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Abstract

This article analyses three feature screen-
ing procedures: Kendall’s Tau and Spear-
man Rho (TR), Hilbert-Schmidt Indepen-
dence Criterion (HSIC) and conditional Max-
imum Mean Discrepancy (cMMD), where the
latter is a modified version of the standard
MMD for categorical classification. These as-
sociation measures are not based on any spe-
cific underlying model, such as the linear re-
gression. We provide the conditions for which
the sure independence screening (SIS) prop-
erty is satisfied under a lower bound assump-
tion on the minimum signal strength of the
association measure. The SIS property for
the HSIC and cMMD is established for given
bounded and symmetric kernels. Within the
high-dimensional setting, we propose a two-
step approach to control the false discovery
rate (FDR) using the knockoff filtering. The
performances of the association measures are
assessed through simulated and real data ex-
periments and compared with existing com-
peting screening methods.

1 INTRODUCTION

Feature selection, or variable selection, has gained
much attention over the years and fostered the de-
velopment of a rich literature, especially in predic-
tive modelling. A standard approach to tackle the
high-dimensionality issue is sparse modelling, which
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focuses on variable selection by discarding those that
are unimportant for prediction. It aims to recover the
true signal when the underlying model admits a sparse
representation - this is the so-called “sparsity assump-
tion” - by applying a penalty function to the objective
function. A significant amount of literature has been
dedicated to the devise of suitable penalty functions
that can best fit the observed patterns and that sat-
isfy particular properties: e.g., the large sample ora-
cle property of Fan and Li (2001) for SCAD, of Zou
(2006) for the adaptive LASSO or Poignard (2020) for
Sparse Group LASSO; support recovery property un-
der/without incoherence type conditions as in Loh and
Wainwright (2017).

In light of the computational cost of these sparse meth-
ods and the issues regarding their statistical accuracy
and algorithmic stability, Fan and Lv (2008) adopted
the sure independent screening (SIS) viewpoint. This
approach relies on marginal Pearson correlation learn-
ing and is designed for linear regressions with Gaussian
predictors and responses so that it may not be robust
to model misspecification. This gave rise to a broad
range of studies dedicated to model-free SIS methods:
the distance covariance of Székely et al. (2007) and
Székely and Rizzo (2009), the distance correlation of
Li et al. (2012b), the sup-HSIC of Balasubramanian
et al. (2013), the Kolmogorov filter of Mai and Zou
(2013, 2015), the projection correlation of Liu et al.
(2020). As emphasized by Mai and Zou (2015), the
purpose of variable selection is to identify the true
sparse support, which may require intricate conditions
such as incoherence/irrepresentable type ones, whereas
feature screening aims to discover a majority of inac-
tive features and it is thus less ambitious and requires
weaker assumptions. More formally, feature screening
attempts to find out the features that are independent
with the target given the active features, where inde-
pendence is assessed through a marginal utility.
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Our paper lies within the feature screening framework.
We propose to investigate the SIS property for three
association measures that do not rely on any underly-
ing model assumption: the so-called TR measure, the
conditional maximum mean discrepancy cMMD and
the Hilbert–Schmidt Independence Criterion HSIC.
The cMMD measure is used in the context of classifi-
cation with categorical targets. Our contributions can
be summarized as follows: we provide the conditions
for which these association measures satisfy the SIS
property; we propose a knockoff based filtering proce-
dure to control for the false discovery rate (FDR); the
proposed screening methods are a couple of orders of
magnitude faster than that of existing state-of-the-art
Liu et al. (2020) with holding comparable detection
power. Our study shares a similar spirit with Bar-
ber and Candès (2019) and Liu et al. (2020), who de-
vised knockoff procedures for FDR control within the
high-dimensional setting n < p, with p the number of
features and n the sample size. However, our work dif-
fers from these studies in two main aspects. First, we
establish the SIS property for the new feature screen-
ing TR, which is particularly adapted to discrete out-
comes, and the cMMD and HSIC for given bounded
kernels. Second, we propose a two-step procedure for
FDR control based on knockoff statistics which are
adapted to the proposed association measures.

The rest of the article is organized as follows. In Sec-
tion 2, we introduce the problem of feature screen-
ing. Section 3 provides the association measures to
estimate the set of active features together with the
conditions to satisfy the SIS property. In Section 4,
we consider the knockoff-based FDR procedure. Fi-
nally, Section 5 contains numerical experiments for
simulated and real data. All the intermediary results,
proofs and additional figures are in the Supplementary
Material.

2 FRAMEWORK

Throughout this paper, we consider a response vari-
able Y and p features (X1, · · · , Xp) among which we
aim to discover the inactive ones through a marginal
utility D(., .) between Y and Xk, 1 ≤ k ≤ p. Our
viewpoint is the sure independence screening one. In
the same vein as in Li et al. (2012b), we denote by S
the set of active features and by I the set of inactive
features, respectively defined as

S :=
{
k : F(Y |X1, · · · , Xp)

functionally depends onXk, 1 ≤ k ≤ p
}
,

I :=
{
k : F(Y |X1, · · · , Xp)

does not functionally depend onXk, 1 ≤ k ≤ p
}
,

where F(Y |X1, · · · , Xp) is the probability distribution
of Y |X1, · · · , Xp. We aim to find a majority of I, that
is given the set of active features {Xk, k ∈ S}, we
check that the features {Xk, k ∈ I} are independent
of Y . To estimate S and screen out {Xk, k ∈ I}, we
consider the estimator of the marginal utility D(., .),

denoted by D̂(., .), which quantifies the dependence be-
tween Y and covariate Xk. More formally, we compute
ω̂k = D̂(Y,Xk) deduced from the sample of observa-
tions Y = (Y1, · · · , Yn) and Xk = (X1k, · · · , Xnk), k =
1, · · · , p, and estimate S by the set

Ŝλn :=
{
k : ω̂k ≥ λn, k = 1, · · · , p

}
, (1)

where λn is a threshold parameter that depends on
the sample size and controls the number of selected
active features. The convergence rate of λn is key to
obtain the sure independence screening (SIS) prop-
erty of the procedure, that is recovering with high
probability the set S when estimating Ŝ. In this
paper, our contributions are threefold: (i) we prove
the SIS property for three different measures D(., .):
TR(., .),HSIC(., .), cMMD(., .); (ii) we establish the
FDR control for these three measures through knock-
off filtering in Section 4; (iii) our proposed estimators
ω̂k for feature screening provide a significant compu-
tational gain compared with existing methods.

3 SCREENING PROCEDURES

The key assumption to establish the sure screening
property concerns the magnitude of the minimum
D(Y,Xk), k ∈ S, and is specified as follows:

Assumption 1. Let 0 < L1 < ∞ and 0 ≤ κ < 1/2,
then 2L1n

−κ ≤ min
k∈S

ωk holds.

This assumption is similar to condition (C2) of Li et al.
(2012b) or Condition 1 (a) of Liu et al. (2020). It states
that the association measure D(., .) between Y and the
Xk’s, k ∈ S, have a lower bound, whose rate is scaled
by κ < 1/2. Hereafter, we denote by k0 = card(S) the
cardinality of S.

3.1 Kendall’s Tau and Spearman Rho (TR)

Spearman’s ρ and Kendall’s τ are extensively used to
assess the existence of dependence between two con-
tinuous random variables. Li et al. (2012a) considered
the Kendall’s τ as a marginal utility for feature screen-
ing and established the SIS property. By extending
the Kendall’s τ measure to the discrete random vari-
able case, Lu et al. (2018a) proposed a new measure,
denoted as TR hereafter, which is a linear combina-
tion of the Spearman’s ρ and Kendall’s τ . They de-
rived the large sample properties of the TR measure,
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whose sample version can be expressed as a U-statistic.
We propose to use such a measure to perform variable
screening when estimating the set S. The TR mea-
sure between two random variables, say Y and X, is
defined as

TR(Y,X) = 3τ(Y,X)− 2ρs(Y,X),

where τ(Y,X) is the Kendall’s τ and ρ(Y,X) the
Spearman’s ρ of Y,X. Equipped with n samples
Y = (Y1, · · · , Yn), X = (X1, · · · , Xn), we denote by
τ̂u(Y,X) and ρ̂u(Y,X) the U-statistics counterparts
of the Kendall’s τ and the Spearman’s ρ respectively,
the U-statistics counterpart of the TR measure is

T̂Ru(Y,X) = 3τ̂u(Y,X)− 2ρ̂u(Y,X)

= 3
( 2

n(n− 1)

n∑
1≤i<j≤n

sgn((Xi −Xj)(Yi − Yj))
)

−2
( 12

n(n− 1)(n− 2)

n∑
i,j,l=1

i 6=j 6=k

1{
Xi>Xj ,Yi>Yl

} − 3
)
.

which can be written as a degree 3 symmetric kernel
based U-statistic:

T̂Ru(Y,X) =
1

n(n− 1)(n− 3)

n∑
1≤i<j<l≤n

ϕ(Zi,Zj ,Zl),

with Zi = (Yi, Xi) and ϕ(.) the symmetric kernel of
degree 3 given as

ϕ(Zi,Zj ,Zl)

=2
(
1{Xi>Xj ,Yi>Yj} + 1{Xj>Xl,Yj>Yl} + 1{Xl>Xi,Yl>Yi}

+1{Xj>Xi,Yj>Yi} + 1{Xl>Xj ,Yl>Yj} + 1{Xi>Xl,Yi>Yj}
)

−4
(
1{Xi>Xj ,Yi>Yl} + 1{Xj>Xl,Yj>Yi} + 1{Xl>Xi,Yl,Yj}

+1{Xi>Xl,Yi>Yj}+1{Xj>Xi,Yj>Yl}+1{Xl>Xj ,Yl>Yi}
)
+3.

To deduce the values of the coefficients of the lin-
ear combination between τ̂u(Y,X) and ρ̂u(Y,X), Lu
et al. (2018a) considered the measure λ0τ̂(X,Y ) −
(1 − λ0)ρ̂(X,Y ), with λ0 = 3 the value that mini-
mizes the asymptotic variance of

√
n(λ0τ̂(X,Y )− (1−

λ0)ρ̂(X,Y )). Lu et al. (2018a) showed that under
the null hypothesis H0 : PY X = PY PX , then when
n → ∞, T̂Ru(Y,X) converges to 0: this is the ob-
ject of their Proposition 4.2, which is a particular case
of T̂Ru(Y,X) as the coefficients of the linear combi-
nation of the Spearman’s and Kendall’s measures are
different from the TR(., .) measure. To screen the ac-
tive covariates X1, · · · , Xp using the TR measure, we

compute the set (1) with ω̂k = |T̂Ru(Y,Xk)|; its pop-
ulation level counterpart is ωk = |TR(Y,Xk)|. The SIS
property with TR is established in the next Theorem.

Theorem 3.1. For any ε > 0, there exists a finite
constant c1 > 0 such that

P
(

max
1≤k≤p

|ω̂k − ωk| ≥ ε
)
≤ 2p exp

(
− c1nε2

)
.

Under assumption 1, let λn = L2n
−κ ≤ 1

2min
k∈S

ωk with

L2 > 0, then there exists a finite c′1 > 0 such that

P
(
S ⊆ ŜL2n

−κ)
≥ 1− 2k0 exp

(
− c′1n1−2κ

)
.

3.2 conditional Maximum Mean Discrepancy
(cMMD)

We now consider an association measure that allows to
assess whether the conditional distribution Xk|Y, 1 ≤
k ≤ p is equal to the distribution Xk in the context of
a categorical Y . To do so, we rely on the setting de-
veloped by Ke and Yin (2020), which specifies such a
measure via the Maximum Mean Discrepancy (MMD).
First, let us briefly provide the framework to define the
MMD distance, that will also be useful when defining
HSIC. Let X be a metric space and H a Hilbert space
of functions f : X → R. H is a reproducing ker-
nel Hilbert space (RKHS) induced by the inner prod-
uct 〈., .〉 if there exists a function φ : X × X → R
such that ∀x ∈ X , φ(x, .) ∈ H and ∀f ∈ H,∀x ∈
X , 〈f, φ(x, .)〉 = f(x). For any probability measure
P defined on X , the mean µ(P) ∈ H is defined as
E[f(X)] = 〈f, µ(P)〉 for any f ∈ H, where the ran-
dom variable X is sampled from X . Equipped with the
RKHS, we consider two random variables Y ∼ PY and
X ∼ PX that take values on (Y,By) and (X ,Bx), re-
spectively, where Y,X are two separable metrics, and
By,Bx are Borel σ-algebras. Then, (Y × X ,By × Bx)
is measurable, and the joint distribution is defined
as PY X , which assigns values to the product space
(Y × X ,By × Bx). We define the symmetric and
bounded kernel φ(., .). The MMD corresponds to the
distance in H of the means, or equivalently is the dis-
tance between two probability measures: more details
on RKHS and MMD can be found in Gretton et al.
(2012). Now by Lemma 6 of Gretton et al. (2012), the
population level MMD association measure is given as

MMD2(Y,Xk) = EY Y ′ [ϕ(Y, Y ′)]

+EXkX′k [ϕ(Xk, X
′
k)]− 2EY Xk [ϕ(Y,Xk)].

Now rather than comparing the distributions Xk and
Y , Ke and Yin (2020) consider the distance between
the distributions Xk|Y and Xk, that we call hereafter
cMMD - ”c” for conditional -, defined as

cMMD2(Y,Xk) := EY [γ2(Y )]

= EY
[
EXkX′k [ϕ(Xk, X

′
k)|Y, Y ′]

]
−EXkX′k [ϕ(Xk, X

′
k)],

where EY [.] is the expectation with respect to Y ,
EXkX′k [.|Y = y, Y ′ = y] denotes the conditional ex-
pectation of Xk, X

′
k|Y = y, Y ′ = y, with (Y ′, X ′k) an

independent copy of (Y,Xk) and γ2(Y ) is defined as

γ2(Y )=EXkX′k [ϕ(Xk, X
′
k)]+EXk

[
EX′k [ϕ(Xk, X

′
k)|Y ′] |Y

]
− 2EXk

[
EX′k [ϕ(Xk, X

′
k)] |Y

]
.
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The variable γ2(Y ) is defined in the same spirit as
the MMD distance, but rather than comparing the
equality of two distributions, cMMD2(Y,Xk) allows
to assess the independence between Y and Xk: in-
deed, by Theorem 4 of Ke and Yin (2020), when
ωk := cMMD2(Y,Xk) = 0, then Xk and Y are in-
dependent. Now equipped with n samples of (Yi, Xi),
to estimate (1) in the context of a categorical Y , we
assume that Y has L levels such that Y = l, 1 ≤ l ≤ L
with probability πl ∈ [0, 1], 1 ≤ l ≤ L and each
level has nl observations. Then we compute for all

1 ≤ k ≤ p the statistic ω̂k = ĉMMD
2

v(Y,Xk), which is
specified as

ω̂k =

L∑
l=1

π̂l
1

n2l

∑
i,j∈El

ϕ(Xik, Xjk)− 1

n2

n∑
i,j=1

ϕ(Xik, Xjk).

with El = {i : Yi = l}, nl the number of observations
for the l-th level and π̂l = 1

n

∑n
i=1 1Yi=l. We now

establish the SIS property for the cMMD2(., .).

Theorem 3.2. Assume ‖ϕ‖∞ = c, then for any 0 <
ε < 1 and n ≥Mc/ε with M > 0 a finite constant, the
following bound holds:

P
(

max
1≤k≤p

|ω̂k − ωk| ≥ ε
)

≤ 2p
( L∑
l=1

exp
(
− c1nlε2

)
+ exp

(
− c2nε2

))
,

with c1, c2 > 0 finite constants (independent of n). Un-
der assumption 1, let λn = L2n

−κ ≤ 1
2min
k∈S

ωk with

L2 > 0, then there exists constants c′1, c
′
2 > 0 such that

P
(
S ⊆ ŜL2n

−κ)
≥ 1−2k0

(
L exp

(
− c′1n1−2/κ

)
+ exp

(
− c′2n1−2/κ

))
.

Several comments can be emphasized:

(i) For the sake of simplification, we proved the SIS
property under the bounded kernel assumption.
The latter condition can be relaxed in favor of mo-
ment conditions such as sub-exponential tail con-
ditions. In that case, a slower convergence rate for
the bound over max

1≤k≤p
|ω̂k−ωk| would be obtained.

(ii) The quantity L is assumed fixed. In the same
spirit as in Lu et al. (2021), who considered a dif-
ferent version of cMMD in the context of grouped
categorical variables and for the distance ker-
nel only, we can consider a diverging number of
classes L = O(nµ), 0 ≤ µ < 1/2.

(iii) The cMMD distance can accommodate continu-
ous variables. In that case, its estimator is a de-
gree 5 U-statistic closely related to the HSIC mea-
sure: see subsection 3.2. of Ke and Yin (2020).

Another interesting association measure close to
MMD and for the general case (Y,X) continu-
ous is the kernel partial correlation (KPC) mea-
sure developed by Huang et al. (2020) defined

as ωk = E[MMD2(P|XkY ,PY )]/E[MMD2(δY ,PY )],

where P|XkY denotes the conditional distribution
of Y |Xk, PY the (un)conditional distribution of
Y , δY the Dirac measure of Y . Here, ωk is
a particular case of the KPC measure as high-
lighted in their remark 2.4. The sample esti-
mator proposed by Huang et al. (2020) is ω̂k =

tr
(
M>K̃YM

)
/tr
(
K̃Y

)
, where M = K̃Xk

(K̃Xk
+

nεIn)−1 with ε > 0 a fixed tuning parameter,

K̃Y = HKYH, K̃Xk
= HKXk

H, where KY =
(ϕ(Yi, Yj))1≤i,j≤n, KXk

= (ϕ(Xik, Xjk))1≤i,j≤n
and H = In − 1

n ιι
>. If we are in a position to

derive an exponential bound on both the numera-
tor and denominator for a given bounded kernel,
then the SIS property would follow. We leave this
as a future research.

3.3 Hilbert-Schmidt Independence Criterion
(HSIC)

The last stone of our three-part study on feature
screening to estimate (1) is the Hilbert-Schmidt Inde-
pendence Criterion (HSIC) measure. A significant lit-
erature has been dedicated to HSIC: see, e.g., Gretton
et al. (2005); Song et al. (2012) for a theoretical analy-
sis of the HSIC measure as a feature selection method;
Poignard and Yamada (2020) for the use HSIC in the
context of penalised HSIC based mRMR. The HSIC
measure is a covariance measure in RKHS, which is
defined in Subsection 3.2. We define two symmetric
bounded kernels φ(., .), ψ(., .) on the spaces Y and X .
The HSIC measure of PY Xk is then given as

HSIC(Y,Xk) = EY Y ′XkX′k [φ(Y, Y ′)ψ(Xk, X
′
k)]

+EY Y ′ [φ(Y, Y ′)]EXkX′k [ψ(Xk, X
′
k)]

−2EY Xk [EY ′ [φ(Y, Y ′)]EX′k [ψ(Xk, X
′
k)]],

where (Y ′, X ′) is an i.i.d. copy of (Y,X), and EXX′ [.]
(resp. EX [.]) is the expectation defined over X,X ′

(resp. X). Then ωk = HSIC(Y,Xk) and we compute

(1) as ω̂k = ĤSICv(Y,Xk), which is the V-statistic
based estimator of ωk defined as

ĤSICv(Y,Xk) =
1

n2

n∑
i,j=1

LijKij

+
1

n4

n∑
i,j,m,l=1

LijKml −
2

n3

n∑
i,j,m=1

LijKim,

with Lij = φ(Yi, Yj), Kij = ψ(Xik, Xjk). As high-
lighted by Gretton et al. (2005) in their Theorem 1,
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the bias of such a V-statistic is of order O(n−1). We
now provide the conditions for which SIS holds for
given bounded and symmetric kernels φ(., .), ψ(., .).

Theorem 3.3. Assume ‖φ‖∞ = c1, ‖ψ‖∞ = c2,
c1, c2 < ∞, then for 0 < ε < 1 and n ≥ Lη/ε with
L > 0 finite, η = c1c2, for c a finite constant:

P( max
1≤k≤p

|ω̂k − ωk| ≥ ε) ≤ p O(exp
(
− cnε2

)
).

Under assumption 1, let λn = L2n
−κ ≤ 1

2min
k∈S

ωk with

L2 > 0, then there exists a finite constant c′ such that

P
(
S ⊆ ŜL2n

−κ)
≥ 1− k0 O(exp

(
− c′n1−2κ

)
).

It is worth mentioning the following remarks:

(i) Balasubramanian et al. (2013) proved the SIS
property for the sup-HSIC measure, where the
key technical step is the derivation of an expo-
nential bound over sup-HSIC using the McDi-
armid’s inequality and a symmetrization argu-
ment, implying a different exponential bound for
max
1≤k≤p

|ω̂k − ωk| compared to ours.

(ii) As in the cMMD case, we assumed bounded ker-
nels. Such an assumption can be relaxed in favor
of moment conditions.

(iii) As an alternative, we will consider in our applica-
tions the normalised version of the HSIC measure
ω̂k = ĤSICv(Y,Xk)/

(
ĤSICv(Y,Y)ĤSICv(Xk,Xk)

)1/2
.

Equipped with the bound on ĤSICv(Y,Xk) ac-
cording to Theorem 3.3, similar bounds on

ĤSICv(Y,Y), ĤSICv(Xk,Xk) can be straight-
forwardly deduced so that by Lemma S.2 of
Liu et al. (2020), one can obtain an exponential
bound on max

1≤k≤p
|ω̂k − ωk| and deduce the SIS

property.

4 OPTIMAL SCREENING AND
FDR

Now we propose to bound the false discovery rate
(FDR) while performing variable screening follow-
ing the knockoff+ method developed by Barber and
Candès (2015). Since the seminal work of Barber and
Candès (2015) on the knockoff procedure and its ap-
plications for FDR control, a broad range of studies
has been flourishing on the extensions and applications
of the knockoff method: Candès et al. (2018) devised
the Model-X knockoff in the context of a random de-
sign matrix; Barber and Candès (2019) addressed the
issue of knockoff-based FDR control within the high-
dimensional setting and emphasized how knockoffs can

be applied to non-sparse signals; Romano et al. (2020)
devised a Model-X knockoff framework almost model-
free with applications to unsupervised datasets; in the
same vein as Barber and Candès (2019), Fan et al.
(2020) and Liu et al. (2020) considered two-step ap-
proaches for FDR control; Lu et al. (2018b) applied
the knockoff filtering to deep neural neural networks.
The details on the construction of the knockoff vari-
ables X̃j , j = 1, · · · , p can be found in Section A of the
Supplementary Material.

The knockoff+ method for feature selection can be bro-
ken down into the following three steps:

(i) Construct the knockoff variables X̃j for all j =
1, · · · , p. The knockoff variable is an artificial ver-
sion of the original variable. To do so, two meth-
ods can be performed: the equicorrelated method
or the semi-definite program method.

(ii) For each pair of original variable Xj and knockoff

variable X̃j , compute a statistic Wj such that a
large value of Wj gives evidence that j is a true
signal. The definition of this statistic depends on
the association measure. More precisely, for any
j = 1, · · · , p, Wj := W tr

j (resp. W cmmd
j ,W hsic

j ),
which is defined according to the association mea-
sures for which we established the SIS property:

W tr
j = |TR(Y,Xj)| − |TR(Y, X̃j)|,

W cmmd
j = cMMD2(Y,Xj)− cMMD2(Y, X̃j),

W hsic
j = HSIC(Y,Xj)−HSIC(Y, X̃j).

The statistic Wj serves as a signal on how im-
portant the original variable is compared to its
knockoff version. For such a signal to work,
Wj must satisfy the sufficiency and the anti-
symmetry properties. Replacing each association
measure by its empirical counterpart, we consider
the estimator Ŵj . A higher value of Ŵj gives ev-
idence that the distribution of Y depends on Xj .

Should Xj be inactive, then |Ŵj | is close to zero.

(iii) Define a selection rule to carry out feature se-
lection. To do so, we specify a data-dependent
threshold T (α) similar to equation (13) of Barber
and Candès (2019) as

T (α) = min
{
t ∈ W :

1 + card(Ŵj ≤ −t)
card(Ŵj ≥ t) ∨ 1

≤ α
}
,

(2)
and T (α) = +∞ should this set be empty and

where W =
{
|Ŵj | : 1 ≤ j ≤ p

}
\ {0} is the set

of unique nonzero values reached by the |Ŵj |’s.
Then the active set is defined as

Ŝ(α) =
{

1 ≤ j ≤ p : Ŵj ≥ T (α)
}
.
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The way the statistic Ŵj is built determines the suc-
cess of the procedure controlling the FDR and should
be carefully specified according to the association mea-
sure. Its specification should satisfy the so-called flip-
coin property or anti-symmetry property: swapping
the pair (Xj , X̃j) only changes the sign of Ŵj and

keeps the sign of Ŵj′ , j
′ 6= j unchanged. More pre-

cisely, the signs of the Ŵj , j ∈ Sc are i.i.d. ran-

dom variables and independent from |Ŵj | for any
j = 1, · · · , p and from sgn(Wj) for j ∈ S. Such a prop-
erty is formalized in the following Lemma, which is in
the same vein as in Lemma 1 of Barber and Candès
(2015) or Lemma 1 of Liu et al. (2020).

Lemma 4.1. Let εj ∈ {±1}, j = 1, · · · , p, be a sign

sequence such that εj ⊥ Ŵj for any j. Each εj sat-

isfies ∀j ∈ S, εj = 1 and ∀j ∈ Sc, ε iid∼ ±1. Then

(Ŵ1, · · · , Ŵp)
d
= (ε1Ŵ1, · · · , εpŴp).

This Lemma shows that, given (|Ŵ1|, · · · , |Ŵp|), then

card
(
j ∈ Sc : Ŵj ≥ t

) d
= card

(
j ∈ Sc : Ŵj ≤ −t

)
,

t > 0 and both follow the same Binomial distribution.

Finally, at threshold t, the false discovery proportion
(FDP) is estimated as the ratio

F̂DP(t) =
card

(
j : Ŵj ≤ −t

)
card

(
j : Ŵj ≥ t

)
∨ 1

.

One key hurdle in step (i) is the sample size require-
ment 2p < n, which is often not satisfied. We will
hence rely on a standard data splitting approach in
the same vein as in Section 4 of Barber and Candès
(2019) so that the feature select ion procedure can be
performed in two steps: first we carry out feature se-
lection on a sub-sample; then, using only the selected
variables, we perform the knockoff procedure on the
remaining samples. Our proposed screening method
can be summarized as follows:

(i) Split the sample into two parts n0 and n1 such
that n0 + n1 = n. Then define the vectors of ob-
servations X(0) ∈ Rn0×p,Y(0) ∈ Rn0 and X(1) ∈
Rn1×p,Y(1) ∈ Rn1 so that Y = (Y(0)>,Y(1)>)>

and X = (X(0)>,X(1)>)>.

(ii) Perform feature selection by ranking in descend-
ing order the features on the sub-sample n0 using
the three association measures. Then select the s0
features such that 2s0 < n1. The set of selected
features is then denoted as Ŝ0, whose cardinality
is s0.

(iii) Construct the knockoff X̃
(1)

Ŝ0
from X

(1)

Ŝ0
, where

X(1) = (X
(1)

Ŝ0
,X

(1)

Ŝc0
). Then for each j = 1, · · · , s0,

let X
(1)

Ŝ0,j
(resp. X̃

(1)

Ŝ0,j
) the j-th column of X

(1)

Ŝ0
(resp. X̃

(1)

Ŝ0
), we compute the statistic for each

pair of original variable and knockoff variable

Ŵ tr
j = |T̂Ru(Y(1),X

(1)

Ŝ0,j
)| − |T̂Ru(Y(1), X̃

(1)

Ŝ0,j
)|,

Ŵ cmmd
j = ̂cMMDv(Y(1),X

(1)

Ŝ0,j
)− ̂cMMDv(Y(1), X̃

(1)

Ŝ0,j
),

Ŵ hsic
j = ĤSICv(Y(1),X

(1)

Ŝ0,j
)− ĤSICv(Y(1), X̃

(1)

Ŝ0,j
).

Then for a fixed α, we use (2) to estimate the set
of active features

Ŝ(α) =
{

1 ≤ j ≤ s0 : Ŵj ≥ T (α)
}
.

We define the sure screening event as

E =
{
S ⊆ Ŝ0, 2 card

(
Ŝ0
)
< n1

}
.

Depending on ωk, the probability of E admits differ-
ent lower bounds: see Theorems 3.1, 3.2, 3.3. The
next result establishes that given the selection event
E , the proposed screening procedures with knockoff
based features control for the FDR for a given level α.

Theorem 4.2. Let Ŵ = (Ŵ1, · · · , Ŵp) satisfy the
anti-symmetry and sufficiency property. For any level
0 < α < 1, let the data-dependent threshold T (α) =

min
{
t ∈ W :

1+card(Ŵj≤−t)
card(Ŵj≥t)∨1

≤ α
}

, with W ={
|Ŵj | : 1 ≤ j ≤ p

}
\ {0} and the set of active features

Ŝ(α) =
{

1 ≤ j ≤ p : Ŵj ≥ T (α)
}

. Then

E[
card(j : j ∈ Sc and j ∈ Ŝ(α)

card(j : j ∈ Ŝ(α)) ∨ 1
|E ] ≤ α.

Theorem 4.2 is based on a two-step procedure: first,
screening on Y(0),X(0) for a given measure, whose suc-
cess is ensured in Section 3; construction of the knock-
off features from X(1) and assessment of FDR using
the statistics Ŵ tr

j , Ŵ
cmmd
j , Ŵ hsic

j . This two-step ap-
proach is in the same vein as in Barber and Candès
(2019), Liu et al. (2020) or Fan et al. (2020).

5 APPLICATIONS

5.1 Simulated experiments

We compare the finite sample screening performances
of TR, cMMD,HSIC with the Distance Correlation
(DC) of Li et al. (2012b), the Projection Correla-
tion (PC) of Liu et al. (2020) and Pearson coefficient.
Based on several data generating processes (DGPs),
we generate Y from linear and non-linear transfor-
mation of some active covariates Xk, k ∈ S with S
known. We use these screening methods to rank in
descending order the selected covariates and consider
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the minimum model size containing all the active fea-
tures. This procedure is replicated 200 times so that
we obtain a minimum model size averaged over these
200 batches. The minimum model size, say M, corre-
sponds to the minimum model size to include all ac-
tive features. The screening performance is measured
through the quantiles (5%, 25%, 50%, 75%, 95%) ofM.

5.1.1 Setup

We denote by X ∈ Rn×p the matrix of covariates con-
taining n ∈ N∗ samples and p ∈ N∗ features and by
Y ∈ Rn the target output. Each input sample is drawn
from a gaussian distribution, Xi ∼ N (0p,Σ) where
Σ = (σi,j)p×p and σi,j = c|i−j|, where we set c = 0.5,
except stated otherwise. We denote by ε the error
term, which is set by default as ε ∼ NR(0, 1) except
stated otherwise. We denote by T (k) the Student dis-
tribution with k degrees of freedom. We denote by
1n the n-dimensional vector of one’s. Equipped with
these notations, we consider the following DGPs:

Linear models:

1.a : Y = β0.XS + ε, where β0 = (1, 2, 4, 8).

1.b : Y = 110.XS + ε.

1.c : Y = 110.XS + ε, where ε ∼ T (2).

Non linear models:

2.a : Y = 5X1 + 2 sin (πX2/2) + 2X31 {X3 > 0}+

2 exp {5X4}+ ε.

2.b : Y = 3X1 + 3X3
2 + 3X−13 + 51 {X4 > 0}+ ε.

2.c : Y ∼ P(λ), where P is the Poisson distribution

and λ = exp {110.XS} .

Categorical data:

3.a : Y = 1 {logit(110.XS) > 0.5} ,
where logit(x) = (1 + exp {−x})−1.

3.b : Y = Same as 3.a except that c = 0.

3.c : Y =


0 if Y < 0,

d0.5Y e if Y ∗ ∈ [0; 8]

5 if 8 ≤ Y ∗.
and Y ∗ = 110.XS + ε,

For each DGP we vary the sample size n ∈
{100, 500, 1000} and the number of features p ∈
{100, 500, 5000}, except for n = 1000 paired with
p = 100 and p = 500. When running the knockoff
procedure, we set n0 = b0.3nc, s0 is set respectively to
n and takes the following values {50, 300, 100}.

Finally, both cMMD and HSIC require the specifica-
tion of a symmetric and bounded kernel. For a random
variable Z, we considered the following kernels:

Linear: ϕ(Zi, Zj) = Zi.Zj ,

Gaussian: ϕ(Zi, Zj) = exp

(
−|Zi − Zj |

2

2 ∗ σz

)
,

Distance: ϕ(Zi, Zj) = |Zi|γ + |Zj |γ − |Zi − Zj |γ ,

where γ is set to 1 in our experiments. For the Gaus-
sian kernel, σz is the widths of the kernel defined ac-
cording to the median heuristic (Sriperumbudur et al.,
2009), i.e. σz = 2−1/2median({|Zi − Zj |2}ni,j=1).

5.1.2 Screening performances

For each association measure, we check its ability and
efficiency to retrieve the true active features. In par-
ticular, for the 200 batches, we record the smallest
integer m such that the true k0 features are contained
within the top m scores given by the screening. For
DGPs 1.a, 2.a and 2.b we have k0 = 4 whereas for
the rest we have k0 = 10.

Figure 1 displays the screening results for DGP 3.a:
as expected, all association measure screen well and
notably Pearson, TR and the linear and distance ker-
nels have a smaller standard error. In addition, Table
1 shows the high average computation time of PC.
Due to this fact, we were not able to perform exper-
iments with PC on large datasets such as the case
(n, p) = (1000, 5000). In Figure 1 in the Supplemen-
tary Material, we display the time and memory us-
age for each measure with respect to its input size.
More precisely, the complexity of TR is bounded by
Kendall’s τ which is in O(n log n) whereas the com-
plexity of PC is bounded by O(n3).

n DC PC HSIC cMMD TR
100 0.45 48 0.47 2.3 0.77
200 0.71 451 1.3 4.5 0.79
300 0.97 1527 2.4 7.2 0.78

Table 1: Average processing time (milliseconds) of one
sample of size (n, 1) over 500 runs. Vectors generated
randomly.

We reported in the Supplementary Material, Section
D, from Figure 2 to Figure 10, the screening perfor-
mances for the other DGPs. The minimum model size
with a random selection procedure for p = 100 fea-
tures is averaged to 95, for p = 500 to 475 and for
p = 5000 to 4750, we do not show this distribution on
the plots to not unnecessarily spread out the y-axis to
prevent squashing of the other distributions. For all
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Figure 1: Minimum model size, with n = 500 and
p = 5000 on DGP 3.a. Kernels set as L: linear kernel;
G: Gaussian; D: Distance.
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Figure 2: FDR control with n = 500 or n = 1000, and
p = 5000 on DGP 3.a. HSICn: normalised HSIC.

metrics and datasets, we first observe that they per-
form better than a random selection by a far margin.
The performances of DC and PC are in line with Li
et al. (2012b) and Liu et al. (2020).

For the linear based DGP, whose results are depicted
in Figures 2, 3 and 4, as expected, most association
measures perform well and nearly pinpoint the correct
covariates when n is larger than 500. TR seems to be
the least effective for these models. Figures 5, 6 and 7
concern the non-linear based DGP. As the objective is
more difficult, the minimum model size naturally in-
creases. PC and TR outperform the other measures
on 2.a and 2.c. The performances for the case of cat-
egorical outputs are reported in Figures 8, 9 and 10:
the best screening results are achieved by PC, TR and
HSIC, cMMD with the linear kernel.

5.1.3 FDR control

We now assess whether the knockoff procedure con-
trols for the FDR. The Ŵj statistic for DC is set the

same way as Liu et al. (2020) for PC. Ŵj is set as the
difference of the absolute values for the Pearson coeffi-
cient. In Figure 2, we show the FDR with respect to α
for DGP 3.a with (n, p) = (500, 5000). The FDR rate
only goes above α for the Pearson measure when the
number of samples is lower and the knockoff procedure
seems well in control for the others. In the Supplemen-
tary Material, Figures 11 to 16, we confirm that this
observation also holds for the other DGPs, except for
HSIC and DC for the non-linear DGPs when n = 500
and p = 5000 in Figures 14, 15 and 16. This excess
is negated when n increases to 1000. As for Figures
20 to 25, we vary the kernel and check that the FDR
control still holds for HSIC and cMMD. We observe
that only the linear kernel exceeds the alpha value for
the non-linear DGP and for the last two categorical
DGPs.

Importantly, the FDR control should be put in per-
spective with the number of empty sets that the pro-
cedure returns. We recall that a model returns a per-
fect FDR score of 0 when the model keeps no features.
Figure 29 displays the percentage of models returning
an empty set. We computed this statistic by pooling
the results from all the DGPs. It would seem that the
empirical probability to select an empty set is propor-
tional and decreases with respect to α. For the lowest
α, the probability can be as high as 80%.

5.1.4 Hyper parameter choices

In light of the experiments we previously performed,
we provide some guidelines on how to choose the
following hyper parameters: the association measure
D(., .); the kernels ϕ, or φ(., .), ψ(., .), if relevant; n0
the number of samples used for screening; and s0 the
number of features retained after screening.

The choice of the relevant measure/kernel is data de-
pendent and targets the relationship between the ac-
tive covariates Xk, k ∈ S and Y . If the underlying
relationship is linear, a linear kernel is better suited.
If the relationship is non-linear, a distance kernel or
the TR measure should be a closer fit. However, in
real world applications, the relationship is usually un-
known and, ideally, the choice of D(., .) should be mo-
tivated by experiments on withheld data. To do so, we
released a Python Package that implements all mea-
sures and kernels considered and where custom kernels
and measures can easily be integrated for better fits.

In the Supplementary Material, in Figures 30 and 31,
we show the minimum model size, FDR control and
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Figure 3: (A) Pixels selected on 8 train-test splits of MNIST (red). The shade of red indicates the lowest α
threshold at which the pixels were selected (stronger means lower). The top row shows the pixels on a white
background, while the two lower rows overlay exactly the same image to the average three, and the average
seven. (B) Gene expression of the 5 genes with highest Ŵj values among those selected at α = 0.1 using
different association measures. The 5 genes marked with an asterisk are labeled as oncogenes, tumor suppressors
or candidate cancer drivers in the NCG 7.0 database Dressler et al. (2021).

percentage of returned empty sets for increasing val-
ues of n0. In particular, for all values of n0, the FDR
remains under-control. Furthermore, on one hand, we
notice that higher values of n0 are correlated with a
better screening. Naturally, a larger n0 induces more
samples for the screening step. On the other hand,
higher values of n0 are correlated to a higher percent-
age of the empty sets being returned. Indeed a smaller
n1 results in a Ŵj statistic being based on fewer sam-
ples and will therefore be less stable. We recommend
setting n0 to anything between 40% and 60% of n.

Finally, we recommend setting s0 to the highest value
possible with respect to n1 to increase the chance that
the true features pass the screening step. But one
could choose to shrink it for computational reasons.

5.2 Real-world applications

We applied the proposed procedure to the MNIST
dataset (LeCun et al., 2010), selecting pixels that are
good at discriminating sevens from threes while keep-
ing the FDR under control. We included 500 images of
threes, and 500 images of sevens, each of them consist-
ing of 784 pixels. For each value of α and association
measure, we ran our pipeline on a different training set
containing 87.5% of the samples. For each of the as-
sociation measures, we screened the best 100 features
on 10% of the training samples. A visual examination
shows that all association measures select reasonable
discriminant pixels between the two classes: see Figure
3-(A). This was supported by the high classification
testing accuracies of random forest classifiers trained
on the selected pixels, as highlighted in Figure 32.

Additionally, we used our proposed procedure to dis-
cover relevant genes in breast carcinoma. To do so, we
worked on the BRCA cohort from The Cancer Genome

Atlas, whose data was provided by the TCGA Re-
search Network. We considered RNA-seq measures of
gene expression (RPKM-UQ) of 56 602 genes obtained
from 1 102 samples from primary tumors and 113 sam-
ples from normal breast tissue. We searched for good
predictors exclusively among the 18 868 protein coding
genes using the proposed protocol and different associ-
ation measures. The expression of the respective best
5 genes is available in Figure 3-(B). As we show, 5 of
those 15 genes have been linked to cancer, support-
ing the notion that the protocol is selecting relevant
features. As detailed in the Supplementary Material,
Section E, this trend holds when we look at all 261
selected genes. This is also supported by the high clas-
sification test accuracy of a random forest (see Figure
33), trained in an identical setup as for MNIST, and
using all 56 602 genes.

Code availability

In addition to the theoretical and methodological de-
velopments, for the sake of reproducible research, we
make the code for all experiments publicly available
in the following Github repository https://github.

com/PeterJackNaylor/knockoff-MMD-HSIC.
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Supplementary Material:
Feature screening with kernel knockoffs

This Supplementary Material is organized as follows. Section A provides a short review on the knockoff con-
struction. All the proofs are included in Section B. Section C details the implementation procedures we relied
on. Section D displays the figures for the screening performances, FDR control for all DGPs but DGP 3.a, and
additional figures related to the real data experiments. Finally, Section E provides further comments on the
breast cancer data.

A KNOCKOFF TOOLKIT

We propose a brief review of the knockoff filter following the work of Barber and Candès (2015); Candès
et al. (2018). Let X = (X1, · · · , Xp) the p-dimensional vector of covariates. The new vector of variables

X̃ = (X̃1, · · · , X̃p) is a knockoff of X if the following two properties are satisfied:

(i) for any S ⊆ {1, · · · , p}, (X, X̃)swap(S)
d
= (X, X̃), where (X, X̃)swap(S) is obtained from (X, X̃) when swapping

the entries Xj and X̃j for each j ∈ S. This is the so-called pairwise exchangeable property.

(ii) the distribution of X̃ is independent of Y |X.

When those two properties are satisfied, then X̃ is a model-X knockoff for X. Under the assumption of Gaussian
covariates, constructing such model-X knockoffs can be straightforwardly carried out following subsection 3.1.1 of

Candès et al. (2018). However, the distribution of X may be unknown and the condition (X, X̃)swap(S)
d
= (X, X̃)

is challenging to satisfy. To circumvent this issue, Candès et al. (2018) propose an approximate construction for

the knockoff X̃ in their subsection 3.4: their so-called second order model-X knockoff require moment conditions
for (X, X̃)swap(S) and (X, X̃). More precisely, the expectations of X and X̃ should match. Let Var(X) = Σ, then
the second order condition - that is equality of the covariances - is equivalent to

Var((X, X̃)) = G, G =

(
Σ Σ− diag(s)

Σ− diag(s) Σ

)
,

where s = (sk, k = 1, · · · , p) ∈ Rp is a p-dimensional vector such that G � 0, that is positive semidefinite. Here
diag(s) denotes a p × p diagonal matrix with diagonal components s1, · · · , sp. To obtain a suitable s, in the
same spirit as Barber and Candès (2015), Candès et al. (2018) propose two methods. The first approach is the
equicorrelated construction, which specifies s as

∀k = 1, · · · , p, sk = 2λmin(Σ) ∧ 1,

where λmin(A) is the minimum eigenvalue of a square symmetric matrix A. The second approach is the semidef-
inite program, where the suitable s, say s, satisfies the convex program:

min
s

p∑
k=1

|1− sk|, subject to ∀k, sk ≥ 0, Σ− diag(s) � 0,

where A � 0 meaning A being semidefinite positive.

The equicorrelated and semidefinite program methods are not directly applicable for a large p, respectively for
the following reasons: λmin(Σ) is close to zero when p becomes large so that the equicorrelated approach has
low power; when p is large, the convex semidefinite program is computationally expensive. To fix these issues,
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Candès et al. (2018) propose a two-step based procedure for the semidefinite program, the so-called approximate
semidefinite program. In the first step, one considers:

min
s

p∑
k=1

|1− sk|, subject to ∀k, sk ≥ 0, Σ∗ − diag(s) � 0,

for a suitable Σ∗, for example Σ∗ can be calibrated as an m-block-diagonal approximation of Σ. Denoting by s∗

the optimal solution of the latter problem, in the second step, given such a s∗, one considers:

max
γ

γ, subject to 2Σ− diag(γs∗),

a problem satisfied by γ. Then one sets the approximate semidefinite program based s as s = γ s∗.

In our two-step procedure described in Section 4, where we first screen the features on the subsample Y(0),X(0)

so that we are left with s0 features such that 2s0 < n1, where s0 = card(Ŝ0) is the cardinality of the set containing
the active features estimated over the subsample n0. As a consequence, we are in a position to apply both the

equicorrelated or semidefinite program on X
(1)

Ŝ0
∈ Rn1×s0 .

B Proofs

The SIS property we establish rely on the derivation of exponential bounds on max1≤k≤p |ω̂k − ωk|. To do so,
we rely on the exponential inequality for U-statistics of Theorem 5.6.1.A of Serfling (1980).

Proof of Theorem 3.1

Proof. First, let us focus on the exponential bound

∀ε > 0, P
(

max
1≤k≤p

|ω̂k − ωk| ≥ ε
)
≤ 2d exp

(
− c1nε2

)
.

In view of the degree 3 symmetric kernel ϕ(Zi,Zj ,Zl), which is a combination of indicator functions and each of
them being bounded by 1, we thus deduce that −9 ≤ ϕ(Zi,Zj ,Zl) ≤ 9. Hence, by Theorem 5.6.1.A of Serfling
(1980), and using the symmetry of the U-statistic, we obtain

∀ε > 0,∀1 ≤ k ≤ p, P
(
|T̂Ru(Y,Xk)− TR(Y,Xk)| ≥ ε

)
≤ 2 exp

(
− 2

81
bn/3cε2

)
.

We then conclude by union bound

P
(

max
1≤k≤p

|ω̂k − ωk| ≥ ε
)
≤ 2p exp

(
− c1nε2

)
, (3)

with c1 > 0 a finite constant.

To establish the screening property, if S * Ŝλn , then there exists k ∈ S such that ω̂k < L2n
−κ. By the minimum

signal assumption 2L1n
−κ ≤ min

k∈S
ωk, then |ω̂k − ωk| > L1n

−κ for k ∈ S. Hence
{
S * Ŝλn

}
⊆
{
|ω̂k − ωk| >

L1n
−κ} for k ∈ S. Let us denote An =

{
max
1≤k≤d

|ω̂k − ωk| ≤ L1n
−κ}: we have An ⊂

{
S ⊆ Ŝλn

}
. On this set for

any k ∈ S and under the minimum signal condition,

|ω̂k| ≥ |ωk| − |ω̂k − ωk| ≥ L1n
−κ.

As a consequence, by inequality (3), we deduce P(Acn) ≤ 2k0 exp(−c′1n1−2κ) with c′1 > 0 finite. Finally, taking
λn ≤ L1n

−κ ≤ 1
2min
k∈S

ωk,

P(S ⊆ Ŝλn) ≥ P(An) = 1− P(Acn) ≥ 1− 2k0 exp(−c′1n1−2κ).
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Proof of Theorem 3.2

Proof. The empirical counterpart of ωk = cMMD(Y,Xk), denoted by ĉMMD(Y,Xk), k = 1, · · · , p, is given as:

ω̂k =

L∑
l=1

π̂l
1

n2l

∑
i,j∈El

ϕ(Xik, Xjk)− 1

n2

n∑
i,j=1

ϕ(Xik, Xjk) := T1n(Y,Xk) + T2n(Xk),

with El = {i : Yi = l}, nl the number of observations for the l-th level and π̂l = 1
n

∑n
i=1 1Yi=l is the empirical

probability counterpart. Now T1n(Y,Xk) can be expressed as T1n(Y,Xk) :=
L∑
l=1

π̂lT1n,l(Y,Xk), with obvious

notations. As for the population level counterpart, we have

EY [EXkX′k [ϕ(Xk, X
′
k)|Y, Y ′]] =

L∑
l=1

πlT1,l, T1,l = EXkX′k [ϕ(Xk, X
′
k)|Y = l, Y ′ = l].

The objective is to bound both T1n(Y,Xk) and T2n(Xk) in ω̂k. First, we consider T1n(Y,Xk), which can be
bounded in a similar fashion as Lu et al. (2021), who considered a grouping structure for the empirical estimator
of cMMD. We have

|T1n(Y,Xk)− EY [EXkX′k [ϕ(Xk, X
′
k)|Y, Y ′]]|

≤
L∑
l=1

π̂l|T1n,l(Y,Xk)− T1,l|+ |
L∑
l=1

(π̂l − πl)T1,l| ≤ max
1≤l≤L

|T1n,l(Y,Xk)− T1,l|+ |
L∑
l=1

(π̂l − πl)T1,l|.

Now we have the relationship between the V-statistic and U-statistic of T1n,l(Y,Xk) given as:

n2l T1n,l(Y,Xk) = nl(nl−1)U1n,l(Y,Xk)+nlU0n,l(Y,Xk), or T1n,l(Y,Xk) =
nl − 1

nl
U1n,l(Y,Xk)+

1

nl
U0n,l(Y,Xk),

with U1n,l(Y,Xk) = 1
nl(nl−1)

∑
i6=j∈El

ϕ(Xik, Xjk) and U0n,l(Y,Xk) = 1
nl

∑
i∈El

ϕ(Xik, Xik). Then by the bound

assumption on ϕ, for any l ∈ L, for any 0 < ε < 1, for n sufficiently large such that nl ≥ Kc/ε and T1,l/nl ≤ ε,
U0n,l(Y,Xk)/nl ≤ ε, then

P(|T1n,l(Y,Xk)− T1,l| ≥ 3ε)

= P(|nl − 1

nl
U1n,l(Y,Xk) +

1

nl
U0n,l(Y,Xk)− T1,l| ≥ 3ε) = P(|nl − 1

nl
(U1n,l(Y,Xk)− T1,l)−

1

nl
T1,l| ≥ 2ε)

≤ P(
nl − 1

nl
|U1n,l(Y,Xk)− T1,l| ≥ 2ε− | 1

nl
T1,l|) ≤ P(|U1n,l(Y,Xk)− T1,l| ≥ ε).

By an application of Theorem 5.6.1.A of Serfling (1980), since U1n,l(Y,Xk) is a degree 2 kernel, we deduce

P(U1n,l(Y,Xk)− T1,l ≥ ε) ≤ exp(−2bnl/2cε2/c2).

The bound holds for deviations in the opposite direction: hence

∀0 < ε < 1, P(|U1n,l(Y,Xk)− T1,l| ≥ ε) ≤ 2 exp(−2bnl/2cε2/c2).

By union bound, we conclude

∀0 < ε < 1, P( max
1≤l≤L

|T1n,l(Y,Xk)− T1,l| ≥ ε) ≤ 2

L∑
l=1

exp(−2bnl/2cε2/9c2).

Moreover, for 0 < ε < 1,

P(|
L∑
l=1

(π̂l − πl)T1,l| ≥ ε) = P(|
L∑
l=1

( 1

n

n∑
i=1

1Yi=l
)
T1,l − πlT1,l| ≥ ε) ≤ 2 exp(−2nε2),
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by an application of Theorem 5.6.1.A of Serfling (1980). We then deduce for any 0 < ε < 1 that

P(|T1n(Y,Xk)− EY [EXkX′k [ϕ(Xk, X
′
k)|Y, Y ′]]| ≥ ε)

≤ P( max
1≤l≤L

|T1n,l(Y,Xk)− T1,l| ≥ ε/2) + P(|
L∑
l=1

(π̂l − πl)T1,l| ≥ ε/2)

≤ 2

L∑
l=1

exp(−bnl/2cε2/18c2) + 2 exp(−nε2/2).

We now focus on bounding T2n(Xk), which is a standard V-statistic. Let us denote Û2n(Xk) =

1
n(n−1)

n∑
i 6=j
ϕ(Xik, Xjk), so that

n2T2n(Xk) = n(n− 1)U2n(Xk) + nU0n, or T2n(Xk) = (n− 1)/nU2n(Xk) + U0n/n,

with U0n = 1
n

n∑
i=1

ϕ(Xik, Xik). Then for 0 < ε < 1, take n such that n ≥ Mc/ε, then U0n/n ≤ ε and

EXkX′k [ϕ(Xk, X
′
k)]/n ≤ ε. We deduce

P(|T2n(Xk)− EXkX′k [ϕ(Xk, X
′
k)]| ≥ 3ε)

= P(|n− 1

n
U2n(Xk) +

1

n
U0n − EXkX′k [ϕ(Xk, X

′
k)]| ≥ 3ε)

≤ P(|n− 1

n
U2n(Xk)− n− 1

n
EXkX′k [ϕ(Xk, X

′
k)]− 1

n
EXkX′k [ϕ(Xk, X

′
k)]| ≥ 2ε)

≤ P(|n− 1

n

(
U2n(Xk)− EXkX′k [ϕ(Xk, X

′
k)]
)
≥ 2ε− | 1

n
EXkX′k [ϕ(Xk, X

′
k)]|)

≤ P(|U2n(Xk)− EXkX′k [ϕ(Xk, X
′
k)]| ≥ ε).

Then by Theorem 5.6.1.A of Serfling (1980), and using the symmetry of the U-statistics, we deduce

P(|T2n(Xk)− EXkX′k [ϕ(Xk, X
′
k)]| ≥ 3ε) ≤ P(|U2n(Xk)− EXkX′k [ϕ(Xk, X

′
k)]| ≥ ε) ≤ 2 exp

(
− 2bn/2cε2/c2

)
.

Putting the pieces together,

P(|ĉMMD
2

v(Y,Xk)− cMMD2(Y,Xk)| ≥ ε)
= P(|T1n(Y,Xk) + T2n(Xk)− EY

[
EXkX′k [ϕ(Xk, X

′
k)|Y, Y ′]

]
− EXkX′k [ϕ(Xk, X

′
k)]| ≥ ε)

≤ P(|T1n(Y,Xk)− EY
[
EXkX′k [ϕ(Xk, X

′
k)|Y, Y ′]

]
| ≥ ε/2) + P(|T2n(Xk)− EXkX′k [ϕ(Xk, X

′
k)]| ≥ ε/2)

≤ 2

L∑
l=1

exp(−bnl/2cε2/72c2) + 2 exp(−nε2/8) + 2 exp
(
− bn/2cε2/2c2

)
.

Using the exponential bound on ĉMMD
2

v(Y,Xk), the bound over max
1≤k≤p

|ω̂k−ωk| is straightforward. To establish

the sure screening property, we follow the same steps as in Theorem 3.1.

Proof of Theorem 3.3

Proof. The V-statistic and U-statistic estimators of HSIC(Y,Xk), k = 1, · · · , p, are respectively defined as

ĤSICv(Y,Xk)

=
1

n2

n∑
i,j=1

LijKij +
1

n4

n∑
i,j,m,l=1

LijKml −
2

n3

n∑
i,j,m=1

LijKim := Ŝv1 + Ŝv2 − 2Ŝv3 ,
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ĤSICu(Y,Xk)

=
1

n(n− 1)

∑
(i,j)∈in2

LijKij +
1

n(n− 1)(n− 2)(n− 3)

∑
(i,j,m,l)∈in4

LijKml −
2

n(n− 1)(n− 2)

∑
(i,j,m)∈in3

LijKim

:= Ŝu1 + Ŝu2 − 2Ŝu3 ,

where Lij = φ(Yi, Yj), Kij = ψ(Xik, Xjk), which are bounded kernels by assumption and inm is the set all
m-tuples drawn without replacement from the set {1, · · · , n}. First, we have the relationship:

Ŝv1 − Ŝu1 =
1

n
Ŝu0 −

1

n
Ŝu1 ⇔ Ŝv1 =

n− 1

n
Ŝu1 +

1

n
Ŝu0 , where Ŝu0 =

1

n

n∑
i=1

LiiKii.

Let us now focus on Ŝv3 . We have the relationship

Ŝv3 − Ŝu3 = − 3

n
Ŝu3 +

1

n3

∑
(i,j)∈in2

(
KiiLij +KijLii +KijLij

)
+O(n−2),

so that

Ŝv3 =
n− 3

n
Ŝu3 +

n− 1

n2
T̂u +O(n−2), with T̂u :=

1

n(n− 1)

∑
(i,j)∈in2

(
KiiLij +KijLii +KijLij

)
.

Finally, we have

Ŝv2 − Ŝu2 = − 6

n
Ŝu2 +

1

n4

∑
(i,j,m)∈in3

(
KiiLjm + 4KijLim +KijLmm

)
+O(n−2).

We then deduce

Ŝv2 =
n− 6

n
Ŝu2 +

(n− 1)(n− 2)

n3
P̂u+O(n−2), with P̂u :=

1

n(n− 1)(n− 2)

∑
(i,j,m)∈in3

(
KiiLjm+4KijLim+KijLmm

)
.

First, let us bound Ŝv1 . By the bound assumption on the kernels, for any 0 < ε < 1, let n ≥ M1η/ε, then

Ŝu0 /n ≤ ε and S1/n ≤ ε with S1 = EY Y ′ [φ(Y, Y ′)]EXkX′k [ψ(Xk, X
′
k)]. We have:

P(|Ŝv1 − S1| ≥ 3ε)

≤ P(|n− 1

n
Ŝu1 +

1

n
Ŝu0 − S1| ≥ 3ε) ≤ P(|n− 1

n

(
Ŝu1 − S1

)
| ≥ 2ε− 1

n
S1) ≤ P(|Ŝu1 − S1| ≥ ε).

Now by Theorem 5.6.1.A of Serfling (1980),

∀ε > 0, P(Ŝu1 − S1 ≥ ε) ≤ exp(−c1bn/2cε2/η2),

with 0 < c1 finite. The bound holds for deviations in the opposite direction: hence

∀ε > 0, P(|Ŝv1 − S1| ≥ 3ε) ≤ 2 exp(−c1bn/2cε2/η2).

As for Ŝv3 , for any 0 < ε < 1, let n such that n ≥ M3η/ε, then n−1
n2 T̂

u ≤ ε and S3/n ≤ ε with S3 =
EY Xk [EY ′ [φ(Y, Y ′)]EX′k [ψ(Xk, X

′
k)]]. We obtain for a constant K > 0:

P(|Ŝv3 − S3| ≥ 4ε)

≤ P(|n− 3

n
Ŝu3 +

n− 1

n2
T̂u +O(n−2)− S3| ≥ 4ε)

≤ P(|n− 3

n

(
Ŝu3 − S3

)
| ≥ 3ε− 3

n
S3 −

K

n2
) ≤ P(|Ŝu3 − S3| ≥ ε).

Using the same argument for bounding Ŝv1 , we deduce for 0 < c2 finite

P(|Ŝv3 − S3| ≥ 4ε) ≤ 2 exp(−c2bn/3cε2/η2).
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Finally let us treat Ŝv2 . For any ε > 0, let n such that n ≥ M4η/ε, then (n−1)(n−2)
n3 P̂u ≤ ε and S2/n ≤ ε where

S2 = EY Y ′XkX′k [φ(Y, Y ′)ψ(Xk, X
′
k)]. We obtain for any ε > 0, for a constant K ′ > 0 and c3 > 0:

P(|Ŝv2 − S2| ≥ 4ε)

≤ P(|n− 6

n
Ŝu2 +

(n− 1)(n− 2)

n3
P̂u +O(n−2)− S3| ≥ 4ε)

≤ P(|n− 6

n

(
Ŝu3 − S3

)
| ≥ 3ε− 6

n
S3 −

K ′

n2
) ≤ P(|Ŝu3 − S3| ≥ ε) ≤ 2 exp(−c3bn/4cε2/η2).

We then obtain for c > 0 a finite constant:

∀ε > 0, P(|ĤSICv(Y,Xk)−HSIC(Y,Xk)| ≥ ε)
≤ P(|Ŝv1 + Ŝv2 − 2Ŝv3 − (S1 + S2 − 2S3)| ≥ ε)
≤ P(|Ŝv1 − S1| ≥ ε/3) + P(|Ŝv2 − S2| ≥ ε/3) + P(|Ŝv3 − S3| ≥ ε/6) ≤ O(exp(−cnε2)),

with C > 0 a finite constant. Thus the bound over max
1≤k≤p

|ω̂k−ωk| follows. The sure screening property can then

be deduced as in Theorem 3.1.

Proof of Lemma 4.1

Proof. We proceed in the same spirit as in Barber and Candès (2015). Let the function ψ : R2p+1 −→ Rp defined

as ψ(X, X̃,Y) = (Ŵ1, · · · , Ŵp)
>. For any j ∈ A ⊂ {1, · · · , p}, we denote by (X, X̃)(j) the vector deduced from

swapping the entries Xj and X̃j in (X, X̃). The quantity (X, X̃)swap(A) is the vector version for all j ∈ A. Due

to the anti-symmetry property of Ŵj ,

Ŵswap(A) = (ε1Ŵ1, · · · , εpŴp), with εj = 1(j /∈ A)− 1(j ∈ A).

Using the argument (i) of Lemma 1 of Liu et al. (2020), (Y, (X, X̃))
d
= (Y, (X, X̃)swap(A)) for anyA = {1, · · · , p}\

S: point (i) of Lemma 1 of these authors established that for any j ∈ Sc, then (Y,Xj) = (Y, X̃j) in distribution,
that is Wj = 0. Now defining S = {j : εj = −1} the set of inactive features, we deduce

(Ŵ1, · · · , Ŵp)
>
swap(A) = ψ((X, X̃)swap(A),Y)

d
= ψ(X, X̃,Y).

Proof of Theorem 4.2

Proof. Let us define G = S ∩ Ŝ0 and Gc = Sc ∩ Ŝ0. We proceed in the same spirit as in Lemma 1 of the
supplement of Barber and Candès (2015) or Theorem 4 of Liu et al. (2020). We take Ŝ0 = {1, · · · , s0} and

|Ŵ1| ≥ · · · ≥ |Ŵs0 | > 0 and omit the conditioning with respect to E . Then, we have

E[
card(j : j ∈ Gc and j ∈ Ŝ(α)

card(j : j ∈ Ŝ(α)) ∨ 1
] = E[

card(j : j ∈ Gc and Ŵj ≥ T (α)

card(j : Ŵj ≥ T (α)) ∨ 1
]

= E[
card(j : j ∈ Gc and Ŵj ≥ T (α)

1 + card(j : j ∈ Gc and Ŵj ≤ −T (α))
× 1 + card(j : j ∈ Gc and Ŵj ≤ −T (α))

card(j : Ŵj ≥ T (α)) ∨ 1
]

≤ E[
card(j : j ∈ Gc and j ∈ Ŵj ≥ T (α)

1 + card(j : j ∈ Gc and Ŵj ≤ −T (α))
× 1 + card(j : Ŵj ≤ −T (α))

card(j : Ŵj ≥ T (α)) ∨ 1
]

≤ α E[
card(j : j ∈ Gc and j ∈ Ŵj ≥ T (α)

1 + card(j : j ∈ Gc and Ŵj ≤ −T (α))
],

since
{
j : j ∈ Gc ∩ {Ŵj ≤ −T (α)}

}
⊆
{
j : Ŵj ≤ −T (α)

}
and by definition of the threshold T (α),

1+card(j:Ŵj≤−T (α))

card(j: Ŵj≥T (α))∨1
≤ α. The threshold T (α) is such that |Ŵ1| ≥ |Ŵ2| ≥ · · · ≥ |Ŵs0 | ≥ T (α) > |Ŵs0+1| ≥ · · · and
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can be seen as a stopping time: T (α) can be set by choosing the smallest t value such that |Ŵs0 | = 0; then choose a

larger t such that |Ŵs0−1| = 0; and so on, such that T (α) corresponds to the t value satisfying
1+card(j:Ŵj≤−t)
card(j: Ŵj≥t)∨1

≤ α.

In the same spirit as Lemma 1 of the supplement of Barber and Candès (2015), we show that T (α) is a stopping

time for the process V +(t)/(1 + V −(t)) with V ±(t) = card(j : j ∈ Gc, |Ŵj | ≥ t, sgn(Ŵj) = ±1). We consider

the process M(k) = V +(k)
1+V −(k) , k = s0, s0 − 1, · · · , 1, 0, with

V +(k) = card(j : j ∈ Gc, 1 ≤ j ≤ k, Ŵj > 0), V −(k) = card(j : j ∈ Gc, 1 ≤ j ≤ k, Ŵj ≤ 0),

and prove M(k) is a supermartingale for the backward filtration Fk = σ(V ±(s), Bs := 1(s ∈ G), s ≥ k) so that
Fs0 ⊂ Fs0−1 ⊂ · · · ⊂ F1. The latter informs whether k ∈ G or k ∈ Gc. If k ∈ G, then V ±(k) = V ±(k − 1) so
that M(k) = M(k − 1). Now if k ∈ Gc, then

M(k − 1) =
V +(k)− Ik

1 + V −(k)− (1− Ik)
=

V +(k)− Ik
(V −(k) + Ik) ∨ 1

, Ik = 1(Ŵk > 0).

Since the true inactive features are uniformly distributed and by the exchangeability property of the inactive

features from Lemma 4.1, then P(Ik = 1|Fk) = V +(k)
V +(k)+V −(k) . As a consequence, for any k ∈ Gc, we deduce

E[M(k − 1)|Fk] = E[
V +(k)− Ik

(V −(k) + Ik) ∨ 1
|Fk]

= P(Ik = 1|Fk)
( V +(k)− 1

(V −(k) + 1) ∨ 1

)
+ (1− P(Ik = 1|Fk))

( V +(k)

V −(k) ∨ 1

)
=

V +(k)

V +(k) + V −(k)

(V +(k)− 1

V −(k) + 1

)
+

V −(k)

V +(k) + V −(k)

( V +(k)

V −(k) ∨ 1

)
=

(
V +(k)− 1

)
1(V −(k) = 0) +

( V +(k)

1 + V −(k)

)
1(V −(k) > 0).

As a consequence

E[M(k − 1)|Fk] =


M(k), k ∈ G,
M(k), k ∈ Gc, and V −(k) > 0,

M(k)− 1, k ∈ Gc, and V −(k) = 0,

which implies that (M(k))k is a supermartingale with respect to Fk. Now T (α) is a stopping time for the
filtration Fk as {T (α) ≥ k} ∈ Fk, so that E[M(kT (α))|Fks0 ] ≤ M(ks0) by the optional stopping time Theorem.
Taking the expectation on both sides, we deduce

E[M(kT (α))] ≤ E[M(ks0)] = E[
card(j : j ∈ Gc, Ŵj > 0)

1 + card(j : j ∈ Gc, Ŵj ≤ 0)
].

Let N = card(j : j ∈ Gc), setting X = card(j : j ∈ Gc, Ŵj > 0), it follows X ∼ B(N, 0.5) a Binomial
distribution by independence of the inactive indices. We hence deduce

E[M(ks0)] = E[
X

1 +N −X
]

=

N∑
r=1

P(X = r)× r

1 +N − r
=

N∑
r=1

(
N

r

)(1

2

)r(1

2

)N−r r

1 +N − r
=

N−1∑
r=0

(
N

r

)(1

2

)r+1(1

2

)N−r−1 ≤ 1.

As a consequence,

E[
card(j : j ∈ Gc and j ∈ Ŵj ≥ T (α))

1 + card(j : j ∈ Gc and Ŵj ≤ −T (α))
] ≤ E[M(kT (α))] ≤ 1.

Now Ŝ(α) ⊆ Ŝ0 implies card(j : j ∈ Sc, j ∈ Ŵj ≥ T (α)) = card(j : j ∈ Gc, j ∈ Ŵj ≥ T (α)), we obtain the
desired control.
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C Implementation procedures

C.1 Python package

We made all of our code open source on Github. The code consists of Python 3 files implementing Scikit-
Learn (Buitinck et al., 2013) like object; in particular it has a fit attribute which consists of applying the
knockoff algorithm. All the association measures with different kernels are implemented when applicable. The
knockoff variable, carried out according to the equicorrelated construction, and the Projection Correlation’s
implementation were written in Python 2 and were made available by Liu et al. (2020). Distance Correlation’s
implementation was taken from the dcor pypi package.

In Figure 1, we report the computation and memory consumption of all association measures. During knockoff
we compute D(Y,Xk), therefore only the size of these vectors, i.e n influences the processing time, the number
of features p multiplies the processing time by p. In particular, we notice that PC is by far the worst in both
aspect.

All measures All measures except PC

Figure 1: Monitoring CPU time and memory consumption for the five main association measures. We have the
sample size on the x-axis.

C.2 Pipeline

In addition, we provide Nextflow (Di Tommaso et al., 2017) scripts to reproduce our results and plots from a
single file. Nextflow can be paired with Singularity (Kurtzer et al., 2017) in order to containerise the process to
make it easily adaptable and configurable to most platform. The False Detection Rate and Minimum model size
plots were generated from this single script. The code is split into three processes: data generation, knockoff
fit and plotting. Similarly, the code to reproduce the applications on MNIST and TCGA are also available in a
very similar format. Hence this allows any external user to easily adapt the code to new data, by modifying the
first processes, and to new association measures by modifying the second process.

D Figures

In Figures 2 to 10 we show the minimum size model for each DGP introduced in the main paper except for some
cases where the high complexity of PC can’t be experimented with. Specifically we were not able to perform the
200 replicas for PC when n = 1000 and p = 5000. We display in shades of blue the usage of different kernels for
HSIC and in shades of red those for cMMD. In a dark line, we display the median and in dash the mean of the
distribution. The 5% and 95% are given by the whiskers. To help differentiate and compare distributions we
also display in a box the 3rd quartile value.
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In Figures 11 to 19 we plot FDR vs α to show that the knockoff procedure bounds the FDR.

In Figures 20 to 28 we plot FDR vs α for the association measures based on a kernel, to show that the kernel
knockoff procedure bounds the FDR.

In Figure 29, we plot the empirical probability of returning an empty set for each measure.

In Figure 30 and Figure 31 respectively, we plot the minimum model size, FDR control and the percentage of
returning the empty set for increasing values of n0 with respect to the row, which is set to 10% (the first row),
30%, 50%, 70% and 90% (the last row) of n for DGP 2a and 2b respectively.

In Figures 32 and 33 we show the analyses for the applications to two real-world datasets: MNIST and breast
cancer gene expression.
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Figure 2: Minimum model size for DGP 1.a. For the sake of comparison, we display the third quartile of the
distribution.
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Figure 3: Minimum model size for DGP 1.b. For the sake of comparison, we display the third quartile of the
distribution.
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Figure 4: Minimum model size for DGP 1.c. For the sake of comparison, we display the third quartile of the
distribution.
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Figure 5: Minimum model size for DGP 2.a. For the sake of comparison, we display the third quartile of the
distribution.
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Figure 6: Minimum model size for DGP 2.b. For the sake of comparison, we display the third quartile of the
distribution.
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Figure 7: Minimum model size for DGP 2.c. For the sake of comparison, we display the third quartile of the
distribution.
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Figure 8: Minimum model size for DGP 3.a. For the sake of comparison, we display the third quartile of the
distribution.
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Figure 9: Minimum model size for DGP 3.b. For the sake of comparison, we display the third quartile of the
distribution.
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Figure 10: Minimum model size for DGP 3.c. For the sake of comparison, we display the third quartile of the
distribution.

Figure 11: FDR control for DGP 1.a
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Figure 12: FDR control for DGP 1.b

Figure 13: FDR control for DGP 1.c
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Figure 14: FDR control for DGP 2.a

Figure 15: FDR control for DGP 2.b



Feature screening with kernel knockoffs

Figure 16: FDR control for DGP 2.c

Figure 17: FDR control for DGP 3.a
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Figure 18: FDR control for DGP 3.b

Figure 19: FDR control for DGP 3.c
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Figure 20: FDR control only for the kernel association measures for DGP 1.a

Figure 21: FDR control only for the kernel association measures for DGP 1.b
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Figure 22: FDR control only for the kernel association measures for DGP 1.c

Figure 23: FDR control only for the kernel association measures for DGP 2.a
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Figure 24: FDR control only for the kernel association measures for DGP 2.b

Figure 25: FDR control only for the kernel association measures for DGP 2.c
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Figure 26: FDR control only for the kernel association measures for DGP 3.a

Figure 27: FDR control only for the kernel association measures for DGP 3.b
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Figure 28: FDR control only for the kernel association measures for DGP 3.c

Figure 29: Percentages of empty sets by association measure for each α and pooled from the 200 batches of each
DGPs.
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Figure 30: Minimum model size, FDR control and percentages of empty sets for DGP 2.a with n = 100 and
p = 5000. Each row have respectively a value of n0 equal to 0.1, 0.3, 0.5, 0.7 and 0.9 of n.
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Figure 31: Minimum model size, FDR control and percentages of empty sets for DGP 2.c with n = 100 and
p = 5000. Each row have respectively a value of n0 equal to 0.1, 0.3, 0.5, 0.7 and 0.9 of n.
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Figure 32: Test classification accuracy of a random forest trained exclusively on the pixels selected in the
MNIST dataset. For each method and α, the protocol was run on 8 separate train-test splits. The following
hyper-parameters of the random forest were set by cross-validation: number of trees (200, 500), the measure
of quality of the splits (Gini impurity, entropy), the maximum depth of the trees (4, 6, 8) and the number of
features to consider (log2 p,

√
p).
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Figure 33: Test classification accuracy of a random forest trained exclusively on the genes selected in the TCGA
BRCA dataset. For each method and α, the protocol was run on 8 separate train-test splits. The following
hyper-parameters of the random forest were set by cross-validation: number of trees (200, 500), the measure
of quality of the splits (Gini impurity, entropy), the maximum depth of the trees (4, 6, 8) and the number of
features to consider (log2 p,

√
p).
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E Breast cancer biomarkers

We ran the proposed knockoff procedure using three association measures (HSIC, cMMD and TR) using an
α = 0.1. The genes selected by any of them are available on Table 2.

In total, 261 unique genes were selected. Out of those, 55 (21%) are known cancer genes registered at the NCG
7.0 database (Dressler et al., 2021). Since only 3 337 out of 18 868 genes are included in the database, this overlap
is high (Fisher’s exact test one-sided P-value = 0.07). This was particularly true in the case of cMMD: out of 71
selected genes, 20 of them (28%) were known cancer genes (Fisher’s exact test one-sided P-value = 0.02). This
suggests that the knockoff procedure, using cMMD as association measure, can bring novel insights to biomarker
discovery.

To gain insights into the broader mechanisms at play among the selected genes, we conducted a pathway en-
richment analysis (Table 3). Only the TR measure and the joint analysis of all the selected genes resulted in
significant pathways.
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Table 2: 261 genes selected by the proposed pipeline, using cMMD, HSIC and TR as association measures.

AADACL2 CHRDL1 IL33 NUAK2 RGN TTC23
AADACL3 CLDN19 INMT-MINDY4 NUP210 RNF145 UGT1A7
ABCA10 CNTNAP3B ISM1 NXNL1 RUSC1 VAMP2
ABCA8 COL17A1 IZUMO3 OR10A3 RYR3 VEGFD
ABCA9 CORO2B JAM2 OR10A6 SAV1 WASF2
ACE2 CPA1 KCNA4 OR2L3 SCAMP3 XAGE3
ACSM2A CSN1S1 KCNH5 OR4D6 SCN4B XAGE5
ACSM2B CSN2 KCTD4 OR5AP2 SEC14L5 YBX3
ADAM33 CYYR1 KCTD9 OR5P2 SEMA6A ZNF705G
ADAMTS5 DAP3 KIAA0408 OSTN SERPINB12 ZSCAN4
ADCYAP1R1 DCAF12L1 KL OTC SERPINB13 ZSWIM2
ADGRA1 DEFB118 KLHL29 OXTR SERTM1
ADGRG4 DEFB119 KLHL33 PAFAH1B3 SGCE
ADH1A DMD KLHL40 PAK3 SGCZ
ADH1C DPRX KRT25 PALMD SH3BGRL2
ADH4 EDNRB KRTAP1-1 PAMR1 SIRPA
ADH7 EGFR KRTAP13-4 PARP1 SLC17A7
ADRB2 ELAVL1 LALBA PCDH11Y SLC22A12
AKAIN1 EOGT LEPR PCDHGB6 SLC35A2
AMOTL1 EXOC1L LHCGR PDE1C SLC50A1
ANGPTL1 FABP9 LIFR PDE2A SMIM21
ANKRD29 FAM171A1 LMOD1 PEAR1 SOBP
ANKRD33 FAM181A LRIG3 PELI2 SPC25
ANXA1 FAM184A LRRC2 PF4V1 SPRR2B
APBA1 FAM205C LRRC3B PGA3 SPRR2F
ARF1 FAM236D LRRN4CL PGA4 SPRY2
ARHGAP20 FAM71A MAB21L1 PGA5 SRPX
ARHGEF28 FEZF2 MAMDC2 PHYHIP STOML3
ASPA FGFR1 MAS1 PLA2G4A SULT1C3
BMX FLAD1 MASP1 PLD1 SVEP1
BTNL3 FMO2 MATN2 PLSCR4 SYNM
BTNL9 FREM1 MAZ PMP2 SYNPO2
C16orf82 GABRA4 MEIS2 PPDPFL TANGO6
C1orf185 GFRAL MFSD4A PPM1F TBL2
C1QTNF9 GKN1 MICU3 PPP1R17 TCF7L1
C8orf88 GMNC MID1 PPP4C TGFBR2
CA4 GOLGA8F MME PRAMEF18 TGFBR3
CAB39L GOLGA8M MRGPRX2 PRCC TIMM17A
CACHD1 GPR149 MYH11 PRKD1 TINAGL1
CALHM4 GPR50 MYOC PRKN TMEFF2
CAPN11 GPRC5B NACC1 PROS1 TMEM220
CARD18 GRIA4 NDEL1 PRRG3 TMEM252
CAV1 GRXCR2 NEK2 PSG7 TOR3A
CAV2 HIF3A NFIB PTBP1 TPM3
CAVIN2 HLF NKAPL PYGO2 TRIM11
CCDC178 HOXA4 NPAP1 RABIF TRPM3
CCL14 HOXA5 NPY2R RAX2 TSHB
CCT3 HSPB2-C11orf52 NPY4R RBFOX2 TSHZ2
CD300LG IFNA8 NR0B1 RCBTB2 TSLP
CES1 IGSF10 NR3C2 RGMA TSPAN19
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Table 3: Pathways with an adjusted P-value < 0.05 in a pathway enrichment analyses on the selected genes by
each of the methods. The studied pathways were the canonical pathways from the sets obtained from MSigDB’s
curated gene sets (v6.0). The gene universe was set to all protein coding genes. When the measure reads
“Aggregated” means that we used the genes selected by any of the methods.

Description Measure pvalue p.adjust qvalue
WP FATTY ACID OMEGA OXIDATION TR 3.7e-05 0.0052 0.0044
WP FATTY ACID OMEGA OXIDATION Aggregated 4.1e-05 0.0353 0.0341
KEGG NEUROACTIVE LIGAND RECEPTOR INTERACTION Aggregated 9.0e-05 0.0386 0.0373
KEGG RETINOL METABOLISM TR 1.8e-04 0.0074 0.0063
KEGG NEUROACTIVE LIGAND RECEPTOR INTERACTION TR 1.9e-04 0.0074 0.0063
KEGG METABOLISM OF XENOBIOTICS BY CYTOCHROME P450 TR 2.5e-04 0.0074 0.0063
KEGG DRUG METABOLISM CYTOCHROME P450 TR 2.8e-04 0.0074 0.0063
REACTOME SURFACTANT METABOLISM TR 3.1e-04 0.0074 0.0063
REACTOME BIOLOGICAL OXIDATIONS TR 3.8e-04 0.0077 0.0065
KEGG FATTY ACID METABOLISM TR 8.5e-04 0.0134 0.0113
KEGG TYROSINE METABOLISM TR 8.5e-04 0.0134 0.0113
KEGG GLYCOLYSIS GLUCONEOGENESIS TR 2.5e-03 0.0347 0.0293
REACTOME KERATINIZATION TR 2.7e-03 0.0347 0.0293
REACTOME RA BIOSYNTHESIS PATHWAY TR 4.3e-03 0.0475 0.0401
WP PEPTIDE GPCRS TR 4.3e-03 0.0475 0.0401


