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Abstract

A well-studied challenge that arises in the
structure learning problem of causal directed
acyclic graphs (DAG) is that using observa-
tional data, one can only learn the graph up
to a “Markov equivalence class” (MEC). The
remaining undirected edges have to be ori-
ented using interventions, which can be very
expensive to perform in applications. Thus,
the problem of minimizing the number of in-
terventions needed to fully orient the MEC
has received a lot of recent attention, and is
also the focus of this work. We prove two
main results. The first is a new universal
lower bound on the number of atomic inter-
ventions that any algorithm (whether active
or passive) would need to perform in order
to orient a given MEC. Our second result
shows that this bound is, in fact, within a
factor of two of the size of the smallest set
of atomic interventions that can orient the
MEC. Our lower bound is provably better
than previously known lower bounds. The
proof of our lower bound is based on the new
notion of clique-block shared-parents (CBSP)
orderings, which are topological orderings of
DAGs without v-structures and satisfy cer-
tain special properties. Further, using sim-
ulations on synthetic graphs and by giving
examples of special graph families, we show
that our bound is often significantly better.

1 INTRODUCTION

Causal Bayesian Networks (CBN) provide a very con-
venient framework for modeling causal relationships
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between a collection of random variables (Pearl, 2009).
A CBN is fully specified by (a) a directed acyclic graph
(DAG), whose nodes model random variables of in-
terest, and whose edges depict immediate causal re-
lationships between the nodes, and (b) a conditional
probability distribution (CPD) of each variable given
its parent variables (in the DAG) such that the joint
distribution of all variables factorizes as a product of
these conditionals. The generality of the framework
has led to CBN becoming a popular tool for the mod-
eling of causal relationships in a variety of fields, with
health science (Shen et al., 2020), molecular cell biol-
ogy (Friedman, 2004), and computational advertising
(Bottou et al., 2013) being a few examples.

It is well known that the underlying DAG of a CBN is
not uniquely determined by the joint distribution of its
nodes. In fact, the joint distribution only determines
the DAG up to its Markov Equivalence Class (MEC),
which is represented as a partially directed graph
with well-defined combinatorial properties (Verma and
Pearl, 1990; Chickering, 1995; Meek, 1995; Andersson
et al., 1997). Information about which nodes are adja-
cent is encoded in the MEC, but the direction of sev-
eral edges remains undetermined. Thus, learning al-
gorithms based only on the observed joint distribution
(Glymour et al., 2019) cannot direct these remaining
edges. As a result, algorithms which use additional
interventional distributions were developed (Squires
et al. (2020) and references therein). In addition to the
joint distribution, these algorithms also assume access
to interventional distributions generated as a result of
randomizing some target vertices in the original CBN
(a process called intervention) and thereby breaking
their dependence on any of their ancestors. A natural
and well-motivated (Eberhardt et al., 2005) question,
therefore, is to find the minimum number of interven-
tions required to fully resolve the orientations of the
undirected edges in the MEC.

Interventions, especially on a large set of nodes, how-
ever, can be expensive to perform (Kocaoglu et al.,
2017). In this respect, the setting of atomic interven-
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tions, where each intervention is on a single node, is
already very interesting and finding the smallest num-
ber of atomic interventions that can orient the MEC
is well studied (Squires et al., 2020). A long line of
work, including those cited above, has considered in
various settings the problem of designing methods for
finding the smallest set of atomic interventions that
would fully orient all edges of a given MEC. An impor-
tant distinction between such methods is whether they
are active (He and Geng, 2008), i.e., where the direc-
tions obtained via the current intervention are avail-
able before one decides which further interventions to
perform; or passive, where all the interventions to be
performed have to be specified beforehand. Methods
can also differ in whether or not randomness is used in
selecting the targets of the interventions. An impor-
tant question, therefore, is to understand how many
interventions must be performed by any given method
to fully orient an MEC.

Universal Lower Bounds While several works
have reported lower bounds (on minimum number of
atomic interventions required to orient an MEC) in dif-
ferent settings, a very satisfying solution concept for
such lower bounds, called universal lower bounds, was
proposed by Squires et al. (2020). A universal lower
bound of L atomic interventions for orienting a given
MEC means that if a set of atomic interventions is
of size less than L, then for every ground-truth DAG
D in the MEC, the set S will fail to fully orient the
MEC. Thus, a universal lower bound has two univer-
sality properties. First, the value of a universal lower
bound depends only upon the MEC, and applies to ev-
ery DAG in the MEC. Second, the lower bound applies
to every set of interventions that would fully orient the
MEC, without regards to the method by which the in-
tervention set was produced.

In this work, we address the problem of obtaining tight
universal lower bounds. The goal is to find a universal
lower bound such that for any DAG D in the MEC,
the smallest set of atomic interventions that can orient
the MEC into D has size bounded above by a constant
factor of the universal lower bound. Similar to Squires
et al. (2020), we work in the setting of causally suf-
ficient models, i.e. there are no hidden confounders,
selection bias or feedback. To the best of our knowl-
edge, this is the first work that addresses the prob-
lem of tight (up to a constant factor) universal lower
bounds. We note that the best known universal lower
bounds (Squires et al., 2020) so far are not tight and
provide concrete examples of graph families that illus-
trate this in Section 3.2.

1.1 Our Contributions

We prove a new universal lower bound on the size
of any set of atomic interventions that can orient a
given MEC, improving upon previous work (Squires
et al., 2020). We further prove that our lower bound
is optimal within a factor of 2 in the class of universal
lower bounds: we show that for any DAG D in the
MEC, there is a set of atomic interventions of size at
most twice our lower bound, that would fully orient
the MEC if the unknown ground-truth DAG were D.

We also compare our new lower bound with the one
obtained previously by Squires et al. (2020). We prove
analytically that our lower bound is at least as good
as the one given by Squires et al. (2020). We further
give examples of graph classes where our bound is sig-
nificantly better (in fact, it is apparent from our proof
that the graphs in which the two lower bounds are close
must have very special properties). We then supple-
ment these theoretical findings with simulation results
comparing our lower bound with the “true” optimal
answer and with the lower bound in previous work.

Our lower bound is based on elementary combinatorial
arguments drawing upon the theory of chordal graphs,
and centers around a notion of certain special topo-
logical orderings of DAGs without v-structures, which
we call clique-block shared-parents (CBSP) orderings
(Definition 3.2). This is in contrast to the earlier work
of Squires et al. (2020), where they had to develop so-
phisticated notions of directed clique trees and residu-
als in order to prove their lower bound. We expect that
the notion of CBSP orderings may also be of interest
in the design of optimal intervention sets.

1.2 Related Work

The theoretical underpinning for many works deal-
ing with the use of interventions for orienting an
MEC can be said to be the notion of “interventional”
Markov equivalence (Hauser and Bühlmann, 2012),
which, roughly speaking, says that given a collection
I of sets of targets for interventions, two DAGs D1

and D2 are I-Markov equivalent if and only if for all
S ∈ I, the DAGs obtained by removing from D1 and
D2 the incoming edges of all vertices in S are in the
same MEC (Hauser and Bühlmann, 2012, Theorem
10). Thus, interventions have the capability of distin-
guishing between DAGs in the same Markov Equiva-
lence class, and in particular, “interventional” Markov
equivalence classes can be finer than MECs (Hauser
and Bühlmann, 2012, see also Theorem 2.1 below).

As described above, the problem of learning the ori-
entations of a CBN using interventions has been stud-
ied in a wide variety of settings. Lower bounds and
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algorithms for the problem have been obtained in the
setting of interventions of arbitrary sizes and with var-
ious cost models (Eberhardt, 2008; Shanmugam et al.,
2015; Kocaoglu et al., 2017), in the setting when the
underlying model is allowed to contain feedback loops
(and is therefore not a CBN in the usual sense) (Hytti-
nen et al., 2013b,a), in settings where hidden variables
are present (Addanki et al., 2020, 2021), and in inter-
ventional “sample efficiency” settings (Agrawal et al.,
2019; Greenewald et al., 2019). The related notion of
orienting the maximum possible number of edges given
a fixed budget on the number or cost of interventions
has also been studied (Hauser and Bühlmann, 2014;
Ghassami et al., 2018; AhmadiTeshnizi et al., 2020).
However, to the best of our knowledge, the work of
Squires et al. (2020) was the first to isolate the notion
of a universal lower bound, and prove a lower bound in
that setting. We discuss lower bounds in some other
settings in Section 3.3.

2 PRELIMINARIES

Graphs A partially directed graph (or just graph)
G = (V,E) consists of a set V of nodes or vertices and
a set E of adjacencies. Each adjacency in E is of the
form a−b or a→ b, where a, b ∈ V are distinct vertices,
with the condition that for any a, b ∈ V , at most one
of a − b, a → b and b ← a is present in E. If there is
an adjacency in E containing both a and b, then we
say that a and b are adjacent in G, or that there is
an edge between a and b in G. If a − b ∈ E, then we
say that the edge between a and b in G is undirected,
while if a→ b ∈ E then we say that the edge between
a and b is directed in G. G is said to be undirected
if all its adjacencies are undirected, and directed if all
its adjacencies are directed. Given a directed graph
G, and a vertex v in G, we denote by paG (v) the set
of nodes u in G such that u → v is present in G. A
vertex v in G is said to be a child of u if u ∈ paG (v).
An induced subgraph of G is a graph whose vertices
are some subset S of V , and whose adjacencies E[S]
are all those adjacencies in E both of whose elements
are in S. This induced subgraph of G is denoted as
G[S]. The skeleton of G, denoted skeleton (G), is an
undirected graph with nodes V and adjacencies a − b
whenever a, b are adjacent in G.

A cycle in a graph G is a sequence of vertices
v1, v2, v3, . . . , vn+1 = v1 (with n ≥ 3) such that for
each 1 ≤ i ≤ n, either vi → vi+1 or vi−vi+1 is present
in E. The length of the cycle is n, and the cycle is
said to be simple if v1, v2, . . . , vn are distinct. The
cycle is said to have a chord if two non-consecutive
vertices in the cycle are adjacent in G, i.e., if there
exist 1 ≤ i < j ≤ n such that j − i 6= ±1 (mod n) and
such that vi and vj are adjacent in G. The cycle is

said to be directed if for some 1 ≤ i ≤ n, vi → vi+1 is
present in G. A graph G is said to be a chain graph if
it has no directed cycles. The chain components of a
chain graph G are the connected components left af-
ter removing all the directed edges from G. A directed
acyclic graph or DAG is a directed graph without di-
rected cycles. Note that both DAGs and undirected
graphs are chain graphs. An undirected graph G is
said to be chordal if any simple cycle in G of length at
least 4 has a chord.

A clique C in a graph G = (V,E) is a subset of nodes of
G such that any two distinct u and v in C are adjacent
in G. The clique C is maximal if for all v ∈ V \C, the
set C ∪ {v} is not a clique.

A perfect elimination ordering (PEO), σ =
(v1, . . . , vn) of a graph G is an ordering of the nodes
of G such that ∀i ∈ [n], neG(vi) ∩ {v1, . . . , vi−1} is a
clique in G, where neG(vi) is the set of nodes adja-
cent to vi.

1 A graph is chordal if and only if it has a
perfect elimination ordering (Blair and Peyton, 1993).
A topological ordering, σ of a DAG D is an ordering
of the nodes of D such that σ(a) < σ(b) whenever
a ∈ paD (b), where σ(u) denotes the index of u in σ.
We say that D is oriented according to an ordering σ
to mean that D has a topological ordering σ.

A v-structure in a graph G is an induced subgraph of
the form b → a ← c (v-structures are also known as
unshielded colliders). It follows easily from the defi-
nitions that by orienting the edges of a chordal graph
according to a perfect elimination ordering, we get a
DAG without v-structures, and that the skeleton of a
DAG without v-structures is chordal (see Proposition
1 of Hauser and Bühlmann (2014)). In fact, any topo-
logical ordering of a DAG D without v-structures is a
perfect elimination ordering of skeleton (D).

Interventions An intervention I on a partially di-
rected graph G = (V,E) is specified as a subset of
target vertices of G. Operationally, an intervention
at I is interpreted as completely randomizing the dis-
tributions of the random variables corresponding to
the vertices in I. We work here in the “infinite sam-
ple” setting, where, under standard assumptions, per-
forming the intervention I reveals at least the direc-
tions of all edges between vertices in I and V \ I
(see Theorem 2.1 below for a more formal statement
of the extent to which a set of interventions orients
the edges of a partially directed graph). An interven-
tion set is a set of interventions. In this paper, we
make the standard assumption that the “empty” in-
tervention, in which no vertices are intervened upon,
is always included in any intervention set we consider:

1Our definition of a PEO uses the same ordering con-
vention as Hauser and Bühlmann (2014).
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this corresponds to assuming that information from
purely observational data is always available (see, e.g.,
the discussion surrounding Definition 6 of Hauser and
Bühlmann (2012)). The size of an intervention set I
is the number of interventions in I, not counting the
empty intervention.

I is a set of atomic interventions if |I| = 1 for all
non-empty I ∈ I. With a slight abuse of nota-
tion, we denote a set of atomic interventions I =
{∅, {v1} , . . . , {vk}} as just the set I = {v1, . . . , vk}
when it is clear from the context that we are talk-
ing about a set of atomic interventions. Given an in-
tervention set I and a DAG D, we denote, following
Hauser and Bühlmann (2012), by EI(D) the partially
directed graph representing the set of all DAGs that
are I-Markov equivalent to D. EI(D) is also known as
the I-essential graph of D (see Fig. 2 of Hauser and
Bühlmann (2014) for an example). For a formal defini-
tion of I-Markov equivalence, we refer to Definitions 7
and 9 of Hauser and Bühlmann (2012); we use instead
the following equivalent characterization developed in
the same paper.

Theorem 2.1 (Characterization of I-essential
graphs, Definition 14 and Theorem 18 of
Hauser and Bühlmann (2012)). Let D be a DAG
and I an intervention set. A graph H is an I-essential
graph of D if and only if H has the same skeleton as
D, all directed edges of H are directed in the same di-
rection as in D, all v-structures of D are directed in
H, and

1. H is a chain graph with chordal chain compo-
nents.

2. For any three vertices a, b, c of H, the subgraph of
H induced by a, b and c is not a→ b− c.

3. If a → b in D (so that a, b are adjacent in H)
and there is an intervention J ∈ I such that
|J ∩ {a, b}| = 1, then a→ b is directed in H.

4. Every directed edge a → b in H is strongly I-
protected. An edge a → b in H is said to be
strongly I-protected if either (a) there is an in-
tervention J ∈ I such that |J ∩ {a, b}| = 1, or (b)
at least one of the four graphs in Figure 1 appears
as an induced subgraph of H, and a → b appears
in that induced subgraph in the configuration in-
dicated in the figure.

3 UNIVERSAL LOWER BOUND

In this section, we establish our main technical result
(Theorem 3.3). Our new lower bound (Theorems 3.6
and 3.7) then follows easily from this combinatorial

result, without having to resort to the sophisticated
machinery of residuals and directed clique trees devel-
oped in previous work (Squires et al., 2020).

We begin with a definition that isolates two important
properties of certain topological orderings of DAGs
without v-structures. Given a DAG D without v-
structures, and a maximal clique C of skeleton (D),
we denote by sinkD (C) any vertex in D such that
C = paD (sinkD (C)) ∪ {sinkD (C)}. The fact that
sinkD (C) is uniquely defined, and that sinkD (C1) 6=
sinkD (C2) when C1 and C2 are distinct maximal
cliques of skeleton (D) is guaranteed by the follow-
ing observation. (The standard proof of this is de-
ferred to supplementary material Section B.1.) This
observation also makes it clear that sinkD (C) is the
unique vertex with out-degree 0 in the induced sub-
graph D[C].

Observation 3.1. Let D be a DAG without v-
structures. Then, for every maximal clique C of
skeleton (D), there is a unique vertex v of D, denoted
sinkD (C), such that C = paD (v) ∪ {v}. Further,
for any two distinct maximal cliques C1 and C2 in
skeleton (D), we have sinkD (C1) 6= sinkD (C2).

We refer to each vertex v of D that is equal to
sinkD (C) for some maximal clique of skeleton (D) as
a maximal-clique-sink vertex of the DAG D. We now
present a definition of clique-block shared-parents or-
derings (see Figure 2 for an example).

Definition 3.2 (Clique-Block Shared-Parents
(CBSP) ordering). Let σ be a topological ordering of
a DAG D without v-structures. Let s1, s2, s3, . . . , sr be
the maximal-clique-sink vertices of D indexed so that
σ(si) < σ(sj) when i < j. (Here r is the number of
maximal cliques in skeleton (D).) Then, σ is said to
be a clique-block shared-parents (CBSP) ordering of
D if it satisfies the following two properties:

1. P1: Clique block property Define L1(σ) to be
the set of nodes u which occur before or at the
same position as s1 in σ i.e., σ(u) ≤ σ(s1). Sim-
ilarly, for 2 ≤ i ≤ r, define Li(σ) to be the set of
nodes which occur in σ before or at the same po-
sition as si, but strictly after si−1 (i.e., σ(si−1) <
σ(u) ≤ σ(si)). Then, for each 1 ≤ i ≤ r the sub-
graph induced by Li(σ) in skeleton (D) is a (not
necessarily maximal) clique.

2. P2: Shared parents property If vertices a and
b in D are consecutive in σ (i.e., σ(b) = σ(a)+1),
and also lie in the same Li(σ) for some 1 ≤ i ≤ r,
then all parents of a are also parents of b in D.

We illustrate the definition with an example in Fig-
ure 2. In the figure, vertices b, e, and f are the
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Figure 1: Strong Protection (Andersson et al., 1997; Hauser and Bühlmann, 2012)

a

b c

e

d

f

A DAG D without v-structures

σ′ ··= a b︸︷︷︸
L1(σ′)

c d e︸︷︷︸
L2(σ′)

f︸︷︷︸
L3(σ′)

σ ··= a b︸︷︷︸
L1(σ)

c d f︸︷︷︸
L2(σ)

e︸︷︷︸
L3(σ)

τ ··= a b︸︷︷︸
L1(τ)

c e︸︷︷︸
L2(τ)

d f︸︷︷︸
L3(τ)

Figure 2: Clique-Block Shared-Parents Topological Orderings: τ Satisfies both P1 and P2; σ Satisfies only P1

maximal-clique-sink vertices of D, and are highlighted
with an underbar. The orderings σ′, σ and τ in the
figure are valid topological orderings of D. However,
σ′ does not satisfy P1 of Definition 3.2 (since L2(σ′)
is not a clique), while σ satisfies P1 of Definition 3.2,
but does not satisfy P2, because c, d in L2(σ) are con-
secutive in σ, but b is a parent only of c and not of
d. Finally, τ satisfies both P1 and P2 and hence is a
CBSP ordering.

Our main technical result is that for any DAG D that
has no v-structures, there exists a CBSP ordering σ
of D, and the new lower bound is an easy corollary of
this result. Further, the proof of this result uses only
standard notions from the theory of chordal graphs.

Theorem 3.3. If D is a DAG without v-structures,
then D has a CBSP ordering.

Towards the proof of this theorem, we note first that
the existence of a topological ordering σ satisfying just
P1 can be established using ideas from the analysis
of, e.g., the “maximum cardinality search” algorithm
for chordal graphs (Tarjan and Yannakakis (1984), see
also Corollary 2 of Wienöbst et al. (2021)). We state
this here as a lemma, and provide the proof in supple-
mentary material Section A.

Lemma 3.4. If D is a DAG without v-structures, then
D has a topological ordering σ satisfying P1 of Defini-
tion 3.2.

We now prove the theorem.

Proof of Theorem 3.3. Let O be the set of topological
orderings of D which satisfy P1 of Definition 3.2. By

Lemma 3.4, O is non-empty. If there is a σ ∈ O which
also satisfies P2 of Definition 3.2, then we are done.

We now proceed to show by contradiction that such a
σ must indeed exist. So, suppose for the sake of con-
tradiction that for each σ in O, P2 is violated. Then,
for each σ ∈ O, there exist vertices a, b and an index
i such that a, b ∈ Li(σ), σ(b) = σ(a) + 1, and there
exists a parent of a in D that is not a parent of b. For
any given σ ∈ O, we choose a, b as above so that σ(a)
is as small as possible. With such a choice of a for
each σ ∈ O, we then define a function f : O → [n− 1]
by defining f(σ) = σ(a). Note that by the assumption
that P2 is violated by each σ in O, f is defined for
each σ in O. But then, since O is a finite set, there
must be some σ ∈ O for which f(σ) attains its max-
imum value. We obtain a contradiction by exhibiting
another τ ∈ O for which f(τ) is strictly larger than
f(σ). We first describe the construction of τ from σ,
and then prove that τ so constructed is in O and has
f(τ) > f(σ).

Construction. Given σ ∈ O, let f(σ) = j ∈ [n − 1].
Let σ(a) = j, σ(b) = j + 1 and suppose that a, b ∈
Li(σ). By the definition of f , there is a parent of a
that is not a parent of b. Define Ca to be the set
{a} ∪ paD (a). Since D has no v-structures, Ca is a
clique in skeleton (D). Define Sa ··= {z|Ca ⊆ paD (z)}.
Let Ya be the set of nodes occurring after a in σ that
are not in Sa (note that b ∈ Ya, and, in general, z ∈ Ya
if and only if σ(z) > σ(a) and there is an x ∈ Ca that
is not adjacent to z).

We now note the following easy to verify properties of
the sets Sa and Ya (the proof is provided in supple-



Almost Optimal Universal Lower Bound for Learning Causal DAGs with Atomic Interventions

mentary material Section B.2).

Proposition 3.5. 1. If y ∈ Ya and z is a child of y
in D, then z ∈ Ya.

2. Suppose that x ∈ {a}∪Sa is not a maximal-clique-
sink node of D. Then there exists y ∈ Sa such that
x ∈ paD (y) and such that y is a maximal-clique-
sink node in D. In particular, Sa is non-empty.

3. Suppose that x is a maximal-clique-sink node in
the induced DAG H ··= D[Sa]. Then x is also a
maximal-clique-sink node in D.

The ordering τ is now defined as follows: the first j
nodes in τ are the same as σ. After this, the nodes of
Sa appear according to some topological ordering γ of
the induced DAG H ··= D[Sa] that satisfies P1 of Def-
inition 3.2 in H (such a γ exists because of Lemma 3.4
applied to the induced DAGH, which also cannot have
any v-structures). Finally, the nodes of Ya appear ac-
cording to their ordering in σ.

Proof that τ ∈ O and f(τ) > f(σ). Note first that τ
is a topological ordering of D: if not, then there must
exist u ∈ Ya and v ∈ Sa such that the edge u → v
is present in D, but this cannot happen by item 1 of
Proposition 3.5 above.

To show that τ ∈ O (i.e., that τ satisfies P1), the
following notation will be useful. For each maximal-
clique-sink vertex s in D, denote by λ(s) the unique
Lα(σ) such that s ∈ Lα(σ). Similarly, denote by µ(s)
the unique Lβ(τ) such that s ∈ Lβ(τ). Since σ ∈ O,
we already know that λ(s) is a clique for each maximal-
clique-sink node s of D. In order to show that τ ∈ O,
all we need to show is that µ(s) is also a clique for each
maximal-clique-sink node s of D.

Let J be the set of maximal-clique-sink vertices of D
present in Sa. By item 2 of Proposition 3.5, the last
vertex in γ must be an element of J . Note also that
si 6∈ J since b ∈ Ya and the edge b→ si in D together
imply that si ∈ Ya by item 1 of Proposition 3.5. We
also observe that λ(s) ⊆ Sa, for all s ∈ J . For if there
exists u ∈ λ(s) ∩ Ya then the edge u→ s in D implies
that s ∈ Ya, contradicting that s ∈ Sa. From the
construction of τ , we already have µ(sj) = λ(sj) for
all maximal-clique-sink vertices sj that precede si in
σ. From the fact that all vertices in Sa precede Ya in
the ordering τ , and from the observations above that
(i) the sink node si ∈ Ya, and (ii) λ(s) ⊆ Sa, for all
sink nodes s ∈ Sa, we also get that for any maximal-
clique-sink node s of D such that s ∈ Ya, µ(s) ⊆ λ(s).
Thus, when s is a maximal-clique-sink node of D that
is not in J ⊂ Sa, we have that µ(s) is a clique in
skeleton (D), since µ(s) ⊆ λ(s), and λ(s) is a clique in

skeleton (D). It remains to show that µ(s) is a clique
when s ∈ J .

Let t1, t2, . . . , tk be the maximal-clique-sink nodes of
H = D[Sa], arranged in increasing order by γ. Since
γ satisfies P1 in H, each Li(γ), 1 ≤ i ≤ k, is a clique
in H (and thus also in D). Now consider a maximal-
clique-sink node s ∈ J ⊆ Sa. Since the ti are maximal-
clique-sink nodes ofD (from item 3 of Proposition 3.5),
it follows that µ(s) ⊆ Li(γ) (if s ∈ Li(γ) for i ≥ 2) or
µ(s) ⊆ L1(γ) ∪ Ca (if s ∈ L1(γ)). In the former case,
µ(s) is automatically a clique, since Li(γ) is a clique
in D. In the latter case also µ(s) is a clique since
L1(γ) ⊆ Sa, so that L1(γ)∪Ca is a clique in D (since
(i) L1(γ) and Ca are cliques, and (ii) by definition of
Sa, every node of Sa is adjacent to every node in Ca).

Thus, we get that τ also satisfies P1, so that τ ∈ O.
Consider the node b′ ··= τ(j + 1) next to a in τ . Since
Sa is non-empty, the construction of τ implies b′ ∈ Sa,
so that b′ is adjacent to all parents of a. Since σ and
τ agree on the ordering of all vertices up to a, we thus
have f(τ) ≥ τ(b′) = j + 1 > j = f(σ). This gives the
desired contradiction to σ being chosen as a maximum
of f . Thus, there must exist some ordering in O which
satisfies P2.

Theorem 3.6. Let D be a DAG without v-structures
with n nodes. Then, any set I of atomic interventions
that fully orients skeleton (D) when the ground-truth
DAG is D must be of size at least

⌈
n−r
2

⌉
(skeleton (D)

is also the MEC of D, since D has no v-structures).
Here r is the number of distinct maximal cliques in
skeleton (D). In other words, if I is a set of atomic
interventions such that EI(D) = D, then |I| ≥

⌈
n−r
2

⌉
.

Proof. Consider a CBSP ordering σ of nodes in D.
Let a, b be two nodes such that a, b ∈ Li(σ) for some
i ∈ [r] and such that σ(b) = σ(a) + 1. Consider a set I
of atomic interventions such that I ∩ {a, b} = ∅. We
show now that the edge a − b is not directed in the
I-essential graph EI(D) of D.

Suppose, for the sake of contradiction, that a → b is
directed in EI(D). Then, by item 4 of Theorem 2.1,
a → b must be strongly I-protected in EI(D). Since
I ∩ {a, b} = ∅, one of the graphs in Figure 1 must
appear as an induced subgraph of EI(D).

We now show that none of these subgraphs can appear
as an induced subgraph of EI(D). First, subgraphs (ii)
and (iv) cannot be induced subgraphs of EI(D) since
they have a v-structure at b while D (and therefore
also EI(D)) has no v-structures. For subgraph (iii)
to appear as an induced subgraph, the vertex c must
lie between a and b in any topological ordering of D,
which contradicts the fact that a and b are consecu-
tive in the topological ordering σ. For subgraph (i)
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to appear, we must have a parent c of a that is not
adjacent to b. However, since σ is a CBSP ordering,
it satisfies property P2 of Definition 3.2, so that, since
a, b are consecutive in σ and belong to the same Li(σ),
any parent of a must also be a parent of b. We thus
conclude that a→ b cannot be strongly I-protected in
EI(D), and hence is not directed in it.

The above argument implies that any set I of
atomic interventions that fully orients D starting with
skeleton (D) (i.e., for which EI(D) = D) must contain
at least one node of each pair of consecutive nodes (in
σ) of Li(σ), for each i ∈ [r]. Thus, for each i ∈ [r], I
must contain at least d(|Li(σ)| − 1)/2e nodes of Li(σ).
We therefore have,

|I| ≥
r∑
i=1

⌈
|Li(σ)| − 1

2

⌉
≥

⌈
r∑
i=1

|Li(σ)| − 1

2

⌉

=

⌈∑r
i=1 |Li(σ)|

2
− r

2

⌉
=

⌈
n− r

2

⌉
.

The following corollary for general DAGs (those that
may have v-structures) follows from the previous result
about DAGs without v-structures in a manner identi-
cal to previous work (Squires et al., 2020), using the
fact that it is necessary and sufficient to separately ori-
ent each chordal chain component of an MEC in order
to fully orient an MEC (Hauser and Bühlmann, 2014,
Lemma 1). We defer the standard proof to supplemen-
tary material Section B.3.

Theorem 3.7. Let D be an arbitrary DAG and let
E(D) be the chain graph with chordal chain compo-
nents representing the MEC of D. Let CC denote the
set of chain components of E(D), and r(S) the number
of maximal cliques in the chain component S ∈ CC.
Then, any set of atomic interventions which fully ori-
ents E(D) must be of size at least∑

S∈CC

⌈
|S| − r(S)

2

⌉
≥
⌈
n− r

2

⌉
,

where n is the number of nodes in D, and r is the total
number of maximal cliques in the chordal chain compo-
nents of E(D) (including chain components consisting
of singleton vertices).

3.1 Tightness of Universal Lower Bound

We now show that our universal lower bound is tight
up to a factor of 2: for any DAG D, there is a set
of atomic interventions of size at most twice the lower
bound that fully orients the MEC of D. In fact, as the
proof of the theorem below (see supplementary mate-
rial Section B.4) shows, when D has no v-structures,
this intervention set can be taken to be the set of nodes
of D that are not maximal-clique-sink nodes of D.

Theorem 3.8. Let D be a DAG without v-structures
with n nodes, and let r be the number of distinct max-
imal cliques in skeleton (D). Then, there exists a set I
of atomic interventions of size at most n− r such that
I fully orients skeleton (D) (i.e., EI(D) = D).

Using again the fact that it is necessary and sufficient
to separately orient each of the chordal chain compo-
nents of an MEC in order to fully orient an MEC,
the following result for general DAGs follows imme-
diately from Theorem 3.8, and implies that the lower
bound for general DAGs is also tight up to a factor
of 2 (the proof is provided in supplementary material
Section B.5).

Theorem 3.9. Let D be an arbitrary DAG on n nodes
and let E(D) and r be as in the notation of Theo-
rem 3.7. Then, there is a set of atomic interventions
of size at most n− r that fully orients E(D).

3.2 Comparison with Known Lower Bounds

To compare our universal lower bound with the uni-
versal lower bound of Squires et al. (2020), we start
with the following combinatorial lemma, whose proof
can be found in supplementary material Section B.6.

Lemma 3.10. Let G be an undirected chordal graph
on n nodes in which the size of the largest clique is ω.
Then, n − |C| ≥ ω − 1, where C is the set of maximal
cliques of G.

Lemma 3.10 implies that
⌈
n−|C|

2

⌉
≥
⌈
ω−1
2

⌉
=
⌊
ω
2

⌋
in

chordal graphs which shows that our universal lower
bound is always equal to or better than the one by
Squires et al. (2020). The proof of Lemma 3.10
makes it apparent that two bounds are close only in
very special circumstances. (Split graphs and k-trees
are some special families of chordal graphs for which⌈
n−|C|

2

⌉
=
⌊
ω
2

⌋
). We further strengthen this intuition

through theoretical analysis of special classes of graphs
and via simulations.

Examples where our Lower Bound is Signifi-
cantly Better We provide two constructions of spe-
cial classes of chordal graphs in which our universal
lower bound is Θ(k) times the

⌊
ω
2

⌋
lower bound of

Squires et al. (2020) for any k ∈ N. Further discus-
sion of such examples can be found in supplementary
material Section C.

Construction 1. First, we provide a construction by
Shanmugam et al. (2015) for graphs that require about
k times more number of interventions than their lower
bound, where k is size of the maximum independent
set of the graph. This construction of a chordal graph
G starts with a line L consisting of vertices 1, . . . , 2k
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such that each node 1 < i < 2k is connected to i − 1
and i+1. For each 1 ≤ p ≤ k, G has a clique Cp of size
ω which has exactly two nodes 2p− 1, 2p from the line
L. Maximum clique size of G is ω, number of nodes,
n = kω, and number of maximal cliques, |C| = 2k− 1.
Thus, for G, we have, n − |C| = k(ω − 2) + 1 which

implies
⌈
n−|C|

2

⌉
= Θ(k)

⌊
ω
2

⌋
for ω > 2.

Construction 2. G has k cliques of size ω, with every
pair of cliques intersecting at a unique node v. The
number of nodes in G is k(ω−1) + 1, maximum clique
size is ω, and number of maximal cliques is k, thus,

n−|C| = k(ω−2)+1 which implies
⌈
n−|C|

2

⌉
= Θ(k)

⌊
ω
2

⌋
for ω > 2.

3.3 Lower Bounds in Other Settings

Recall from the introduction that a universal lower
bound must apply (i) no matter how the intervention
set was generated, and (ii) for every ground-truth DAG
D in the MEC. When further conditions are imposed
on the process generating the intervention set, one can
prove better (i.e., larger) lower bounds: Lindgren et al.
(2018) show that the number of atomic interventions
required to fully orient a chordal MEC, when the set of
interventions is generated by a non-adaptive (or pas-
sive) algorithm, is at least the size of the minimum ver-
tex cover of the chordal MEC. Similarly, a worst-case
ground-truth DAG in the MEC may require a larger
set of atomic interventions than that required by the
universal lower bound: Shanmugam et al. (2015) show
that for any active or passive algorithm, there exists a
ground-truth DAG without v-structures for which at
least ω

k log ωe
k
ω interventions of size at most k are re-

quired in order to fully learn the DAG starting from
its MEC (here, ω is the size of the largest clique in the
chordal MEC of the DAG).

Lower bounds can also be much higher in the presence
of latent variables, a setting not considered in this pa-
per: Addanki et al. (2020) construct families of causal
graph with latent variables such that for any causal
graph G in the family, any passive algorithm requires
Ω(n) atomic interventions to recover the observable
graph of G, where n is the number of nodes in the
observable graph.

4 EMPIRICAL EXPLORATIONS

In this section, we report the results of two experi-
ments on synthetic data. In Experiment 1, we compare
our lower bound with the optimal intervention size for
a large number of randomly generated DAGs. Opti-
mal intervention size for a DAG D is defined as the
size of the smallest set of atomic interventions I such

that EI(D) = D. Next, in Experiment 2, we compare
our universal lower bound with the one in the work
of Squires et al. (2020) for randomly generated DAGs
with small cliques. These experiments provide em-
pirical evidence that strengthens our result about the
tightness of our universal lower bound (Theorem 3.9)
and the constructions presented in Section 3.2. The
experiments use the open source causaldag (Squires,
2018) and networkx (Hagberg et al., 2008) packages.
Further details about the experimental setup for both
experiments are given in supplementary material Sec-
tion D.

Experiment 1 For this experiment, we generate
1000 graphs from Erdős-Rényi graph model G(n, p):
for each of these graphs, the number of nodes n is a
random integer in [5, 25] and the connection probabil-
ity p is a random value in [0.1, 0.3). These graphs are
then converted to DAGs without v-structures by im-
posing a random topological ordering and adding extra
edges if needed. To compute the optimal intervention
size, we check if a subset of nodes, I of a DAG D is
such that EI(D) = D, in increasing order of the size
of such subsets. Next, we compute the universal lower
bound value for each of these DAGs as given in Theo-
rem 3.7. In Figure 3, we plot the optimal intervention
size and our lower bound for each of the generated
DAGs. Thickness of the points is proportional to the
number of points landing at a coordinate. Notice that,
all points lie between lines y = x and y = 2x, as im-
plied by our theoretical results. Further, we can see
that, a large fraction of points are closer to the line
y = x compared to the line y = 2x, suggesting that
our lower bound is even tighter for many graphs.

Figure 3: Comparison of the Optimal Intervention Set
Size with our Universal Lower Bound

Experiment 2 For this experiment, we gen-
erate 1000 random DAGs for each size in
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{10, 20, 30, 40, 50, 60} by fixing a perfect-elimination
ordering of the nodes and then adding edges (which
are oriented according to the perfect-elimination
ordering) to the DAG making sure that there are
no v-structures, while trying to keep the size of
each clique below 5. For each DAG, we compute
the ratio of the two lower bounds. In Figure 4,
we plot each of these ratios in a scatter plot with
the x-axis representing the number of nodes of the
DAG. Thickness of the points is proportional to the
number of DAGs having a particular value of the
ratio described above. We also plot the average of the
ratios for each different value of the number of nodes.
We see that our lower bound can sometimes be ∼ 5
times of the lower bound of Squires et al. (2020).
Moreover, the average ratio has an increasing trend
suggesting that our lower bound is much better for
this class of randomly generated DAGs.

Figure 4: Comparison of our Universal Lower Bound
with that of Squires et al. (2020)

5 CONCLUSION

We prove a strong universal lower bound on the mini-
mum number of atomic interventions required to fully
learn the orientation of a DAG starting from its MEC.
For any DAG D, by constructing an explicit set of
atomic interventions that learns D completely (start-
ing with the MEC of D) and has size at most twice
of our lower bound for the MEC of D, we show that
our universal lower bound is tight up to a factor of
two. We prove that our lower bound is better than the
best previously known universal lower bound (Squires
et al., 2020) and also construct explicit graph families
where it is significantly better. We then provide em-
pirical evidence that our lower bound may be stronger
than what we are able to prove about it: by con-
ducting experiments on randomly generated graphs,
we demonstrate that our lower bound is often tighter

(than what we have proved), and also that it is often
significantly better than the previous universal lower
bound (Squires et al., 2020). An interesting direction
for future work is to design intervention sets of sizes
close to our universal lower bound. Another direction
for future work is to better understand the power of
non-atomic interventions, especially in practical inter-
ventional cost models.

We note that in contrast to the earlier work of Squires
et al. (2020), whose lower bound proofs were based
on new sophisticated constructions, our proof is based
on the simpler notion of a CBSP ordering, which in
turn is inspired from elementary ideas in the theory of
chordal graphs. We expect that the notion of CBSP
orderings may also play an important role in future
work on designing optimal intervention sets.
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Supplementary Material:
Almost Optimal Universal Lower Bound for Learning Causal DAGs

with Atomic Interventions

A PROOF OF LEMMA 3.4 OF THE MAIN PAPER

Here, we provide the proof of Lemma 3.4 of the main paper. As stated there, the lemma follows from well-known
ideas in the theory of chordal graphs. The following generalization of the definition of the clique block property
P1 of Definition 3.2 will be useful in the proof.

Definition A.1 (A-clique block ordering). Let D be a DAG and A a subset of vertices of D. Let σ be a
topological ordering of D. Let the elements of A be a1, a2, . . . , ak, arranged so that σ(ai) < σ(aj) whenever i < j.
Define LA1 (σ) to be the set of nodes u which occur before or at the same position as a1 in σ i.e., σ(u) ≤ σ(a1).
Similarly, for 2 ≤ i ≤ k, define LAi (σ) to be the set of nodes which occur in σ before or at the same position as
ai, but strictly after ai−1 (i.e., σ(ai−1) < σ(u) ≤ σ(ai)). Then, σ is said to be an A-clique block ordering of D
if ∪ki=1L

A
i (σ) is the set of all vertices of D, and for each 1 ≤ i ≤ k, LAi (σ) is a (not necessarily maximal) clique

in skeleton (D).

The following observation is immediate with this definition.

Observation A.2. Let D be a DAG without v-structures, and let A be the set of maximal-clique-sink vertices
of D. Then, a topological ordering σ of D satisfies property P1 of Definition 3.2 if and only if σ is an A-clique
block ordering of D.

Proof. The “if” direction follows from the definition. For the “only if” direction, we note that since every
vertex of D must be contained in some maximal clique C of skeleton (D), and since C = {s} ∪ paD (s) for some
maximal-clique-sink vertex s, it follows that every vertex of D must lie in some Li(σ) if σ satisfies the clique
block property P1.

We also note the following simple property of A-clique block orderings.

Observation A.3. Let D be a DAG without v-structures, and let σ be a topological ordering of D. Let A and
B be subsets of vertices of D such that A ⊆ B. If σ is an A-clique block ordering of D, then it is also a B-clique
block ordering of D.

Proof. When A = B, there is nothing to prove. Thus, we can assume that there must exist a b ∈ B \ A. We
consider the case when B = A ∪ {b}. The general case then follows by straightforward induction on the size of
|B \A|.

For 1 ≤ i ≤ |A|, let LAi (σ) be as in the definition of the A-clique block orderings. Let i be the unique index
such that b ∈ LAi (σ). Now, for j < i, define LBj (σ) ··= LAj (σ), and for j ≥ i + 1, define LBj+1(σ) ··= LAj (σ). By

construction, for 1 ≤ j ≤ i− 1 and i+ 2 ≤ j ≤ |A|+ 1, the LBj (σ) are cliques in skeleton (D). Further define

LBi (σ) ··=
{
u ∈ LAi (σ) | σ(u) ≤ σ(b)

}
, and

LBi+1(σ) ··= LAi (σ) \ LBi (σ).

Again, LBi (σ) and LBi+1(σ) are also cliques in skeleton (D) since they are subsets of the clique Li(σ). Further,

by construction, ∪|B|j=1L
B
j (σ) = ∪|A|j=1L

A
j (σ). This shows that σ is also a B-clique block ordering.

We can now state the main technical lemma required for the proof of Lemma 3.4 of the main paper.

Lemma A.4. Let D be a DAG without v-structures. Let S be the set of maximal-clique-sink vertices of D.
Then, there exists a maximal clique C of skeleton (D) with the following two properties:
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1. If u ∈ C then paD (u) ⊆ C. That is, if u ∈ C and v 6∈ C, then the edge v → u is not present in D.

2. Let S′ be the set of maximal-clique-sink nodes of the induced DAG D[V \C], where V is the set of nodes of
D. Then S′ is a subset of S \ {sinkD (C)}.

Proof. As already alluded to in the main paper, the proof of item 1 uses ideas that are very similar to the
“maximal cardinality search” algorithm for chordal graphs (Tarjan and Yannakakis (1984), see also Corollary 2
of Wienöbst et al. (2021)). Fix an arbitrary topological ordering τ of D, and let v1 = τ(1) be the top vertex in
τ . Note that v1 has no parents in D, so any vertices adjacent to v1 in D are children of v1. Let C ′ be the set
of these children of v1 in D. If C ′ is empty, then v1 is isolated in D and we are done with the proof of item 1
after taking C = v1. So, assume that C ′ is not empty, and let its elements be c1, c2, . . . ck, arranged so that
τ(ci) < τ(cj) whenever i < j. Now, define the sets C ′i, where 1 ≤ i ≤ k as follows. First, C ′1 ··= {v1, c1}. For
2 ≤ i ≤ k,

C ′i ··=

{
C ′i−1 ∪ {ci} if C ′i−1 ⊆ paD (ci),

C ′i−1 otherwise.
(1)

Define C ··= C ′k. Note that by construction, C is a clique. Note also the following property of this construction:
for any i, ci 6∈ C if and only if there exists 1 ≤ j < i such that cj ∈ C and cj is not adjacent to ci in D.

We now claim that C is also a maximal clique. For, if not, let u 6∈ C be such that u is adjacent to every vertex
in C. Then, we must have u = ci for some i (since v1 ∈ C, and only the children of v1 are adjacent to v1 in D).
But then, since u = ci 6∈ C, there must exist some cj , j < i, such that cj ∈ C is not adjacent to u = ci, which is
a contradiction to the assumption of u being adjacent to every vertex of C.

We now claim that if v 6∈ C, then for all u ∈ C, the edge v → u is not present in D. Suppose, if possible, that
there exist v 6∈ C and u ∈ C such that v → u is present in D. By the choice of v1 as a top vertex in a topological
order, we must have u 6= v1. Thus, u must be a child of v1 in D. Suppose u = ci, for some i ∈ [k]. Then, v must
also be a child of v1, for otherwise v → ci ← v1 would be a v-structure in D. Thus, v = cj for some j < i. Since
cj = v 6∈ C, there exists some ` < j such that c` ∈ C and c` and v = cj are not adjacent. But then c` → ci ← cj
is a v-structure in D, so we again get a contradiction. This proves item 1 of the lemma for the clique C.

Item 2 of the lemma trivially follows if V \ C is empty, therefore, we are interested in the case when V \ C
is non-empty. Now consider the induced DAG H ··= D[V \ C]. Since D has no v-structures, neither does H.
Thus, by Observation 3.1 of the main paper, the maximal-clique-sink nodes of H and the maximal cliques of
skeleton (H) are in one-to-one correspondence: for each maximal clique C ′ of skeleton (H), there is a unique
vertex sinkH (C ′) of H such that C ′ = {sinkH (C ′)} ∪ paH (sinkH (C ′)).

Consider now a maximal-clique-sink vertex s′ of H. There exists then a maximal clique C ′ of skeleton (H) such
that s′ = sinkH (C ′). Also, since H is an induced subgraph of D, there must exist a maximal clique C ′′ of
skeleton (D) such that C ′′ ⊇ C ′. In fact, we must further have C ′′ ∩ (V \C) = C ′, for otherwise C ′ would not be
a maximal clique of H. Let t ··= sinkD (C ′′). We will show that t = s′. Note first that we cannot have t ∈ C, for
then, by item 1, C ′′ = {t}∪paD (t) would be contained in C, and would not therefore contain C ′ ⊆ V \C. Thus,
t must be a node in V \C. But then C ′′∩(V \C) = C ′ implies that t must in fact be in C ′, and must therefore be
equal to s′ = sinkH (C ′). We thus see that any maximal-clique-sink vertex s′ of H is also a maximal-clique-sink
vertex of D. Item 2 of the lemma then follows by noting that sinkD (C) is the only maximal-clique-sink vertex
of D not contained in V \ C.

We are now ready to prove Lemma 3.4 of the main paper.

Proof of Lemma 3.4 of the main paper. We prove this claim by induction on the number of nodes in D. The
claim of the lemma is trivially true when D has only one node. Now, fix n > 1, and assume the induction
hypothesis that every DAG without v-structures which has at most n − 1 nodes admits a topological ordering
that satisfies the clique block property P1 of Definition 3.2. We will complete the induction by showing that if
D is a DAG without v-structures which has n nodes, then D also admits a topological ordering that satisfies the
clique block property P1 of Definition 3.2.

Let the maximal clique C of D be as guaranteed by Lemma A.4 above. If all the nodes of D are contained in C,
then the total ordering on the vertices of the clique C in D trivially satisfies the clique block property. Therefore,
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we assume henceforth that V \ C is non-empty. Thus, the induced DAG H ··= D[V \ C] is a DAG on at most
n − 1 nodes. Let S′ be the set of maximal-clique-sink nodes of H, and let S be the set of maximal-clique-sink
nodes of D. By the induction hypothesis, H has a topological ordering τ which satisfies the clique block property.
Equivalently, by Observation A.2, τ is an S′-clique block ordering of H.

Consider now the ordering σ of D obtained by listing first the vertices of the clique C in the total order imposed
on them by the DAG D, followed by the vertices of V \C in the order specified by τ . By item 1 of Lemma A.4,
there is no directed edge in D from a vertex in V \ C to a vertex in C, so we get that σ is in fact a topological
ordering of D.

Define T = S′ ∪ sinkD (C). We now observe that σ is a T -clique block ordering of D, with LT1 (σ) = C and
LTi+1(σ) = LS

′

i (τ), for 1 ≤ i ≤ |S′|. By item 2 of Lemma A.4, we have T ⊆ S. Thus, by Observation A.3, σ is
also an S-clique block ordering of D, and therefore (by Observation A.2) satisfies the clique block property P1
of Definition 3.2.

B OTHER OMITTED PROOFS

B.1 Proof of Observation 3.1

Proof of Observation 3.1 of main paper. Let C be a maximal clique of skeleton (D). Since the induced subgraph
D[C] is a DAG, there is at least one node s in D[C] with out-degree 0. Thus, for all v ∈ C, v 6= s we have, v → s,
which implies that C \ {s} ⊆ paD (s). Now, paD (s) ∪ {s} must be a clique as D does not contain v-structures.
Thus, we must indeed have paD (s) = C \ {s} since C is maximal. We thus see that there is a unique s ∈ C such
that C = paD (s) ∪ {s}.

Now, suppose, if possible that there exist distinct maximal cliques C1 and C2 of skeleton (D) such that
sinkD (C1) = sinkD (C2) = s. Since C1 and C2 are distinct maximal cliques, there must exist a ∈ C1 \ C2, b ∈
C2 \ C1 such that a is not adjacent to b. But then, since we have a ∈ paD (s) and b ∈ paD (s), we would have a
v-structure a→ s← b, which is a contradiction to the hypothesis that D has no v-structures.

B.2 Proof of Proposition 3.5

Proof of Proposition 3.5 from the main paper. We use the same notation as in the proof of Theorem 3.3.

1. Since y ∈ Ya, there exists u ∈ Ca such that u is not adjacent to y in D. But then, if z ∈ Sa, we get the
v-structure u → z ← y, which is a contradiction to D not having any v-structures. This proves item 1 of
the proposition.

2. Consider the clique C ··= {x} ∪ paD (x). There exists a maximal clique C ′ in skeleton (D) such that
C ′ ) C, since x is not a maximal-clique-sink node. Set y ··= sinkD (C ′). Since x is not a maximal-clique-
sink node in D, we thus have x ∈ C ⊆ paD (y), so that y is a child of x. We also have y ∈ Sa since
Ca ⊆ {x} ∪ paD (x) = C ⊆ paD (y), where the first inclusion comes from the assumption that x ∈ {a} ∪ Sa.
The fact that Sa is non-empty follows by applying the item with x = a, and noticing that, by construction,
a is not a maximal-clique-sink vertex in D. This follows since a ∈ Li(σ) has a child (namely, b) in Li(σ),
while by the definition of the Li, only the last vertex in Li(σ) is a maximal-clique-sink node of D. This
proves item 2 of the proposition.

3. Since x is a maximal-clique-sink node in H = D[Sa], C ··= {x}∪paH (x) is a maximal clique in skeleton (H),
and thereby a clique in skeleton (D). However, note that C ′ ··= C ∪Ca is also a clique in skeleton (D), since
both C and Ca are cliques in skeleton (D), and as C ⊆ Sa, every vertex in C is adjacent to every vertex in
Ca. Thus, there exists a maximal clique C ′′ in skeleton (D) such that C ′ ⊆ C ′′.

Consider y ··= sinkD (C ′′). Suppose, if possible, that x 6= y. Then we must have x ∈ paD (y) (since
x ∈ C ′′), and also that Ca ⊆ paD (y) (as Ca ⊆ C ′′). Thus, we must have y ∈ Sa. But then, we get that
{y}∪C ⊆ C ′′ ∩Sa, which contradicts the assumption that C is a maximal clique in H. Thus, we must have
x = y, so that x is a maximal-clique-sink node in D. This proves item 3 of the proposition.
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B.3 Proof of Theorem 3.7

For use in this subsection and the next, we recall the characterization of I-essential graphs (Theorem 2.1) from
the main paper. Recall that in the main paper, this characterization was only used in the setting of DAGs
without v-structures, in the proof of Theorem 3.6. Here, we will need to use it in the setting of general graphs.
(Figure 1 in the statement of the theorem can be found in the main paper). Recall also that we always assume
that every intervention set contains the empty intervention, but the empty intervention is not counted in the
size of an intervention set.

Theorem 2.1 (Characterization of I-essential graphs, Definition 14 and Theorem 18 of Hauser
and Bühlmann (2012)). Let D be a DAG and I an intervention set. A graph H is an I-essential graph of D
if and only if H has the same skeleton as D, all directed edges of H are directed in the same direction as in D,
all v-structures of D are directed in H, and

1. H is a chain graph with chordal chain components.

2. For any three vertices a, b, c of H, the subgraph of H induced by a, b and c is not a→ b− c.

3. If a→ b in D (so that a, b are adjacent in H) and there is an intervention J ∈ I such that |J ∩ {a, b}| = 1,
then a→ b is directed in H.

4. Every directed edge a → b in H is strongly I-protected. An edge a → b in H is said to be strongly I-
protected if either (a) there is an intervention J ∈ I such that |J ∩ {a, b}| = 1, or (b) at least one of the
four graphs in Figure 1 appears as an induced subgraph of H, and a → b appears in that induced subgraph
in the configuration indicated in the figure.

Remark B.1. Strictly speaking, Theorem 18 of Hauser and Bühlmann (2012) only identifies the class of all
I-essential graphs. However, it is well known, and follows easily from their results that H satisfies all the four
items in the statement of Theorem 2.1 along with the additional conditions in the theorem (i.e., H has the same
skeleton as D, all directed edges of H are directed in the same direction as in D, and all v-structures of D are
directed in H), if and only if H = EI(D).

For completeness, we provide a proof of the above folklore remark in Section E. Here, we proceed to the following
easy and folklore corollary of the characterization Theorem 2.1 that has a proof similar to the proof of Lemma
1 of Hauser and Bühlmann (2014). For completeness, we provide this proof in Section F.

Corollary B.2. Let D be an arbitrary DAG, and let I be any intervention set containing the empty set. Let
CC be the set of chordal chain components of the essential graph E(D) = E{∅}(D) of D. For each S ∈ CC,
define IS ··= {I ∩ S | I ∈ I} to be the projection of the intervention set I to S. Consider vertices a and b that
are adjacent in D. Then, the edge between a and b is directed in the I-essential graph EI(D) if and only if one
of the following conditions are true:

1. a and b are elements of distinct chain components of the observational essential graph E(D) (so that the
edge between a and b is already directed in E(D)).

2. a and b are in the same chain components S ∈ CC of E(D) and the edge between a and b is directed in the
IS-essential graph EIs(D[S]) of the induced DAG D[S].

In particular, EI(D) = D if and only if EIS (D[S]) = D[S] for every S ∈ CC.

We now use the corollary to prove Theorem 3.7.

Proof of Theorem 3.7 from the main paper. Corollary B.2 says that an intervention set I learns D starting with
E(D) if and only if EIS (D[S]) = D[S] for every S ∈ CC. If I is a set of atomic interventions, then for each I ∈ I,
|I ∩ S| = 0 for all but one of the S ∈ CC. This means that if an intervention set I of atomic interventions is
such that EI(D) = D, then |I| =

∑
S∈CC |IS |, and EIS (D[S]) = D[S] for every S ∈ CC, where IS is a set of

atomic interventions defined as in Corollary B.2. Since D[S] is a DAG without v-structures, by Theorem 3.6 we
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have, |IS | ≥
⌈
|S|−r(S)

2

⌉
which implies,

|I| ≥
∑
S∈CC

⌈
|S| − r(S)

2

⌉
≥

⌈ ∑
S∈CC

|S| − r(S)

2

⌉
=

⌈
n− r

2

⌉
.

This completes the proof.

B.4 Proof of Theorem 3.8

Proof of Theorem 3.8 from the main paper. Fix any topological ordering σ of D. Let the maximal cliques of D
be C1, . . . , Cr, and let si ··= sinkD (Ci), for i ∈ [r]. Observation 3.1 implies that each node of S = {s1, . . . , sr}
is distinct. We re-index these nodes according to the ordering σ, i.e. σ(si) < σ(sj) when i < j. Consider the
set I ··= V \ S of atomic interventions (note that |I| = n− r). We show that EI(D) = D. Note that every edge
of D, except those which have both end-points in S, has a single end-point in one of the interventions in I, and
hence is directed in EI(D) (by item 3 of Theorem 2.1). We show now that all edges with both end-points in S
are also oriented in EI(D).

Suppose, if possible, that there exist si, sj ∈ S, with i < j such that si and sj are adjacent in skeleton (D), so
that the edge si → sj is present in D, but for which si − sj is not directed in EI(D). We derive a contradiction
to this supposition. To start, choose an si, sj as above with the smallest possible value of i. In particular, this
choice implies that every edge of the form u→ si in D is directed in EI(D).

Note that, by Observation 3.1, Ci = {si} ∪ paD (si) and Cj = {sj} ∪ paD (sj) are distinct maximal cliques in
skeleton (D). Thus, there must exist an x ∈ Ci that is not a parent of sj in D. Further, since σ(si) < σ(sj),
all vertices of Ci appear before sj in σ. Thus, x ∈ Ci that is not a parent of sj in D is also not adjacent to sj
in skeleton (D). Further, by the choice of i, the edge x → si is directed in EI(D). Thus, we have the induced
subgraph x → si − sj in EI(D). However, according to item 2 of Theorem 2.1, such a graph cannot appear as
an induced subgraph of an I-essential graph EI(D), and we have therefore reached the desired contradiction. It
follows that EI(D) has no undirected edges, and is therefore the same as D.

B.5 Proof of Theorem 3.9

Here we restate Theorem 3.9 and provide its proof.

Theorem B.3 (Restatement of Theorem 3.9 from the main paper). Let D be an arbitrary DAG and let E(D)
be the chain graph with chordal chain components representing the MEC of D. Let CC denote the set of chain
components of E(D), and r(S) the number of maximal cliques in the chain component S ∈ CC. Then, there
exists a set I of atomic interventions of size at most

∑
S∈CC (|S| − r(S)) = n− r, such that I fully orients E(D)

(i.e., EI(D) = D), where n is the number of nodes in D, and r is the total number of maximal cliques in the
chordal chain components of E(D) (including chain components consisting of singleton vertices).

Proof. Theorem 3.8 implies that for each S ∈ CC there is a set IS of atomic interventions such that |IS | ≤
|S| − r(S) and EIS (D[S]) = D[S]. Now, let I = ∪S∈CCIS . EI(D) = D by Corollary B.2, and |I| =

∑
S∈CC |IS |,

which means |I| ≤
∑
S∈CC(|S| − r(S)) = n− r. This shows that there is a set of atomic interventions of size at

most n− r which fully orients E(D).

B.6 Proof of Lemma 3.10

Proof of Lemma 3.10 from the main paper. Let C be a (necessarily maximal) clique of G of size ω. Since C is
a maximal clique of the chordal graph G, there exists a perfect elimination ordering σ of G that starts with C
(this is a consequence of the structure of the lexicographic breadth-first-search algorithm used to find perfect
elimination orderings of chordal graphs: see, e.g., the paragraph before Proposition 1 of Hauser and Bühlmann
(2014) and Algorithm 6 of Hauser and Bühlmann (2012) for a proof).

Now, let D be the DAG obtained by orienting the edges of G according to σ (i.e., the edge u − v ∈ G is
directed as u → v in D if and only if σ(u) < σ(v)). Suppose that sinkD (C) = s. Note that C cannot contain
the node sinkD (C ′) for any other maximal clique C ′ since, as σ starts with C, this would imply C ′ ⊆ C and



Vibhor Porwal, Piyush Srivastava, Gaurav Sinha

would contradict the maximality of C ′. Thus, there are |C| − 1 maximal-clique-sink nodes of D other than s by
Observation 3.1, and, by the above observation, they occur in σ after C. Thus, n ≥ |C| + |C| − 1, which gives
n− |C| ≥ ω − 1 as |C| = ω.

C VARIOUS EXAMPLE GRAPHS

In Section 3.2 of the main paper, we proved that our universal lower bound is always at least as good as the
previous best universal lower bound given by Squires et al. (2020), and also gave examples of graph families
where our bound is significantly better. We also pointed out that our lower bound and the lower bound of
Squires et al. (2020) are close only in certain special circumstances. We now make give more details of these
special cases.

We work with the same notation as that used in Lemma 3.10: G is an undirected chordal graph, n is the number
of nodes in G, ω is the size of its largest clique, and C is the set of its maximal cliques. From Lemma 3.10, it

follows that for our lower bound of
⌈
n−|C|

2

⌉
and the lower bound of

⌊
ω
2

⌋
=
⌈
ω−1
2

⌉
of Squires et al. (2020) to be

equal, one of the following conditions must be true: either (i) n− |C| = ω − 1, or (ii) ω is even and n− |C| = ω.

Now consider the perfect elimination ordering σ of G used in the proof of Lemma 3.10, and let D be the DAG
with skeleton G constructed by orienting the edges of G in accordance with σ. Note that by the construction of
σ, the ω vertices of a largest clique C of G are the first ω vertices in σ. Note also that n− |C| is the number of
vertices in G that are not maximal-clique-sink nodes of D (by Observation 3.1).

Thus, it follows that condition (i) above for the two lower bounds to be equal can hold only when D is such
that all nodes of G outside the largest clique C of G are maximal-clique-sink nodes of D. In other words, σ is
a clique block ordering, in the sense of P1 of Definition 3.2 of a CBSP orderings, in which the first clique block
L1(σ) consists of the largest clique C, while all other clique blocks Li(σ), i ≥ 2 are of size exactly 1. Similarly,
condition (ii) above for the two lower bounds to be equal can hold only when D is such that all but one of the
nodes of G outside the largest clique C of G are maximal-clique-sink nodes of G.

We now give examples of two special families of chordal graphs where the above conditions for the equality of
the two lower bounds hold: Split graphs and k-trees. Here, C(G) will denote the set of maximal cliques of graph
G.

Split graphs. G is a split graph if its vertices can be partitioned into a clique C and an independent set Z. For
such a G, one of the following possibilities must be true.

1. ∃x ∈ Z such that C ∪ {x} is complete. In this case, C ∪ {x} is a maximum clique and Z is a maximum
independent set.

2. ∃x ∈ C such that Z ∪ {x} is independent. In this case, Z ∪ {x} is a maximum independent set and C is a
maximum clique.

3. C is a maximal clique and Z is a maximal independent set. In this case, C must also be a maximum clique
and Z a maximum independent set.

For each of these cases, we have n− |C(G)| = ω − 1, which implies
⌈
n−|C(G)|

2

⌉
=
⌊
ω
2

⌋
.

k-trees. A k-tree is formed by starting with Kk+1 (complete graph with k + 1 vertices) and repeatedly adding
vertices in such a way that each added vertex v has exactly k neighbors, and such that these neighbors along
with v form a clique. Thus, each added vertex creates exactly one clique of size k+ 1. In particular, in a k-tree,
all maximal cliques are of size k + 1. So, in a k-tree G with n = k + 1 + r nodes, we have, |C(G)| = 1 + r and

ω = k + 1, which implies n− |C(G)| = ω − 1. Thus,
⌈
n−|C(G)|

2

⌉
=
⌈
ω−1
2

⌉
=
⌊
ω
2

⌋
.

In contrast to the above two families, block graphs are an example family of chordal graphs where our lower
bound can be significantly better. Construction 1 and 2 presented in Section 3.2 of the main paper are examples
of block graphs, and as discussed there, our lower bound can be Θ(k) times the previous best universal lower
bound for block graphs, where k can be as large as Θ(n) (where n is the number of nodes in the graph).
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(i) Run 1 (ii) Run 2

(iii) Run 3 (iv) Run 4

Figure 5: Experiment 1 Runs with Varying Seeds

D DETAILS OF EXPERIMENTAL SETUP

Experiment 1 For this experiment, we generate 1000 graphs from Erdős-Rényi graph model G(n, p): for each
of these graphs, the number of nodes n is a random integer in [5, 25] and the connection probability p is a
random value in [0.1, 0.3). Each of these graphs is then converted to a DAG without v-structures, using the
following procedure. First, the edges of G are oriented according to a topological ordering σ which is a random
permutation of the nodes of G: this converts G into a DAG D (possibly with v-structures). Now, the nodes of D
are processed in a reverse order according to σ (i.e., nodes coming later in σ are processed first) and whenever
we find two non-adjacent parents, a and b of the current node u being processed, we add an edge a→ b in D if
σ(a) < σ(b), and b → a in D if σ(b) < σ(a). Since nodes are processed in an order that is a reversal of σ, this
procedure ensures that the resulting DAG D has no v-structures.

In Figure 5, we provide plots from four further runs of Experiment 1. These plots use exactly the same set-up
and procedure as the plot given in Figure 3 in the main paper, and differ only in the initial seed provided to the
underlying pseudo-random number generator. These seeds are used for generation of random graphs as well as
for generating n and p. To avoid any post selection bias, the seeds for these plots were formed using the decimal
expansion of π after skipping first 1015 digits2 in the decimal expansion, and then taking the next 10 digits as
the first seed, 10 consecutive digits after that as the second seed, and so on. Our interpretation and inferences
from these further runs remain the same as that reported in the main paper for the run underlying Figure 3.

2The number “1015” corresponds to the submission deadline date for the conference, after removing the year part from
the ISO standard date format.
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Experiment 2 For this experiment, we generate 1000 random DAGs without v-structures for each size
in {10, 20, 30, 40, 50, 60}. We now describe the procedure for generating a DAG D (without v-structures)
with n nodes, other than n, this procedure takes two more inputs, min clique size and max clique size. If
min clique size = X and max clique size = Y , we try to keep the size of all cliques of D in [X,Y ]. First, we
initialize a DAG D with nodes 0, . . . , n− 1, and no edges. We take σ = (0, . . . , n− 1) to be a perfect elimination
ordering of D. We then process the nodes of D in reverse order of σ. When node u is being processed, we first
compute the number of parents that u already has in D. Now we compute lower and upper bounds `1 ≥ 0 and
`2 ≥ 0 on the number of parents that could be added to the set of parents of u while still keeping the total
number of parents below Y − 1, and at least X − 1. (Note that `1, `2 ≤ |{0, . . . , u− 1} \ paD (u)|, since the
latter is the number of currently available vertices that could be added to the parent set of u). We now choose
an integer ` uniformly at random from [`1, `2]: this will be the number of new parents to be added to the set of
parents of u. Note that it may happen that ` = 0, for example when u already has Y − 1 or more parents, so
that `2 = 0. Next, we sample a set Z of ` nodes (without replacement) from ({0, . . . , u− 1} \ paD (u)), and add
the edges z → u to D for each z ∈ Z. Further, for any two non-adjacent parents of u, we add an edge a→ b to
D if σ(a) < σ(b), and b→ a if σ(b) < σ(a). This makes sure that there are no v-structures in D. Note that, as
described in the main paper, the procedure used here only tries to keep the maximum clique size bounded above
by Y , but it can overshoot and produce a graph with a clique of size larger than Y as well. In our experiments,
we take min clique size = 2, max clique size = 4.

In Figure 6, we provide plots from four further runs of Experiment 2. These plots use exactly the same set-up
and procedure as the plot given in Figure 4 in the main paper, and differ only in the initial seed provided to
the underlying pseudo-random number generator. Again, to avoid post-selection bias, we use seeds given by the
procedure given for Experiment 1 above. Our interpretation and inferences from these further runs remain the
same as that reported in the main paper for the run underlying Figure 4.

E PROOF OF REMARK B.1

In this section, we supply the proof of Remark B.1 for completeness.

Proof of Remark B.1. By Theorem 10(iv) of Hauser and Bühlmann (2012), it follows that EI(D) must have the
same skeleton and the same v-structures as D, and must also have all its directed edges directed in the same
direction as in D. This proves that EI(D) satisfies all the conditions of Theorem 2.1. To complete the proof, we
now show that it is the only graph showing all the conditions of the theorem.

For if not, then let let G and H be two different graphs satisfying all the conditions of Theorem 2.1. Thus, G
and H have the same skeleton as D, all their directed edges are in the same direction as in D, and further, all
v-structures of D are directed in both G and H. If G 6= H, the set E′ of edges that are directed in G but not
in H is therefore non-empty (possibly after interchanging the labels G and H). Fix a topological ordering σ
of D, and let a → b ∈ E′ be such that σ(b) ≤ σ(b′) for all a′ → b′ ∈ E′. Since a → b in G, a → b must be
strongly I-protected in G. Now, there cannot exist J ∈ I such that |J ∩ {a, b} | = 1, since in that case a → b
would be directed in H as well (by item 3 of Theorem 2.1). Thus, at least one of the four graphs in Figure 1
must appear as an induced subgraph of G, with a → b appearing in that induced subgraph in the cofiguration
indicated in the figure. If subgraph (i) appears as an induced subgraph of G, then we must have c → a in H
since σ(a) < σ(b), but this means that c → a − b would be an induced subgraph of H, contradicting item 2 of
Theorem 2.1. Similarly, a → b cannot be in the configuration indicated in subgraph (ii), since any v-structure
in G is directed in H, so that a → b would be directed in H as well. If subgraph (iii) appears as an induced
subgraph of G, a → c must be directed in H, as σ(c) < σ(b), but this would mean that H contains a directed
cycle a, c, b, a (since a − b is undirected in H), and this contradicts that H is a chain graph.3 If subgraph (iv)
appears as an induced subgraph of G, then c1 → b ← c2 appears in H as well since any v-structure of G must
also be directed in H. Further, at least one of the following four configurations must appear in H: (a) a→ c1 (b)
a→ c2 (c) a− c1 (d) a− c2 (for if not, then c1 → a← c2 would be a v-structure in H that is not directed in G,
contradicting that all v-structures of D are directed in both G and H). However, if any of the four configuration
appears in H, we get a directed cycle in H (since a− b is undirected in H), which contradicts the fact that H is
a chain graph.

3Recall that a directed cycle in a general graph is a cycle in which all directed edges point in the same direction, and
in which at least one edge is directed. The formal definition is given in Section 2.
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Figure 6: Experiment 2 Runs with Varying Seeds

We conclude therefore that E′ must in fact be empty and hence G = H. Thus, given a DAG D, the unique
graph satisfying all conditions of Theorem 2.1 is the I-essential graph EI(D) of D.

F PROOF OF COROLLARY B.2

In this section, we supply the proof of the folklore Corollary B.2, for completeness.

Proof of Corollary B.2. Let H be the graph with the same skeleton as D in which exactly the edges satisfying one
of the two conditions of the corollary are directed. We prove that H satisfies all the conditions of Theorem 2.1,
and must therefore be the same as EI(D) (see also Remark B.1). This will complete the proof of the corollary.

Recall that by construction, any edge of H is directed if and only if

1. the endpoints of the edge are in different chain components of E(D), so that it is already directed in E(D),
or

2. the endpoints of the edge lie in the same chain component S of E(D), and the edge is directed in EIS (DS).

In particular, item 1 implies that any edge that is directed in E(D) is also directed in H (since all directed edges
of a chain graph have their endpoints in different chain components).

We now verify that H satisfies all the conditions of Theorem 2.1. By construction, H has the same skeleton
as D, and all its directed edges are directed in the same direction as D. Further, all the v-structures of D are
directed in H, since these are directed in E(D).
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Any directed cycle C in H would be a directed cycle either in E(D) (in case C includes vertices from at least two
different chain components of E(D)), or in EIS (DS) for some chain component S of E(D) (in case C is contained
within a single chain component S of E(D)). Since both E(D) and EIS (D) are chain graphs (from Theorem 2.1),
they do not have any directed cycles. It therefore follows that H cannot have a directed cycle either, and hence
is a chain graph. Further, the chain components of H are induced subgraphs of the chain components of E(D).
Since the chain components of E(D) are chordal (again from Theorem 2.1), it follows that the chain components
of H are also chordal. Thus, H satisfies item 1 of Theorem 2.1.

Suppose now that, if possible, H has an induced subgraph of the form a→ b− c. Thus, the edge b− c must be
undirected in E(D) as well, so that b and c are in the same chain component S of E(D). If a is also in S, then
a→ b− c would be an induced sub-graph of the interventional essential graph EIS (DS), which would contradict
item 2 of Theorem 2.1. Similarly, if a is not in S, then a→ b would be directed in E(D), so that a→ b− c would
be an induced sub-graph of the essential graph E(D) = E{∅}(D), again contradicting item 2 of Theorem 2.1.
We conclude that an induced subgraph of the form a → b − c cannot occur in H. Thus, H satisfies item 2 of
Theorem 2.1.

To verify item 3, consider any two adjacent vertices a and b in H such that |I ∩ {a, b}| = 1 for some I ∈ I.
If a and b are in different chain components of E(D), then the edge between them is directed in E(D) and
hence also in H. On the other hand, if a and b are in the same chain component S of E(D), then we have
|(I ∩ S) ∩ {a, b}| = |I ∩ {a, b}| = 1 for I ∩ S ∈ IS , so that the edge between a and b is directed in EIS (DS) (by
item 3 of Theorem 2.1) and hence also in H. It thus follows that H satisfies item 3 of Theorem 2.1.

Finally, we show that any directed edge in H is I-strongly protected. Consider first a directed edge a → b
in H where a and b belong to the same chain component S of E(D). Then, since a → b is directed also in
EIS (DS), it must be IS-strongly protected in EIS (DS). It follows directly from the definition of interventional
strong protection and the construction of H then that a → b is I-strongly protected in H (since any of the
configurations of Figure 1, if present as an induced subgraph of EIS (DS), is also present as an induced subgraph
in H).

Consider now a directed edge a→ b in H when a and b are in different chain components of E(D). Then a→ b
must be directed, and hence also {∅}-strongly protected, in E(D). Now, if a→ b appears as part of an induced
subgraph of E(D) of the forms (i), (ii) or (iii) of Figure 1, then the same configurarion also appears as an induced
subgraph of H (since all directed edges of E(D) are directed in H), so that a → b is also I-strongly protected
in H. Suppose then that a → b appears as part of an induced subgraph of the form (iv) of Figure 1. Then,
the vertices a, c1 and c2 appearing in the configuration must be in the same chain component S of E(D) (since
they are in a connected component of undirected edges). It follows that the configurations c1 → a − c2 and
c2 → a−c1 cannot appear in H. For, if they did, then they would also appear in the IS essential graph EIS (DS),
thereby contradicting item 2 of Theorem 2.1 (when applied to the interventional essential graph EIS (DS)). The
configuration c1 → a← c2 also cannot occur in H, since otherwise, the v-structure c1 → a← c2 of D could not
have remained undirected in E(D). It follows that at least one of the following three configurations must appear
in H: a → c1, a → c2 or c1 − a − c2. In the last case, a → b is I-strongly protected in H as configuration (iv)
of Figure 1 appears as an induced subgraph of H (exactly as it does in E(D))). In the first two cases, a → b is
I-strongly protected in H as configurations (iii) of Figure 1 appears as an induced subgraph of H (with the role
of the vertex c in that configuration played by either c1 or c2, as the edges c1 → b and c2 → b are both directed
in H, since they are directed in E(D)). Thus, we see that every directed edge in H is I-strongly protected in H,
and hence H satisfies item 4 of Theorem 2.1 as well.

It follows from Theorem 2.1 therefore that H = EI(D). As discussed at the beginning of the proof, this completes
the proof of the corollary.


