
Basis Matters: Better Communication-Efficient
Second Order Methods for Federated Learning

Xun Qian Rustem Islamov Mher Safaryan Peter Richtárik
KAUST1

JD Explore Academy, Beijing
Institut Polytechnique de Paris

KAUST
KAUST KAUST

Abstract

Recent advances in distributed optimization
have shown that Newton-type methods with
proper communication compression mecha-
nisms can guarantee fast local rates and low
communication cost compared to first order
methods. We discover that the communica-
tion cost of these methods can be further
reduced, sometimes dramatically so, with a
surprisingly simple trick: Basis Learn (BL).
The idea is to transform the usual represen-
tation of the local Hessians via a change of
basis in the space of matrices and apply com-
pression tools to the new representation. To
demonstrate the potential of using custom
bases, we design a new Newton-type method
(BL1), which reduces communication cost via
both BL technique and bidirectional compres-
sion mechanism. Furthermore, we present two
alternative extensions (BL2 and BL3) to par-
tial participation to accommodate federated
learning applications. We prove local linear
and superlinear rates independent of the con-
dition number. Finally, we support our claims
with numerical experiments by comparing sev-
eral first and second order methods.

1 INTRODUCTION

We consider federated optimization problem of the form

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where each function fi : Rd → R represents the local
loss associated with the data owned by device or client

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

i ∈ [n] := {1, 2, . . . , n} only. This formulation aims to
train a single machine learning model x ∈ Rd composed
of d parameters by minimizing empirical loss f(x) using
all n clients’ data. We assume f is µ-strongly convex
and problem (1) has the unique optimal solution x∗

throughout the paper.

Due to the increasing size of the model and the amount
of the training data, in practical deployments, meth-
ods of choice for solving the problem (1) have been
distributed first-order gradient methods so far (Liu and
Zhang, 2020; Xu et al., 2020). Among other things, two
key considerations in the design of efficient distributed
optimization method are iteration complexity, which
measures how many iterations the method should take
to achieve some prescribed accuracy, and communica-
tion cost per iteration, which measures the number of
bits that clients communicate to each other or some
parameter server (Bekkerman et al., 2011). Expectedly,
these two quantities are in a trade-off: reducing the size
of communicated messages per iteration, potentially
increases the total number of iterations. This trade-off
then interacts with the problem structure (training
data and model) and network properties (bandwidth
and latency) to find the best configuration for final
deployment.

However, despite their wide applicability, all first-order
methods inevitably suffer from a dependence of suitably
defined condition number. To overcome the curse of
the condition number, Newton-type or second-order
optimization methods have been gaining considerable
attention recently since (at least local) convergence
properties of these algorithms are not affected by the
condition number of the problem (Dennis and Moré,
1974; Dembo et al., 1982; Griewank, 1981; Nesterov
and Polyak, 2006). On the other hand, the caveat
of this approach is that, although it greatly improves
iteration complexity, the cost of naively communicating
second-order information, such as Hessian matrices, is
extremely high and infeasible in practice (Bekkerman
et al., 2011). In this work, we argue that with proper
care of second-order information and for ill-conditioned



Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning

problems, distributed second-order algorithms can offer
essentially better trade-offs than first-order algorithms.

1.1 Distributed Second Order Methods

The straightforward implementation of classical New-
ton’s method in the distributed environment includes
communication of local Hessian matrices ∇2fi(x

k) with
d2 entries in all iterations k ≥ 0. Consider this naive
implementation of Newton’s method as the baseline
algorithm for distributed second-order optimization,
just like the distributed gradient descent algorithm for
first-order methods. Below we discuss the main algo-
rithmic designs to reduce the quadratic dependence
d2 of the dimension in per-iteration communication
cost and make second-order methods communication
efficient for distributed optimization.

One stream of works avoids sending full Hessian ma-
trices and uses second-order information locally to
compute Hessian-vector products ∇2fi(x

k)vki ∈ Rd

for some (adaptively defined) vectors vki ∈ Rd. With
this approach, second order information is imparted
only through such products, which cost d floats of com-
munication instead of d2. The computation side of this
approach is also efficient since the Hessian matrices
are not computed directly but Hessian-vector prod-
ucts only, which are as cheap to compute as gradients
∇fi(x

k) (Pearlmutter, 1993). Methods following this
approach are DiSCO (Zhang and Xiao, 2015) (see also
(Zhuang et al., 2015; Lin et al., 2014; Roosta et al.,
2019)), GIANT (Wang et al., 2018) (see also (Shamir
et al., 2014; Reddi et al., 2016)) and DINGO (Crane
and Roosta, 2019) (see also (Ghosh et al., 2020)). In-
spired by the local first order methods (Gorbunov et al.,
2021; Stich, 2020; Khaled et al., 2020; Konečný et al.,
2016), local variant of Newton’s method was studied in
(Gupta et al., 2021). Typically these methods either
guarantee fast rates under stronger assumptions, such
as quadratic problems or/and homogeneous data dis-
tribution or guarantee only linear rates attainable by
first-order methods.

Alternatively, the high cost of Hessian communication
can be reduced by compressing second-order informa-
tion via lossy compression operators acting on matrices
(such as low-rank approximations, randomly or greedily
sparsifying entries). Again, this idea was originated
from the first-order methods employing communication
compression (Wangni et al., 2018; Alistarh et al., 2018,
2017; Wen et al., 2017; Chen et al., 2021). Recently de-
veloped second-order methods DAN-LA (Zhang et al.,
2020), Quantized Newton (Alimisis et al., 2021), New-
tonLearn (Islamov et al., 2021) and FedNL (Safaryan
et al., 2021) are based on this idea of properly in-
corporating compression strategies for second-order
information. In contrast to the previous approach, this

strategy relies on the computation of full Hessian ma-
trices, which might be computationally intensive for
some applications. However, the optimization problem
these methods address is quite generic (general finite
sum structure (1) over arbitrarily heterogeneous data),
and theoretical guarantees (global linear with local su-
perlinear convergence rates) are far beyond the reach
of all first-order methods.

Motivated by these recent developments on distributed
second-order methods with communication compres-
sion, we extend the results of FedNL (Safaryan et al.,
2021) allowing even more aggressive compression for
some applications.

2 MOTIVATION AND
CONTRIBUTIONS

To motivate our approach properly and illustrate the
potential of our technique, we discuss three different im-
plementations of classical Newton’s method for solving
the problem (1).

2.1 Naive Implementation

For general finite sums (1), Newton’s method requires
each device i ∈ [n] to compute gradient vector ∇fi(x)
and Hessian matrix ∇2fi(x) at the current point and
send them to the parameter server to do the model
update. While the convergence of Newton’s method is
locally quadratic, O(d2) communication costs are high
due to quadratic dependence from the dimension d.
However, we can devise more efficient implementations,
given some prior knowledge of the problem or/and data
structure.

2.2 Utilizing the Problem Structure

Suppose the problem (1) models the training of Gener-
alized Linear Model (GLM), such as ridge regression or
logistic regression. Then each local loss function has
the form2

fi(x) =
1

m

m∑
j=1

fij(x), (2)

where fij(x) := φij(a
⊤
ijx) is the loss associated with

jth data-vector aij ∈ Rd stored on ith device and
φij : R → R is the corresponding loss function. A
better implementation of Newton’s method taking ad-
vantage of the Hessian structure

∇2fi(x) =
1

m

m∑
j=1

φ′′
ij(a

⊤
ijx)aija

⊤
ij (3)

2For simplicity we assume that each device has the same
number of local data points denoted by m. Generally, it
could be different for different clients.



Xun Qian, Rustem Islamov, Mher Safaryan, Peter Richtárik

is described in Section 2.2 of (Islamov et al., 2021).
In this implementation, the server is assumed to have
access to all training dataset {aij}ij . Then to com-
municate Hessian matrix of the form (3), it is enough
to send m coefficients {φ′′

ij(a
⊤
ijx) : j ∈ [m]} instead of

d2 entries. Hence, in cases when m ≪ d2, we can
run Newton’s method much efficiently with O(m+ d)
communication cost.

However, there are two limitations here. First, this
approach fails to benefit when local datasets are too
big (i.e., m > d2), which is often the case in practice.
Second, all devices reveal their local training data to the
server, making the approach inapplicable to federated
learning applications, where data privacy is crucial.

2.3 Utilizing the Data Structure

We now describe a strategy that additionally takes ad-
vantage of the data structure and dramatically reduces
communication costs regardless of the data size and
without revealing any local data.

The imposed structural assumption on the data is that
local data points {aij : j ∈ [m]} of ith client belong to
some linear subspace Gi ⊆ Rd of dimension r ∈ [d].3

Note that this condition is trivially satisfied for r =
d for any data. However, in practice, training data
points have much smaller intrinsic dimensionality r ≪
d. Notice that once we fix some basis {vit}rt=1 of Gi,
we can represent data points aij as linear combinations

aij =

r∑
t=1

αijtvit, j ∈ [m]. (4)

Instead of directly revealing actual data points aij , each
device sends the basis {vit}rt=1 to the server only once
(before the training) with the cost of sending rd floats.
Based on the representations (3) from the problem
structure and (4) from the data structure, the Hessian
of fi(x) can be transformed into

∇2fi(x)
(3),(4)
=

1

m

m∑
j=1

φ′′
ij(a

⊤
ijx)

r∑
t,l=1

αijtαijlvitv
⊤
il (5)

=

r∑
t,l=1

[
1

m

m∑
j=1

φ′′
ij(a

⊤
ijx)αijtαijl︸ ︷︷ ︸

γitl(x)

]
vitv

⊤
il︸ ︷︷ ︸

Vitl

,

where outer products Vitl := vitv
⊤
il are linearly inde-

pendent matrices (see the Appendix) and γitl(x) are
coefficients in the brackets. The key observation from

3To make notations simpler, r is the same for all clients.

(5) is that to communicate ∇2fi(x) we need to send
only r2 coefficients {γitl(x) : t, l ∈ [r]} instead of d2 en-
tries as the server already knows matrices Vitl through
the basis {vit}rt=1. The takeaway from this observa-
tions is that the standard basis of Rd×d is not always
optimal. Indeed, in this case, any basis of Rd×d contain-
ing r2 matrices {Vitl}rt,l=1 is better choice for encoding

Hessians ∇2fi(x) without any loss in precision. Thus,
O(d2) communication cost is reduced to O(r2 + d). In
case of r = O(

√
d), we get Newton’s method with O(d)

communication cost and local quadratic convergence.

Analogous to (5), similar representation can be derived
for gradients too, namely ∇fi(x) ∈ Gi. Hence, we can
send ∇fi(x) by its r basis coefficients instead of d co-
ordinates. This way we further reduce communication
cost up to O(r2). In the extreme case of r = O(1), we
run Newton’s method with O(1) cost per iteration!

Note that (5) is a special case of more general Hessian
representation ∇2fi(x) = QiΛi(x)Q

⊤
i , where Qi is a

fixed invertible matrix (known to the server) and Λi(x)
is a sparse matrix with much less than d2 (e.g., r2

for (5)) non-zero entries. Changing the standard basis
of Rd×d via the transition matrix Qi, we transform
potentially dense Hessian ∇2fi(x) (in the standard
basis) into sparse Λi(x) in the new basis. Thus, we
save in communication for free just by changing the
basis in the beginning of the training. Motivated by
this idea, we propose a new approach: Basis Learn.

2.4 Contributions

Our goal is to further investigate the benefits and
possible pitfalls of using custom bases in second-order
optimization for general finite sums (1) with arbitrarily
heterogeneous data. As, by choosing a suitable basis,
we can transform the Hessian into a sparser matrix in a
lossless way, we propose and design three new methods,
which apply lossy compression strategies afterwards to
get even better performance in terms of communication
complexity.

2.4.1 Basis Learn with Bidirectional
Compression.

Our first contribution is the new method BL1, which
successfully integrates bidirectional compression with
any predefined basis for Hessians. In BL1, both client-
to-server and server-to-client communications are com-
pressed via careful application of compression opera-
tors. We allow both unbiased compressors, such as
random sparsification (Rand-K) or random dithering,
and contractive compressors, such as greedy sparsifi-
cation (Top-K) or low-rank approximations (Rank-R).
In the special case of choosing the standard basis, our
method recovers FedNL (Safaryan et al., 2021). Thus,



Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning

basis learn can be viewed as a generalization of FedNL.

2.4.2 Extensions to Partial Device
Participation.

For massively distributed trainings, such as in fed-
erated learning, with too many clients, we propose
two extensions, BL2 and BL3, to accommodate partial
participation of devices. Thus, we unify bidirectional
compression and partial participation under basis learn.
Furthermore, within these two extensions we propose
two options to guarantee the positive definiteness of
accumulated Hessian estimator at the server avoiding
matrix projection steps of BL1: first option (imple-
mented in BL2) is based on compression error trick of
(Safaryan et al., 2021), while the other option (realized
in BL3) is to choose bases with positive semidefinite
matrices in the symmetric matrix space.

2.4.3 Fast Local Rates.

For all our methods we prove local linear and superlin-
ear rates independent of the condition number and the
size of local dataset.

2.4.4 Experiments.

By composing low-rank approximation and unbiased
compression operators, we propose more efficient com-
pressors for matrices leading to better performance in
the experiments.

3 MATRIX COMPRESSION

Here we adopt two classes of vector compressions to
matrices. A (possibly) randomized map C : Rd×d →
Rd×d is called a contraction compressor if there exists
a constant 0 < δ ≤ 1 such that

E
[
∥A− C(A)∥2F

]
≤ (1− δ)∥A∥2F, ∀A ∈ Rd×d. (6)

Further, we say that a randomized map C : Rd×d →
Rd×d is an unbiased compressor if there exists a con-
stant ω ≥ 0 such that for any A ∈ Rd×d

E [C(A)] = A and E
[
∥C(A)∥2F

]
≤ (ω + 1)∥A∥2F. (7)

The contraction compressor and unbiased compressor
on Rd can be defined in the same way where the Frobe-
nious norm ∥ · ∥F is replaced by the Euclidean norm
∥ · ∥. For more examples of contraction and unbiased
compressors, we refer the reader to (Safaryan et al.,
2021; Beznosikov et al., 2020). On the other hand, the
compressor on Rd×d can be regarded as a compressor
on Rd2

. Hence, compressors on the vector space Rd2

can be applied to the matrix in Rd×d. One can combine
two compressors from different classes to get new ones

(Qian et al., 2021). In particular, we consider compo-
sition of Rank-R (Safaryan et al., 2021) and unbiased
compressors below.

Suppose Qi
1 and Qi

2, i ∈ [d] are unbiased compressors
on Rd with parameter ω1 and ω2 respectively. For any
A ∈ Rd×d, let A =

∑d
i=1 σiuiv

⊤
i be the singular value

decomposition of A with singular values σ1 ≥ σ2 ≥
· · · ≥ σd ≥ 0. For R ≤ d, define

C1(A) :=
∑R

i=1
σiQi

1(aiui)Qi
2(bivi)

⊤

aibi(ω1+1)(ω2+1) ,

where ai, bi > 0 are independent of Qi
1 and Qi

2 for
1 ≤ i ≤ R. For example, we can set ai ≡ bi ≡ 1,
or ai = bi =

√
σi. Notice that if A is symmetric,

C1(A) is not necessarily symmetric. However, we can
symmetrize the output matrix by defining

C2(A) :=

{
C1(A) if A is not symmetric

C1(A)+C1(A)⊤

2 if A is symmetric

Lemma 3.1. (i) For any A,B ∈ Rd×d, if A is sym-
metric, then we have

∥∥(B+B⊤)/2 −A
∥∥
F
≤ ∥B −A∥F.

(ii) For any contraction compressor C in Rd×d with
parameter δ,

C̃ :=

{
C(A) if A is not symmetric

C(A)+C(A)⊤

2 if A is symmetric

is also a contraction compressor with parameter δ.

Proposition 3.2. C1 and C2 are both contraction com-
pressors with parameter R

d(ω1+1)(ω2+1) .

4 BASIS LEARN

4.1 Basis Learn in Rd×d

Let {Bjl
i | j, l ∈ [d]} be a basis in the space of matrices

Rd×d and N := d2 be the number of matrices in the
basis for any i ∈ [n]. Then any matrix A ∈ Rd×d has a

unique basis representation A =
∑

j,l h
i
jl(A)Bjl

i , where

hi
jl(A) ∈ R is the coefficient corresponding to Bjl

i .

Define hi(A) ∈ Rd×d to be the matrix of basis coef-
ficients such that hi(A)jl := hi

jl(A) for all j, l ∈ [d].

Let vec : Rd×d → Rd2

be the map that vectorizes a
given matrix A ∈ Rd×d into the vector vec(A) =
(A11, ...,Ad1, ...,A1i, ...,Adi, ...,A1d, ...,Add)

⊤ ∈ RN

by stacking all entries together. Besides, define
Mi := (B11

i , ...,Bd1
i , ...,B1j

i , ...,Bdj
i , ...,B1d

i , ...,Bdd
i )

by stacking all basis matrices Bjl
i , j, l ∈ [d]. Then

we have A = Mivec(h
i(A)), which is equivalent to

vec(A) = Bi · vec(hi(A)), (8)

for any matrix A ∈ Rd×d, where

Bi := (vec(B11
i ), ..., vec(Bd1

i ), ..., vec(B1j
i ), ...,

vec(Bdj
i ), ..., vec(B1d

i ), ..., vec(Bdd
i )).



Xun Qian, Rustem Islamov, Mher Safaryan, Peter Richtárik

As vec(Bjl
i ) ∈ RN for all j, l ∈ [d] and the number of

matrices in the basis {Bjl
i | j, l ∈ [d]} is also N , we

conclude Bi ∈ RN×N . Since the representation (8) is
unique, we know Bi is invertible, and thus

vec(hi(A)) = B−1
i vec(A). (9)

Next we provide some examples of the basis in Rd×d.

Example 4.1. The (j, l)th entry of Bjl
i is 1 and the

others are 0 for j, l ∈ [d]. Then A = hi(A) for any
A ∈ Rd×d.

Example 4.2. The (j, l)th and (l, j)th entries of Bjl
i

are 1 and the others are 0 for d ≥ j ≥ l ≥ 1. The
(j, l)th entry of Bjl

i is 1, the (l, j)th entry of Bjl
i is

−1, and the others are 0 for 1 ≤ j < l ≤ d. Then for
any symmetric matrix A ∈ Rd×d, hi(A) is the lower
triangular part of A.

4.1.1 Basis Learn with Bidirectional
Compression

We have Algorithm 1 (BL1) as an extension of FedNL-
BC in (Safaryan et al., 2021). BL1 mainly has two
differences from FedNL-BC: (i) We use Lk

i to learn
the coefficient matrix hi(∇2fi(z

k)) rather than the
Hessian; (ii) When ξk = 0, we use

[
Hk
]
µ
rather than

Hk to construct the gradient estimator gk, where [·]µ
represents the projection on the set {A ∈ Rd×d| A =
A⊤,A ⪰ µI}. The notation ξk ∼ Bernoulli(p) in BL1
means that ξk = 1 with probability p and ξk = 0
otherwise. The main update in line 16 of Algorithm
1 is based on the Newton method, where

[
Hk
]
µ
is an

estimator of the Hessian matrix, and gk is an estimator
of ∇f(zk). The rest steps are the same as FedNL-BC,
hence we omit the description.

For the theory, we utilize the following assumptions
commonly posed on the compression operators.

Assumption 4.3. (i)Qk (Qk
i ) is an unbiased compres-

sor with parameter ωM and 0 < η ≤ 1/(ωM+1). (ii) For
all j ∈ [d], (zk)j in Algorithm 1 ( (zki )j in Algorithm 2
or Algorithm 3 ) is a convex combination of {(xt)j}kt=0

for k ≥ 0.

Assumption 4.4. (i) Qk (Qk
i ) is a contraction com-

pressor with parameter δM and η = 1. (ii) Qk (Qk
i ) is

deterministic, i.e., E[Qk(x)] = Qk(x) for any x ∈ Rd.

Assumption 4.5. (i) Ck
i is an unbiased compressor

with parameter ω and 0 < α ≤ 1/(ω+1).
(ii) For all i ∈ [n] and j, l ∈ [d], (Lk

i )jl is a
convex combination of {hi(∇2fi(z

t))jl}kt=0 in Algo-
rithm 1 ( {hi(∇2fi(z

t
i))jl}kt=0 in Algorithm 2 or

{h̃i(∇2fi(z
t
i))jl}kt=0 in Algorithm 3 ) for k ≥ 0.

Assumption 4.6. (i) Ck
i is a contraction compressor

with parameter δ and α = 1. (ii) Ck
i is deterministic,

i.e., E[Ck
i (A)] = Ck

i (A) for any A ∈ Rd×d.

Algorithm 1 BL1 (Basis Learn with Bidirectional
Compression)

1: Parameters: Hessian learning rate α ≥ 0; model
learning rate η ≥ 0; gradient compression probabil-
ity p ∈ (0, 1]; compression operators {Ck

1 , . . . , Ck
n}

and Qk

2: Initialization: x0 = w0 = z0 ∈ Rd; L0
i ∈ Rd×d,

H0
i =

∑
jl(L

0
i )jlB

jl
i , and H0 := 1

n

∑n
i=1 H

0
i ; ξ

0 = 1

3: for each device i = 1, . . . , n in parallel do
4: if ξk = 1
5: wk+1 = zk, compute local gradient ∇fi(z

k)
and send to the server

6: if ξk = 0
7: wk+1 = wk

8: Compute local Hessian ∇2fi(z
k) and send

Sk
i := Ck

i (h
i(∇2fi(z

k))− Lk
i ) to the server

9: Update local Hessian shifts Lk+1
i = Lk

i + αSk
i ,

Hk+1
i = Hk

i + α
∑

jl(S
k
i )jlB

jl
i

10: end for
11: on server
12: if ξk = 1
13: wk+1 = zk, gk = ∇f(zk)
14: if ξk = 0
15: wk+1 = wk, gk =

[
Hk
]
µ
(zk −wk) +∇f(wk)

16: xk+1 = zk −
[
Hk
]−1

µ
gk

17: Hk+1 = Hk + α
n

∑n
i=1

∑
jl(S

k
i )jlB

jl
i

18: Send vk := Qk(xk+1 − zk) to all devices i ∈ [n]
19: Update the model zk+1 = zk + ηvk

20: Send ξk+1 ∼ Bernoulli(p) to all devices i ∈ [n]
21: for each device i = 1, . . . , n in parallel do
22: Update the model zk+1 = zk + ηvk

23: end for

One can easily check that the condition of convex com-
bination in Assumptions 4.3 and 4.5 is satisfied when
random sparsification is used. Next assumption is
mainly related to the smoothness of the Hessian matrix
and the property of the basis.

Assumption 4.7. We have ∥∇2fi(x) − ∇2fi(y)∥ ≤
H∥x − y∥, ∥∇2fi(x) − ∇2fi(y)∥F ≤ H1∥x −
y∥, ∥hi(∇2fi(x)) − hi(∇2fi(y))∥F ≤ M1∥x − y∥,
maxjl{|hi(∇2fi(x))jl − hi(∇2fi(y))jl|} ≤ M2∥x − y∥,
maxjl{∥Bjl

i ∥F} ≤ R for any x, y ∈ Rd and i ∈ [n]. For
Algorithm 2, we assume each fi is µ-strongly convex.

We estimate the parameters M1 and M2 of Assumption
4.7 in the following lemma.

Lemma 4.8. Assume ∥∇2fi(x)−∇2fi(y)∥F ≤ H1∥x−
y∥ and maxjl{|(∇2fi(x))jl − (∇2fi(y))jl|} ≤ ν∥x− y∥
for any x, y ∈ Rd, and i ∈ [n]. Then we have M1 ≤
maxi{∥B−1

i ∥}H1 and M2 ≤ νmaxi{∥B−1
i ∥∞}.



Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning

To present our theory in a unified manner, we define
some constants depending on the structure of bases, the
properties of compressors, and the choice of stepsize.

NB :=
{

1 if the bases {Bjl
i }j,l∈[d] are all orthogonal

d2 otherwise
(10)

(AM, BM) :=

{
(η,η) if Asm. 4.3(i) holds(

δM
4 ,

6
δM

− 7
2

)
if Asm. 4.4(i) holds

(11)

(A,B) :=

{
(α,α) if Asm. 4.5(i) holds(
δ
4 ,

6
δ−

7
2

)
if Asm. 4.6(i) holds

(12)

For any k ≥ 0, denote Hk := 1
n

∑n
i=1 ∥Lk

i − L∗
i ∥2F,

Φk
1 := ∥zk − x∗∥2 + AM(1−p)

2p ∥wk − x∗∥2, where

L∗
i := hi(∇2fi(x

∗)).

Theorem 4.9 (Linear convergence of BL1). Let As-
sumption 4.7 hold. Let Assumption 4.3 (i) or Assump-

tion 4.4 (i) hold. Assume ∥zk − x∗∥2 ≤ AMµ2

4H2BM
and

Hk ≤ AMµ2

16NBR2BM
for k ≥ 0. Then we have

E[Φk
1 ] ≤

(
1− min{AM,p}

2

)k
Φ0

1,

for k ≥ 0.

Theorem 4.9 shows that the linear convergence is ob-
tainable when ∥zk − x∗∥ and Hk are small enough,
and the linear rate depends on AM and p only, which
indicates that we should choose AM and p in the same
order in BL1.

Define Φk
2 := Hk +

4BM2
1

AM
∥xk − x∗∥2 for k ≥ 0. We

prove a local superlinear convergence in the following
theorem if there is no compression applied to the model
and full gradients are calculated in each iteration. The
convergence rate depends on parameter θ1 which is also
independent of the condition number of the problem.

Theorem 4.10 (Superlinear convergence of BL1). Let
η = 1, ξk ≡ 1 and Qk(x) ≡ x for any x ∈ Rd and k ≥ 0.
Let Assumption 4.7 hold. Let Assumption 4.5 (i) or

Assumption 4.6 (i) hold. Assume ∥zk − x∗∥2 ≤ AMµ2

4H2BM

and Hk ≤ AMµ2

16NBR2BM
for k ≥ 0. Then we have

E[Φk
2 ] ≤ θk1Φ

0
2,

E
[
∥xk+1−x∗∥2

∥xk−x∗∥2

]
≤ θk1

(
AMH2

8BM2
1µ

2 + 2NBR2

µ2

)
Φ0

2,

for k ≥ 0, where θ1 :=
(
1− min{4A,AM}

4

)
.

Theorems 4.9 and 4.10 also show the trade-off between
the communication cost at each iteration and the con-
vergence rate, i.e., the less we communicate at each

iteration (corresponding to higher level of compression
and smaller value of p), the slower the convergence will
be. Next, we explore under what conditions we can
guarantee the boundedness of ∥zk − x∗∥ and Hk.

Theorem 4.11. Let Assumption 4.7 hold. Then we
have the following results.
(i) Let Assumption 4.3 and Assumption 4.5 (ii) hold.

If ∥x0 − x∗∥2 ≤ c̃1 := min
{

µ2

4d2H2 ,
µ2

16d4NBR2M2
2

}
, then

∥zk − x∗∥2 ≤ dc̃1 and Hk ≤ µ2

16dNBR2 for k ≥ 0.
(ii) Let Assumption 4.4 and Assumption 4.6 hold. If

∥z0 − x∗∥2 ≤ c̃2 := min
{

AMµ2

4H2BM
, AAMµ2

16NBR2BMBM2
1

}
and

H0 ≤ AMµ2

16NBR2BM
, then ∥zk − x∗∥2 ≤ c̃2 and Hk ≤

AMµ2

16NBR2BM
for k ≥ 0.

4.1.2 Basis Learn with Bidirectional
Compression and Partial Participation

In this section, we present the extension of BL1 where
only a few selected clients are active at each iteration.
In other words, we unify the bidirectional compression
and partial participation in our BL2 (Algorithm 2).

As we deal with symmetric matrices such as Hessians,
we introduce the operator [·]s on the space of matrices
Rd×d, which symmetrizes its input A ∈ Rd×d as [A]s =
(A+A⊤)/2 . The main update of the global model xk

is based on the Stochastic Newton method (Kovalev
et al., 2019), where the update has the form of

xk+1 =

[
1
n

n∑
i=1

∇2fi(w
k
i )

]−1

·

[
1
n

n∑
i=1

(
∇2fi(w

k
i )w

k
i −∇fi(w

k
i )
)]

.

We use [Hk
i ]s + lki I to estimate ∇2fi(w

k
i ), and gki to

estimate ∇2fi(w
k
i )w

k
i −∇fi(w

k
i ), where lki = ∥[Hk

i ]s −
∇2fi(z

k
i )∥F is adopted to guarantee the positive defi-

niteness of [Hk
i ]s + lki I. Thus, like in FedNL-PP (Sa-

faryan et al., 2021), the key relation

gki = ([Hk
i ]s + lki I)w

k
i −∇fi(w

k
i ) (13)

need to be maintained in the design of BL2. Since each
node has a local model wk

i , we introduce zki to apply
the bidirectional compression, and Lk

i is expected to
learn hi(∇2fi(z

k
i )) iteratively. For the update of gki

on the server when ξki = 0, from (13), it is natural to
make gk+1

i − gki = ([Hk+1
i ]s − [Hk

i ]s + lk+1
i I− lki I)w

k+1
i

since wk+1
i = wk

i .

We give the convergence results of BL2 in the following
two theorems. Let Φk

3 := Wk + 2p
AM

(
1− τAM

n

)
Zk,

where Zk := 1
n

∑n
i=1 ∥zki − x∗∥2, for k ≥ 0.



Xun Qian, Rustem Islamov, Mher Safaryan, Peter Richtárik

Algorithm 2 BL2 (Basis Learn with Bidirectional
Compression and Partial Participation)

1: Parameters: α > 0; η > 0; matrix compression
operators {Ck

1 , . . . , Ck
n}; p ∈ (0, 1]; 0 < τ ≤ n

2: Initialization: w0
i = z0i = x0 ∈ Rd; L0

i ∈ Rd×d;

H0
i =

∑
jl(L

0
i )jlB

jl
i ; l0i = ∥[H0

i ]s − ∇2fi(w
0
i )∥F;

g0i = ([H0
i ]s + l0i I)w

0
i −∇fi(w

0
i ); Moreover: H0 =

1
n

∑n
i=1 H

0
i ; l

0 = 1
n

∑n
i=1 l

0
i ; g

0 = 1
n

∑n
i=1 g

0
i

3: on server
4: xk+1 =

(
[Hk]s + lkI

)−1
gk, choose a subset Sk ⊆

[n] such that P[i ∈ Sk] = τ/n for all i ∈ [n]
5: vki = Qk

i (x
k+1− zki ), z

k+1
i = zki + ηvki for i ∈ Sk

6: zk+1
i = zki , wk+1

i = wk
i for i /∈ Sk

7: Send vki to the selected devices i ∈ Sk

8: for each device i = 1, . . . , n in parallel do
9: for participating devices i ∈ Sk do

10: zk+1
i = zki + ηvki , S

k
i := Ck

i (h
i(∇2fi(z

k+1
i ))−Lk

i )

11: Lk+1
i = Lk

i +αSk
i , H

k+1
i = Hk

i +α
∑

jl(S
k
i )jlB

jl
i

12: lk+1
i = ∥[Hk+1

i ]s −∇2fi(z
k+1
i )∥F

13: Sample ξk+1
i ∼ Bernoulli(p)

14: if ξki = 1
15: wk+1

i = zk+1
i , gk+1

i = ([Hk+1
i ]s+ lk+1

i I)wk+1
i −

∇fi(w
k+1
i ), send gk+1

i − gki to server
16: if ξki = 0
17: wk+1

i = wk
i , g

k+1
i = ([Hk+1

i ]s + lk+1
i I)wk+1

i −
∇fi(w

k+1
i )

18: Send Sk
i , l

k+1
i − lki , and ξki to server

19: for non-participating devices i /∈ Sk do
20: zk+1

i = zki , w
k+1
i = wk

i , L
k+1
i = Lk

i , H
k+1
i = Hk

i ,
lk+1
i = lki , g

k+1
i = gki

21: end for
22: on server
23: if ξki = 1
24: wk+1

i = zk+1
i , receive gk+1

i − gki
25: if ξki = 0
26: wk+1

i = wk
i , g

k+1
i − gki =

α
[∑

jl(S
k
i )jlB

jl
i

]
s
wk+1

i + (lk+1
i − lki )w

k+1
i

27: gk+1 = gk + 1
n

∑
i∈Sk

(
gk+1
i − gki

)
28: Hk+1 = Hk + α

n

∑
i∈Sk

∑
jl(S

k
i )jlB

jl
i

29: lk+1 = lk + 1
n

∑
i∈Sk

(
lk+1
i − lki

)
Theorem 4.12 (Linear convergence of BL2). Let As-
sumption 4.7 hold. Let Assumption 4.3 (i) or Assump-

tion 4.4 (i) hold. Assume ∥zki − x∗∥2 ≤ AMµ2

(6H2+24H2
1 )BM

and Hk ≤ AMµ2

96NBR2BM
for all i ∈ [n] and k ≥ 0. Then

E[Φk
3 ] ≤

(
1− τ min{p,AM}

2n

)k
Φ0

3,

for k ≥ 0.

The result in Theorem 4.12 is similar to that in

Theorem 4.9, and τ represents the expected num-
ber of participating devices at each iteration. Define

Φk
4 := Hk +

4BM2
1

AM
∥xk − x∗∥2 for k ≥ 0. We can obtain

the following local superlinear rate.

Theorem 4.13 (Superlinear convergence of BL2). Let
η = 1, ξk ≡ 1, Sk ≡ [n], and Qk

i (x) ≡ x for any
x ∈ Rd and k ≥ 0. Let Assumption 4.7 hold. Let
Assumption 4.5 (i) or Assumption 4.6 (i) hold. Assume

∥zki − x∗∥2 ≤ AMµ2

(6H2+24H2
1 )BM

and Hk ≤ AMµ2

96NBR2BM
for

all i ∈ [n] and k ≥ 0. Then we have

E[Φk
4 ] ≤ θk2Φ

0
4,

E
[
∥xk+1−x∗∥2

∥xk−x∗∥2

]
≤ θk2

(
AM(3H2+12H2

1 )

16BM2
1µ

2 + 12NBR2

µ2

)
Φ0

4,

for k ≥ 0, where θ2 :=
(
1− min{2A,AM}

2

)
.

Now, we explore under what conditions we can guar-
antee the boundedness of ∥zki − x∗∥ and Hk.

Theorem 4.14. Let Assumption 4.7 hold. Then we
have the following results.
(i) Let Assumption 4.3 and Assumption 4.5 (ii) hold. If

∥x0−x∗∥2 ≤ c̃3 := min
{

µ2

d2(6H2+24H2
1 )
, µ2

96d4NBR2M2
2

}
,

then ∥zki − x∗∥2 ≤ dc̃3 and Hk ≤ µ2

96dNBR2 for i ∈ [n]
and k ≥ 0.
(ii) Let Assumption 4.4 and Assumption
4.6 hold. If ∥z0i − x∗∥2 ≤ c̃4, where

c̃4 := min
{

AMµ2

BM(6H2+24H2
1 )
, AAMµ2

96NBR2BMBM2
1

}
, and

∥L0
i − L∗

i ∥2F ≤ AMµ2

96NBR2BM
for all i ∈ [n], then

∥zki − x∗∥2 ≤ c̃4 and ∥Lk
i − L∗

i ∥2F ≤ AMµ2

96NBR2BM
for all

i ∈ [n] and k ≥ 0.

4.2 Basis Learn in Sd

Let {Bjl
i | j, l ∈ [d], j ≥ l} be a basis in the symmetric

subspace Sd of Rd×d that consists of all the symmet-
ric matrices for i ∈ [n]. In this case, the number of

symmetric matrices in the basis is Ñ := d(d+1)
2 . Then

any symmetric matrix A ∈ Rd×d can be uniquely rep-
resented as

A =
∑
j≥l

h̃i
jl(A)Bjl,

where h̃i
jl(A) ∈ R is the coefficient corresponding to

Bjl
i . Let Blj

i := Bjl
i for j > l and define h̃i(A) as a

symmetric matrix in Rd×d such that h̃i(A)jl :=
1
2 h̃

i
jl for

j > l and h̃i(A)jl := h̃i
jl for j = l. Let svec : Sd → RÑ

be defined as svec(A) :=

(A11, 2A21..., 2Ad1, ...,Ajj , ..., 2Adj , ...,Add)
⊤,

and M̃i := (B11
i , ...,Bd1

i , ...,Bjj
i , ...,Bdj

i , ...,Bdd
i ).

Then we have A = M̃isvec(h̃
i(A)), which is equiv-

alent to
svec(A) = B̃i · svec(h̃i(A)), (14)



Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning

for any symmetric matrix A, where

B̃i := (svec(B11
i ), ..., svec(Bd1

i ), ..., svec(Bjj
i ), ...,

svec(Bdj
i ), ..., svec(Bdd

i )) ∈ RÑ×Ñ .

Since the representation (14) is unique, we know B̃i is
invertible, and thus

svec(h̃i(A)) = (B̃i)
−1svec(A). (15)

Example 4.15. We choose Bjl
i ∈ Sd such that for

j ̸= l, (Bjl
i )jl = (Bjl

i )lj = (Bjl
i )jj = (Bjl

i )ll = 1 and

the other entries are 0; for j = l, (Bjj
i )jj = 1 and the

other entries are 0. It is easy to verify it is a basis in
Sd, and we also have Bjl

i ⪰ 0.

Example 4.16. For the basis in Example 4.15 and any
invertible matrix Q ∈ Rd×d, it is easy to see {QBjl

i Q
⊤}

is also a basis in Sd with QBjl
i Q

⊤ ⪰ 0.

We choose a basis {Bjl
i } in Sd such that Bjl

i ⪰ 0
for BL3 (Algorithm 3). To save space, BL3 is put
in the Appendix. The way to guarantee the positive
definiteness of the Hessian estimator is similar to that
in (Islamov et al., 2021). From the definition of γk

i , we
know (Lk

i )jl + 2γk
i ≥ c > 0. Noticing that ∇2fi(z

k
i )

can be expressed in the form∑
jl

(
h̃i(∇2fi(z

k
i ))jl+2γk

i

(Lk
i )jl+2γk

i

· ((Lk
i )jl + 2γk

i )− 2γk
i

)
Bjl

i ,

for βk
i in Option 2, we have the inequality∑

jl

(
βk((Lk

i )jl + 2γk
i )− 2γk

i

)
Bjl

i −∇2fi(z
k
i )

=
∑
jl

(
βk − h̃i(∇2fi(z

k
i ))jl+2γk

i

(Lk
i )jl+2γk

i

)
· ((Lk

i )jl + 2γk
i )B

jl
i

⪰ 0.

Thus, if we can maintain the Hessian estimator in the
form Hk

i :=
∑

jl

(
βk((Lk

i )jl + 2γk
i )− 2γk

i

)
Bjl

i , then

Hk
i ⪰ ∇2fi(z

k
i ) (we can get Hk

i ⪰ ∇2fi(z
k−1
i ) for

Option 1 similarly). To achieve this goal, we use two
auxiliary matrices Ak

i , C
k
i , and maintain them as Ak

i =∑
jl((L

k
i )jl + 2γk

i )B
jl
i , C

k
i =

∑
jl 2γ

k
i B

jl
i , and Hk

i =

βkAk
i −Ck

i . BL3 follows the same structure of BL2, thus
we also need to keep the relation gki = Hk

iw
k
i −∇fi(w

k
i ),

which is actually gki = βkAk
iw

k
i − Ck

iw
k
i − ∇fi(w

k
i ).

Since for non-participating devices, βk usually changes
at each step, we split gki into two parts by using two
auxiliary vectors gki,1, gki,2, and assign gki,1 = Ak

iw
k
i ,

gki,2 = Ck
iw

k
i − ∇fi(w

k
i ), and gki = βkgki,1 − gki,2. The

rest of BL3 is the same as BL2. The convergence results
of BL3 are similar to that of BL2 and are listed in the
Appendix.

5 Experiments

We conduct numerical experiments to compare the per-
formance of BL methods with various efficient methods
in federated learning. We consider regularized logistic
regression problem

min
x∈Rd

{
f(x) := 1

n

n∑
i=1

fi(x) +
λ
2 ∥x∥

2

}
, (16)

where fi(x) =
1
m

∑m
j=1 log

(
1 + exp

(
−bija

⊤
ijx
))
. Here

{aij , bij}j∈[m] are data points storing at the i-th de-
vice. LibSVM data sets were used in the experiments
(Chang and Lin, 2011): a1a, a9a, phishing, w2a, w8a,
covtype, madelon. We use two values of the regular-
ization parameter: λ ∈ {10−3, 10−4}. In the figures we
plot the relation of the optimality gap f(xk) − f(x∗)
and the number of communicated bits per node. The
optimal value f(x∗) is chosen as the function value at
the 20-th iterate of standard Newton’s method.

5.1 Basis Computation for BL

One of the most popular types of data preprocessing in
classical machine learing is dimension reduction. One of
such techniques is based on SVD of the feature matrix.
We would like to point out that SVD could also be used
to find a basis for each client. In our experiments we use
linalg.orth function from SciPy module (Jones et al.,
2001). In other words, such data preprocessing could be
used not only for stability of certain machine learning
model, but also for the improvement of optimization
process.

5.2 Comparison with Second-order Methods

We compare the performance of BL1 with DINGO
(Crane and Roosta, 2019), FedNL (Safaryan et al., 2021),
NL1 (Islamov et al., 2021), N0 (Safaryan et al., 2021) in
terms of communication complexity. For FedNL, NL1,
and BL1 we use ∇2fi(x

0) as the initialization of H0
i .

Besides, the stepsize α = 1, Rank-1 compression for
matrices, and option 1 (projection) were used for FedNL.
For NL1 compression mechanism is Rand-1 with step-
size α = 1/(ω+1). Backtracking linesearch for DINGO
selects the largest stepsize from {1, 2−1, 2−2, . . . , 2−10}.
We set the authors’ choice for other parameters of the
method: θ = 10−4, ϕ = 10−6, ρ = 10−4. Compression
operator Ck

i in BL1 is Top-K, where K = r (r is the
dimension of the local data). We set p = 1 and use
identity compression for Qk with stepsize η = 1 for
models (backside compression is not used). Accord-
ing the results in Figure 1 (1st row), BL1 is the most
efficient method in all cases.



Xun Qian, Rustem Islamov, Mher Safaryan, Peter Richtárik

21 25 29 213 217 221

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

FedNL, Rank-R;R=1
N0
DINGO
NL1, Rand-K;K=1
BL1, Top-K;K= r

211 214 217 220

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

FedNL, Rank-R;R=1
N0
DINGO
NL1, Rand-K;K=1
BL1, Top-K;K= r

211 214 217 220

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

FedNL, Rank-R;R=1
N0
DINGO
NL1, Rand-K;K=1
BL1, Top-K;K= r

211 214 217 220

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

FedNL, Rank-R;R=1
N0
DINGO
NL1, Rand-K;K=1
BL1, Top-K;K= r

(a) covtype, λ = 10−3 (b) a1a, λ = 10−4 (c) a9a, λ = 10−3 (d) phishing, λ = 10−4

25 29 213 217 221 225

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

ADIANA, RD, s=
p
d

DIANA, RD, s=
p
d

GD
S-Local-GD, p= q= 1

n

BL1, Top-K;K= r

21 25 29 213 217 221 225 229

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

ADIANA, RD, s=
p
d

DIANA, RD, s=
p
d

GD
S-Local-GD, p= q= 1

n

BL1, Top-K;K= r

25 29 213 217 221 225

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

ADIANA, RD, s=
p
d

DIANA, RD, s=
p
d

GD
S-Local-GD, p= q= 1

n

BL1, Top-K;K= r

21 25 29 213 217 221 225 229

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

ADIANA, RD, s=
p
d

DIANA, RD, s=
p
d

GD
S-Local-GD, p= q= 1

n

BL1, Top-K;K= r

(a) madelon, λ = 10−3 (b) w2a, λ = 10−4 (c) a9a, λ = 10−3 (d) a1a, λ = 10−4

214 217 220 223

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

Rank-R;R=1
RRank-R;R=1
NRank-R;R=1

217 220 223

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

Rank-R;R=1
RRank-R;R=1
NRank-R;R=1

214 217 220 223

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

Rank-R;R=1
RRank-R;R=1
NRank-R;R=1

217 220 223

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

Rank-R;R=1
RRank-R;R=1
NRank-R;R=1

(a) a9a, λ = 10−4 (b) w8a, λ = 10−3 (c) a1a, λ = 10−4 (d) w2a, λ = 10−3

Figure 1: Comparison of BL1 with N0, FedNl, NL1, DINGO (first row), DIANA, ADIANA, GD, S-Local-GD
(second row) and the performance of BL2 with compressors Rank-R, RRank-R, and NRank-R (third row) in
terms of communication complexity.

5.3 Comparison with First-order Methods

Next we compare the performance of BL1 with vanilla
gradient descent GD, DIANA (Mishchenko et al., 2019),
ADIANA (Li et al., 2020), and shifted local gradient
descent (S-Local-GD) (Gorbunov et al., 2021) in terms
of communication complexity. Theoretical stepsizes
were chosen for first-order methods. For DIANA and
ADIANA we use random dithering compression (Alis-
tarh et al., 2017; Horváth et al., 2019) with s =

√
d

levels. Probabilities p and q are equal to 1/n for S-Local-
GD. Parameters of BL1 are the same as in the previous
section. We clearly see in Figure 1 (2nd row) that BL1
is more communication efficient than all gradient type
methods by several orders in magnitude.

5.4 Composition of Compressors

In our next experiment we analyse the composition
of Rank-R and unbiased compression operators; see
Section 3 for more details. We consider BL2 with 3 com-
pression mechanisms: Rank-R, RRank-R (composition
of Rank-R and random dithering with s =

√
d levels),

and NRank-R (composition of Rank-R and natural
compression). For all three compressors R = 1, and
initializaion is H0 = ∇2f(x0). Besides, the parameters
of BL2 are the following: τ = n, p = 1

10 . Finally, we use

Top-K with K = ⌊ d
10⌋ for Qk

i . In this experiment we
use standard basis in the space of matrices which means
that BL2 turns to be FedNL. According to numerical
results presented in Figure 1 (3rd row), composition is
indeed useful.

6 MORE DISCUSSIONS

In this paper, we consider the basis in Rd×d and Sd. It
is actually possible to extend Basis Learn to the case
where {Bjl

i } is not necessarily a basis in some space.

More precisely, if there exist a set {Bj
i}j∈Si and a map

hi : Rd → R|Si| such that for any x ∈ Rd, ∇2fi(x) can
be represented by

∑
j h

i(x)jB
j
i and hi is L-Lipschitz

continuous, i.e., ∥hi(x) − hi(y)∥ ≤ L∥x − y∥ for any
x, y ∈ Rd, then we can get the corresponding algorithm
and convergence results in the same way.

References

Foivos Alimisis, Peter Davies, and Dan Alistarh.
Communication-efficient distributed optimization
with quantized preconditioners. In International
Conference on Machine Learning (ICML), 2021.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka,
and Milan Vojnovic. QSGD: Communication-efficient



Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning

SGD via gradient quantization and encoding. In
Advances in Neural Information Processing Systems,
pages 1709–1720, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson,
Nikola Konstantinov, Sarit Khirirat, and Cédric
Renggli. The convergence of sparsified gradient meth-
ods. In Advances in Neural Information Processing
Systems, pages 5977–5987, 2018.

Ron Bekkerman, Mikhail Bilenko, and John Langford.
Scaling up machine learning: Parallel and distributed
approaches. Cambridge University Press, 2011.

Aleksandr Beznosikov, Samuel Horváth, Peter
Richtárik, and Mher Safaryan. On biased com-
pression for distributed learning. arXiv preprint
arXiv:2002.12410, 2020.

Chih-Chung Chang and Chih-Jen Lin. LibSVM: a
library for support vector machines. ACM Transac-
tions on Intelligent Systems and Technology (TIST),
2(3):1–27, 2011.

Congliang Chen, Li Shen, Haozhi Huang, and Wei
Liu. Quantized adam with error feedback. ACM
Transactions on Intelligent Systems and Technology
(TIST), 12(5):1–26, 2021.

Rixon Crane and Fred Roosta. Dingo: Distributed
newton-type method for gradient-norm optimization.
In Advances in Neural Information Processing Sys-
tems, volume 32, pages 9498–9508, 2019.

Ron S. Dembo, Stanley C. Eisenstat, and Trond Stei-
haug. Inexact newton methods. SIAM J. Numer.
Anal., 19(2), pages 400–408, 1982.

J. E. Dennis and J. J. Moré. A characterization
of superlinear convergence and its application to
quasi-newton methods. Mathematics of Computa-
tion, 28(126), page 549–560, 1974.

Avishek Ghosh, Raj Kumar Maity, Arya Mazumdar,
and Kannan Ramchandran. Communication effi-
cient distributed approximate newton method. In
2020 IEEE International Symposium on Informa-
tion Theory (ISIT), pages 2539–2544, 2020. doi:
10.1109/ISIT44484.2020.9174216.

Eduard Gorbunov, Filip Hanzely, and Peter Richtárik.
Local SGD: Unified theory and new efficient methods.
In International Conference on Artificial Intelligence
and Statistics (AISTATS), 2021.

Andreas Griewank. The modification of newton’s
method for unconstrained optimization by bounding
cubic terms. Technical report, Department of Applied
Mathematics and Theoretical Physics, University of
Cambridge, Technical Report NA/12, 1981.

Vipul Gupta, Avishek Ghosh, Michal Derezinski, Ra-
jiv Khanna, Kannan Ramchandran, and Michael
Mahoney. Localnewton: Reducing communication

bottleneck for distributed learning. In 37th Confer-
ence on Uncertainty in Artificial Intelligence (UAI
2021), 2021.

Samuel Horváth, Dmitry Kovalev, Konstantin
Mishchenko, Sebastian Stich, and Peter Richtárik.
Stochastic distributed learning with gradient quan-
tization and variance reduction. arXiv preprint
arXiv:1904.05115, 2019.

Rustem Islamov, Xun Qian, and Peter Richtárik. Dis-
tributed second order methods with fast rates and
compressed communication. International Confer-
ence on Machine Learning (ICML), 2021.

Eric Jones, Travis Oliphant, Pearu Peterson, et al.
SciPy: Open source scientific tools for Python.
http://www.scipy.org/, 2001.

Ahmed Khaled, Konstantin Mishchenko, and Peter
Richtárik. Tighter theory for local SGD on identical
and heterogeneous data. In The 23rd International
Conference on Artificial Intelligence and Statistics
(AISTATS 2020), 2020.

Jakub Konečný, H. Brendan McMahan, Felix Yu, Pe-
ter Richtárik, Ananda Theertha Suresh, and Dave
Bacon. Federated learning: strategies for improving
communication efficiency. In NIPS Private Multi-
Party Machine Learning Workshop, 2016.

Dmitry Kovalev, Konstanting Mishchenko, and Peter
Richtárik. Stochastic Newton and cubic Newton
methods with simple local linear-quadratic rates. In
NeurIPS Beyond First Order Methods Workshop,
2019.

Zhize Li, Dmitry Kovalev, Xun Qian, and Peter
Richtárik. Acceleration for compressed gradient de-
scent in distributed and federated optimization. In
International Conference on Machine Learning, 2020.

Chieh-Yen Lin, Cheng-Hao Tsai, Ching pei Lee, and
Chih-Jen Lin. Large-scale logistic regression and
linear support vector machines using spark. 2014
IEEE International Conference on Big Data (Big
Data), pages 519–528, 2014.

Ji Liu and Ce Zhang. Distributed Learning Systems with
First-Order Methods, volume 9. Foundations and
Trends in Databases, 2020. doi: 10.1561/1900000062.

Xiaorui Liu, Yao Li, Jiliang Tang, and Ming Yan. A
double residual compression algorithm for efficient
distributed learning. In International Conference
on Artificial Intelligence and Statistics (AISTATS),
2020.

Konstantin Mishchenko, Eduard Gorbunov, Martin
Takáč, and Peter Richtárik. Distributed learning
with compressed gradient differences. arXiv preprint
arXiv:1901.09269, 2019.



Xun Qian, Rustem Islamov, Mher Safaryan, Peter Richtárik

Yurii Nesterov and Boris T. Polyak. Cubic regulariza-
tion of Newton method and its global performance.
Mathematical Programming, 108(1):177–205, 2006.

Barak A. Pearlmutter. Fast exact multiplication by
the hessian. Neural Computation, 1993.

Constantin Philippenko and Aymeric Dieuleveut. Bidi-
rectional compression in heterogeneous settings for
distributed or federated learning with partial partici-
pation: tight convergence guarantees. arXiv preprint
arXiv:2006.14591, 2021.

Xun Qian, Hanze Dong, Peter Richtárik, and Tong
Zhang. Error compensated loopless svrg, quartz,
and sdca for distributed optimization. arXiv preprint
arXiv:2109.10049, 2021.

Sashank J. Reddi, Jakub Konečný, Peter Richtárik,
Barnabás Póczos, and Alexander J. Smola. AIDE:
Fast and communication efficient distributed opti-
mization. CoRR, abs/1608.06879, 2016.

Fred Roosta, Yang Liu, Peng Xu, and Michael W.
Mahoney. Newton-MR: Newton’s Method With-
out Smoothness or Convexity. arXiv preprint
arXiv:1810.00303, 2019.

Mher Safaryan, Rustem Islamov, Xun Qian, and Peter
Richtárik. FedNL: Making Newton-Type Methods
Applicable to Federated Learning. arXiv preprint
arXiv:2106.02969, 2021.

Ohad Shamir, Nati Srebro, and Tong Zhang.
Communication-effcient distributed optimization us-
ing an approximate newton-type method. In Proceed-
ings of the 31th International Conference on Machine
Learning, volume 32, pages 1000–1008, 2014.

Sebastian U. Stich. Local SGD converges fast and
communicates little. In International Conference on
Learning Representations (ICLR), 2020.

Shusen Wang, Fred Roosta abd Peng Xu, and
Michael W Mahoney. GIANT: Globally improved ap-
proximate Newton method for distributed optimiza-
tion. In Advances in Neural Information Processing
Systems (NeurIPS), 2018.

Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang.
Gradient sparsification for communication-efficient
distributed optimization. In Advances in Neural
Information Processing Systems, pages 1306–1316,
2018.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan
Wang, Yiran Chen, and Hai Li. Terngrad: Ternary
gradients to reduce communication in distributed
deep learning. In Advances in Neural Information
Processing Systems, pages 1509–1519, 2017.

Hang Xu, Chen-Yu Ho, Ahmed M. Abdelmoniem, Ari-
tra Dutta, El Houcine Bergou, Konstantinos Karat-
senidis, Marco Canini, and Panos Kalnis. Com-

pressed Communication for Distributed Deep Learn-
ing: Survey and Quantitative Evaluation. Techni-
cal report, KAUST, Apr 2020. URL http://hdl.

handle.net/10754/662495.

Jiaqi Zhang, Keyou You, and Tamer Başar. Achieving
globally superlinear convergence for distributed opti-
mization with adaptive newton method. In 2020 59th
IEEE Conference on Decision and Control (CDC),
pages 2329–2334, 2020. doi: 10.1109/CDC42340.
2020.9304321.

Yuchen Zhang and Lin Xiao. DiSCO: Distributed opti-
mization for self-concordant empirical loss. In In Pro-
ceedings of the 32nd International Conference on Ma-
chine Learning, PMLR, volume 37, pages 362–370,
2015.

Yong Zhuang, Wei-Sheng Chin, Yu-Chin Juan, and
Chih-Jen Lin. Distributed newton methods for reg-
ularized logistic regression. In Tru Cao, Ee-Peng
Lim, Zhi-Hua Zhou, Tu-Bao Ho, David Cheung, and
Hiroshi Motoda, editors, Advances in Knowledge Dis-
covery and Data Mining, pages 690–703, Cham, 2015.
Springer International Publishing. ISBN 978-3-319-
18032-8.

http://hdl.handle.net/10754/662495
http://hdl.handle.net/10754/662495


Supplementary Material:
Basis Matters: Better Communication-Efficient
Second Order Methods for Federated Learning

Contents

1 INTRODUCTION 1

1.1 Distributed Second Order Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 MOTIVATION AND CONTRIBUTIONS 2

2.1 Naive Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Utilizing the Problem Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.3 Utilizing the Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.4.1 Basis Learn with Bidirectional Compression. . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.4.2 Extensions to Partial Device Participation. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4.3 Fast Local Rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4.4 Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 MATRIX COMPRESSION 4

4 BASIS LEARN 4

4.1 Basis Learn in Rd×d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4.1.1 Basis Learn with Bidirectional Compression . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.1.2 Basis Learn with Bidirectional Compression and Partial Participation . . . . . . . . . . . 6

4.2 Basis Learn in Sd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Experiments 8

5.1 Basis Computation for BL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.2 Comparison with Second-order Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.3 Comparison with First-order Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.4 Composition of Compressors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

6 MORE DISCUSSIONS 9

A CONVERGENCE RESULTS FOR BL3 14

B EXTRA EXPERIMENTS 16



Xun Qian, Rustem Islamov, Mher Safaryan, Peter Richtárik

B.1 Parameters Setting and Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

B.2 Compression Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

B.2.1 Unbiased Compression Operator: Random Dithering . . . . . . . . . . . . . . . . . . . . 16

B.2.2 Examples of Contractive Compression Operators for Matrices . . . . . . . . . . . . . . . . 17

B.3 Example of Unbiased Compression Operators for Matrices . . . . . . . . . . . . . . . . . . . . . . 17

B.4 The Performance of Newton’s Method in Different Basis . . . . . . . . . . . . . . . . . . . . . . . 17

B.5 Composition of Top-K and Unbiased Compressor . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.6 The Effect of Partial Participation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

B.7 Bidirectional Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B.8 Comparison of BL2 and BL3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

C PROOFS OF LEMMA 3.1 AND PROPOSITION 3.2 20

C.1 Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

C.2 Proof of Proposition 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

C.3 Linear Independence of Outer Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

D PROOFS OF BL1 22

D.1 Proof of Lemma 4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

D.2 Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

D.3 Proof of Theorem 4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

D.4 Proof of Theorem 4.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

D.5 Proof of Theorem 4.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

E PROOFS OF BL2 28

E.1 A Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

E.2 Proof of Theorem 4.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

E.3 Proof of Theorem 4.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

E.4 Proof of Theorem 4.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

F PROOFS OF BL3 34

F.1 Proof of Lemma A.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

F.2 Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

F.3 Proof of Theorem A.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

F.4 Proof of Theorem A.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

F.5 Proof of Theorem A.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning

A CONVERGENCE RESULTS FOR BL3

Algorithm 3 BL3

Parameters: learning rate α > 0, positive constant c > 0, minibatch size τ ∈ {1, 2, . . . , n}
Initialization: Bjl

i ⪰ 0; w0
i = z0i = x0 for i ∈ [n]; L0

i ∈ Rd×d; γ0
i = maxjl{c, |(L0

i )jl|}; A0
i =

∑
jl((L

0
i )jl +

2γ0
i )B

jl
i ; C

0
i =

∑
jl 2γ

0
i B

jl
i ; A

0 = 1
n

∑n
i=1 A

0
i ; C

0 = 1
n

∑n
i=1 C

0
i ; β

0
i = maxjl

h̃i(∇2fi(w
0
i ))jl+2γ0

i

(L0
i )jl+2γ0

i
; β0 = maxi{β0

i };
g0i,1 = A0

iw
0
i ; g

0
i,2 = C0

iw
0
i +∇fi(w

0
i ); g

0
1 = 1

n

∑n
i=1 g

0
i,1; g

0
2 = 1

n

∑n
i=1 g

0
i,2; H

0 = β0A0 −C0; g0 = β0g01 − g02
for k = 0, 1, 2, . . . do
on server

xk+1 =
(
Hk
)−1

gk Main step: Update the global model

Choose a subset Sk ⊆ {1, . . . , n} such that P[i ∈ Sk] = τ/n for all i ∈ [n]
vki = Qk

i (x
k+1 − zki ), zk+1

i = zki + ηvki for i ∈ Sk

zk+1
i = zki , wk+1

i = wk
i for i /∈ Sk

Send vki to the selected devices i ∈ Sk
Communicate to selected clients

for each node i = 1, . . . , n do
for participating devices i ∈ Sk do

zk+1
i = zki + ηvki , L

k+1
i = Lk

i + αCk
i

(
h̃i(∇2fi(z

k+1
i ))− Lk

i

)
, γk+1

i = maxjl{c, |(Lk+1
i )jl|}

Option 1: βk+1
i = maxjl

h̃i(∇2fi(z
k
i ))jl+2γk+1

i

(Lk+1
i )jl+2γk+1

i

Option 2: βk+1
i = maxjl

h̃i(∇2fi(z
k+1
i ))jl+2γk+1

i

(Lk+1
i )jl+2γk+1

i

Ak+1
i = Ak

i +
∑

jl

(
(Lk+1

i )jl − (Lk
i )jl + 2γk+1

i − 2γk
i

)
Bjl

i , Ck+1
i = Ck

i +
∑

jl

(
2γk+1

i − 2γk
i

)
Bjl

i

ξki =

{
1 with probability p
0 with probability 1− p

if ξki = 1
wk+1

i = zk+1
i , gk+1

i,1 = Ak+1
i wk+1

i , gk+1
i,2 = Ck+1

i wk+1
i +∇fi(w

k+1
i )

Send gk+1
i,1 − gki,1, g

k+1
i,2 − gki,2 to server

if ξki = 0
wk+1

i = wk
i , g

k+1
i,1 = Ak+1

i wk+1
i , gk+1

i,2 = Ck+1
i wk+1

i +∇fi(w
k+1
i )

Send Lk+1
i − Lk

i , β
k+1
i , ξki , γ

k+1
i − γk

i to server
for non-participating devices i /∈ Sk do
zk+1
i = zki , w

k+1
i = wk

i , L
k+1
i = Lk

i , γ
k+1
i = γk

i , β
k+1
i = βk

i , A
k+1
i = Ak

i , C
k+1
i = Ck

i , g
k+1
i,1 = gki,1,

gk+1
i,2 = gki,2

end for
on server

if ξki = 1
wk+1

i = zk+1
i , Receive gk+1

i,1 − gki,1, g
k+1
i,2 − gki,2,

if ξki = 0

wk+1
i = wk

i , g
k+1
i,1 − gki,1 =

∑
jl(L

k+1
i − Lk

i )jlB
jl
i w

k+1
i + 2(γk+1

i − γk
i )w

k+1
i

gk+1
i,2 − gki,2 =

∑
jl 2(γ

k+1
i − 2γk

i )B
jl
i w

k+1
i

gk+1
1 = gk1 + 1

n

∑
i∈Sk

(
gk+1
i,1 − gki,1

)
, gk+1

2 = gk2 + 1
n

∑
i∈Sk

(
gk+1
i,2 − gki,2

)
βk+1 = maxi{βk+1

i }, gk+1 = βk+1gk+1
1 − gk+1

2

Ak+1 = Ak + 1
n

∑
i∈Sk

∑
jl

(
(Lk+1

i )jl − (Lk
i )jl + 2γk+1

i − 2γk
i

)
Bjl

i

Ck+1 = Ck + 1
n

∑
i∈Sk

∑
jl

(
2γk+1

i − 2γk
i

)
Bjl

i , Hk+1 = βk+1Ak+1 −Ck+1

end for

Assumption A.1. Assume ∥∇2fi(x) − ∇2fi(y)∥ ≤ H∥x − y∥ for any x, y ∈ Rd and i ∈ [n]. Assume
maxjl{|(Lk

i )jl|} ≤ M3 for all i ∈ [n] and k ≥ 0. Assume ∥h̃i(∇2fi(x)) − h̃i(∇2fi(y))∥F ≤ M4∥x − y∥,
maxjl{|h̃i(∇2fi(x))jl − h̃i(∇2fi(y))jl|} ≤ M5∥x− y∥ for any x, y ∈ Rd and i ∈ [n], and maxjl{∥Bjl

i ∥F} ≤ R for
i ∈ [n]. Assume each fi is µ-strongly convex.

We estimate M3, M4, and M5 in Assumption A.1 in the following lemma.



Xun Qian, Rustem Islamov, Mher Safaryan, Peter Richtárik

Lemma A.2. (i) Assume ∥∇2fi(x)−∇2fi(y)∥F ≤ H1∥x−y∥ and maxjl{|(∇2fi(x))jl− (∇2fi(y))jl|} ≤ ν∥x−y∥
for any x, y ∈ Rd, and i ∈ [n]. Then we have M4 ≤

√
2maxi{∥(B̃i)

−1∥}H1 and M5 ≤ 2νmaxi{∥(B̃i)
−1∥∞}.

(ii) Assume maxjl{|(∇2fi(x))jl|} ≤ γ for any x ∈ Rd and i ∈ [n]. If Assumption 4.5 (ii) holds, then M3 ≤
2γmaxi{∥(B̃i)

−1∥∞}.
(iii) Assume ∥∇2fi(x)∥F ≤ γ̃ for any x ∈ Rd and i ∈ [n]. If Assumption 4.6 holds and ∥L0

i ∥F ≤
√
2B√
A
∥(B̃i)

−1∥γ̃

for all i ∈ [n], then we have ∥Lk
i ∥F ≤

√
2B√
A
∥(B̃i)

−1∥γ̃ for k ≥ 0 and i ∈ [n], and M3 ≤
√
2Bγ̃√
A

maxi{∥(B̃i)
−1∥}.

Let Φk
5 := Wk + 2p

AM

(
1− τAM

n

)
Zk, where Zk := 1

n

∑n
i=1 ∥zki − x∗∥2, for k ≥ 0.

Theorem A.3 (Linear convergence of BL3). Let Assumption A.1 hold. Let Assumption 4.3 (i) or Assump-

tion 4.4 (i) hold. Assume ∥zki − x∗∥2 ≤ AMµ2

4(H2+4c1)BM
and Hk ≤ AMµ2

16c2BM
for all i ∈ [n] and k ≥ 0, where

c1 :=
4N2R2M2

5 (M3+2max{c,M3})2
c2 and c2 := 2NR2

(
1 + 2N(M3+2max{c,M3})2

c2

)
. Then we have

E[Φk
5 ] ≤

(
1− τ min{p,AM}

2n

)k
Φ0

5,

for k ≥ 0.

Define Φk
6 := Hk +

4BM2
4

AM
∥xk − x∗∥2 for k ≥ 0.

Theorem A.4 (Superlinear convergence of BL3). Let η = 1, ξk ≡ 1, Sk ≡ [n], and Qk
i (x) ≡ x for any

x ∈ Rd and k ≥ 0. Let Assumption A.1 hold. Let Assumption 4.5 (i) or Assumption 4.6 (i) hold. Assume

∥zki − x∗∥2 ≤ AMµ2

4(H2+4c1)BM
and Hk ≤ AMµ2

16c2BM
for all i ∈ [n] and k ≥ 0. Then we have

E[Φk
6 ] ≤ θk3Φ

0
6,

for k ≥ 0, where θ3 :=
(
1− min{2A,AM}

2

)
. Moreover, for Option 1, we have

E
[
∥xk+1−x∗∥2

∥xk−x∗∥2

]
≤ θk3

(
AM(H2θ3+4c1)

8BM2
4µ

2θ3
+ 2c2

µ2

)
Φ0

6,

and for Option 2, we have

E
[
∥xk+1−x∗∥2

∥xk−x∗∥2

]
≤ θk3

(
AM(H2+4c1)

8BM2
4µ

2 + 2c2
µ2

)
Φ0

6,

for k ≥ 0.

Next, we explore under what conditions we can guarantee the boundedness of ∥zki − x∗∥2 and Hk.

Theorem A.5. Let Assumption A.1 hold. Then we have the following results.
(i) Let Assumption 4.3 and Assumption 4.5 (ii) hold. If

∥x0 − x∗∥2 ≤ min
{

µ2

4d2(H2+4c1)
, µ2

16d4c2M2
5

}
,

then ∥zki − x∗∥2 ≤ min
{

µ2

4d(H2+4c1)
, µ2

16d3c2M2
5

}
and Hk ≤ µ2

16dc2
for i ∈ [n] and k ≥ 0.

(ii) Let Assumption 4.4 and Assumption 4.6 hold. If ∥z0i − x∗∥2 ≤ min
{

AMµ2

4BM(H2+4c1)
, AAMµ2

16c2BMBM2
4

}
and ∥L0

i −

L∗
i ∥2F ≤ AMµ2

16c2BM
for all i ∈ [n], then ∥zki − x∗∥2 ≤ min

{
AMµ2

4BM(H2+4c1)
, AAMµ2

16c2BMBM2
4

}
and ∥Lk

i − L∗
i ∥2F ≤ AMµ2

16c2BM
for

all i ∈ [n] and k ≥ 0.



Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning

B EXTRA EXPERIMENTS

In this section we demonstrate additional numerical experiments comparing BL with relevant benchmarks and
with state-of-the-art methods. We consider regularized logistic regression problem

min
x∈Rd

{
1

n

n∑
i=1

fi(x) +
λ

2
∥x∥2

}
, fi(x) =

1

m

m∑
j=1

log
(
1 + exp(−bija

⊤
ijx)

)
,

where {aij , bij}j∈[m] are data samples belonging i-th node.

B.1 Parameters Setting and Data Sets

The data sets were taken from LibSVM library (Chang and Lin, 2011): a1a, a9a, phishing, covtype, madelon,
w2a, w8a. Each data set was partitioned across several nodes to cover a variety of scenarios. See Table 1 for more
detailed description.

Table 1: Data sets used in the experiments with the number of worker nodes n used in each case.

data set # workers n # data points (= nm) # features d average
dimension r

a1a 16 1600 123 64
a9a 80 32560 123 82
phishing 100 110 68 35
covtype 200 581000 54 24
madelon 10 2000 500 200
w2a 50 3450 300 59
w8a 142 49700 300 133

Theoretical parameters were used for gradient type methods: vanilla gradient descent (GD), DIANA (Mishchenko
et al., 2019), ADIANA (Li et al., 2020), and local gradient descent (Local-GD). The parameter constants for DINGO
(Crane and Roosta, 2019) were chosen following authors’ choice: θ = 10−4, ϕ = 10−6, ρ = 10−4. Backtracking line
search was used for DINGO to find the largest stepsize from {1, 2−1, . . . , 2−10}. The initialization of H0

i for NL1
(Islamov et al., 2021) and vanilla FedNL (Safaryan et al., 2021) is ∇2fi(x

0). Besides, for NL1 we use Rand-K
compressor with K = 1 and the stepsize α = 1

ω+1 , where ω = m
K − 1. For FedNL we use option 1 to make the

Hessian approximation to be positive definite (projection onto the cone of positive definite matrices), stepsize
α = 1, and compression operator Rank-R with R = 1. For BL3, we use option 2.

We carry out experiments for two values of regularization parameter λ ∈ {10−3, 10−4, 10−5}. In the figures we
plot the optimality gap f(xk) − f(x∗) versus the number of communicated bits per node. The optimal value
f(x∗) is chosen as the function value at the 20-th iterate of standard Newton’s method.

B.2 Compression Operators

B.2.1 Unbiased Compression Operator: Random Dithering

In all experiments with ADIANA and DIANA the compression operator applied on gradient differences is random
dithering (Alistarh et al., 2017; Horváth et al., 2019). This compressor has the parameter s (number of levels)
and can be defined via the formula

C(x) := sign(x) · ∥x∥q ·
ξs
s
, (17)

where ∥x∥q := (
∑

i |xi|q)1/q and ξs ∈ Rd is a random vector whose i-th entire defind as follows

(ξs)i =

{
l + 1 with probability |xi|

∥x∥q
s− l,

l otherwise.
(18)



Xun Qian, Rustem Islamov, Mher Safaryan, Peter Richtárik

Here s ∈ N+ denotes the levels of rounding, and l satisfies |xi|
∥x∥q

∈
[
l
s ,

l+1
s

]
. This compressor has the variance

parameter ω ≤ 2 + d1/2+d1/q

s (Horváth et al., 2019). However, for Euclidean norm (q = 2) one can improve the

bound by ω ≤ min
{

d
s2 ,

√
d
s

}
(Alistarh et al., 2017).

B.2.2 Examples of Contractive Compression Operators for Matrices

One of the examples of contractive compression operators is low-rank approximation or Rank-R compressor.
This compression operator is based on singular value decomposition of the matrix and belongs to the class of
contractive compressors with δ = R

d (Safaryan et al., 2021). Let X ∈ Rd×d and singular value decomposition of X
is

X =

d∑
i=1

σiuiv
⊤
i , (19)

where the singular values σi are sorted in non-increasing order: σ1 ≥ σ2 ≥ · · · ≥ σd. Then, the Rank-R compressor,
for R ≤ d, is defined by

C(X) :=

R∑
i=1

σiuiv
⊤
i . (20)

Note that if the input of Rank-R compressor is a symmetric matrix, then its output is automatically symmetric
matrix.

Another popular choice of contractive compressors in practice is Top-K. This compressor applied on matrices
sorts the entires of input in non-increasing order by magnitude, and then selects K maximal elements. Top-K

compressor belongs to the class of contractive compressors with δ = d2

K . For arbitrary matrix X ∈ Rd×d let sort
its entires in non-increasing order by magnitude, i.e., Xikjk is the k-th maximal element of X by magnitude. Let
{Bij}di,j=1 be a standard basis in the space of matrices. Then, the Top-K compression operator can be defined via

C(X) :=

K∑
k=1

Xikjk ·Bikjk . (21)

One way how to make the output of this compressor to be a symmetric matrix is to apply Top-K on upper
triangular part of the input.

B.3 Example of Unbiased Compression Operators for Matrices

The simplest example of unbiased compressor which could be applied on matrices is random sparsification operator

or Rand-K. This compressor belongs to the class of unbiased compressors with ω = d2

K − 1. For the input matrix
X ∈ Rd×d we choose a set SK of indexes (i, j) of cardinality K uniformly at random. Then Rand-K compressor
can be defined via

C (X)ij :=

{
d2

KXij if (i, j) ∈ SK ,

0 if (i, j) /∈ SK .
(22)

The way how to make the output of Rand-K to be a symmetric matrix is exaclty the same as for Top-K.

B.4 The Performance of Newton’s Method in Different Basis

First, we investigate how the performance of Newton’s method is influenced by the choice of the basis. We
compare the efficiency of Newton’s method on two bases: the one that was described in Section 2.3 and the
standard one. The results are presented in Figure 2. We clearly see that Newton’s method in the specific basis is
approximately 4 times more communication-efficient than in standard one.

B.5 Composition of Top-K and Unbiased Compressor

Next, we study other type of composition of compression operators. We investigate how composition of Top-K
and unbiased compression operator (Qian et al., 2021) influences the performance of BL2. We compare the
performance of BL2 with Top-K (K = r), RTop-K (K = r) (composition of Top-K and random dithering with



Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning

211 214 217 220 223 226

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

Newton in standard basis
Newotn in specific basis

28 211 214 217 220

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

Newton in standard basis
Newotn in specific basis

27 211 214 217 220 223

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

Newton in standard basis
Newton in specific basis

211 214 217 220 223 226

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

Newton in standard basis
Newotn in specific basis

madelon, λ = 10−3 covtype, λ = 10−3 phishing, λ = 10−4 w8a, λ = 10−4

Figure 2: The performance of Newton’s method in different basis in terms of communication complexity.

211 213 215 217 219

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

Top-K;K= ¿
RTop-K;K= ¿
NTop-K;K= ¿

214 216 218 220

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

Top-K;K= ¿
RTop-K;K= ¿
NTop-K;K= ¿

211 213 215 217

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

Top-K;K= ¿
RTop-K;K= ¿
NTop-K;K= ¿

211 213 215 217 219

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

Top-K;K= ¿
RTop-K;K= ¿
NTop-K;K= ¿

a9a, λ = 10−3 w2a, λ = 10−3 phishing, λ = 10−4 a1a, λ = 10−4

Figure 3: The performance of BL2 with different types of compression operators: Top-K, RTop-K (composition
of Top-K and random dithering with s =

√
K), and NTop-K (composition of Top-K and natrual compression).

s =
√
K), and NTop-K (K = r) (composition of Top-K and natural compression). The initialization of H0 is

∇2f(x0). Besides, we use the basis that was decribed in Section 2.3. We set the following parameters for BL2:
p = r

2d , τ = n, and Top-K with K = ⌊ r
2⌋ for models in the experiments on w2a, a1a data sets. In the experiments

on a9a, phishing data sets, these parameters are p = r
4d , τ = n, and Top-K, (K = ⌊ r

4⌋) compressor for models.
The results are presented in Figure 3. According to numerical results, we can conclude that composition of Top-K
and natural compression is the most efficient compressor in all cases. However, RTop-K have almost the same
performance as Top-K on data sets a1a, a9a.

B.6 The Effect of Partial Participation

FedNL-PP, Rank-R;R=1; ¿= 2n
3

Artemis, RD, s=
p
d ; ¿= 2n

3

BL2, Top-K;K= r; ¿= 2n
3

BL3, Top-K;K= d; ¿= 2n
3

FedNL-PP, Rank-R;R=1; ¿= n
5

Artemis, RD, s=
p
d ; ¿= n

5

BL2, Top-K;K= r; ¿= n
5

BL3, Top-K;K= d; ¿= n
5

FedNL-PP, Rank-R;R=1; ¿= n
3

Artemis, RD, s=
p
d ; ¿= n

3

BL2, Top-K;K= r; ¿= n
3

BL3, Top-K;K= d; ¿= n
3

FedNL-PP, Rank-R;R=1; ¿= n
2

Artemis, RD, s=
p
d ; ¿= n

2

BL2, Top-K;K= r; ¿= n
2

BL3, Top-K;K= d; ¿= n
2

211 214 217 220 223 226

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

211 214 217 220 223 226 229

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

28 211 214 217 220 223

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

25 28 211 214 217 220 223 226

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

a1a, λ = 10−4 a1a, λ = 10−5 a9a, λ = 10−4 phishing, λ = 10−5

Figure 4: The comparison of FedNL-PP, BL2, BL3, and Artemis with partial device participation in terms of
communication complexity.

In this section we study the effect of partial participation. For FedNL-PP (Safaryan et al., 2021) we use stepsize
α = 1 and Rank-R (R = 1) compression operator. The specific basis described in Section 2.3 were used for BL2.
Besides, the parameters of this method are the following: compression operator Ck

i is Top-K with K = r, p = 1.
The basis for BL3 were chosen from the Example 4.15. We use Top-K compressor with K = d for Ck

i , and set
p = 1 for this method. Both for BL2 and BL3 stepsizes are α = η = 1, model comressor Qk

i is identity. Random
dithering with s =

√
d levels was used for Artemis (Philippenko and Dieuleveut, 2021). In different cases we set

the number of active devices τ equal to various fractions of n. The results of the experiment are presented in



Xun Qian, Rustem Islamov, Mher Safaryan, Peter Richtárik

Figure 4. According to the plots, BL2 and FedNL-PP are the best methods, they outperform each depending on
data set. BL3 also outperform FedNL-PP on a1a (λ = 10−5) data set. In almost all cases FedNL-PP and BL2
outperform Artemis be many orders in magnitude. We can conclude that specific for the problem basis could be
beneficial.

B.7 Bidirectional Compression

In our next test we compare FedNL-BC (Safaryan et al., 2021), BL1, BL2, BL3, and DORE (Liu et al., 2020). The
parameters of FedNL-BC are the following: matrix compression operator is Top-K, K = ⌊d

2⌋; model compression

operator is Top-K, K = ⌊d
2⌋; stepsizes are α = η = 1; probability p = 1. We use option 1 (projection) to make

Hessian approximation to be positive definite. Next, we use the basis described in Section 2.3 for BL1 and BL2.
We use Top-K, K = ⌊ r

2⌋, for matrices and models compression, probability p = r
2d , and stepsizes α = η = 1. The

basis for BL3 is described in Example 4.15 in the main paper. Besides, this method has the following parameters:
Top-K, K = ⌊d

2⌋ for models and Hessians compression; stepsize α = η = 1; probability p = 1
2 . Finally, all devices

are active for BL2 and BL3, i.e. τ = n. The results of this test can be found in Figure 5.

FedNL-BC, Top-K, K= d
2
; p= 1

2
DORE, RD, s=

p
d BL1, Top-K, K= r

2
; p= r

2d
BL2, Top-K, K= r

2
; p= r

2d
BL3, Top-K, K= d

2
; p= 1

2

214 217 220 223 226 229

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

214 217 220 223 226

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

214 217 220 223 226

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

214 217 220 223 226

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

a1a, λ = 10−4 phishing, λ = 10−4 a9a, λ = 10−3 a1a, λ = 10−3

Figure 5: The comparison of FedNL-BC, BL1, BL2, BL3 and DORE with bidirectional compression in terms of
communication complexity.

We see that all second-order methods outperform DORE in terms of communication complexity by many orders in
magnitude. Moreover, we can conclude that specific to the problem basis is helpful since BL1 and BL2 outperform
FedNL-BC.

B.8 Comparison of BL2 and BL3

Finally, we compare BL2 and BL3 with bidirectional compression and partial participation simultaneously. We set
the number of active devices to n

2 . For BL2 we use standard basis in the space of matrices, for BL3 the basis
is one that was given in the example 4.15. For both methods the compression operator is Top-K, K = ⌊pd⌋,
both for models and matrices. The gradient compressor is lazy Bernoulli compressor with parameter p. We
set p ∈ {1, 1/3, 1/5}. In the Figure 6 we plot the optimality gap f(xk) − f(x∗) versus the average number of
communicated bits per node.

BL2, Top-K, K= bpdc, p= 1
5

BL2, Top-K, K= bpdc, p= 1
3

BL2, Top-K, K= bpdc, p=1 BL3, Top-K, K= bpdc, 1
5

BL3, Top-K, K= bpdc, 1
3

BL3, Top-K, K= bpdc, p=1

220 223 226

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

217 220 223 226 229

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

217 220

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

217 220 223

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

a1a, λ = 10−3 a1a, λ = 10−4 phishing, λ = 10−3 phishing, λ = 10−4

Figure 6: The comparison of BL2 and BL3 with bidirectional compression and partial participation in terms of
communication complexity.

The first observation from the numerical results is that BL2 is less communication-efficient method than BL3.
However, if we use specific basis for BL2, then it improves the performance of the method; in Figure 5 BL2 is better



Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning

than BL3. Besides, we clearly see that bicompression improves the performance of BL2 in partial participation
setting. However, this is not the case for BL3.

C PROOFS OF LEMMA 3.1 AND PROPOSITION 3.2

C.1 Proof of Lemma 3.1

(i) We have

∥∥∥∥ (B+B⊤)

2
−A

∥∥∥∥2
F

− ∥B−A∥2F

=
1

4
∥B+B⊤∥2F + ∥A∥2F − ⟨B+B⊤,A⟩ − ∥B∥2F − ∥A∥2F + 2⟨B,A⟩

=
1

4
∥B∥2F +

1

4
∥B⊤∥2F +

1

2
⟨B,B⊤⟩ − ∥B∥2F + ⟨B−B⊤,A⟩

=
1

2
⟨B,B⊤⟩ − 1

2
∥B∥2F + ⟨B−B⊤,A⟩

≤ ⟨B−B⊤,A⟩
= 0,

where the first inequality comes from the Cauchy-Schwartz inequality, and the last equality comes from the fact
that A is symmetric.

(ii) From (i), for any A ∈ Rd×d we have

E∥C̃(A)−A∥2F ≤ E∥C(A)−A∥2F ≤ (1− δ)∥A∥2F.

C.2 Proof of Proposition 3.2

From the definition of C1, we have

E[∥C1(A)−A∥2F] = E∥C1(A)∥2F + ∥A∥2F − 2E[⟨C1(A),A⟩]

= ∥A∥2F +

R∑
i=1

E
[
σ2
iQi

2(bivi)
⊤Qi

2(bivi)Qi
1(aiui)

⊤Qi
1(aiui)

a2i b
2
i (ω1 + 1)2(ω2 + 1)2

]

+
∑

i,j∈[R],i̸=j

E

[
σiσjQi

2(bivi)
⊤Qj

2(bjvj)Q
j
1(ajuj)

⊤Qi
1(aiui)

aiajbibj(ω1 + 1)2(ω2 + 1)2

]

− 2

〈
R∑
i=1

σiuiv
⊤
i

(ω1 + 1)(ω2 + 1)
,A

〉

= ∥A∥2F +

R∑
i=1

σ2
i E∥Qi

2(bivi)∥2 · E∥Qi
1(aiui)∥2

a2i b
2
i (ω1 + 1)2(ω2 + 1)2

− 2

〈
R∑
i=1

σiuiv
⊤
i

(ω1 + 1)(ω2 + 1)
,A

〉
,



Xun Qian, Rustem Islamov, Mher Safaryan, Peter Richtárik

where in the last two equalities, we use the independence of each Qi
1,Qi

2, and the fact that u⊤
j ui = 0 and v⊤i vj = 0

for i ̸= j. From the definition of unbiased compressors, we further have

E[∥C1(A)−A∥2F] ≤ ∥A∥2F +

R∑
i=1

σ2
i ∥ui∥2∥vi∥2

(ω1 + 1)(ω2 + 1)
− 2

〈
R∑
i=1

σiuiv
⊤
i

(ω1 + 1)(ω2 + 1)
,A

〉

=

(
1− 1

(ω1 + 1)(ω2 + 1)

)
∥A∥2F

+
1

(ω1 + 1)(ω2 + 1)

(
∥A∥2F +

R∑
i=1

σ2
i ∥ui∥2∥vi∥2 − 2

〈
R∑
i=1

σiuiv
⊤
i ,A

〉)

=

(
1− 1

(ω1 + 1)(ω2 + 1)

)
∥A∥2F +

1

(ω1 + 1)(ω2 + 1)

∥∥∥∥∥
R∑
i=1

σiuiv
⊤
i −A

∥∥∥∥∥
2

F

≤
(
1− 1

(ω1 + 1)(ω2 + 1)

)
∥A∥2F +

(1− R/d)

(ω1 + 1)(ω2 + 1)
∥A∥2F

=

(
1− R

d(ω1 + 1)(ω2 + 1)

)
∥A∥2F,

where in the last inequality we use the fact that Rank-R is a contraction compressor with parameter R/d (Safaryan
et al., 2021).

For C2, the result follows from Lemma 3.1 (ii).

C.3 Linear Independence of Outer Products

Lemma C.1. Let vectors {v1, v2, . . . , vr} ⊂ Rd are linearly independent. Then outer products {viv⊤j : i, j =

1, 2, . . . , r} are linearly independent matrices in Rd×d.

Proof. Let {e1, e2, . . . , ed} be the standard basis in Rd. Then, for all i ∈ [r]

vi =

r∑
t=1

vitet.

Denote Etl = ete
⊤
l . Suppose linear combination of matrices {viv⊤j : i, j = 1, 2, . . . , r} with some coefficients cij is

zero matrix. After simple transformations, we get

0 =

r∑
i,j=1

cijviv
⊤
j =

r∑
i,j=1

cij

d∑
t,l=1

vitvjlEtl =
d∑

t,l=1

 r∑
i,j=1

cijvitvjl

Etl,

which implies that
r∑

i,j=1

cijvitvjl = 0, for all t, l ∈ [d].

Then notice that

0 =

r∑
i,j=1

cijvitvjl =

r∑
i=1

 r∑
j=1

cijvjl

 vit =

r∑
i=1

c′ilvit

holds for all t ∈ [d], which implies that
∑r

i=1 c
′
ilvi = 0 (where that last 0 is a vector of size d). Since vi’s are linearly

independent, we get c′il = 0 for all i ∈ [d] and l ∈ [r]. By definition c′il =
∑r

j=1 cijvjl, hence
∑r

j=1 cijvj = 0.

Again using linear independence of vi’s, we get cij = 0 for all i, j ∈ [d]. Therefore outer products viv
⊤
j are also

independent.



Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning

Table 2: Key features of different implementation of classical Newton’s method in distributed systems. Here m is
the number of local training data, r is the intrinsic dimensionality of local data vectors (see Section 2).

Implementation
of Newton’s method Standard/Naive (Islamov et al., 2021) Ours

Problem
General

Finite Sum
General

Finite Sum
Generalized
Linear Model

Data Arbitrary Arbitrary
Low Intrinsic
Dimensional

Gradient communication
cost per iteration (floats) d min(m, d) r

Hessian communication
cost per iteration (floats) d2 min(m, d2) r2

Initial communication
cost (floats) - md rd

Reveals local training data ? No Yes No

D PROOFS OF BL1

We denote Ek[·] as the conditional expectation on zk, wk, and Hk
i .

D.1 Proof of Lemma 4.8

If ∥∇2fi(x)−∇2fi(y)∥F ≤ H1∥x− y∥ for any x, y ∈ Rd, and i ∈ [n], then from (9) we have

∥hi(∇2fi(x))− hi(∇2fi(y))∥F = ∥vec(hi(∇2fi(x)))− vec(hi(∇2fi(y)))∥
≤ ∥B−1

i ∥ · ∥vec(∇2fi(x))− vec(∇2fi(y))∥
= ∥B−1

i ∥ · ∥∇2fi(x)−∇2fi(y)∥F
≤ ∥B−1

i ∥H1∥x− y∥,

which implies that M1 in Assumption 4.7 satisfies M1 ≤ maxi{∥B−1
i ∥}H1.

If |(∇2fi(x))jl − (∇2fi(y))jl| ≤ ν∥x − y∥ for any x, y ∈ Rd, i ∈ [n], and j, l ∈ [d], then from (9), every entry
of hi(∇2fi(x)) − hi(∇2fi(y)) will be bounded by ν∥B−1

i ∥∞∥x − y∥. Hence M2 in Assumption 4.7 satisfies
M2 ≤ νmaxi{∥B−1

i ∥∞}.

D.2 Lemmas

The proofs of Lemma D.1 and Lemma D.2 are the same as that of Lemma B.1 in (Safaryan et al., 2021). Thus
we omit them.

Lemma D.1. Let Q be a compressor and η > 0. For any x, y, z ∈ Rd, we have following results.
(i) If Q is an unbiased compressor with parameter ωM and η ≤ 1/(ωM+1), then

E∥z + ηQ(x− z)− y∥2 ≤ (1− η)∥z − y∥2 + η∥x− y∥2,

where E[·] is the expectation with respect to Q.
(ii) If Q is a contraction compressor with parameter δM and η = 1, then

E∥z + ηQ(x− z)− y∥2 ≤
(
1− δM

4

)
∥z − y∥2 +

(
6

δM
− 7

2

)
∥x− y∥2,

Lemma D.2. Let C be a compressor and α > 0. For any matrix L ∈ Rd×d and y, z ∈ Rd, we have the following
results.
(i) If C is an unbiased compressor with parameter ω and α ≤ 1/ω+1, then

E∥L+ αC(hi(∇2fi(y))− L)− hi(∇2fi(z))∥2F ≤ (1− α)∥L− hi(∇2fi(z))∥2F + αM2
1 ∥y − z∥2,



Xun Qian, Rustem Islamov, Mher Safaryan, Peter Richtárik

where E[·] is the expectation with respect to C.
(ii) If C is a contraction compressor with parameter δ and α = 1, then

E∥L+ αC(hi(∇2fi(y))− L)− hi(∇2fi(z))∥2F ≤
(
1− δ

4

)
∥L− hi(∇2fi(z))∥2F +

(
6

δ
− 7

2

)
M2

1 ∥y − z∥2.

Lemma D.3. (i) If Assumption 4.3 (ii) holds, ∥x0 − x∗∥2 ≤ min{ µ2

4d2H2 ,
M
d }, ∥zk − x∗∥2 ≤ min{ µ2

4dH2 ,M}, and
Hk ≤ µ2

4dNBR2 for k ≤ K and any M > 0, then ∥zK+1 − x∗∥2 ≤ min{ µ2

4dH2 ,M}.
(ii) If Assumption 4.4 holds, HK ≤ AMµ2

4NBR2BM
, ∥zk − x∗∥2 ≤ min{ AMµ2

4H2BM
,M} for k ≤ K and any M > 0, then

∥zK+1 − x∗∥2 ≤ min{ AMµ2

4H2BM
,M}.

(iii) If Assumption 4.5(ii) holds, and ∥zk − x∗∥2 ≤ M
d2M2

2
for k ≤ K and any M > 0, then HK ≤ M .

(iv) If Assumption 4.6 holds, HK ≤ M , and ∥zK − x∗∥2 ≤ AM
BM2

1
for any any M > 0, then HK+1 ≤ M .

Proof. (i) If ξk = 1, from (23), (24), and (26), we have

∥xk+1 − x∗∥2 ≤ 1

µ2

(
H2

2
∥zk − x∗∥2 + 2NBR

2Hk

)
∥zk − x∗∥2

≤ 1

d
∥zk − x∗∥2

≤ min

{
µ2

4d2H2
,
M

d

}
,

for 0 ≤ k ≤ K.

If ξk = 0, since we also have ∥wk − x∗∥2 ≤ min{ µ2

4dH2 ,M}, then from (23), (25), and (26), we can get the above
inequality in the same way.

Since ∥x0 − x∗∥2 ≤ min{ µ2

4d2H2 ,
M
d }, we know ∥xk − x∗∥2 ≤ min{ µ2

4d2H2 ,
M
d } for all 0 ≤ k ≤ K + 1. Then from

Assumption 4.3 (ii), we can get

∥zK+1 − x∗∥2 ≤ dmax
j

|zK+1
j − x∗

j |2

≤ d max
0≤t≤K+1

∥xt − x∗∥2

≤ min

{
µ2

4dH2
,M

}
.

(ii) First, from the update rule of wk, we know ∥wk − x∗∥2 ≤ min{ AMµ2

4H2BM
,M} for k ≤ K. If ξK = 1, from (23),

(24), and (26), we have

∥xK+1 − x∗∥2 ≤ 1

µ2

(
H2

2
∥zK − x∗∥2 + 2NBR

2HK

)
∥zK − x∗∥2

≤
(

AM

8BM
+

AM

2BM

)
∥zK − x∗∥2

≤ AM

BM
min

{
AMµ2

4H2BM
,M

}
.

If ξK = 0, from ∥wK − x∗∥2 ≤ min{ AMµ2

4H2BM
,M} and (25), we can obtain the above inequality similarly. Then

from Lemma D.1 (ii), we arrive at

∥zK+1 − z∗∥2 ≤ (1−AM)∥zK − x∗∥2 +BM∥xK+1 − x∗∥2

≤ (1−AM)min

{
AMµ2

4H2BM
,M

}
+AM min

{
AMµ2

4H2BM
,M

}
= min

{
AMµ2

4H2BM
,M

}
.



Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning

(iii) From Assumption 4.5(ii), we have

HK =
1

n

n∑
i=1

∥LK
i − L∗

i ∥2F

≤ 1

n

n∑
i=1

d2 max
jl

{|(LK
i )jl − (L∗

i )jl|2}

≤ d2M2
2 max

0≤t≤K
∥zt − x∗∥2

≤ M.

(iv) From Assumption 4.6 and Lemma D.2 (ii), we have

∥LK+1
i − L∗

i ∥2F ≤ (1−A)∥LK
i − L∗

i ∥2F +BM2
1 ∥zK − x∗∥2

≤ (1−A)∥LK
i − L∗

i ∥2F +AM,

which implies that

HK+1 =
1

n

n∑
i=1

∥LK+1
i − L∗

i ∥2F ≤ (1−A)M +AM ≤ M.

D.3 Proof of Theorem 4.9

First we have

∥xk+1 − x∗∥2 = ∥zk − x∗ − [Hk]−1
µ gk∥2

=
∥∥[Hk]−1

µ

(
[Hk]µ(z

k − x∗)− (gk −∇f(x∗))
)∥∥2

≤ 1

µ2

∥∥[Hk]µ(z
k − x∗)− (gk −∇f(x∗))

∥∥2 , (23)

where we use ∇f(x∗) = 0 in the second equality, and ∥[Hk]−1
µ ∥ ≤ 1

µ in the last inequality.

If ξk = 1, then

∥∥[Hk]µ(z
k − x∗)− (gk −∇f(x∗))

∥∥2
=
∥∥∇f(zk)−∇f(x∗)−∇2f(x∗)(zk − x∗) + (∇2f(x∗)− [Hk]µ)(z

k − x∗)
∥∥2

≤ 2
∥∥∇f(zk)−∇f(x∗)−∇2f(x∗)(zk − x∗)

∥∥2 + 2
∥∥(∇2f(x∗)− [Hk]µ)(z

k − x∗)
∥∥2

≤ H2

2
∥zk − x∗∥4 + 2∥[Hk]µ −∇2f(x∗)∥2 · ∥zk − x∗∥2

≤ H2

2
∥zk − x∗∥4 + 2∥Hk −∇2f(x∗)∥2F∥zk − x∗∥2

=
H2

2
∥zk − x∗∥4 + 2

∥∥∥∥ 1nHk
i − 1

n
∇2fi(x

∗)

∥∥∥∥2
F

∥zk − x∗∥2

≤ H2

2
∥zk − x∗∥4 + 2

n

n∑
i=1

∥Hk
i −∇2fi(x

∗)∥2F∥zk − x∗∥2, (24)

where in the second inequality, we use the Lipschitz continuity of the Hessian of f , and in the last inequality, we
use the convexity of ∥ · ∥2F.



Xun Qian, Rustem Islamov, Mher Safaryan, Peter Richtárik

If ξk = 0, then ∥∥[Hk]µ(z
k − x∗)− (gk −∇f(x∗))

∥∥2
=
∥∥[Hk]µ(z

k − wk) +∇f(wk)−∇f(x∗)− [Hk]µ(z
k − x∗)

∥∥2
=
∥∥[Hk]µ(x

∗ − wk) +∇f(wk)−∇f(x∗)
∥∥2

=
∥∥∇f(wk)−∇f(x∗)−∇2f(x∗)(wk − x∗) + (∇2f(x∗)− [Hk]µ)(w

k − x∗)
∥∥2

≤ H2

2
∥wk − x∗∥4 + 2∥Hk −∇2f(x∗)∥2F∥wk − x∗∥2

≤ H2

2
∥wk − x∗∥4 + 2

n

n∑
i=1

∥Hk
i −∇2fi(x

∗)∥2F∥wk − x∗∥2. (25)

From the above three inequalities, we can obtain

Ek∥xk+1 − x∗∥2 ≤ H2p

2µ2
∥zk − x∗∥4 + 2p

nµ2

n∑
i=1

∥Hk
i −∇2fi(x

∗)∥2F∥zk − x∗∥2

+
H2(1− p)

2µ2
∥wk − x∗∥4 + 2(1− p)

nµ2

n∑
i=1

∥Hk
i −∇2fi(x

∗)∥2F∥wk − x∗∥2.

From the definition of (AM, BM) and Lemma D.1, by choosing z = zk, x = xk+1, and y = x∗ in Lemma D.1, we
can obtain

Ek∥zk+1 − x∗∥2 = Ek∥zk + ηQk(xk+1 − zk)− x∗∥2

≤ (1−AM)∥zk − x∗∥2 +BMEk∥xk+1 − x∗∥2.

Combining the above two inequalities, we arrive at

Ek∥zk+1 − x∗∥2 ≤ (1−AM)∥zk − x∗∥2 + BMp

µ2

(
H2

2
∥zk − x∗∥2 + 2

n

n∑
i=1

∥Hk
i −∇2fi(x

∗)∥2F

)
∥zk − x∗∥2

+
BM(1− p)

µ2

(
H2

2
∥wk − x∗∥2 + 2

n

n∑
i=1

∥Hk
i −∇2fi(x

∗)∥2F

)
∥wk − x∗∥2.

From the update rule of Hk
i , we know Hk

i =
∑

jl(L
k
i )jlB

jl
i . Denote L∗

i = hi(∇2fi(x
∗)). Then we have

∥Hk
i −∇2fi(x

∗)∥2F =

∥∥∥∥∥∥
∑
jl

(Lk
i − L∗

i )jlB
jl
i

∥∥∥∥∥∥
2

F

≤ NB

∑
jl

∥(Lk
i − L∗

i )jlB
jl
i ∥

2
F

≤ NBR
2∥Lk

i − L∗
i ∥2F. (26)

Define Hk := 1
n

∑n
i=1 ∥Lk

i − L∗
i ∥2F. Then we have

Ek∥zk+1 − x∗∥2 ≤ (1−AM)∥zk − x∗∥2 + BMp

µ2

(
H2

2
∥zk − x∗∥2 + 2NBR

2Hk

)
∥zk − x∗∥2

+
BM(1− p)

µ2

(
H2

2
∥wk − x∗∥2 + 2NBR

2Hk

)
∥wk − x∗∥2.



Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning

Assume ∥zk − x∗∥2 ≤ AMµ2

4H2BM
and Hk ≤ AMµ2

16NBR2BM
for k ≥ 0. Then from the update rule of wk, we know

∥wk − x∗∥2 ≤ AMµ2

4H2BM
for k ≥ 0. Thus we have

Ek∥zk+1 − x∗∥2 ≤
(
1−AM +

AMp

4

)
∥zk − x∗∥2 + AM(1− p)

4
∥wk − x∗∥2. (27)

From the update rule of wk, we have

Ek∥wk+1 − x∗∥2 = p∥zk − x∗∥2 + (1− p)∥wk − x∗∥2. (28)

Define Φk
1 := ∥zk − x∗∥2 + AM(1−p)

2p ∥wk − x∗∥2. Then we can get

Ek[Φ
k+1
1 ] = Ek∥zk+1 − x∗∥2 + AM(1− p)

2p
Ek∥wk+1 − x∗∥2

(27)

≤
(
1−AM +

AMp

4

)
∥zk − x∗∥2 + AM(1− p)

4
∥wk − x∗∥2 + AM(1− p)

2p
Ek∥wk+1 − x∗∥2

(28)

≤
(
1− AM

2

)
∥zk − x∗∥2 +

(
1− p

2

) AM(1− p)

2p
∥wk − x∗∥2

≤
(
1− min{AM, p}

2

)
Φk

1 .

By applying the tower property, we have

E[Φk+1
1 ] ≤

(
1− min{AM, p}

2

)
E[Φk

1 ].

Unrolling the recursion, we can get the result.

D.4 Proof of Theorem 4.10

Since ξk ≡ 1, η = 1, and Qk(x) ≡ x for any x ∈ Rd, it is easy to see that zk ≡ xk for k ≥ 0. In this case, we can
view Qk as an unbiased compressor with ωM = 0 or a contraction compressor with δM = 1. Then from (27), we
have

Ek∥xk+1 − x∗∥2 ≤
(
1− AM

2

)
∥xk − x∗∥2.

From Lemma D.2, we can obtain

Ek[Hk+1] ≤ (1−A)Hk +BM2
1 ∥xk − x∗∥2.

Thus,

Ek[Φ
k+1
2 ] = Ek[Hk+1] +

4BM2
1

AM
Ek∥xk+1 − x∗∥2

≤ (1−A)Hk +BM2
1 ∥xk − x∗∥2 + 4BM2

1

AM

(
1− AM

2

)
∥xk − x∗∥2

≤
(
1− min{4A,AM}

4

)
Φk

2 .

By applying the tower property, we have E[Φk+1
2 ] ≤ θ1E[Φk

2 ]. Unrolling the recursion, we have E[Φk
2 ] ≤ θk1Φ

0
2.

Then we further have E[Hk] ≤ θk1Φ
0
2 and E∥xk − x∗∥2 ≤ AM

4BM2
1
θk1Φ

0
2. From zk ≡ xk, (23), and (24), we can get

∥xk+1 − x∗∥2 ≤ 1

µ2

(
H2

2
∥xk − x∗∥2 + 2NBR

2Hk

)
∥xk − x∗∥2.



Xun Qian, Rustem Islamov, Mher Safaryan, Peter Richtárik

Assume xk ̸= x∗ for all k ≥ 0. Then we have

∥xk+1 − x∗∥2

∥xk − x∗∥2
≤ 1

µ2

(
H2

2
∥xk − x∗∥2 + 2NBR

2Hk

)
,

and by taking expectation, we arrive at

E
[
∥xk+1 − x∗∥2

∥xk − x∗∥2

]
≤ H2

2µ2
E∥xk − x∗∥2 + 2NBR

2

µ2
E[Hk]

≤ θk1

(
AMH2

8BM2
1µ

2
+

2NBR
2

µ2

)
Φ0

2.

D.5 Proof of Theorem 4.11

(i) Noticed that under Assumption 4.3, we have AM = BM = η. We prove this by mathematical induction.

First, since z0 = x0, we know ∥z0 − x∗∥2 ≤ min{ µ2

4dH2 ,
µ2

16d3NBR2M2
2
}. Then from Lemma D.3 (iii), we have

H0 ≤ µ2

16dNBR2 . Next, assume

∥zk − x∗∥2 ≤ min

{
µ2

4dH2
,

µ2

16d3NBR2M2
2

}
and Hk ≤ µ2

16dNBR2
,

for k ≤ K. By choosing M = µ2

16d3NBR2M2
2
in Lemma D.3 (i), we have ∥zK+1 − x∗∥2 ≤ min

{
µ2

4dH2 ,
µ2

16d3NBR2M2
2

}
.

By further using Lemma D.3 (iii), we can get HK+1 ≤ µ2

16dNBR2 .

(ii) We prove the result by induction. Assume ∥zk − x∗∥2 ≤ min
{

AMµ2

4H2BM
, AAMµ2

16NBR2BMBM2
1

}
and Hk ≤ AMµ2

16NBR2BM

for k ≤ K. Then by Lemma D.3 (iv), we have HK+1 ≤ AMµ2

16NBR2BM
. Moreover, by Lemma D.3 (ii), we have

∥zK+1 − x∗∥2 ≤ min
{

AMµ2

4H2BM
, AAMµ2

16NBR2BMBM2
1

}
.



Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning

E PROOFS OF BL2

We denote Ek[·] as the conditonal expectation on zki , w
k
i , l

k
i , L

k
i , and Hk

i .

E.1 A Lemma

Lemma E.1. (i) If Assumption 4.3 (ii) holds, ∥x0 − x∗∥2 ≤ min{ µ2

d2(6H2+24H2
1 )
, M

d }, ∥zki − x∗∥2 ≤

min{ µ2

d(6H2+24H2
1 )
,M}, and Hk ≤ µ2

24dNBR2 for k ≤ K, i ∈ [n], and any M > 0, then ∥zK+1
i − x∗∥2 ≤

min{ µ2

d(6H2+24H2
1 )
,M} for i ∈ [n].

(ii) If Assumption 4.4 holds, HK ≤ AMµ2

24NBR2BM
, ∥zki −x∗∥2 ≤ min{ AMµ2

BM(6H2+24H2
1 )
,M} for k ≤ K, i ∈ [n], and any

M > 0, then ∥zK+1
i − x∗∥2 ≤ min{ AMµ2

BM(6H2+24H2
1 )
,M} for i ∈ [n].

(iii) If Assumption 4.5(ii) holds, and ∥zki − x∗∥2 ≤ M
d2M2

2
for k ≤ K, i ∈ [n], and any M > 0, then HK ≤ M .

(iv) If Assumption 4.6 holds, ∥LK
i − L∗

i ∥2F ≤ M , and ∥zKi − x∗∥2 ≤ AM
BM2

1
for i ∈ [n] and any M > 0, then

∥LK+1
i − L∗

i ∥2F ≤ M for i ∈ [n].

Proof. (i) First, from the update rule of wk
i , we know Zk ≤ min{ µ2

d(6H2+24H2
1 )
,M} and Wk ≤

min{ µ2

d(6H2+24H2
1 )
,M} for k ≤ K. Then from (30), we have

∥xk+1 − x∗∥2 ≤ 3H2

4µ2
(Wk)2 +

12NBR
2

µ2
HkWk +

3H2
1

µ2
ZkWk

≤ 1

d
Wk

≤ min

{
µ2

d2(6H2 + 24H2
1 )

,
M

d

}
,

for 0 ≤ k ≤ K.

Since ∥x0 − x∗∥2 ≤ min{ µ2

d2(6H2+24H2
1 )
, M

d }, we know ∥xk − x∗∥2 ≤ min{ µ2

d2(6H2+24H2
1 )
, M

d } for all 0 ≤ k ≤ K + 1.

Then for i ∈ Sk, from Assumption 4.3 (ii), we can get

∥zK+1
i − x∗∥2 ≤ dmax

j
|(zK+1

i )j − x∗
j |2

≤ d max
0≤t≤K+1

∥xt − x∗∥2

≤ min

{
µ2

d(6H2 + 24H2
1 )

,M

}
.

For i /∈ Sk, we have

∥zK+1
i − x∗∥2 = ∥zKi − x∗∥2 ≤ min

{
µ2

d(6H2 + 24H2
1 )

,M

}
.

(ii) First, from the update rule of wk, we know Zk ≤ min{ AMµ2

BM(6H2+24H2
1 )
,M} and Wk ≤ min{ AMµ2

BM(6H2+24H2
1 )
,M}

for k ≤ K. Then from (30), we have

∥xK+1 − x∗∥2 ≤ 3H2

4µ2
(WK)2 +

12NBR
2

µ2
HKWK +

3H2
1

µ2
ZKWK

≤ AM

BM
WK

≤ AM

BM
min

{
AMµ2

BM(6H2 + 24H2
1 )

,M

}
.



Xun Qian, Rustem Islamov, Mher Safaryan, Peter Richtárik

Then for i ∈ Sk, from Lemma D.1 (ii), we arrive at

∥zK+1
i − z∗∥2 ≤ (1−AM)∥zKi − x∗∥2 +BM∥xK+1 − x∗∥2

≤ (1−AM)min

{
AMµ2

BM(6H2 + 24H2
1 )

,M

}
+AM min

{
AMµ2

BM(6H2 + 24H2
1 )

,M

}
= min

{
AMµ2

BM(6H2 + 24H2
1 )

,M

}
.

For i /∈ Sk, we have

∥zK+1
i − x∗∥2 = ∥zKi − x∗∥2 ≤ min

{
AMµ2

BM(6H2 + 24H2
1 )

,M

}
.

(iii) From Assumption 4.5(ii), we have

HK =
1

n

n∑
i=1

∥LK
i − L∗

i ∥2F

≤ 1

n

n∑
i=1

d2 max
jl

{|(LK
i )jl − (L∗

i )jl|2}

≤ d2M2
2 max

i∈[n],0≤t≤K
∥zti − x∗∥2

≤ M.

(iv) For i ∈ Sk, from Assumption 4.6 and Lemma D.2 (ii), we have

∥LK+1
i − L∗

i ∥2F ≤ (1−A)∥LK
i − L∗

i ∥2F +BM2
1 ∥zKi − x∗∥2

≤ (1−A)M +AM

= M.

For i /∈ Sk, we also have

∥LK+1
i − L∗

i ∥2F = ∥LK
i − L∗

i ∥2F ≤ M.

E.2 Proof of Theorem 4.12

First, from [Hk
i ]s + lki I ⪰ ∇2fi(z

k
i ) ⪰ µI, we know [Hk]s + lkI = 1

n

∑n
i=1([H

k
i ]s + lki I) ⪰ µI. Then we have

∥xk+1 − x∗∥ =
∥∥∥([Hk]s + lkI

)−1 (
gk −

(
[Hk]s + lkI

)
x∗ +∇f(x∗)

)∥∥∥
≤ 1

µ

∥∥∥∥∥ 1n
n∑

i=1

gki − 1

n

n∑
i=1

([Hk
i ]s + lki I)x

∗ +
1

n

n∑
i=1

∇fi(x
∗)

∥∥∥∥∥
≤ 1

nµ

n∑
i=1

∥gki − ([Hk
i ]s + lki )x

∗ +∇fi(x
∗)∥

=
1

nµ

n∑
i=1

∥([Hk
i ]s + lki I)w

k
i −∇fi(w

k
i )− ([Hk

i ]s + lki I)x
∗ +∇fi(x

∗)∥

≤ 1

nµ

n∑
i=1

∥∇fi(w
k
i )−∇fi(x

∗)−∇2fi(x
∗)(wk

i − x∗)∥

+
1

nµ

n∑
i=1

∥([Hk
i ]s + lki I−∇2fi(x

∗))(wk
i − x∗)∥,



Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning

where we use ∇f(x∗) = 0 in the first equality and gki = ([Hk
i ]s + lki I)w

k
i −∇fi(w

k
i ) in the second equality. Since

∥∇2fi(x)−∇2fi(y)∥ ≤ H∥x− y∥ for any x, y ∈ Rd, we further have

∥xk+1 − x∗∥ ≤ H

2nµ

n∑
i=1

∥wk
i − x∗∥2 + 1

nµ

n∑
i=1

∥([Hk
i ]s + lki I−∇2fi(x

∗))∥ · (wk
i − x∗)∥

≤ H

2µ
Wk +

1

nµ

n∑
i=1

(
∥[Hk

i ]s −∇2fi(x
∗)∥F + lki

)
∥wk

i − x∗∥,

where Wk := 1
n

∑n
i=1 ∥wk

i − x∗∥2.

Since ∥∇2fi(x)−∇2fi(y)∥F ≤ H1∥x− y∥ for any x, y ∈ Rd, we can get

lki = ∥[Hk
i ]s −∇2fi(z

k
i )∥F

≤ ∥[Hk
i ]s −∇2fi(x

∗)∥F + ∥∇2fi(z
k
i )−∇2fi(x

∗)∥F
≤ ∥[Hk

i ]s −∇2fi(x
∗)∥F +H1∥zki − x∗∥.

Thus,

∥xk+1 − x∗∥ ≤ H

2µ
Wk +

1

nµ

n∑
i=1

(
∥[Hk

i ]s −∇2fi(x
∗)∥+ ∥[Hk

i ]s −∇2fi(x
∗)∥F +H1∥zki − x∗∥

)
∥wk

i − x∗∥

≤ H

2µ
Wk +

2

nµ

n∑
i=1

∥[Hk
i ]s −∇2fi(x

∗)∥F∥wk
i − x∗∥+ H1

nµ

n∑
i=1

∥zki − x∗∥∥wk
i − x∗∥

Lemma 3.1
≤ H

2µ
Wk +

2

nµ

n∑
i=1

∥Hk
i −∇2fi(x

∗)∥F∥wk
i − x∗∥+ H1

nµ

n∑
i=1

∥zki − x∗∥∥wk
i − x∗∥

≤ H

2µ
Wk +

2

nµ

(
n∑

i=1

∥Hk
i −∇2fi(x

∗)∥2F

) 1
2 (

nWk
) 1

2 +
H1

nµ

(
nZk

) 1
2
(
nWk

) 1
2 ,

where we use the Cauchy-Schwarz inequality in the last inequality and Zk := 1
n

∑n
i=1 ∥zki − x∗∥2. Since

Hk
i =

∑
jl(L

k
i )jlB

jl
i , same as (26), we have

∥Hk
i −∇2fi(x

∗)∥2F ≤ NBR
2∥Lk

i − L∗
i ∥2F, (29)

where L∗
i = hi(∇2fi(x

∗)) and NB is defined in 10. Then from the convexity of ∥·∥2, we further bound ∥xk+1−x∗∥2
as

∥xk+1 − x∗∥2 ≤ 3H2

4µ2
(Wk)2 +

12Wk

nµ2

n∑
i=1

∥Hk
i −∇2fi(x

∗)∥2F +
3H2

1

µ2
ZkWk

(29)

≤ 3H2

4µ2
(Wk)2 +

12NBR
2Wk

nµ2

n∑
i=1

∥Lk
i − L∗

i ∥2F +
3H2

1

µ2
ZkWk

=
3H2

4µ2
(Wk)2 +

12NBR
2

µ2
HkWk +

3H2
1

µ2
ZkWk, (30)

where Hk = 1
n

∑n
i=1 ∥Lk

i − L∗
i ∥2F.

For i ∈ Sk, we have zk+1
i = zki + ηQk

i (x
k+1 − zki ). Then from the definition of (AM, BM) and Lemma D.1, by

choosing z = zki , x = xk+1, and y = x∗ in Lemma D.1, we can obtain

Ek[∥zk+1
i − x∗∥2 | i ∈ Sk] = Ek[∥zki + ηQk(xk+1 − zki )− x∗∥2 | i ∈ Sk]

≤ (1−AM)∥zki − x∗∥2 +BMEk∥xk+1 − x∗∥2

= (1−AM)∥zki − x∗∥2 +BM∥xk+1 − x∗∥2.



Xun Qian, Rustem Islamov, Mher Safaryan, Peter Richtárik

Noticing that P[i ∈ Sk] = τ/n and zk+1
i = zki for i /∈ Sk, we further have

Ek∥zk+1
i − x∗∥2 =

τ

n
Ek[∥zk+1

i − x∗∥2 | i ∈ Sk] +
(
1− τ

n

)
Ek[∥zk+1

i − x∗∥2 | i /∈ Sk]

≤ τ

n
(1−AM)∥zki − x∗∥2 + τBM

n
∥xk+1 − x∗∥2 +

(
1− τ

n

)
∥zki − x∗∥2

=

(
1− τAM

n

)
∥zki − x∗∥2 + τBM

n
∥xk+1 − x∗∥2,

which implies that

Ek[Zk+1] =
1

n

n∑
i=1

Ek∥zk+1
i − x∗∥2

≤ 1

n

n∑
i=1

(
1− τAM

n

)
∥zki − x∗∥2 + τBM

n
∥xk+1 − x∗∥2

=

(
1− τAM

n

)
Zk +

τBM

n
∥xk+1 − x∗∥2. (31)

For i ∈ Sk, from the update rule of wk+1
i , we have

Ek[∥wk+1
i − x∗∥2 | i ∈ Sk] = pEk[∥zk+1

i − x∗∥2] + (1− p)∥wk
i − x∗∥2.

For i /∈ Sk, we have wk+1
i = wk

i . Thus,

Ek∥wk+1
i − x∗∥2 =

τ

n
Ek[∥wk+1

i − x∗∥2 | i ∈ Sk] +
(
1− τ

n

)
Ek[∥wk+1

i − x∗∥2 | i /∈ Sk]

=
(
1− τp

n

)
∥wk

i − x∗∥2 + τp

n
Ek∥zk+1

i − x∗∥2,

which yields that

Ek[Wk+1] =
1

n

n∑
i=1

Ek∥wk+1
i − x∗∥2

=
1

n

n∑
i=1

(
1− τp

n

)
∥wk

i − x∗∥2 + 1

n

n∑
i=1

τp

n
Ek∥zk+1

i − x∗∥2

=
(
1− τp

n

)
Wk +

τp

n
Ek[Zk+1]

(31)

≤
(
1− τp

n

)
Wk +

τp

n

(
1− τAM

n

)
Zk +

τ2BMp

n2
∥xk+1 − x∗∥2. (32)

Let Φk
3 := Wk + 2p

AM

(
1− τAM

n

)
Zk for k ≥ 0. Then from the above inequality we have

Ek[Φ
k+1
3 ] ≤

(
1− τp

n

)
Wk +

τp

n

(
1− τAM

n

)
Zk +

τ2BMp

n2
∥xk+1 − x∗∥2 + 2p

AM

(
1− τAM

n

)
Ek[Zk+1]

(31)

≤
(
1− τp

n

)
Wk +

2p

AM

(
1− τAM

n

)(
1− τAM

2n

)
Zk +

2τpBM

nAM

(
1− τAM

2n

)
∥xk+1 − x∗∥2

30
≤
(
1− τp

n
+

2τpBM

nAM

(
3H2

4µ2
Wk +

12NBR
2

µ2
Hk +

3H2
1

µ2
Zk

))
Wk

+
2p

AM

(
1− τAM

n

)(
1− τAM

2n

)
Zk.

If ∥zki − x∗∥2 ≤ AMµ2

(6H2+24H2
1 )BM

and Hk ≤ AMµ2

96NBR2BM
for all k ≥ 0, then we have

3H2

4µ2
Wk +

12NBR
2

µ2
Hk +

3H2
1

µ2
Zk ≤ AM

4BM
,



Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning

which implies that

Ek[Φ
k+1
3 ] ≤

(
1− τp

2n

)
Wk +

2p

AM

(
1− τAM

n

)(
1− τAM

2n

)
Zk

≤
(
1− τ min{p,AM}

2n

)
Φk

3 .

By applying the tower property, we have

E[Φk+1
3 ] ≤

(
1− τ min{p,AM}

2n

)
E[Φk

3 ].

Unrolling the recursion, we can obtain the result.

E.3 Proof of Theorem 4.13

Since ξk ≡ 1, η = 1, Sk ≡ [n], and Qk
i (x) ≡ x for any x ∈ Rd, it is easy to see that wk

i = zki ≡ xk for all i ∈ [n]
and k ≥ 0. In this case, we can view Qk

i as an unbiased compressor with ωM = 0 or a contraction compressor
with δM = 1. Then from (31), we have

Ek∥xk+1 − x∗∥2 ≤ (1−AM) ∥xk − x∗∥2 +BM∥xk+1 − x∗∥2

(30)

≤ (1−AM) ∥xk − x∗∥2 + 1

4
AM∥xk − x∗∥2

=

(
1− 3AM

4

)
∥xk − x∗∥2.

From Lemma D.2, we can obtain

Ek[Hk+1] ≤ (1−A)Hk +BM2
1 ∥xk − x∗∥2.

Thus,

Ek[Φ
k+1
4 ] = Ek[Hk+1] +

4BM2
1

AM
Ek∥xk+1 − x∗∥2

≤ (1−A)Hk +BM2
1 ∥xk − x∗∥2 + 4BM2

1

AM

(
1− 3AM

4

)
∥xk − x∗∥2

≤
(
1− min{2A,AM}

2

)
Φk

4 .

By applying the tower property, we have E[Φk+1
4 ] ≤ θ2E[Φk

4 ]. Unrolling the recursion, we have E[Φk
4 ] ≤ θk2Φ

0
4.

Then we further have E[Hk] ≤ θk2Φ
0
4 and E∥xk − x∗∥2 ≤ AM

4BM2
1
θk2Φ

0
4. From wk

i = zki ≡ xk and (30), we can get

∥xk+1 − x∗∥2 ≤
(
3H2 + 12H2

1

4µ2
∥xk − x∗∥2 + 12NBR

2

µ2
Hk

)
∥xk − x∗∥2.

Assume xk ̸= x∗ for all k ≥ 0. Then we have

∥xk+1 − x∗∥2

∥xk − x∗∥2
≤ 3H2 + 12H2

1

4µ2
∥xk − x∗∥2 + 12NBR

2

µ2
Hk,

and by taking expectation, we arrive at

E
[
∥xk+1 − x∗∥2

∥xk − x∗∥2

]
≤ 3H2 + 12H2

1

4µ2
E∥xk − x∗∥2 + 12NBR

2

µ2
E[Hk]

≤ θk2

(
AM(3H2 + 12H2

1 )

16BM2
1µ

2
+

12NBR
2

µ2

)
Φ0

4.



Xun Qian, Rustem Islamov, Mher Safaryan, Peter Richtárik

E.4 Proof of Theorem 4.14

(i) Noticed that under Assumption 4.3, we have AM = BM = η. We prove this by mathematical induction. First,

since z0i = x0, we know ∥z0i − x∗∥2 ≤ min{ µ2

d(6H2+24H2
1 )
, µ2

96d3NBR2M2
2
} for i ∈ [n]. Then from Lemma E.1 (iii), we

have H0 ≤ µ2

96dNBR2 . Next, assume

∥zki − x∗∥2 ≤ min

{
µ2

d(6H2 + 24H2
1 )

,
µ2

96d3NBR2M2
2

}
for i ∈ [n] and Hk ≤ µ2

96dNBR2
,

for k ≤ K. By choosing M = µ2

96d3NBR2M2
2
in Lemma E.1 (i), we have

∥zK+1
i − x∗∥2 ≤ min

{
µ2

d(6H2 + 24H2
1 )

,
µ2

96d3NBR2M2
2

}
,

for i ∈ [n]. By further using Lemma E.1 (iii), we can get HK+1 ≤ µ2

96dNBR2 .

(ii) We prove the result by induction. Assume ∥zki −x∗∥2 ≤ min
{

AMµ2

BM(6H2+24H2
1 )
, AAMµ2

96NBR2BMBM2
1

}
and ∥Lk

i −L∗
i ∥2F ≤

AMµ2

96NBR2BM
for all i ∈ [n] and k ≤ K. Then by Lemma E.1 (iv), we have ∥LK+1

i − L∗
i ∥2F ≤ AMµ2

96NBR2BM
. Moreover,

by Lemma E.1 (ii), we have ∥zK+1
i − x∗∥2 ≤ min

{
AMµ2

BM(6H2+24H2
1 )
, AAMµ2

96NBR2BMBM2
1

}
for i ∈ [n].



Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning

F PROOFS OF BL3

We denote Ek[·] as the conditonal expectation on zki , w
k
i , L

k
i , γ

k
i , β

k
i , A

k
i and Ck

i .

F.1 Proof of Lemma A.2

(i) If ∥∇2fi(x)−∇2fi(y)∥F ≤ H1∥x− y∥ for any x, y ∈ Rd, and i ∈ [n], then from (15) we have

∥h̃i(∇2fi(x))− h̃i(∇2fi(y))∥F ≤ ∥svec(h̃i(∇2fi(x)))− svec(h̃i(∇2fi(y)))∥
≤ ∥(B̃i)

−1∥ · ∥svec(∇2fi(x))− svec(∇2fi(y))∥

≤
√
2∥(B̃i)

−1∥ · ∥∇2fi(x)−∇2fi(y)∥F
≤

√
2∥(B̃i)

−1∥H1∥x− y∥,

which implies that M4 in Assumption A.1 satisfies M4 ≤
√
2maxi{∥(B̃i)

−1∥}H1.

If |(∇2fi(x))jl − (∇2fi(y))jl| ≤ ν∥x − y∥ for any x, y ∈ Rd, i ∈ [n], and j, l ∈ [d], then from (15), every entry

of h̃i(∇2fi(x))− h̃i(∇2fi(y)) will be bounded by 2ν∥(B̃i)
−1∥∞∥x− y∥. Hence M5 in Assumption A.1 satisfies

M5 ≤ 2νmaxi{∥(B̃i)
−1∥∞}.

(ii) If |(∇2fi(x))jl| ≤ γ for any x ∈ Rd, i ∈ [n], and j, l ∈ [d], then from (15), every entry of h̃i(∇2fi(x)) will

be bounded by 2γ∥(B̃i)
−1∥∞, i.e., maxjl{|h̃i(∇2fi(x))jl|} ≤ 2γ∥(B̃i)

−1∥∞. In particular, under Assumption

4.5 (ii), (Lk
i )jl is a convex combination of {h̃i(∇2fi(z

t
i))jl}t≤k, and thus M3 in Assumption A.1 satisfies M3 ≤

2γmaxi{∥(B̃i)
−1∥∞}.

(iii) First, from ∥∇2fi(x)∥F ≤ γ̃ and (15), we have

∥h̃i(∇2fi(x))∥F ≤ ∥svec(h̃i(∇2fi(x)))∥
≤ ∥(B̃i)

−1∥ · ∥svec(∇2fi(x))∥

≤
√
2∥(B̃i)

−1∥ · ∥∇2fi(x)∥F
≤

√
2∥(B̃i)

−1∥γ̃,

for any x ∈ Rd and i ∈ [n]. Assume ∥LK
i ∥2F ≤ 2B

A ∥(B̃i)
−1∥2γ̃2. Then under Assumption 4.6, same as Lemma F.1

(ii), we have

∥LK+1
i ∥2F = ∥LK

i + CK
i

(
h̃i(∇2fi(z

K+1
i ))− LK

i

)
∥2F

≤
(
1− δ

4

)
∥LK

i ∥2F +

(
6

δ
− 7

2

)
∥h̃i(∇2fi(z

K+1
i ))∥2F

= (1−A)∥LK
i ∥2F +B∥h̃i(∇2fi(z

K+1
i ))∥2F

≤ (1−A) · 2B
A

∥(B̃i)
−1∥2γ̃2 +B · 2∥(B̃i)

−1∥2γ̃2

=
2B

A
∥(B̃i)

−1∥2γ̃2.

Since ∥L0
i ∥2F ≤ 2B

A ∥(B̃i)
−1∥2γ̃2, by mathematical induction, we can get ∥Lk

i ∥2F ≤ 2B
A ∥(B̃i)

−1∥2γ̃2 for k ≥ 0. At

last, from maxjl{|(Lk
i )jl|} ≤ ∥Lk

i ∥F ≤
√
2B√
A
∥(B̃i)

−1∥γ̃, we can obtain M3 ≤
√
2Bγ̃√
A

maxi{∥(B̃i)
−1∥}.

F.2 Lemmas

The proof of Lemma F.1 is the same as that of Lemma B.1 in (Safaryan et al., 2021). Hence we omit it.

Lemma F.1. Let C be a compressor and α > 0. For any matrix L ∈ Rd×d and y, z ∈ Rd, we have the following
results.



Xun Qian, Rustem Islamov, Mher Safaryan, Peter Richtárik

(i) If C is an unbiased compressor with parameter ω and α ≤ 1/ω+1, then

E∥L+ αC(h̃i(∇2fi(y))− L)− h̃i(∇2fi(z))∥2F ≤ (1− α)∥L− h̃i(∇2fi(z))∥2F + αM2
4 ∥y − z∥2,

where E[·] is the expectation with respect to C.
(ii) If C is a contraction compressor with parameter δ and α = 1, then

E∥L+ αC(h̃i(∇2fi(y))− L)− h̃i(∇2fi(z))∥2F ≤
(
1− δ

4

)
∥L− h̃i(∇2fi(z))∥2F +

(
6

δ
− 7

2

)
M2

4 ∥y − z∥2.

The constants c1 and c2 in the following lemma are defined in (33).

Lemma F.2. (i) If Assumption 4.3 (ii) holds, ∥x0 − x∗∥2 ≤ min{ µ2

4d2(H2+4c1)
, M

d }, ∥zki − x∗∥2 ≤
min{ µ2

4d(H2+4c1)
,M}, and Hk ≤ µ2

4dc2
for k ≤ K, i ∈ [n], and any M > 0, then ∥zK+1

i −x∗∥2 ≤ min{ µ2

4d(H2+4c1)
,M}

for i ∈ [n].

(ii) If Assumption 4.4 holds, HK ≤ AMµ2

4c2BM
, ∥zki − x∗∥2 ≤ min{ AMµ2

4BM(H2+4c1)
,M} for k ≤ K, i ∈ [n], and any

M > 0, then ∥zK+1
i − x∗∥2 ≤ min{ AMµ2

4BM(H2+4c1)
,M} for i ∈ [n].

(iii) If Assumption 4.5(ii) holds, and ∥zki − x∗∥2 ≤ M
d2M2

5
for k ≤ K, i ∈ [n], and any M > 0, then HK ≤ M .

(iv) If Assumption 4.6 holds, ∥LK
i − L∗

i ∥2F ≤ M , and ∥zKi − x∗∥2 ≤ AM
BM2

4
for i ∈ [n] and any M > 0, then

∥LK+1
i − L∗

i ∥2F ≤ M for i ∈ [n].

Proof. (i) First, from the update rule of wk
i , we know Zk ≤ min{ µ2

4d(H2+4c1)
,M} and Wk ≤ min{ µ2

4d(H2+4c1)
,M}

for k ≤ K. Then for Option 1, from (34), we have

∥xk+1 − x∗∥2 ≤ H2

2µ2
(Wk)2 +

2c1
µ2

Zk−1Wk +
2c2
µ2

HkWk

≤ 1

d
Wk

≤ min

{
µ2

4d2(H2 + 4c1)
,
M

d

}
,

for 0 ≤ k ≤ K. For Option 2, we can get the same bound for ∥xk+1 − x∗∥2 as above from (35).

Since ∥x0 − x∗∥2 ≤ min{ µ2

4d2(H2+4c1)
, M

d }, we know ∥xk − x∗∥2 ≤ min{ µ2

4d2(H2+4c1)
, M

d } for all 0 ≤ k ≤ K + 1.

Then for i ∈ Sk, from Assumption 4.3 (ii), we can get

∥zK+1
i − x∗∥2 ≤ dmax

j
|(zK+1

i )j − x∗
j |2

≤ d max
0≤t≤K+1

∥xt − x∗∥2

≤ min

{
µ2

4d(H2 + 4c1)
,M

}
.

For i /∈ Sk, we have

∥zK+1
i − x∗∥2 = ∥zKi − x∗∥2 ≤ min

{
µ2

4d(H2 + 4c1)
,M

}
.

(ii) First, from the update rule of wk, we know Zk ≤ min{ AMµ2

4BM(H2+4c1)
,M} and Wk ≤ min{ AMµ2

4BM(H2+4c1)
,M} for

k ≤ K. Then for Option 1, from (34), we have

∥xK+1 − x∗∥2 ≤ H2

2µ2
(WK)2 +

2c1
µ2

ZK−1WK +
2c2
µ2

HKWK

≤ AM

BM
WK

≤ AM

BM
min

{
AMµ2

4BM(H2 + 4c1)
,M

}
.



Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning

For Option 2, we can get the same bound for ∥xK+1 − x∗∥2 as above from (35). Then for i ∈ Sk, from Lemma
D.1 (ii), we arrive at

∥zK+1
i − z∗∥2 ≤ (1−AM)∥zKi − x∗∥2 +BM∥xK+1 − x∗∥2

≤ (1−AM)min

{
AMµ2

4BM(H2 + 4c1)
,M

}
+AM min

{
AMµ2

4BM(H2 + 4c1)
,M

}
= min

{
AMµ2

4BM(H2 + 4c1)
,M

}
.

For i /∈ Sk, we have

∥zK+1
i − x∗∥2 = ∥zKi − x∗∥2 ≤ min

{
AMµ2

4BM(H2 + 4c1)
,M

}
.

(iii) From Assumption 4.5(ii), we have

HK =
1

n

n∑
i=1

∥LK
i − L∗

i ∥2F

≤ 1

n

n∑
i=1

d2 max
jl

{|(LK
i )jl − (L∗

i )jl|2}

≤ d2M2
5 max

i∈[n],0≤t≤K
∥zti − x∗∥2

≤ M.

(iv) For i ∈ Sk, from Assumption 4.6 and Lemma F.1 (ii), we have

∥LK+1
i − L∗

i ∥2F ≤ (1−A)∥LK
i − L∗

i ∥2F +BM2
4 ∥zKi − x∗∥2

≤ (1−A)M +AM

= M.

For i /∈ Sk, we also have

∥LK+1
i − L∗

i ∥2F = ∥LK
i − L∗

i ∥2F ≤ M.

F.3 Proof of Theorem A.3

Define Hk
i := βkAk

i −Ck
i for i ∈ [n] and k ≥ 0. First, it is easy to verify that Ak = 1

n

∑n
i=1 A

k
i , C

k = 1
n

∑n
i=1 C

k
i ,

Hk = 1
n

∑n
i=1 H

k
i , g

k
1 = 1

n

∑n
i=1 g

k
i,1, and gk2 = 1

n

∑n
i=1 g

k
i,2 for k ≥ 0. Then we have

gk = βkgk1 − gk2

=
1

n

n∑
i=1

(
βkgki,1 − gki,2

)
=

1

n

n∑
i=1

(
βkAk

iw
k
i −Ck

iw
k
i −∇fi(w

k
i )
)

=
1

n

n∑
i=1

(
Hk

iw
k
i −∇fi(w

k
i )
)
.

Thus, from

xk+1 =
(
Hk
)−1

gk =
(
Hk
)−1

[
1

n

n∑
i=1

(
Hk

iw
k
i −∇fi(w

k
i )
)]

,



Xun Qian, Rustem Islamov, Mher Safaryan, Peter Richtárik

and

x∗ =
(
Hk
)−1 [

Hkx∗ −∇f(x∗)
]
=
(
Hk
)−1

[
1

n

n∑
i=1

(
Hk

i x
∗ −∇fi(x

∗)
)]

,

we can obtain

xk+1 − x∗ =
(
Hk
)−1

[
1

n

n∑
i=1

(
Hk

i (w
k
i − x∗)− (∇fi(w

k
i )−∇fi(x

∗))
)]

.

Then from the triangle inequality and the fact that Hk ⪰ µI, we have

∥xk+1 − x∗∥ ≤ 1

µn

n∑
i=1

∥∥∇fi(w
k
i )−∇fi(x

∗)−Hk
i (w

k
i − x∗)

∥∥
≤ 1

µn

n∑
i=1

∥∥∇fi(w
k
i )−∇fi(x

∗)−∇2fi(x
∗)(wk

i − x∗)
∥∥+ 1

µn

n∑
i=1

∥∥(Hk
i −∇2fi(x

∗)(wk
i − x∗))

∥∥
≤ H

2µn

n∑
i=1

∥wk
i − x∗∥2 + 1

µn

n∑
i=1

∥Hk
i −∇2fi(x

∗)∥ · ∥wk
i − x∗∥

=
H

2µ
Wk +

1

µn

n∑
i=1

∥Hk
i −∇2fi(x

∗)∥ · ∥wk
i − x∗∥.

We further use Young’s inequality to bound ∥xk+1 − x∗∥2 as

∥xk+1 − x∗∥2 ≤ H2

2µ2
(Wk)2 +

2

µ2n2

(
n∑

i=1

∥Hk
i −∇2fi(x

∗)∥ · ∥wk
i − x∗∥

)2

≤ H2

2µ2
(Wk)2 +

2

µ2

(
1

n

n∑
i=1

∥Hk
i −∇2fi(x

∗)∥2
)
Wk,

where we use Cauchy-Schwarz inequality in the last inequality. Next we estimate ∥Hk
i −∇2fi(x

∗)∥2. Denote

L∗
i = h̃i(∇2fi(x

∗)) and assume maxjl{∥Bjl
i ∥F} ≤ R for i ∈ [n]. Then

∥Hk
i −∇2fi(x

∗)∥2 = ∥βkAk
i −Ck

i −∇2fi(x
∗)∥2

=

∥∥∥∥∥∥
∑
jl

[
βk((Lk

i )jl + 2γk
i )− 2γk

i − (L∗
i )jl
]
Bjl

∥∥∥∥∥∥
2

≤ NR2
∑
jl

∣∣βk((Lk
i )jl + 2γk

i )− ((L∗
i )jl + 2γk

i )
∣∣2 .

Assuming maxjl{|(Lk
i )jl|} ≤ M3 for i ∈ [n], we have

∣∣βk((Lk
i )jl + 2γk

i )− ((L∗
i )jl + 2γk

i )
∣∣2 =

∣∣(βk − 1)((Lk
i )jl + 2γk

i ) + (Lk
i − L∗

i )jl
∣∣2

≤ 2
∣∣(βk − 1)((Lk

i )jl + 2γk
i )
∣∣2 + 2

∣∣(Lk
i − L∗

i )jl
∣∣2

≤ 2(M3 + 2max{c,M3})2
∣∣βk − 1

∣∣2 + 2
∣∣(Lk

i − L∗
i )jl
∣∣2 .

For Option 1 in Algorithm 3, we have βk
i = maxjl

h̃i(∇2fi(z
k−1
i ))jl+2γk

i

(Lk
i )jl+2γk

i

, where we define z−1
i = z0i . For any j, l ∈ [d],



Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning

we have ∣∣∣∣∣ h̃i(∇2fi(z
k−1
i ))jl + 2γk

i

(Lk
i )jl + 2γk

i

− 1

∣∣∣∣∣
2

=

∣∣∣∣∣ (h̃i(∇2fi(z
k−1
i ))− Lk

i )jl
(Lk

i + 2γk
i I)jl

∣∣∣∣∣
2

≤ 1

c2

∣∣∣(h̃i(∇2fi(z
k−1
i ))− Lk

i )jl

∣∣∣2
≤ 2

c2

∣∣∣(h̃i(∇2fi(z
k−1
i ))− L∗

i )jl

∣∣∣2 + 2

c2
∣∣(Lk

i − L∗
i )jl
∣∣2

≤ 2M2
5

c2
∥zk−1

i − x∗∥2 + 2

c2
∣∣(Lk

i − L∗
i )jl
∣∣2 ,

where we use (Lk
i + 2γk

i I)jl ≥ (Lk
i )jl + |(Lk

i )jl|+ c ≥ c in the first inequality, in the second inequality, we use the

Young’s inequality, and the last inequality comes from maxjl{|(h̃i(∇2fi(x))− L∗
i )jl|} ≤ M5∥x− x∗∥. Then from

the definition of βk, we arrive at∣∣βk − 1
∣∣2 ≤ max

jl

{
2M2

5

c2
∥zk−1

i − x∗∥2 + 2

c2
∣∣(Lk

i − L∗
i )jl
∣∣2}

≤ 2M2
5

c2
∥zk−1

i − x∗∥2 + 2

c2
∥Lk

i − L∗
i ∥2.

For Option 2 in Algorithm 3, we can have the following bound in the same way.∣∣βk − 1
∣∣2 ≤ 2M2

5

c2
∥zki − x∗∥2 + 2

c2
∥Lk

i − L∗
i ∥2.

For Option 1, from the above inequalities, we can get

∥Hk
i −∇2fi(x

∗)∥2 ≤ 4N2R2M2
5 (M3 + 2max{c,M3})2

c2
∥zk−1

i − x∗∥2

+ 2NR2

(
1 +

2N(M3 + 2max{c,M3})2

c2

)
∥Lk

i − L∗
i ∥2F,

which implies that

1

n

n∑
i=1

∥Hk
i −∇2fi(x

∗)∥2 ≤ 4N2R2M2
5 (M3 + 2max{c,M3})2

c2
Zk−1

+ 2NR2

(
1 +

2N(M3 + 2max{c,M3})2

c2

)
Hk,

where Hk := 1
n

∑n
i=1 ∥Lk

i − L∗
i ∥2F. Similarly, for Option 2, we can get

1

n

n∑
i=1

∥Hk
i −∇2fi(x

∗)∥2 ≤ 4N2R2M2
5 (M3 + 2max{c,M3})2

c2
Zk

+ 2NR2

(
1 +

2N(M3 + 2max{c,M3})2

c2

)
Hk.

Let

c1 :=
4N2R2M2

5 (M3 + 2max{c,M3})2

c2
, c2 := 2NR2

(
1 +

2N(M3 + 2max{c,M3})2

c2

)
(33)

Then for Option 1, we have

∥xk+1 − x∗∥2 ≤ H2

2µ2
(Wk)2 +

2

µ2
Wk

(
c1Zk−1 + c2Hk

)
=

H2

2µ2
(Wk)2 +

2c1
µ2

Zk−1Wk +
2c2
µ2

HkWk, (34)



Xun Qian, Rustem Islamov, Mher Safaryan, Peter Richtárik

and for Option 2, we have

∥xk+1 − x∗∥2 ≤ H2

2µ2
(Wk)2 +

2c1
µ2

ZkWk +
2c2
µ2

HkWk. (35)

From the update rule of wk
i and zki , the results in (31) and (32) also hold for Algorithm 3. Then for Option 1, we

have

Ek[Φ
k+1
5 ]

(32)

≤
(
1− τp

n

)
Wk +

τp

n

(
1− τAM

n

)
Zk +

τ2BMp

n2
∥xk+1 − x∗∥2 + 2p

AM

(
1− τAM

n

)
Ek[Zk+1]

(31)

≤
(
1− τp

n

)
Wk +

2p

AM

(
1− τAM

n

)(
1− τAM

2n

)
Zk +

2τpBM

nAM

(
1− τAM

2n

)
∥xk+1 − x∗∥2

34
≤
(
1− τp

n
+

2τpBM

nAM

(
H2

2µ2
Wk +

2c2
µ2

Hk +
2c1
µ2

Zk−1

))
Wk

+
2p

AM

(
1− τAM

n

)(
1− τAM

2n

)
Zk.

If ∥zki − x∗∥2 ≤ AMµ2

4(H2+4c1)BM
and Hk ≤ AMµ2

16c2BM
for all k ≥ 0, then we have

H2

2µ2
Wk +

2c2
µ2

Hk +
2c1
µ2

Zk−1 ≤ AM

4BM
,

which implies that

Ek[Φ
k+1
5 ] ≤

(
1− τp

2n

)
Wk +

2p

AM

(
1− τAM

n

)(
1− τAM

2n

)
Zk

≤
(
1− τ min{p,AM}

2n

)
Φk

5 .

By applying the tower property, we have

E[Φk+1
5 ] ≤

(
1− τ min{p,AM}

2n

)
E[Φk

5 ].

Unrolling the recursion, we can obtain the result. For Option 2, we can have the same result.

F.4 Proof of Theorem A.4

Since ξk ≡ 1, η = 1, Sk ≡ [n], and Qk
i (x) ≡ x for any x ∈ Rd, it is easy to see that wk

i = zki ≡ xk for all i ∈ [n]
and k ≥ 0. In this case, we can view Qk

i as an unbiased compressor with ωM = 0 or a contraction compressor
with δM = 1. Since (31) also holds for Algorithm 3, for Option 1, we have

Ek∥xk+1 − x∗∥2 ≤ (1−AM) ∥xk − x∗∥2 +BM∥xk+1 − x∗∥2

(34)

≤ (1−AM) ∥xk − x∗∥2 + 1

4
AM∥xk − x∗∥2

=

(
1− 3AM

4

)
∥xk − x∗∥2.

For Option 2, we can get the same bound for Ek∥xk+1 − x∗∥2 as above from (35).

From Lemma F.1, we can obtain

Ek[Hk+1] ≤ (1−A)Hk +BM2
4 ∥xk − x∗∥2.



Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning

Thus,

Ek[Φ
k+1
6 ] = Ek[Hk+1] +

4BM2
4

AM
Ek∥xk+1 − x∗∥2

≤ (1−A)Hk +BM2
4 ∥xk − x∗∥2 + 4BM2

4

AM

(
1− 3AM

4

)
∥xk − x∗∥2

≤
(
1− min{2A,AM}

2

)
Φk

6 .

By applying the tower property, we have E[Φk+1
6 ] ≤ θ2E[Φk

6 ]. Unrolling the recursion, we have E[Φk
6 ] ≤ θk3Φ

0
6.

Then we further have E[Hk] ≤ θk3Φ
0
6 and E∥xk − x∗∥2 ≤ AM

4BM2
4
θk3Φ

0
6. For Option 1, from wk

i = zki ≡ xk and (34),

we can get

∥xk+1 − x∗∥2 ≤
(
H2

2µ2
∥xk − x∗∥2 + 2c1

µ2
∥xk−1 − x∗∥2 + 2c2

µ2
Hk

)
∥xk − x∗∥2.

Assume xk ̸= x∗ for all k ≥ 0. Then we have

∥xk+1 − x∗∥2

∥xk − x∗∥2
≤ H2

2µ2
∥xk − x∗∥2 + 2c1

µ2
∥xk−1 − x∗∥2 + 2c2

µ2
Hk,

and by taking expectation, we arrive at

E
[
∥xk+1 − x∗∥2

∥xk − x∗∥2

]
≤ H2

2µ2
E∥xk − x∗∥2 + 2c1

µ2
E∥xk−1 − x∗∥2 + 2c2

µ2
E[Hk]

≤ θk3

(
AM(H2θ3 + 4c1)

8BM2
4µ

2θ3
+

2c2
µ2

)
Φ0

6.

For Option 2, from wk
i = zki ≡ xk and (35), we can get

∥xk+1 − x∗∥2 ≤
(
H2 + 4c1

2µ2
∥xk − x∗∥2 + 2c2

µ2
Hk

)
∥xk − x∗∥2.

Assume xk ̸= x∗ for all k ≥ 0. Then we have

∥xk+1 − x∗∥2

∥xk − x∗∥2
≤ H2 + 4c1

2µ2
∥xk − x∗∥2 + 2c2

µ2
Hk,

and by taking expectation, we arrive at

E
[
∥xk+1 − x∗∥2

∥xk − x∗∥2

]
≤ H2 + 4c1

2µ2
E∥xk − x∗∥2 + 2c2

µ2
E[Hk]

≤ θk3

(
AM(H2 + 4c1)

8BM2
4µ

2
+

2c2
µ2

)
Φ0

6.

F.5 Proof of Theorem A.5

(i) Noticed that under Assumption 4.3, we have AM = BM = η. We prove this by mathematical induction. First,

since z0i = x0, we know ∥z0i − x∗∥2 ≤ min{ µ2

4d(H2+4c1)
, µ2

16d3c2M2
5
} for i ∈ [n]. Then from Lemma F.2 (iii), we have

H0 ≤ µ2

16dc2
. Next, assume

∥zki − x∗∥2 ≤ min

{
µ2

4d(H2 + 4c1)
,

µ2

16d3c2M2
5

}
for i ∈ [n] and Hk ≤ µ2

16dc2
,

for k ≤ K. By choosing M = µ2

16d3c2M2
5
in Lemma F.2 (i), we have

∥zK+1
i − x∗∥2 ≤ min

{
µ2

4d(H2 + 4c1)
,

µ2

16d3c2M2
5

}
,



Xun Qian, Rustem Islamov, Mher Safaryan, Peter Richtárik

for i ∈ [n]. By further using Lemma F.2 (iii), we can get HK+1 ≤ µ2

16dc2
.

(ii) We prove the result by induction. Assume ∥zki − x∗∥2 ≤ min
{

AMµ2

4BM(H2+4c1)
, AAMµ2

16c2BMBM2
4

}
and ∥Lk

i − L∗
i ∥2F ≤

AMµ2

16c2BM
for all i ∈ [n] and k ≤ K. Then by Lemma F.2 (iv), we have ∥LK+1

i − L∗
i ∥2F ≤ AMµ2

16c2BM
. Moreover, by

Lemma F.2 (ii), we have ∥zK+1
i − x∗∥2 ≤ min

{
AMµ2

4BM(H2+4c1)
, AAMµ2

16c2BMBM2
4

}
for i ∈ [n].


	INTRODUCTION
	Distributed Second Order Methods

	MOTIVATION AND CONTRIBUTIONS
	Naive Implementation
	Utilizing the Problem Structure
	Utilizing the Data Structure
	Contributions
	Basis Learn with Bidirectional Compression.
	Extensions to Partial Device Participation.
	Fast Local Rates.
	Experiments.


	MATRIX COMPRESSION
	BASIS LEARN
	Basis Learn in Rdd
	Basis Learn with Bidirectional Compression
	Basis Learn with Bidirectional Compression and Partial Participation

	Basis Learn in Sd

	Experiments
	Basis Computation for mydarkgreenBL
	Comparison with Second-order Methods
	Comparison with First-order Methods
	Composition of Compressors

	MORE DISCUSSIONS
	CONVERGENCE RESULTS FOR BL3
	EXTRA EXPERIMENTS
	Parameters Setting and Data Sets
	Compression Operators
	Unbiased Compression Operator: Random Dithering 
	Examples of Contractive Compression Operators for Matrices

	Example of Unbiased Compression Operators for Matrices
	The Performance of Newton's Method in Different Basis
	Composition of Top-K and Unbiased Compressor
	The Effect of Partial Participation
	Bidirectional Compression
	Comparison of mydarkgreenBL2 and mydarkgreenBL3

	PROOFS OF LEMMA 3.1 AND PROPOSITION 3.2
	Proof of Lemma 3.1
	Proof of Proposition 3.2
	Linear Independence of Outer Products

	PROOFS OF BL1
	Proof of Lemma 4.8
	Lemmas
	Proof of Theorem 4.9
	Proof of Theorem 4.10
	Proof of Theorem 4.11

	PROOFS OF BL2
	A Lemma
	Proof of Theorem 4.12
	Proof of Theorem 4.13
	Proof of Theorem 4.14

	PROOFS OF BL3
	Proof of Lemma A.2
	Lemmas
	Proof of Theorem A.3
	Proof of Theorem A.4
	Proof of Theorem A.5


