
(a+b)

((
X>X

)1/2 (
X>X−B

)−1/2 ⊗ In

)((
X>X−B

)1/2 ⊗X
(
X>X

)−1/2
)

=
(b)

((
X>X

)1/2 ⊗X
(
X>X

)−1/2
)
,

(60)

D2 , J1
−1
(
Id ⊗X

(
X>X

)−1/2
)

=
((

X>X−B
)1/2 (

X>X
)−1/2 ⊗ In

)−1 (
Id ⊗X

(
X>X

)−1/2
)

=
(a)

((
X>X

)1/2 (
X>X−B

)−1/2 ⊗ In

)(
Id ⊗X

(
X>X

)−1/2
)

=
(b)

((
X>X

)1/2 (
X>X−B

)−1/2 ⊗X
(
X>X

)−1/2
)

=
(b)

((
X>X

)1/2 ⊗X
)((

X>X−B
)−1/2 ⊗

(
X>X

)−1/2
)

=
(b)

((
X>X

)1/2 ⊗X
)(

Id ⊗
(
X>X

)−1/2
)((

X>X−B
)−1/2 ⊗ Id

)
=

(a+b)

((
X>X

)1/2 ⊗X
(
X>X

)−1/2
)((

X>X−B
)1/2 ⊗ Id

)−1

,

(61)

where (a) uses (69) and (b) uses (67), both from Lemma 7.

Using (60),

1

2
J−1

1 J2 = −D1

((
X>X

)
⊗ Id +

(
X>X

)1/2 ⊗ (X>X
)1/2)−1

Nd

(
Id ⊗X>

)
= −

((
X>X

)1/2 ⊗X
(
X>X

)−1/2
)((

X>X
)
⊗ Id +

(
X>X

)1/2 ⊗ (X>X
)1/2)−1

Nd

(
Id ⊗X>

)
.

(62)

Using (61),

1

2
J−1

1 J3 = D2

((
X>X−B

)1/2 ⊕ (X>X−B
)1/2)−1

Nd

(
Id ⊗X>

)
=
((

X>X
)1/2 ⊗X

(
X>X

)−1/2
)((

X>X−B
)1/2 ⊗ Id

)−1 ((
X>X−B

)1/2 ⊕ (X>X−B
)1/2)−1

Nd

(
Id ⊗X>

)
=
(a)

((
X>X

)1/2 ⊗X
(
X>X

)−1/2
)((

X>X−B
)
⊗ Id +

(
X>X−B

)1/2 ⊗ (X>X−B
)1/2)−1

Nd

(
Id ⊗X>

)
,

(63)
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where (a) uses (67), (66) from Lemma 7.

Denote,

G1 ,
((

X>X−B
)
⊗ Id +

(
X>X−B

)1/2 ⊗ (X>X−B
)1/2)−1

−
((

X>X
)
⊗ Id +

(
X>X

)1/2 ⊗ (X>X
)1/2)−1

.

Plugging (62) and (63) to (59),

C =
1

2
J−1

1 (J2 + J3) =
((

X>X
)1/2 ⊗X

(
X>X

)−1/2
)

G1Nd

(
Id ⊗X>

)
. (64)

Using Lemma 30, C has the same non-zero eigenvalues as,

G1Nd

(
Id ⊗X>

) ((
X>X

)1/2 ⊗X
(
X>X

)−1/2
)

= G1G2, (65)

where the equality uses (67) from Lemma 7 and G2 , Nd

((
X>X

)1/2 ⊗ (X>X
)1/2)

.

The Matrices G1,G2 are PSD

In order to prove that G2 is a PSD matrix, we prove that it is symmetric and that all its eigenvalues are non
negative. Using Theorem 3.1 in Magnus and Neudecker (1979), Kd is a symmetric matrix with eigenvalues equal
{−1, 1}, so using observation 1.1.8 in Horn and Johnson (2012), Nd = 1

2 (Id2 + Kd) is a PSD matrix. Using (68)

from Lemma 7 and Theorem 2.1 in Magnus and Neudecker (2019) we get, that
((

X>X
)1/2 ⊗ (X>X

)1/2)
is PD.

Using Lemma 31 we get that the eigenvalues of G2 are the same as the eigenvalues of,((
X>X

)1/2 ⊗ (X>X
)1/2)1/2

Nd

((
X>X

)1/2 ⊗ (X>X
)1/2)1/2

,

so the eigenvalues of G2 are non negative. Showing that G2 is symmetric,

G>2 =
(
Nd

((
X>X

)1/2 ⊗ (X>X
)1/2))>

=
((

X>X
)1/2 ⊗ (X>X

)1/2)>
N>d

=
(a)

((
X>X

)1/2 ⊗ (X>X
)1/2)

Nd

=
(b)

Nd

((
X>X

)1/2 ⊗ (X>X
)1/2)

,

where (a) uses that Nd is symmetric and (b) is from Theorem 3.9 in Magnus and Neudecker (2019).

Next, we prove that G1 is a PSD matrix. Using Lemma 33 it holds only if the following matrix is PSD,

H1 ,
((

X>X
)
⊗ Id +

(
X>X

)1/2 ⊗ (X>X
)1/2)− ((X>X−B

)
⊗ Id +

(
X>X−B

)1/2 ⊗ (X>X−B
)1/2)

=
(a)

((
X>X

)
−
(
X>X−B

))
⊗ Id +

(
X>X

)1/2 ⊗ (X>X
)1/2 − (X>X−B

)1/2 ⊗ (X>X−B
)1/2

=
(b)

B⊗ Id︸ ︷︷ ︸
,H1a

+
((

X>X
)
⊗
(
X>X

))1/2 − ((X>X−B
)
⊗
(
X>X−B

))1/2︸ ︷︷ ︸
,H1b

,

where (a) uses (66) from Lemma 7 and (b) uses Lemma 8.

Since H1a is a PSD matrix, it is left to show that H1b is a PSD matrix. Define M , X>X−B,

H1b =
((

X>X
)
⊗
(
X>X

))1/2 − (M⊗M)
1/2

= ((M + B)⊗ (M + B))
1/2 − (M⊗M)

1/2

=

(M⊗M)︸ ︷︷ ︸
,K

+ (M⊗B + B⊗ (M + B))︸ ︷︷ ︸
,L


1/2

− (M⊗M)︸ ︷︷ ︸
K

1/2
,
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where the last equality uses (66) from Lemma 7.

The matrix K is PSD, the matrix L is PSD since it is an addition of two PSD matrices, thus using Lemma 34
H1b is PSD and subsequently G1 is PSD.

C.4.3 Bounding the Jacobian Determinant

Using (65) and Lemma 31 we get that the eigenvalues of C are the same as the eigenvalues of G
1/2
1 G2G

1/2
1 ,

which are non negative, hence the demands of Lemma 10 are met. Finally,

1

|Det (J)|
≤
(a)

1

|Det (J1)|

=

∣∣∣∣Det
((

X>X−B
)1/2 (

X>X
)−1/2 ⊗ In

)−1
∣∣∣∣

=
(b)

Det
((

X>X−B
)1/2 (

X>X
)−1/2 ⊗ In

)−1

=
(c)

Det
((

X>X
)1/2 (

X>X−B
)−1/2 ⊗ In

)
=
(d)

(
Det

((
X>X

)1/2 (
X>X−B

)−1/2
))n

(Det (In))
d

=
(e)

(
Det

(
X>X

)
Det (X>X−B)

)n/2
,

where (a) uses Lemma 10, (b) uses that all the eigenvalues are positive, (c) uses (69), (d) uses Corollary 2.2 in
Magnus and Neudecker (2019) and (e) uses Det (I) = 1.

Lemma 6. (Vectorization) Theorem 2.2 in Magnus and Neudecker (2019)

For matrices A ∈ Rn×d; B,C ∈ Rd×d,

vec(ABC) = (C>B> ⊗ In)vec(A)

vec(ABC) = (C> ⊗A)vec(B)

vec(ABC) = (Id ⊗AB)vec(C).

Lemma 7. (Kronecker properties) From page 32 in Magnus and Neudecker (2019)

If A + B and C + D exist,

(A + B)⊗ (C + D) = A⊗C + A⊗D + B⊗C + B⊗D. (66)

If AC and BD exist,
(A⊗B) (C⊗D) = (AC)⊗ (BD) . (67)

(A⊗B)
>

= A> ⊗B>. (68)

If A and B are nonsingular,
(A⊗B)

−1
= A−1 ⊗B−1. (69)

Lemma 8. (Square root of Kronecker product)

Let A,B be PSD matrices. Then,

(A⊗B)
1/2

= A1/2 ⊗B1/2.

Proof. The square root of a matrix X is defined such that X = X1/2X1/2 =
(
X1/2

)>
X1/2 and equiva-

lently, defined in terms of the eigenvalue decomposition X = UΣXU> as X1/2 = UΣ
1/2
X U>. Using (67),(

A1/2 ⊗B1/2
) (

A1/2 ⊗B1/2
)

= A⊗B. Hence we can define (A⊗B)
1/2

=
(
A1/2 ⊗B1/2

)
.
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Lemma 9. (Square root vectorization)

Let A ∈ Rd×d be PD matrix. Then,

vec
(
dA1/2

)
=
(
A1/2 ⊕A1/2

)−1

vec (dA) .

Proof.

A = A1/2A1/2.

Taking the differential from both sides,

dA = (dA1/2)A1/2 + A1/2(dA1/2),

vec(dA) =
(a)

(((
A1/2

)>
⊗ Id

)
+
(
Id ⊗A1/2

))
vec(dA1/2)

=
(b)

((
A1/2 ⊗ Id

)
+
(
Id ⊗A1/2

))
vec(dA1/2)

=
(
A1/2 ⊕A1/2

)
vec(dA1/2),

where (a) is from Lemma 6 and (b) uses that A is symmetric. Rearranging the equation, the proof follows.

Lemma 10. (Corollary 2.2 in Zhan (2005))

Let A1,B1 ∈ Cn×n (n ≥ 2). If B1 is invertible and Re{λk} ≥ 0 (k = 1, 2, ...., n), where λ(B−1
1 A1) =

{λ1, λ2, . . . , λn}, then,

|Det (A1 + B1)| ≥ |Det (A1)|+ |Det (B1)| .

C.5 Regret Incurred Under the “Bad event”

Lemma 11. (Expected maximal regret incurred during a single instance)

E
θ

[
max

µ,Σ,A,Ξ

{
R∗QBτ

(µ,Σ, T )
} ∣∣∣∣ Ēθ] ≤ cbad

√
dT

11
, cbad , 22a

(
m+

√
4λ̄Σ∗ ln

(
d2T

δ

))
.

Proof.

E
θ

[
max
µ,Σ,A,Ξ

{
R∗QBτ

(µ,Σ, T )
} ∣∣∣∣ Ēθ] ≤

(a)
E
θ

[
T∑
t=1

max
A∈At

{
A>θ

} ∣∣∣∣∣ Ēθ
]
− E

θ

[
T∑
t=1

min
A∈At

{
A>θ

} ∣∣∣∣∣ Ēθ
]

≤ 2E
θ

[
T∑
t=1

max
A∈At

{∣∣A>θ∣∣} ∣∣∣∣∣ Ēθ
]

≤
(b)

2E
θ

[
T∑
t=1

max
A∈At

{‖A‖ ‖θ‖}

∣∣∣∣∣ Ēθ
]

(70)

≤
(c)

2aTE
θ

[
‖θ‖

∣∣ Ēθ] ,
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where (a) is the maximal regret of any algorithm, (b) uses Cauchy-schwarz inequality and (c) uses Assumption 1.

Denote Z , Σ
−1/2
∗ (θ − µ∗) and analyzing the expectation,

E
[
‖θ‖ | Ēθ

]
≤
(a)
‖µ∗‖+ E

[
‖θ − µ∗‖ | Ēθ

]
≤
(b)
m+

√
λ̄Σ∗E

[
‖Z‖ | Ēθ

]
= m+

√
λ̄Σ∗E


√√√√ d∑

i=1

Z2
i

∣∣∣∣∣∣ Ēθ


≤
(c)
m+

√
λ̄Σ∗

√√√√ d∑
i=1

E
[
Z2
i | Ēθ

]
,

(71)

where (a) uses the triangle inequality, (b) uses Lemma 26 and Assumptions 2 and 3, and (c) uses Jensen inequality.

The expectation in the last expression can be written as E
[
Z2
i | Ēθ

]
=

E[Z2
i ·1{Z2

i>z}]
P(Z2

i>z)
for z ,

√
2 ln

(
d2T
δ

)
. Taking

note that Zi is a standard normal variable and calculating the numerator,

E
[
Z2
i · 1

{
Z2
i > z

}]
=
(a)

2E
[
Z2
i · 1

{
Zi < −

√
z
}]

=
2√
2π

−
√
z∫

−∞

Zi · Zie−
1
2Z

2
i dZi

=
(b)
− 2√

2π
Zi · e−

1
2Z

2
i

∣∣∣∣−
√
z

−∞
+

2√
2π

−
√
z∫

−∞

e−
1
2Z

2
i dZi

=
(c)

√
2z

π
· e− 1

2 z + 2Φ
(
−
√
z
)
,

(72)

where (a) uses the symmetry of a standard Gaussian distribution, (b) uses integration by parts and in (c) Φ(·)
stands for the standard Gaussian CDF.

Calculating the denominator,
P
(
Z2
i > z

)
= P

(
|Zi| >

√
z
)

= 2Φ
(
−
√
z
)
. (73)

Using the symmetry of a standard Gaussian distribution and (84) in Lemma 29,

Φ
(
−
√
z
)
≥ 1√

2π

z − 1

z3/2
e−

1
2 z. (74)

Bounding the second moment given Ēθ,

E
[
Z2
i | Z2

i > z
]

=
E
[
Z2
i · 1

{
Z2
i > z

}]
P (Z2

i > z)

=
(a)

√
2z
π · e

− 1
2 z + 2Φ (−

√
z)

2Φ (−
√
z)

=

√
z

2π · e
− 1

2 z

Φ (−
√
z)

+ 1

≤
(b)

z2

z − 1
+ 1

≤
(c)
z + 3

≤
(c)

4z,
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where (a) uses (72), (73), (b) uses (74) and (c) uses ln
(
d2T
δ

)
≥ 2

Plugging back to (71),

E
[
‖θ‖ | Ēθ

]
≤ m+

√√√√4λ̄Σ∗d

√
2 ln

(
d2T

δ

)
≤

(
m+

√
4λ̄Σ∗ ln

(
d2T

δ

))√
d. (75)

Plugging into (70) the proof follows.

Finally, the regret incurred under the bad event,

E
[
R∗QBτ

(
µ̂τ+1, Σ̂τ+1, T − τ

)
1
{
Ē
}]
≤
(a)

E
θ

[
max
µ,Σ,Aτ

{
R∗QBτ

(µ,Σ, T − τ)
} ∣∣∣∣ Ēθ]E [1{Ē}]

≤ 9δ

dT
E
θ

[
max
µ,Σ,Aτ

{
R∗QBτ

(µ,Σ, T − τ)
} ∣∣∣∣ Ēθ]

≤
(b)

9cbadδ

11
√
d
,

(76)

where (a) uses that the events influence only the prior or the actions taken during the instance and (b) uses
Lemma 11.

C.6 A Demonstration of Theorem 1

We demonstrate that using Theorem 1, a QBτ algorithm with an adequate prior is a (1+α)-approximation of
KQBτ , by presenting a case where k1 is constant, using the following values of fm, fs, τ ,

τ = max

{
d,

8a2

¯
λΣA

ln

(
d2T

δ

)}
; ‖µ̂− µ∗‖ ≤

√
fmδ =

√
d2δ ;

∥∥∥Σ̂−Σ∗

∥∥∥
op
≤
√
fsδ =

√
δ.

The value for τ ensures that Ev occurs with probability larger that 1− δ
dT by Lemma 24. In order to find a valid

value of δ, we first bound M (defined in Theorem 1),

M ≤ max

3 + c2sτ
2fs︸ ︷︷ ︸

,M1

, 3 + 18c2ξcs
(
fm +

(
c1d+ c2ξcs/36

)
fs
)︸ ︷︷ ︸

,M2

 .

We begin by bounding M1,M2 separately,

M1 ≤
(a)

3 + c2s

(
d2 +

(
8a2

¯
λΣA

)2

ln2

(
d2T

δ

))

≤
(b)

3 + c2sd
2 + 2c2s

(
8a2

¯
λΣA

)2

ln2
(
d2T

)
︸ ︷︷ ︸

,bM1

+ 2c2s

(
8a2

¯
λΣA

)2

︸ ︷︷ ︸
,aM1

ln2

(
1

δ

)
,

M2 ≤
(c)

3 + 90σ2 ln2

(
dT

δ

)
cs

(
d2 +

4

¯
λΣ∗

d+
5σ2cs

36

)
≤
(b)

3 + 180σ2cs

(
d2 +

4d

¯
λΣ∗

+
5σ2cs

36

)
ln2 (dT )︸ ︷︷ ︸

,bM2

+ 180σ2cs

(
d2 +

4d

¯
λΣ∗

+
5σ2cs

36

)
︸ ︷︷ ︸

,aM2

ln2

(
1

δ

)

where (a) uses that max{a2, b2} ≤ a2 + b2, (b) uses the (a + b)2 ≤ 2a2 + 2b2 and (c) uses that ln
(
dT
δ

)
≥ 1 and

ln
(
d2T
δ

)
≤ 2 ln

(
dT
δ

)
. Finally,

M ≤ max {M1,M2} ≤
{
bM1 + aM1 ln2

(
1

δ

)
, bM2 + aM2 ln2

(
1

δ

)}
, bM + aM ln2

(
1

δ

)
.
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Noticing that aM , bM ∈ Õ
(
d2
)

and using the same derivations as in Appendix C.3 we choose,

δ ,
1(

8a
1/2
M ln

(
4a

1/2
M

)
+ 2b

1/2
M

)2 ⇒
‖µ̂− µ∗‖ ≤

√
d2δ = d

8a
1/2
M ln

(
4a

1/2
M

)
+2b

1/2
M

∈ Õ(1)∥∥∥Σ̂−Σ∗

∥∥∥
op
≤
√
δ = 1

8a
1/2
M ln

(
4a

1/2
M

)
+2b

1/2
M

∈ Õ(1/d)

Furthermore, for δ defined above,

k1 = 12
√
c2ξcs

√
fmδ +

(
csτ + 12

√
c2ξcsc1d+ 2c2ξcs

)√
fsδ ∈ Õ(1),

The Õ notation indicates that k1 is at most polylogarithmic in d, T . We can cancel this dependence by choosing
fm = d2

/k2
1, fs = 1/k2

1 instead, while preserving the same value of δ.

D PRIOR ESTIMATION ERROR

In the following section we prove that the prior formed by the MQBτ algorithm meets the events of Theorem 1
with probability greater than 1− 8

dnT .

D.1 Good Event Definition and Proof

The proof of Lemma 1 requires the events Ev to hold for every instance j ∈ [n] where each event is denoted by
Evj . The MQBτ version of the events, based on the events in (5), is defined as follows,

Ev(MQBτ ) , {Evj∀j ∈ [n]},

Em(MQBτ ) , Em with δ =
1

n− 1
, fm,n = 3

(
2σ2

¯
λΣAd

+ λ̄Σ∗

)
(d+ ln (dnT )) ,

Es(MQBτ ) , Es with δ =
1

n− 1
, fs,n = 1002

(
2σ2

¯
λΣAd

+ λ̄Σ∗

)2

(5d+ 2 ln (dnT )) , (77)

En(MQBτ ) , {Ev(MQBτ ) ∩ Em(MQBτ ) ∩ Es(MQBτ )}.

Lemma 1. (MQBτ conditions) For every instance n > 10d+ 4 ln (16dT ), P
(
En(MQBτ )

)
≥ 1− 8/dnT .

Proof. Using the union bound on Lemma 24 with δ = 1/N2 for all instances up to the nth instance,

P
(
Ev(MQBτ )

)
≥ 1− 1

dNT
.

Lemma 15 and Lemma 22 for n > 5d+ 2 ln(dnT ), with ηn = 1
dnT yield,

P
(
Em(MQBτ )

)
≥ 1− 1

dnT
; P

(
Es(MQBτ )

)
≥ 1− 6

dnT
.

Using the union bound argument, for n > 5d+ 2 ln(dnT ), P
(
En(MQBτ )

)
≥ 1− 8/dnT .

Next, using Lemma 38 with a1 = 2, b1 = 5d + 2 ln(dT ), we get that n > 10d + 4 ln(16dT ) implies n >
5d+ 2 ln(dnT ).

D.2 Mean Estimation Error

The mean estimation error originates from two different sources. First, after n − 1 instances, the learner has
interacted only with n− 1 samples of the prior distribution N (µ∗,Σ∗). Second, at the end of each instance, she

only has an estimator θ̂j for the true value of each sample θj . More formally,

‖µ̂n − µ∗‖ =

∥∥∥∥∥∥ 1

n− 1

n−1∑
j=1

(
θ̂j − µ∗

)∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
1

n− 1

n−1∑
j=1

θ̂j − θj︸ ︷︷ ︸
,ρj

+ θj − µ∗︸ ︷︷ ︸
,∆j


∥∥∥∥∥∥∥ .
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In order to bound the mean estimation error we first prove that each inner instance error ρj is unbiased and

sub-Gaussian. Then, we show that a single instance error θ̂j − µ∗ is sub-Gaussian as well.

Lemma 12. (Unbiasedness of the inner instance error)

Under the event Ev(MQBτ )
, for every instance j ∈ [n],

E [ρj ] = E
[
θ̂j − θj

]
= 0.

Proof.

E [ρj ] = E
[
θ̂j − θj

]
= E

[
V−1
j,τ

τ∑
s=1

Aj,sxj,s − θj

]

= E

[
V−1
j,τ

τ∑
s=1

Aj,s
(
A>j,sθj + ξj,s

)
− θj

]

= E

[
V−1
j,τ

τ∑
s=1

Aj,sξj,s

]

=

τ∑
s=1

E
[
V−1
j,τAj,sξj,s

]
=
(a)

τ∑
s=1

E
[
V−1
j,τAj,s

]
E [ξj,s]

=
(b)

0,

where (a) uses that the actions taken in the first τ time-steps are independent from the noise terms and (b) uses
that ξj,s is a zero-mean noise.

Lemma 13. (Sub-Gaussianity of the inner instance error)

Under the event Ev(MQBτ )
, for every instance j ∈ [n], ρj is a

√
2σ2

¯
λΣAd

sub-Gaussian vector.

Proof. For any s ∈ R and U ∈ Rd s.t. ‖U‖ = 1

E
[
exp

(
sU>ρj

)]
= E

[
exp

(
sU>V−1

j,τ

τ∑
s=1

Aj,sξj,s

)]

=
(a)

E
Aj,τ

[
E

[
exp

(
sU>V−1

j,τ

τ∑
s=1

Aj,sξj,s

)] ∣∣∣∣∣ Aj,τ

]

≤
(b)

E

[
exp

(
s2σ2

2

τ∑
s=1

(
U>V−1

j,τAj,s
)2)]

= E

[
exp

(
s2σ2

2

τ∑
s=1

A>j,sV
−1
j,τUU

>V−1
j,τAj,s

)]

=
(c)

E

[
exp

(
s2σ2

2
Tr

(
τ∑
s=1

Aj,sA
>
j,sV

−1
j,τUU

>V−1
j,τ

))]

=
(c)

E
[
exp

(
s2σ2

2
U>V−1

j,τU

)]
≤
(d)

exp

(
s2

2
· 2σ2

¯
λΣAd

)
,
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where (a) uses the law of total expectation, (b) uses that the actions taken in the first τ time-steps are independent
from the noise terms, the MGF of a Gaussian variable and the law of total expectation, (c) uses the linearity
and the product properties of the trace and (d) uses Lemma 26 and the event Ev(MQBτ ).

Lemma 14. (Sub-Gaussianity of the single instance error)

Under the event Ev(MQBτ )
, for every instance j ∈ [n], θ̂j − µ∗ is a

√
2σ2

¯
λΣAd

+ λ̄Σ∗ sub-Gaussian vector.

Proof. For any s ∈ R and U ∈ Rd s.t. ‖U‖ = 1

E
[
exp

(
sU>

(
θ̂j − µ∗

))]
=
(a)

E
[
exp

(
sU>ρj

)
exp

(
sU>∆j

)]
=
(b)

E
[
exp

(
sU>ρj

)]
E
[
exp

(
sU>∆j

)]
≤
(c)

exp

(
s2

2
· 2σ2

¯
λΣAd

)
exp

(
s2U>Σ∗U

2

)
≤
(d)

exp

(
s2

2

(
2σ2

¯
λΣAd

+ λ̄Σ∗

))
,

(78)

where (a) uses the definitions of ρj ,∆j , (b) uses that the actions taken during the first τ time-steps are indepen-
dent of the noise terms and θj , (c) uses the MGF of the Gaussian variable U>∆j and Lemma 13 and (d) uses
Lemma 26, together with Assumption 2.

The following lemma bounds the mean estimation error of MQBτ algorithm with high probability.

Lemma 15. (Mean estimation error)

For every ηn > 0 and for every instance n > 1,

P
(
Em(MQBτ )

| Ev(MQBτ )

)
≥ 1− ηn.

Proof. We start by proving that µ̂n − µ∗ is a

√
2σ2+

¯
λΣA λ̄Σ∗d

¯
λΣAd(n−1) sub-Gaussian vector. For any s ∈ R and U ∈ Rd

s.t. ‖U‖ = 1,

E
[
exp

(
sU> (µ̂n − µ∗)

)]
= E

exp

 s

n− 1
U>

n−1∑
j=1

(
θ̂j − µ∗

)
=
(a)

n−1∏
j=1

E
[
exp

(
s

n− 1
U> (ρj + ∆j)

)]

≤
(b)

exp

(
s2

2
· 2σ2 +

¯
λΣA λ̄Σ∗d

¯
λΣAd(n− 1)

)
,

where (a) uses that the actions taken during the first τ time-steps are independent of the noise terms, θj and
the inner instance errors of other instances and (b) uses the same steps as in (78).

From Lemma 28,

P
(
‖µ̂n − µ∗‖2 >

2σ2 +
¯
λΣA λ̄Σ∗d

¯
λΣAd(n− 1)

·
(
d+ 2

√
d ln (1/ηn) + 2 ln (1/ηn)

))
≤ ηn

and using the inequality of arithmetic and geometric means,
√
d ln (1/ηn) ≤ (d+ln (1/ηn))/2, the proof follows.

D.3 Covariance Estimation Error

In this section, we bound the estimation error of the estimated covariance matrix Σ̂n (Eq. (11)), WRT the true
covariance matrix Σ∗, under the operator norm.
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D.3.1 Covariance Estimation Error Decomposition

Define,

Σ ,
σ2

n− 1

n−1∑
j=1

E
[
V−1
j,τ

]
+ Σ∗, (79)

∥∥∥Σ̂n −Σ∗

∥∥∥
op

=

∥∥∥∥∥∥ 1

n− 2

n−1∑
j=1

(
θ̂j − µ̂n

)(
θ̂j − µ̂n

)>
− σ2

n− 1

n−1∑
j=1

V−1
j,τ −Σ∗

∥∥∥∥∥∥
op

≤

∥∥∥∥∥∥ 1

n− 2

n−1∑
j=1

(
θ̂j − µ̂n

)(
θ̂j − µ̂n

)>
−Σ

∥∥∥∥∥∥
op

+

∥∥∥∥∥∥ σ2

n− 1

n−1∑
j=1

V−1
j,τ −

n−1∑
j=1

E
[
V−1
j,τ

]∥∥∥∥∥∥
op

=
(a)

∥∥∥∥∥∥ 1

n− 2

n−1∑
j=1

(
θ̂j − µ∗

)(
θ̂j − µ∗

)>
− n− 1

n− 2
(µ̂n − µ∗) (µ̂n − µ∗)> −Σ

∥∥∥∥∥∥
op

+

∥∥∥∥∥∥ σ2

n− 1

n−1∑
j=1

V−1
j,τ −

n−1∑
j=1

E
[
V−1
j,τ

]∥∥∥∥∥∥
op

≤ n− 1

n− 2

∥∥∥∥∥∥ 1

n− 1

n−1∑
j=1

(
θ̂j − µ∗

)(
θ̂j − µ∗

)>
−Σ

∥∥∥∥∥∥
op︸ ︷︷ ︸

Term A

+
n− 1

n− 2

∥∥∥∥∥∥ 1

n− 1

n−1∑
j=1

(µ̂n − µ∗) (µ̂n − µ∗)> −
1

n− 1
Σ

∥∥∥∥∥∥
op︸ ︷︷ ︸

Term B

+

∥∥∥∥∥∥ σ2

n− 1

n−1∑
j=1

V−1
j,τ −

n−1∑
j=1

E
[
V−1
j,τ

]∥∥∥∥∥∥
op︸ ︷︷ ︸

Term C

, (80)

where (a) uses µ̂n = 1
n−1

∑n−1
j=1 θ̂j and both inequalities come from the triangle inequality.

We bound each of the three terms separately, using Theorem 6.5 in Wainwright (2019) for terms A and B. For
convenience, we state it here.

Lemma 16. (Empirical covariance bounds, Theorem 6.5 in Wainwright (2019), constants were taken from
Bastani et al. (2021)).

For any row-wise σ sub-Gaussian random matrix X ∈ Rn×d, the sample covariance matrix Σ̂ = 1
n

∑n
i=1XiX

>
i

satisfies the bound

P

∥∥∥Σ̂−Σ
∥∥∥

op
≥ 32σ2 ·max


√

5d+ 2 ln
(

2
δ

)
n

,
5d+ 2 ln

(
2
δ

)
n


 ≤ δ ∀ 0 < δ < 1.

The first part of Terms A and B in (80) are of the form 1
n−1

∑n−1
j=1 XX

> for vector X equal to θ̂j − µ∗ and
µ̂n−µ∗, respectively. Lemmas 14 and 15, proved during the mean estimation analysis (Appendix D.2), show that

these vectors are sub-Gaussian. The proof of Lemma 16, implicitly requires that E
[
Σ̂
]

= Σ, i.e. the estimator

Σ̂ is unbiased, which we prove next.

D.3.2 Lack of Bias of the Covariance Estimator

Lemma 17. (Lack of bias of the covariance estimator - auxiliary)

E
[
ρjρ
>
j

]
= σ2E

[
V−1
j,τ

]
.
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Proof.

E
[
ρjρ
>
j

]
= E

(V−1
j,τ

τ∑
s=1

Aj,sξj,s

)(
V−1
j,τ

τ∑
k=1

Aj,kξj,k

)>
=
(a)

E

[(
V−1
j,τ

τ∑
s=1

Aj,sξj,s

)(
τ∑
k=1

A>j,kV
−1
j,τ ξj,k

)]

= E

[
V−1
j,τ

τ∑
s=1

Aj,sA
>
j,sV

−1
j,τ ξ

2
j,s

]
︸ ︷︷ ︸

same time-step

+ E

V−1
j,τ

τ∑
s=1

τ∑
k 6=s

Aj,sA
>
j,kV

−1
j,τ ξj,sξj,k


︸ ︷︷ ︸

different time-steps

,

(81)

where (a) uses that Vj,τ is symmetric.

Analyzing the same time-step

E

[
V−1
j,τ

τ∑
s=1

Aj,sA
>
j,sV

−1
j,τ ξ

2
j,s

]
=
(a)

E

[
V−1
j,τ

τ∑
s=1

Aj,sA
>
j,sV

−1
j,τ

]
E
[
ξ2
j,s

]
= σ2E

[
V−1
j,τ

(
τ∑
s=1

Aj,sA
>
j,s

)
V−1
j,τ

]
= σ2E

[
V−1
j,τ

]
.

Analyzing the different time-steps

E

V−1
j,τ

τ∑
s=1

τ∑
k 6=s

Aj,sA
>
j,kV

−1
j,τ ξj,sξj,k

 =
(a)

τ∑
s=1

τ∑
k 6=s

E
[
V−1
j,τAj,sA

>
j,kV

−1
j,τ

]
E [ξj,s]E [ξj,k] = 0,

where (a) uses that the actions during the first τ time-steps are independent of the noise terms.

Plugging back to (81) the proof follows.

Lemma 18. (Lack of bias of the covariance estimator - Term A)

E

 1

n− 1

n−1∑
j=1

(
θ̂j − µ∗

)(
θ̂j − µ∗

)> = Σ.

Proof.

E
[(
θ̂j − µ∗

)(
θ̂j − µ∗

)>]
= E

[
θ̂j θ̂
>
j

]
− E

[
θ̂j

]
µ>∗ − µ∗E

[
θ̂>j

]
+ µ∗µ

>
∗

=
(a)

E
[
(θj + ρj) (θj + ρj)

>
]
− µ∗µ>∗

=
(b)

E
[
θjθ
>
j

]
− µ∗µ>∗ + E

[
ρjρ
>
j

]
=
(c)

Σ∗ + σ2E
[
V−1
j,τ

]
,

where (a) uses that θ̂j is unbiased i.e. E
[
θ̂j

]
= µ∗, (b) uses that the actions taken during the first τ time-steps

are independent of the noise terms and of θj and Lemma 12 and (c) uses Lemma 17.

Using the definition of Σ in (79), summing over the instances and dividing by n− 1 the proof follows.

Lemma 19. (Lack of bias of the covariance estimator - Term B - auxiliary)

E
[
µ̂nµ̂

>
n

]
=

Σ

n− 1
+ µ∗µ

>
∗ .
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Proof.

E
[
µ̂nµ̂

>
n

]
= E

( 1

n− 1

n−1∑
i=1

θ̂i

)(
1

n− 1

n−1∑
i=1

θ̂i

)>
=

(
1

n− 1

)2

E

(n−1∑
i=1

θi + ρi

)(
n−1∑
i=1

θi + ρi

)>
=
(a)

(
1

n− 1

)2

E

n−1∑
i=1

θiθ
>
i +

n−1∑
i=1

∑
j 6=i

θiθ
>
j +

n−1∑
i=1

ρiρ
>
i


=
(b)

Σ∗ + µ∗µ
>
∗

n− 1
+
n− 2

n− 1
µ∗µ

>
∗ +

σ2
∑n−1
i=1 E

[
V−1
i,τ

]
(n− 1)

2

=
Σ∗
n− 1

+ µ∗µ
>
∗ +

σ2
∑n−1
i=1 E

[
V−1
i,τ

]
(n− 1)

2 ,

where (a) uses Lemma 12 and that the actions taken during the first τ time-steps are independent of the noise
terms, of θj and of other inner instance errors and (b) uses Lemma 17.

Using the definition of Σ in (79) the proof follows.

Lemma 20. (Lack of bias of the covariance estimator - Term B)

E
[
(µ̂n − µ∗) (µ̂n − µ∗)>

]
=

Σ

n− 1
.

Proof.

E
[
(µ̂n − µ∗) (µ̂n − µ∗)>

]
= E

[
µ̂nµ̂

>
n

]
− E [µ̂n]µ>∗ − µ∗E

[
µ̂>n
]

+ µ∗µ
>
∗

= E
[
µ̂nµ̂

>
n

]
− µ∗µ>∗

=
(a)

Σ

n− 1
+ µ∗µ

>
∗ − µ∗µ>∗ ,

where (a) uses Lemma 19.

Lemma 21. (Covariance estimation error - Term C)

For every instance n > 1, δ > 0, with probability greater than 1− δ,∥∥∥∥∥∥ σ2

n− 1

n−1∑
j=1

V−1
j,τ −

n−1∑
j=1

E
[
V−1
j,τ

]∥∥∥∥∥∥
op

≤ 4 · σ2

¯
λΣAd

√
2 ln d+ 2 ln (2/δ)

n− 1
.

Proof. The maximal eigenvalue of V−1
j,τ − E

[
V−1
j,τ

]
is upper bounded by,

λmax

(
V−1
j,τ − E

[
V−1
j,τ

])
≤
(a)

λmax

(
V−1
j,τ

)
+ λmax

(
−E

[
V−1
j,τ

])
≤
(b)
λmax

(
V−1
j,τ

)
≤
(c)

2

¯
λΣAd

,

where (a) uses Weyl’s inequality, (b) uses that Vj,τ is PD and (c) uses the event Ev(MQBτ ).
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Using Lemma 27 with Xj , V−1
j,τ − E

[
V−1
j,τ

]
,A2

j ,
4

¯
λ2

ΣA
d2 I and s2 = 4(n−1)

¯
λ2

ΣA
d2 , we get,

P

λmax

n−1∑
j=1

V−1
j,τ − E

[
V−1
j,τ

] ≥ δ
 ≤ d exp

(
− (

¯
λΣAd)

2
δ2

32(n− 1)

)
,

multiplying the RHS by 2 to achieve the spectral norm bound, rearranging and multiplying by σ2
/n−1 the proof

follows.

D.3.3 Covariance Estimation Error Bound

Lemma 22. (Covariance estimation error)

For every ηn > 0 and for every instance n > 5d+ 2 ln (1/ηn),

P
(
Es(MQBτ )

| Ev(MQBτ )

)
≥ 1− 6ηn.

Proof. Using Lemma 16 on terms A and B in (80), together with Lemma 21 on Term C and a union bound
argument, we get that for n > 5d + 2 ln (1/ηn), the three following expressions exist in probability greater than
1− 6ηn, ∥∥∥∥∥∥ 1

n− 1

n−1∑
j=1

(
θ̂j − µ∗

)(
θ̂j − µ∗

)>
−Σ

∥∥∥∥∥∥
op

≤ 32 · 2σ2 +
¯
λΣA λ̄Σ∗d

¯
λΣAd

·
√

5d+ 2 ln (1/ηn)

n− 1
,

∥∥∥∥∥∥ 1

n− 1

n−1∑
j=1

(µ̂n − µ∗) (µ̂n − µ∗)> −
Σ

n− 1

∥∥∥∥∥∥
op

≤ 32 · 2σ2 +
¯
λΣA λ̄Σ∗d

¯
λΣAd(n− 1)

·
√

5d+ 2 ln (1/ηn)

n− 1
,

∥∥∥∥∥∥ σ2

n− 1

n−1∑
j=1

V−1
j,τ −

n−1∑
j=1

E
[
V−1
j,τ

]∥∥∥∥∥∥
op

≤ 4 · σ2

¯
λΣAd

√
2 ln d+ 2 ln (1/ηn)

n− 1
.

Plugging back to (80),∥∥∥Σ̂n −Σ∗

∥∥∥
op
≤ 32

√
5d+ 2 ln (1/ηn)

n− 1

(
n

n− 2

(
2σ2 +

¯
λΣA λ̄Σ∗d

¯
λΣAd

)
+

σ2

8
¯
λΣAd

)
≤ 50

√
5d+ 2 ln (1/ηn)

n− 1

(
2σ2

¯
λΣAd

+ λ̄Σ∗

)
,

where the last inequality uses that n
n−2 ≤ 3/2 for n ≥ 6.

Using the covariance widening scheme suggested by Bastani et al. (2021) and proved in Lemma 25 we get,∥∥∥Σ̂w
n −Σ∗

∥∥∥
op
≤ 100

√
5d+ 2 ln (1/ηn)

n− 1

(
2σ2

¯
λΣAd

+ λ̄Σ∗

)
, Σ̂w

n � Σ∗.

E META ALGORITHM REGRET

In the following section we prove Theorem 2.

Theorem 2. For N0 ≤ N , the MQBτ N -instance relative regret is bounded by,

N∑
n=1

E
[
RK

QBτ

(
µ̂n, Σ̂

w
n , T

)]
≤ k2

√
NE

[
R∗QBτ

(µ∗,τ+1,Σ∗,τ+1, T − τ)
]︸ ︷︷ ︸

regular
instances

+ N0Rsing︸ ︷︷ ︸,
exploration
instances
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k2 , 24
√
c2ξcs

√
3
(
2σ2/(

¯
λΣAd) + λ̄Σ∗

)√
d+ ln (dNT ) + 4cw

[
csτ + 12

√
c2ξcsc1d+ 2c2ξcs

]√
5d+ 2 ln (dNT ),

N0 = max
{

3, 4c2wc
2
sτ

2 (5d+ 2 ln (d(N + 1)T )) , (82)

18c2ξcs
(
3
(
2σ2/(

¯
λΣAd) + λ̄Σ∗

)
(d+ ln (d(N + 1)T )) + 4c2w

(
c1d+ c2ξcs/36

)
(5d+ 2 ln (d(N + 1)T ))

)}
,

where τ defined in (8), cw in (12) and the other constants are as in (21) with δ = 1/N.

Proof.

N∑
n=1

E
[
RK

QBτ

(
µ̂n, Σ̂

w
n , T

)]
=

N0∑
n=1

E
[
RK

QBτ

(
µ̂n, Σ̂

w
n , T

)]
︸ ︷︷ ︸

exploration instances

+

N∑
n=N0+1

E
[
RK

QBτ

(
µ̂n, Σ̂

w
n , T

)]
︸ ︷︷ ︸

regular instances

≤
(a)

N0Rexp +

N∑
n=N0+1

(
k̃2(n)

2
√
n− 1

E
[
R∗QBτ

(µ∗,τ+1,Σ∗,τ+1, T − τ)
]

+
cbad√
d(n− 1)

)
≤
(a)

N0Rexp + k2

√
NE

[
R∗QBτ

(µ∗,τ+1,Σ∗,τ+1, T − τ)
]
,

(83)
where (a) uses Lemma 1 and Theorem 1 with k̃2(n) , 2k1(n)/

√
δ(n) for the regular instances and (b) uses

k2 = k̃2(N) and
∑N
n=N0+1

1√
n−1
≤
∫ N
N0

1√
x−1

dx ≤ 2
√
N .

F AUXILIARY LEMMAS

Lemma 23. (Matrix Chernoff, Theorem 5.1.1 in Tropp (2015))

Consider a finite sequence {Xk} of independent, random, Hermitian matrices with common dimension d. Assume
that,

0 ≤ λmin (Xk) and λmax (Xk) ≤ L for each index k.

Then for every 0 ≤ t < 1,

P

(
λmin

(∑
k

Xk

)
≤ tλmin

(∑
k

E [Xk]

))
≤ de−

(1−t)2λmin(
∑
k E[Xk])

2L .

Lemma 24. (Minimum eigenvalue of Gram matrix)

For τ = max
{
d, 8a2

¯
λΣA

ln
(
d2T
δ

)}
, the probability of the event Ev is bounded by,

P (Ev) ≥ 1− δ

dT
.

Proof.

λmin (Vτ ) = λmin

(
τ∑
s=1

AsA
>
s

)

From Theorem 5.1.1 in Tropp (2015), Lemma 23 with t = 1
2 , and Assumption 1 we get,

P
(
λmin (Vτ ) ≤ ¯

λΣAd

2

)
≤ P

(
λmin (Vτ ) ≤ ¯

λΣAτ

2

)
≤ de− ¯

λΣAτ

8a2 ≤ δ

dT
.
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Lemma 25. (Σ̂w � Σ∗)

Let Σ̂ be a symmetric matrix and Σ∗ be a PD matrix s.t.
∥∥∥Σ̂−Σ∗

∥∥∥
op
≤ s. Define Σ̂w = Σ̂ + s · I, then

Σ̂w � Σ∗ and Σ−1
∗ �

(
Σ̂w
)−1

.

Proof.

λmin

(
Σ̂w −Σ∗

)
≥
(a)

λmin (s · I) + λmin

(
Σ̂−Σ∗

)
≥
(b)
s−

∥∥∥Σ∗ − Σ̂
∥∥∥

op
≥ 0,

where (a) uses Weyl’s inequality and (b) uses λmin

(
Σ̂−Σ∗

)
= −λmax

(
Σ∗ − Σ̂

)
≥ −

∥∥∥Σ∗ − Σ̂
∥∥∥

op
. Since(

Σ̂w −Σ∗

)
is PSD, Σ̂w is PD, thus using Lemma 33 the proof follows.

Lemma 26. (maximal eigenvalue inequality)

Let A be a vector and B a PD matrix, then,

‖A‖ ≤
√
λmax (B) ‖A‖B−1 .

Proof. Since B is symmetric we can use an eigenvalue decomposition B = QΛQ>, where Λ is a diagonal matrix
containing all the eigenvalues of B and Q,Q> are orthonormal matrices. Then,

‖A‖ =
√
A>A

=
√
A>B−1/2BB−1/2A

=
√
A>B−1/2QΛQ>B−1/2A

=
(a)

√
U>ΛU

≤
(b)

√
λmax (B)

√
U>U

=
√
λmax (B)

√
A>B−1/2QQ>B−1/2A

=
(c)

√
λmax (B)

√
A>B−1A

=
√
λmax (B) ‖A‖B−1 ,

where (a) uses U , Q>B−1/2A, (b) uses that U>U is a sum of non negative elements and (c) uses that Q is
orthonormal.

Lemma 27. (Matrix Hoffeding, Theorem 1.3 in Tropp (2012))

Consider a finite sequence {Xj} of independent, random, self-adjoint matrices with dimension d, and let {Aj}
be a sequence of fixed self-adjoint matrices. Assume that each random matrix satisfies,

E{Xj} = 0 and X2
j � A2

j almost surely.

Then for every δ ≥ 0,

P

λmax

∑
j

Xj

 ≥ δ
 ≤ de− δ2

8s2 where s2 ,

∥∥∥∥∥∥
∑
j

A2
j

∥∥∥∥∥∥
op

.

Lemma 28. (Concentration bound sub-Gaussian vector, Theorem 1 in Hsu et al. (2012))

Let A ∈ Rm×n be a matrix, and let Σ = A>A. Suppose that X = (X1, . . . , Xn) is a random vector such that
for µ = 0 and some σ ≥ 0,

E
[
exp

(
U>X

)]
≤ exp

(
‖U‖2 σ2

2

)
,
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for all U ∈ Rn. For all δ > 0,

P
(
‖AX‖2 > σ2

(
Tr (Σ) + 2

√
Tr (Σ2) δ + 2 ‖Σ‖op δ

))
≤ e−δ.

Lemma 29. (Gaussian tail bounds, section 7.1 in Feller (1968))

Let z be a standard normal variable. Then for any t > 0,

P (z > t) >
1√
2π

(
1

t
− 1

t3

)
e
−t2

2 , (84)

P (z > t) ≤ 1√
2π

1

t
e
−t2

2 . (85)

Lemma 30. (Same non-zero eigenvalues for AB and BA, Theorem 1.3.22 in Horn and Johnson (2012))

Let A ∈ Rm×n and B ∈ Rn×m with m ≤ n. Then the n eigenvalues of BA are the m eigenvalues of AB together
with n−m zeros. If m = n and at least one of A or B is nonsingular, then AB and BA are similar.

Lemma 31. (Same eigenvalues for product of PSD matrices λi (AB) = λi
(
A1/2BA1/2

)
)

Let A,B PSD matrices. Then,

λi (AB) = λi

(
A1/2BA1/2

)
= λi (BA) = λi

(
B1/2AB1/2

)
.

Proof. AB = A1/2A1/2B. Using Lemma 30 this matrix has the same eigenvalues as A1/2BA1/2. In the same
line of proof we get that the eigenvalues of BA and B1/2AB1/2 are the same. Finally, by Lemma 30 AB and
BA has the same eigenvalues.

Lemma 32. (Non negative trace for product of PSD matrices)

Let A and B be PSD matrices. Then, Tr (AB) ≥ 0.

Proof. From Lemma 31,

Tr (AB) = Tr
(
A1/2BA1/2

)
=

d∑
j=1

λj

(
A1/2BA1/2

)
≥ 0,

where the inequality uses that the matrix B is PSD, hence A1/2BA1/2 is PSD.

Lemma 33. (Corollary 7.74.(a) in Horn and Johnson (2012))

Let A,B ∈ Rn×n PD matrices. A � B iff B−1 � A−1.

Lemma 34. (Corollary 7.74.(b) in Horn and Johnson (2012))

Let A,B ∈ Rn×n be symmetric matrices. If A � 0, B � 0 and A � B, then A1/2 � B1/2.

Lemma 35. (Exercise VI.7.2 in Bhatia (1997) (page 182))

Let A and B be Hermitian matrices. If λmin (A) + λmin (B) > 0, then

d∏
j=1

(λj (A) + λj (B)) ≤ Det (A + B) .

Lemma 36. (B bound)

‖B‖op ≤
σ2

¯
λ2

Σ∗

∥∥∥Σ̂−Σ∗

∥∥∥
op
.
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Proof.

‖B‖op =
∥∥∥σ2

(
Σ−1
∗ − Σ̂−1

)∥∥∥
op

=
∥∥∥σ2

(
Σ̂−1

(
Σ̂−Σ∗

)
Σ−1
∗

)∥∥∥
op

≤
(a)

σ2
∥∥∥Σ̂−1

∥∥∥
op

∥∥∥Σ̂−Σ∗

∥∥∥
op

∥∥Σ−1
∗
∥∥

op

≤
(b)

σ2

(λmin (Σ∗))
2

∥∥∥Σ̂−Σ∗

∥∥∥
op

≤
(c)

σ2

¯
λ2

Σ∗

∥∥∥Σ̂−Σ∗

∥∥∥
op
,

where (a) uses sub-multiplicative norm properties, (b) uses that Σ̂ � Σ∗ and Lemma 26, and (c) uses Assump-
tion 2.

Lemma 37. (Exponent bound, Lemma 20 in Bastani et al. (2021))

For any x ∈ [0, 1], ex ≤ 1 + 2x.

Lemma 38. (Log bound, Lemma A.2 in Shalev-Shwartz and Ben-David (2014))

Let a1 ≥ 1 and b1 > 0. Then, x ≥ 4a1 ln (2a1) + 2b1 ⇒ x ≥ a1 ln (x) + b1.
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