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Abstract

Gradient temporal difference (GTD) algo-
rithms are provably convergent policy eval-
uation methods for off-policy reinforcement
learning. Despite much progress, proper tun-
ing of the stochastic approximation methods
used to solve the resulting saddle point op-
timization problem requires the knowledge
of several (unknown) problem-dependent pa-
rameters. In this paper we apply adaptive
step-size tuning strategies to greatly reduce
this dependence on prior knowledge, and pro-
vide algorithms with adaptive convergence
guarantees. In addition, we use the underly-
ing refined analysis technique to obtain new
O(1/T ) rates that do not depend on the
strong-convexity parameter of the problem,
and also apply to the Markov noise setting,
as well as the unbounded i.i.d. noise setting.

1 INTRODUCTION

Gradient temporal difference (GTD) algorithms (Maei,
2011) are policy evaluation methods for reinforcement
learning (RL). Unlike the traditionally successful “semi-
gradient” TD methods (Sutton, 1988), GTD algorithms
are provably convergent even in the so-called off-policy
learning setting (Sutton et al., 2008, 2009; Maei, 2011).
The three basic linear GTD algorithms, known, respec-
tively, as (linear) GTD, GTD2 and TDC, can be viewed
and analyzed as stochastic approximation methods ap-
plied to the following optimization problem:

min
θ∈Θ

`(θ) , where `(θ) :=
1

2
‖b−Aθ‖2M−1 , (1)

where θ denotes the parameters of the linearly-
represented value function being learned, Θ is a convex
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set (equal to Rd in the unconstrained case), b ∈ Rd, A ∈
Rd×d and M ∈ Rd×d are quantities determined by the
policy-evaluation problem at hand (cf. Section 7), and
‖y‖2C := y>Cy for any C ∈ Rd×d and y ∈ Rd.

In this paper, we study iterative algorithms for solving
problem (1) in its generic form.1 In particular, we study
algorithms that, at iterations t = 1, 2, . . . , T , can only
access estimates2 bt, At and Mt, respectively, of b, A,
and M . Under this information structure, problem (1)
is a special case of composition optimization (Wang
et al., 2017a). While in standard first-order optimiza-
tion an algorithm (e.g., stochastic gradient descent)
observes estimates of ∇`(θ) = A>M−1(Aθ − b), our
situation is more complicated: due to the presence of
A>M−1 in the expression for the gradient, plugging in
even independent unbiased estimates of the parameters
b, A, and M does not lead to an unbiased estimate of
∇`(θ). As such, under this information structure, itera-
tive algorithms for problem 1 (including GTD methods)
usually consist of two iterative updates: in addition
to a parameter estimate θt, an auxiliary variable yt
is also maintained, usually for estimating the factor
M−1(b−Aθ) in ∇`(θ).

Our goal is to answer two questions which, despite
much progress, remain unanswered by previous work:

1. Prior knowledge about b, A, and M . Can we
guarantee convergence for algorithms with less de-
pendence on prior knowledge? As detailed in Ta-
ble 1, existing analyses of linear GTD / GTD2 /
TDC prove convergence only if the step sizes of these
methods lie in a restricted interval that depends on
prior knowledge of upper-bounds λA and λM (hold-
ing uniformly over t) on the eigenvalues of AtA>t and
Mt, as well as lower-bounds β and µ on the eigenval-
ues, respectively, of M and A>M−1A, among other
parameters. In contrast, standard adaptive stochas-
tic optimization methods, such as AdaGrad (Duchi
et al., 2011; McMahan and Streeter, 2010), allow one

1See Section 2 for the formal conditions and the assump-
tions.

2Note that the estimates may not be i.i.d. over time.
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to reduce the dependence of the step sizes on such
prior knowledge, and provide adaptive convergence
guarantees (rather than a worst-case upper-bound)
that depend on the actual problem at hand. Such
adaptation to unknown problem parameters are not
supported by the existing analyses (see Section 1.2).

2. Dependence on problem parameters. Can we
provide guarantees on the convergence of the func-
tion value `(θ̄T ) (where θ̄T is the output of the algo-
rithm after T iterations), or the iterates ‖θt − θ∗‖2,
that scale with β and µ in the same way as in first-
order optimization? Currently, the final convergence
guarantee provided by previous work depends in an
obscure, sub-optimal way on β and µ (even when
the aforementioned prior knowledge is provided). In
comparison, when (as in our case) the Hessian of `(θ)
has eigenvalues lower-bounded by µ, stochastic gradi-
ent descent guarantees a rate of `(θ̄T ) ≤ O(1/(µT )),
and for quadratic objectives, Bach and Moulines
(2013) show a rate of O(1/T ) independently of µ.
Existing analyses do not provide such a rate for the
quadratic objective of problem (1).

In this paper, we provide an affirmative answer to these
questions.

1.1 Contributions

Using a range of new step-size schedules and algorithms,
and a refinement of the analysis technique of Liu et al.
(2018):

• We present adaptive step-size tuning strategies that
require much less prior knowledge than previous
work. Given only knowledge of λM , these algorithms
guarantee `(θ̄T ) to converge at a rate of O(1/

√
T )

(Theorem 2), with an improved rate of O( 1
βT ) given

further knowledge of β (Theorem 3). Crucially, in
the context of (off-policy) policy evaluation, these
rates are achieved with step sizes independent of the
maximum policy ratio ρmax, with the O(1/

√
T ) rate

requiring only a bound on the feature norm ‖φ‖ of
the RL problem; see Section 7.

• With access to similar prior knowledge as previous
work (i.e., β, µ, λM , and λ2

A/β), we present a restart-
ing scheme that guarantees `(θ̄T ) to converge at a
rate of O( 1

βT )3 when the samples bt, At, andMt are

3This is a stronger result than the O(1/T ) rates by
Du et al. (2017); Peng et al. (2019) that are based on
combining GTD with SVRG (Johnson and Zhang, 2013):
The SVRG-based methods are applicable only to the finite-
batch learning setting, and need to frequently access all
data points in the fixed batch to compute a full gradient.
In contrast, our method applies to infinite online sequences
with Markov noise.

obtained under either i.i.d. (Theorem 1) or Markov
noise (Theorems 4 and 5). This puts our convergence
guarantee in between the standard 1

µT rate of SGD
for strongly-convex functions, and the special-case
rate O( 1

T ) of SGD for least-square objectives (Bach
and Moulines, 2013).4

On the technical side, our results rely on a refined
analysis framework for primal-dual algorithms, which
may be of independent interest. We provide a tight
decomposition of the optimization gap (instead of the
min-max saddle-point gap considered by Liu et al.,
2015, 2018), which features extra flexibility to exploit
the curvature of the problem and to use the recent
advances from the online linear optimization (OLO)
literature.

In the sequel, we also relax previous requirements of
projecting the dual variables yt or, alternatively, specify
conditions required for the dual constraint set Y to
ensure convergence to the solution of problem (1).

1.2 Related Work

In recent years, there has been a new interest in the
analysis of algorithms for problem (1) with application
to policy-evaluation. Due to the numerous prior work,
we delegate the complete study of related work to the
extended version of this paper (Raj et al., 2022), and
in this section provide a general overview of the state
of the art with specific examples.

Previous work that prove finite-time (i.e., non-
asymptotic) convergence bounds for problem (1) can be
broadly categorized based on the quantity they control:

• Bounding the iterates ‖θt − θ∗‖: This group of
papers (e.g., Dalal et al., 2017, 2018, 2020; Gupta
et al., 2019; Kaledin et al., 2020) study the iterative
updates for θt and yt as a (two-time-scale) update.
Their bound can be turned into a bound on the
objective by multiplying it by λ2

A/β, since `(θ) −
`(θ∗) ≤ λ2

A

2β ‖θ − θ
∗‖2. These results typically hold

only for a limited range of (non-adaptive) step sizes,
but work for unbounded constraint sets (with the
exception of Dalal et al., 2018; Xu et al., 2019).

• Bounding the objective `(θ̄T ) − `(θ∗): Starting
with the seminal works of Liu et al. (2015, 2018),
this group of papers (e.g., Du et al., 2017; Peng
et al., 2019) reduce problem (1) to a saddle-point
problem (see Section 2), and study the convergence
of stochastic gradient descent-ascent (SGDA) on this

4Recall that SGD has direct sampling of the gradient of
`(θ) (which is not possible in problem 1 with access only to
estimates At, bt and Mt).
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saddle-point problem. Typically, to be able to use
off-the-shelf optimization guarantees, these papers
consider only the case when the constraint set Θ is
bounded. For the same reason, these papers typically
also project the dual variable yt to a compact set Y .
As a result of the saddle-point formulation, these pa-
pers also typically lose the benefits of the curvature
of the problem, hence obtaining only O(1/

√
T ) rates.

Notably, for the more general setting of composition
optimization, Wang et al. (2017b) obtain an O(1/T )
rate for the objective assuming that the gradients
have bounded norms, which in general is not possible
in the GTD set-up unless the iterates are enforced
to remain in a bounded set. In addition, the con-
stant in their convergence rate seemingly scales with
Ω(1/µ). Note that convergence rates on the objec-
tive can, in general, be turned5 into convergence
rates on ‖θ̄T − θ∗‖2, since `(θ)− `(θ∗) ≥ µ

2 ‖θ− θ
∗‖2.

In the present paper, we extend the second group of
analyses to work without projection of θt and/or yt
and to obtain O(1/T ) rates, while deriving the exact
dependence of the rate on the problem parameters and
providing adaptive step-size schedules to relax the prior-
knowledge requirements of the first group of papers.
Table 1 compares our results with the most relevant
previous works; further discussion of the related liter-
ature, including recent works by Wang et al. (2018);
Hu and Syed (2019); Huang and Zhang (2021); Kot-
salis et al. (2020a,b); Doan (2021) is presented in the
extended version of this paper (Raj et al., 2022).

2 PRELIMINARIES

Notation. The set {1, 2, . . . , n} is denoted by [n].
We denote the Euclidean norm on Rd by ‖ · ‖, and
for any matrix C ∈ Rd×d, we denote ‖C‖ = ‖C‖2 =

maxx∈Rd\{0}
‖Cx‖
‖x‖ and ‖y‖C = y>Cy for any y ∈ Rd.

The largest (respectively, smallest) singular value of a
matrix C is denoted by σmax(C) (respectively, σmin(C)).
For µ > 0, a differentiable function f is µ-strongly-
convex if f(x) − f(y) − 〈∇f(y), x − y〉 ≥ µ

2 ‖x − y‖
2.

For β > 0, a differentiable function f : Rd → R is
β-strongly-concave if −f is β-strongly-convex. We use
Ft = σ

(
{bs, As,Ms}t−1

s=1

)
to denote the sigma-field of

all observations prior to time t, and Et[·] = E[·|Ft]
to denote conditional expectation given Ft. For a
closed convex set X ⊂ Rd and x ∈ X , PX (x) =
arg miny∈X ‖y − x‖ denotes the Euclidean projection
of x to X (which is unique).

5However, obtaining bounds on ‖θt − θ∗‖ (rather than
‖θ̄T − θ∗‖) may require further techniques, see, e.g., Shamir
and Zhang (2013).

Assumptions. Throughout this paper, we make the
following assumptions:
Assumption 2.1. M is symmetric and positive-definite,
A is invertible, and there exist6 µ, β, λA, λM > 0 and
B ≥ 0 such that

1. µ ≤ σmin
(
A>M−1A

)
and β ≤ σmin(M);

2. σmax(At) ≤ λA and σmax(Mt) ≤ λM for all t ∈
[T ];

3. ‖bt‖ ≤ B for all t ∈ [T ].

Optimal primal and dual variables. Let θ? de-
note the minimizer of `(θ) in problem 1, which exists
and is unique by Assumption 2.1 (as it implies that `
is µ-strongly-convex). Following Liu et al. (2018), we
can express ` as `(θ) = arg maxy∈Rd L(θ, y), where

L(θ, y) = 〈b−Aθ, y〉 − 1

2
‖y‖2M .

For θ ∈ Rd, we denote y?(θ) = arg maxy∈Rd L(θ, y),
which is well-defined under Assumption 2.1 (since it
implies that L(θ, ·) is β-strongly-concave as M is as-
sumed to be positive-definite). We define y? = y?(θ?).

We consider two settings regarding the noise in the
estimates bt, At and Mt:

The i.i.d. noise setting. In this setting, we assume
that the estimates bt, At,Mt are conditionally unbiased
given the past observations:
Assumption 2.2. For all t ∈ [T ],

E [At|Ft] = A, E [Mt|Ft] = M, and E [bt|Ft] = b .

By Jensen’s inequality and the convexity of ‖ · ‖2, As-
sumption 2.1 and Assumption 2.2 imply ‖A‖2 ≤ λ2

A,
‖M‖2 ≤ λ2

M , and ‖b‖2 ≤ B2.

The Markov setting. In the Markov noise setting,
we replace Assumption 2.2 with a weaker assumption on
the underlying stochastic process. With a slight abuse
of notation, let A : Ξ → Rd×d,M : Ξ → Rd×d, and
b : Ξ → Rd be random variables defined on the state
space Ξ of a Markov process. We denote the state of
this Markov process at time t by ξt, so that At = A(ξt),
bt = b(ξt), and Mt = M(ξt). Our main assumption,
made by all previous work we are aware of, is that the
stochastic process {ξt} has a finite mixing-time:
Assumption 2.3 (Mixing time). There exists a distri-
bution P∞ over Ξ (called the steady-state distribution

6Note that any of these problem parameters may be
unknown to the algorithm.
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Prior info Rate Noise Projected Notes

Gupta et al. (2019) β, µ, λA, λM 1/(µT ) Markov No No adaptive guarantees

Xu et al. (2019) β, µ, ‖φ‖, (λA/σmin(A), ‖b‖) 1/(µT 1−δ) Markov Yes Normalizes the features φ

Dalal et al. (2018) β, µ, λA, λM , ‖b‖ 1/T 1/3−δ Markov Yes log(T ) many projections

Kaledin et al. (2020) β, µ, λA, λM , ‖b‖ Ω
(

d
min{µ,β}µ2

)
/T Markov No Large constants in the rate

Theorem 1 λ2
A/β, λM , β, µ 1/(βT ) i.i.d No Independent of µ

Theorem 2 λ2
A/β

2 OR λM 1/
√
T i.i.d Yes Adaptive step size

Theorem 3 (λ2
A/β OR λM ), β 1/(βT ) i.i.d Yes Adaptive step size

Theorem 4 λ2
A/β, β 1/(βT ) Markov Yes Independent of µ

Theorem 5 λ2
A/β, λM , β, µ 1/(βT ) Markov No Independent of µ

Table 1: Comparison with previous work. λA and λM denote upper-bounds (holding uniformly over t) on the eigenvalues
of AtA>t and Mt, while β and µ are lower-bounds on the eigenvalues, respectively, of M and A>M−1A. The rates above
the double line correspond to the error in the iterate, while our results, below, the double line, to the error in the objective.
The former imply a bound on the latter with an extra factor of λ2

A/β, while the latter imply a bound on the former with
an extra 1/µ factor (see the discussion in Section 1.2). Gupta et al. (2019) assume ‖At‖, ‖Mt‖, and ‖A>M−1A‖ are
upper-bounded by 1, hence need λ2

M ∨ λ2
A ∨ λ2

A/β for re-scaling; their (constant) step size and finite-time bound further
depend on 1/(µ ∧ β) (λmax in their notation). Xu et al. (2019) need a bound on ‖φ(s)‖2 for normalizing the features,
and β, µ for their step sizes. In addition, to convert their results to the unconstrained setting, they need to know ‖b‖
and σmin(A) or λA/β for setting the projection radii. Dalal et al. (2018) provide a guarantee that holds only after a
large-enough number of iterations depending on the problem parameters. Also, the O(1/T ) bound of Kaledin et al.
(2020) depends on the problem parameters in obscure ways, but the constant is at least Ω

(
d

min{µ,β}µ2

)
. In comparison,

Theorem 1, using the same prior knowledge with i.i.d. samples, achieves an O(1/T ) rate independent of µ (to our
knowledge the first such rate for GTD). Theorems 2 and 3 trade-off the knowledge of different hyper-parameters when a
bounded constraint set Θ is given. Similarly to Xu et al. (2019), the corresponding algorithms can solve the unconstrained
version of problem (1) given extra prior knowledge of ‖b‖ and σmin(A) or λA/(βµ). Theorem 4 and 5 for the Markov
noise setting are the only ones we are aware of that obtain a µ-independent 1/T rate with this level of prior knowledge.

of the Markov process) such that for all ∆ > 0, with
probability 1,

τ0(∆) := sup
t≥1

inf{τ > 0 : dTV (P t+τ[t] , P∞) ≤ ∆} <∞ ,

where P s[t] denotes the conditional distribution of ξs
given Ft, and dTV denotes the total variation distance.

2.1 Online Linear Optimization

Online linear optimization (OLO) provides a generic,
flexible framework for analyzing the performance of the
iterative update rules used in optimization algorithms.
An OLO algorithm consists of an update rule for any
time step t ∈ [T ], mapping the previously received
linear losses, given by vectors gs, s ∈ [t], to the next
iterate xt+1. Perhaps the simplest example of such
an update rule is (projected) online gradient descent
(OGD), (see, e.g., Zinkevich, 2003):

xt+1 = PX
(
xt −

1

ηt
gt

)
, t ∈ [T ] , (2)

or its alternative variant known as Dual Averaging
(DA):7

xt+1 = PX
(
x1 −

1

ηt
g1:t

)
, t ∈ [T ] , (3)

where X is a closed convex set and x1 ∈ X is an
arbitrary initial point. The step size 1/ηt controls how
fast the algorithm changes its iterates, and tuning it
adaptively using the observed gs, s ∈ [t], with

ηt =

√√√√η2
0 + η2

t∑
s=1

‖gs‖2 (4)

for some η, η0 ≥ 0, results in a variant of the AdaGrad
update (Duchi et al., 2011; McMahan and Streeter,
2010).

OLO is concerned with the cumulative excess (linear)
loss of these iterates compared to a fixed iterate x∗ ∈ X .
This loss difference is referred to as the regret of the

7Generalized versions of the OGD update rule are com-
monly referred to as mirror descent, while generalized DA
updates are also known as follow the regularized leader
(FTRL) or lazy-projection mirror descent (Hazan, 2019).



Anant Raj, Pooria Joulani, András György, Csaba Szepesvári

OLO algorithm, and is defined formally as

RxT (x∗) =

T∑
t=1

〈gt, xt − x∗〉 .

In particular, it has been shown (see, e.g., Hazan, 2019;
Orabona, 2019; Joulani et al., 2020) that the OGD
update enjoys the following regret bound for any T ≥ 1
and non-increasing step sizes, i.e., for ηt ≥ ηt−1 for all
t ∈ [T ] with η0 = 0:

RxT (x∗) ≤
T∑
t=1

(
ηt − ηt−1

2
‖xt − x∗‖2 +

1

2ηt
‖gt‖2

)

≤ ηT
2
r2
x +

T∑
t=1

1

2ηt
‖gt‖2 ,

where rx = supx1,x2∈X ‖x1−x2‖, and a data-dependent
regret bound of

RxT (x∗) ≤
(
η

2
r2
x +

1

η

)√√√√ T∑
t=1

‖gt‖2 ,

using the AdaGrad step sizes (4) with η0 = 0. Similarly,
for any T ≥ 1, the DA update ensures

RxT (x∗) ≤ ηT−1

2
‖x∗‖2 +

T∑
t=1

1

2ηt−1
‖gt‖2 ,

leading to a data-dependent regret bound of

RxT (x∗) ≤ η0

2
‖x∗‖2 + max

t∈[T ]

‖gt‖2

2η0

+

(
η

2
‖x∗‖2 +

1

η

)√√√√ T∑
t=1

‖gt‖2 ,

when using AdaGrad step sizes (4) with η0 > 0.

The regret view is useful because it abstracts away the
origins of gt, and views it simply as the input to the
algorithm. The only thing we need to do in an appli-
cation, such as online convex optimization (Zinkevich,
2003; Hazan, 2019), stochastic optimization (Hazan,
2019; Joulani et al., 2020), or saddle-point computa-
tion (Juditsky et al., 2011), is to relate our performance
metric of choice for the given application to the regret
of the update rule in terms of the information gt that
is fed into it. In the next section, we show a refined
reduction of this nature that allows us to exploit the
structure of the saddle-point problem arising from a
primal-dual reformulation of the optimization objective
(through L).

3 FROM SADDLE POINTS TO
ONLINE LINEAR
OPTIMIZATION

Our analysis builds on a refined decomposition of the
optimization error `(θ̄)− `(θ∗), where θ̄ denotes the av-
erage of the iterates produced by the primal algorithm.
The new decomposition isolates (but retains) the effect
of the curvature of the problem, as captured by the
matricesM and A, from the individual performances of
the underlying OLO algorithms that receive (possibly
biased) estimates of the gradients of L and come up
with θt and yt in the primal-dual setup.
Lemma 3.1 (Error decomposition). Consider arbitrary
sequences of points θt ∈ Θ, yt ∈ Y, zt ∈ Y, gθt ∈ Rd,
and gyt ∈ Rd, t ∈ [T ]. Let θ̄ = 1

T

∑T
t=1 θt be the

average of the points θt, let ȳ∗ = arg maxy∈Rd L
(
θ̄, y
)
,

and suppose that Y is such that ȳ∗ ∈ Y. For t ∈ [T ],
let Bt = 1

2‖yt‖
2
M and B̄t = 1

2‖yt − ȳ
∗‖2M , and define

σθt = ∇θL(θt, yt)−gθt and σyt = ∇yL(θt, yt)−gyt . Then,

`(θ̄)− `(θ∗) =
ε1:T

T
+
RθT +RyT +RσT

T
− B1:T − B̄1:T

T
,

(5)

where εt =
〈
σθt , θt − θ∗

〉
+ 〈σyt , zt − yt〉, t ∈ [T ], while

RθT =
∑T
t=1

〈
gθt , θt − θ∗

〉
, RyT =

∑T
t=1 〈−g

y
t , yt − ȳ∗〉,

and RσT =
∑T
t=1 〈−σ

y
t , zt − ȳ∗〉.

Remark. (i) In the decomposition above, gθt and gyt
serve, respectively, as the estimates of the gradients of
L at (θt, yt) w.r.t. θ and y, respectively. In particular,
using the estimates bt, At and Mt, we have

gyt = bt −Atθt −Mtyt,

and

gθt = −At>yt .

The terms εt then capture the noise in this estimate,
so that E {εt} is zero when the noise at time t is inde-
pendent of the history up to time t (the i.i.d. setting),
but possibly non-zero (and controlled via a separate
argument) in the Markov noise setting. The terms RθT
and RyT are the regrets of the OLO algorithms pro-
ducing θt and yt when sequentially fed with the linear
feedback gθt and gyt , respectively. Following Juditsky
et al. (2011), the term RσT is the regret of an imaginary
OLO algorithm which is sequentially fed with σyt and
produces iterates zt.; this ensures εt does not involve ȳ∗,
which depends on the whole history and complicates
the analysis of noise.
(ii) Compared to previous work, the decomposition
above applies directly to the optimization error of
the primal-dual scheme, as opposed to the variational-
inequality error pertaining to the prima-dual gradient
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operator. This enables us to take advantage of the cur-
vature of the problem through the negative terms −Bt
and −B̄t; this is instrumental for reducing the contribu-
tions of the regret terms to the final error bound, and
obtaining not only the O(1/T ) convergence guarantees
but also simpler step-size configurations and smaller
final convergence bounds.

The analysis then works as follows: we control the
terms εt using the i.i.d. or mixing properties of the
estimates and the underlying stochastic process {ξt}.
Furthermore, we upper-bound the regret terms in (5)
using the OLO regret bounds of the corresponding
updates for θt and yt (Section 2.1). This leaves us
with the terms arising from those regret bounds, which
involve the iterates as well as the gradients ‖gθt ‖2 and
‖gyt ‖2. We then control these terms using the generic
bounds presented below, possibly using the matching
negative terms −Bt and −B̄t from (5) to further reduce
their effect in the final bound on `(θ̄)− `(θ∗).

Generic bounds on the regret terms. Next, we
upper-bound the terms arising from the OLO regret
guarantees of Section 2.1.

Lemma 3.2 (Bound on ‖gθt ‖2). Recall Bt = 1
2‖yt‖

2
M .

For any t ∈ [T ], we have ‖gθt ‖2 ≤
2λ2
A

β Bt.

Lemma 3.3 (Bound on ‖gyt ‖2). Assume the i.i.d. set-
ting, and let σ2

∗ be an upper-bound on Et[‖bt−Atθ∗‖2].
Then, for any t ∈ [T ],

Et
[
‖gyt ‖2

]
≤ 3

(
σ2
∗ + λ2

A‖θt − θ∗‖2 + 2λMBt
)
.

In addition, if θt is given by DA or OGD with the
step-size sequence ηθt , then for any t ∈ [T ],

Et
[
‖gyt ‖2

]
≤ 4

(
σ2
∗ + λ2

A‖θ1 − θ∗‖2 + 2λMBt

+
2λ4

A

∑t−1
s=1(t− 1)Bs

β
(
ηθt
)2

)
.

Lemma 3.4 (Bound on ‖ȳ∗T ‖2). We have ‖ȳ∗T ‖2 ≤
2
β

(
`(θ̄T )− `(θ∗)

)
.

Lemma 3.5 (Bound on ‖θ − θ∗‖2). For any θ ∈ Rd, we
have ‖θ − θ∗‖2 ≤ 2

µ (`(θ)− `(θ∗)).

Equipped with the generic reduction to OLO and the
above bounds on the terms that appear in the corre-
sponding OLO regret bounds, we are ready to mix and
match OLO algorithms and tuning strategies to obtain
a range of new convergence results for problem (1).

4 CONVERGENCE RESULTS
WITH UNBOUNDED Θ IN THE
I.I.D. SETTING

We start our results by showing finite time bounds for
the case of unbounded Θ in the i.i.d. setting.

In this section, we provide a new primal-dual algorithm
that converges at a rate of O(1/T ), rather than the
usual rate of O(1/

√
T ), requires less prior knowledge,

and results in better dependence on the parameters
than earlier methods with O(1/T ) convergence guaran-
tees. The two main features of our algorithm, namely
restarting (i.e., the use of epochs) and unprojected
updates, have appeared in previous work. However, we
can now show that this simple update strategy, given
in Algorithm 1, enjoys a bound of order O(1/(βT )) on
the objective `(θ), unlike previous work which obtain
a bound (on the iterate norms r.t. the objective) that
typically scales with 1/µ.

Restarting. The algorithm works in S epochs, where
epoch s, s = 1, 2, . . . , S, consists of Ts rounds of stochas-
tic gradient updates. Each stochastic gradient update
uses one of the observations (At, bt,Mt), t = 1, 2, . . . , T .
Recall that the observations form an i.i.d. sequence sat-
isfying Assumption 2.2. We order these observations
according to the epoch / time-step in which they are
accessed: we denote (As,t, bs,t,Ms,t) to indicate the
observation received in the t-th time step, t ∈ [Ts],
of the s-th epoch. The update directions are then
obtained, as remarked after Lemma 3.1, using the esti-
mated gradients of L(θ, y) at the current observation
(As,t, bs,t,Ms,t), given by:

gys,t = ∇yLs,t(θs,t, ys,t) = bs,t −As,tθs,t −Ms,tys,t,

and

gθs,t = ∇θLs,t(θs,t, ys,t) = −As,t>ys,t .

Algorithm 1 Unconstrained algorithm with restarting
1: Input: arbitrary initial points θ1,1, y1,1; initial

step sizes ηθ1 , η
y
1 ; initial epoch length T1.

2: for s = 1 to S do
3: for t = 1 to Ts do
4: θs,t+1 ← θs,1 + 1

ηθs
gθs,1:t

5: ys,t+1 ← ys,1 + 1
ηys
gys,1:t

6: end for
7: θ(s+1),1 ← θ̄s := 1

Ts

∑Ts
t=1 θs,t

8: y(s+1),1 ← 0

9: ηθs+1 ← 2ηθs , η
y
s+1 ← 2ηys , and Ts+1 ← 2Ts

10: end for
11: return θ̄S = 1

TS

∑TS
t=1 θS,t
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In each epoch (Line 4 and Line 5), we perform stan-
dard primal-dual updates via the FTRL algorithm. At
the end of the epoch, we obtain the averaged primal
variable θ̄s (Line 7) and set the dual variable ȳs to
zero (Line 8), which act as initial iterates for the next
epoch.8 Finally, in Line 9, the epoch length is doubled
and the learning rates are halved for the next epoch.
Theorem 1. Suppose that the iterates θt and yt, t ∈ [T ],
are given by Algorithm 1. Then, for large enough
T1 ≈ Θ( 1

µ2β2 ), for step sizes ηθs = µTs
16 and ηys = βTs

4 ,
under Assumptions 2.1 and 2.2, after S > 0 epochs, we
have `(θ̄S)− `(θ∗) = Θ( 1

βT1:S
).

Proof Sketch. The detailed proof is given in the ex-
tended version of the paper (Raj et al., 2022). The
result directly comes from combining the bounds on
the norm terms appearing in the regret bound of the
primal, dual and noise variables, which have been pro-
vided in Lemmas 3.2, 3.3, 3.4 and 3.5. The negative
Bregman divergences coming from the regret decom-
position are used with the appropriate choice of the
step size to cancel the positive norm terms arising
from the regret bounds. Defining ∆`s = `(θ̄s)− `(θ∗),
we use strong convexity of `(θ) to get the recursion
E[∆`s] ≤ 1

4E[∆`s−1] + C
T1:s

for some constant C which
depends on fixed quantities θ?, y?, β, µ, λA and λM .
Since Ts = 2Ts−1, we get ∆`s = O( 1

T ) where T is total
number of iterations.

5 IMPROVED RESULTS WITH
BOUNDED Θ IN THE I.I.D.
SETTING

In this section we make the extra assumption
that we are given a set Θ with bounded diameter
supθ1,θ2∈Θ ‖θ1 − θ2‖2 ≤ r2

θ , such that the projection
PΘ(θ) can be computed efficiently for any θ ∈ Rd. We
design algorithms that keep their iterates inside Θ.

Besides the case when a constraint set Θ is given as
part of the problem, such projected-update algorithms
can also be used as a proxy to find the unconstrained
solution θ∗ ∈ Rd of problem (1). To that end, we would
need to create a projection-friendly set Θ that contains
the unconstrained solution θ∗. Assuming A and M are
invertible, such a constraint set can be built using extra
prior knowledge. In particular, since Aθ∗ = b, we have
θ∗ = A−1b = (A>M−1A)−1(A>M−1b). Hence, θ∗ will
be inside the `2-ball of radius rθ as long as rθ > λA

βµ ‖b‖
or rθ > ‖b‖/σmin(A).

In previous work, the assumption of a bounded Θ has
been commonly accompanied by the assumption that
the dual iterate yt is also projected to a convex set Y.

8For the generalized problem where A is not invertible,
we can start epoch s+ 1 at ys+1,1 = ȳs = 1

Ts
ys,1:Ts .

The results in this section show that this is not nec-
essary, but can be beneficial. Specifically, when λA/β
is known, projecting the dual variable to a Y contain-
ing the `2-ball of radius λA

β rθ ensures that ȳ∗ ∈ Y as
required by Lemma 3.1; we can thus use a projected
adaptive yt update to relax the need to know λM .

Robust bounds. We start with robust bounds that
do not require the knowledge of β. A proof is given in
the extended version of the paper (Raj et al., 2022).
Theorem 2. Suppose θt and yt are given by any of the
three update pairs in Table 2. Then, under Assump-
tions 2.1 and 2.2, for all T ≥ 1, the error of each pair
of updates is upper-bounded as presented in Table 2.
In all cases, `(θ̄)− `(θ∗) = O(1/

√
T ).

Remark. Notably, the pair of updates in the second and
third rows of Table 2 converge for any positive values
of ηθ and ηy. These two parameters can still be fur-
ther tuned using the standard hyper-parameter tuning
methods and / or further prior knowledge, resulting in
better constants in the convergence rate. This should
be contrasted with the restricted range of step-sizes
under which prior work typically establish convergence.

Adaptive O(1/T ) bounds with knowledge of β.
Finally, we show that given knowledge of β, one can
make the same prior-knowledge trade-offs as the robust
case, while still obtaining an O(1/T ) rate. The next
theorem formalizes this idea. A proof is provided in
the extended version of the paper (Raj et al., 2022).
Theorem 3. Suppose θt and yt are given by any of the
three update pairs in Table 3. Then, under Assump-
tions 2.1 and 2.2, for all T ≥ 1, `(θ̄)− `(θ∗) = O(1/T ).

6 MARKOV NOISE SETTING

In this section, we provide convergence guarantees for
problem (1) in the more realistic Markov noise setting.

First, in Theorem 4, we consider the simpler case when
both the primal variable θ and the dual variable y are
projected onto the compact sets Θ and Y , respectively.
Theorem 4. Suppose Assumptions 2.1 and 2.3 hold.
Assume that supθ∈Θ ‖θ‖2 ≤ r2

θ and supy∈Y ‖y‖2 ≤ r2
y.

Let y1 = y∗ = 0 and θ1 be arbitrary, and for all t ∈ N,

θt+1 = PΘ

[
θt −

gθt
ηθ

]
, and yt+1 = PY

[
yt +

gyt
ηyt

]
,

where ηθ =
2τ(τ+1)λ2

A

β and ηyt = 4
βt . Then, under

Assumptions 2.1 and 2.3, for all t ∈ [T ] and ∆ > 0,

`(θ̄T )− `(θ∗) ≤ C1τ(τ + 1)

βT
+

10L2
2 + C2τ

βT
log(1 + T )

+ 2∆(rθL1 + ryL2) +
6τry(λArθ + L2)

T
,
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Update rule Step-size Bound on the Unnormalized Error: T · E
[
`(θ̄T )− `(θ∗)

]
θt+1 = PΘ

(
θt − gθt /ηθ

)
ηθ = 2λ2

A/β
λ2
A

β r
2
θ + (12λM +

√
T )

λ2
A

β2 r
2
θ + 6

(
σ2
∗ + λ2

Ar
2
θ

)√
T

yt+1 = y1 + gy1:t/η
y
t ηyt = 12λM +

√
t+ 1

θt+1 = PΘ

(
θt − gθt /ηθt

)
ηθt = ηθ

√∑t−1
s=1 ‖gθs‖2 2

(
ηyλ2

A

2β2 r
2
θ + 1

ηy

)√
3σ2
∗T + 3λ2

Ar
2
θT +

2λ2
A

β

(
ηθ

2 r
2
θ + 1

ηθ

)2

yt+1 = y1 +
gy1:t

12λM + ηyt
ηyt = ηy

√∑t−1
s=1 ‖g

y
s‖2 +24λM

(
ηyλ2

A

2β2 r
2
θ + 1

ηy

)2

+ 12λM
λ2
A

β2 r
2
θ +

(B2+λ2
Ar

2
θ)

4λM

θt+1 = PΘ

(
θt − gθt /ηθt

)
ηθt = ηθ

√∑t−1
s=1 ‖gθs‖2 2

(
ηycλ2

A

2β2 r2
θ + 1

ηy

)√
3σ2
∗T + 3λ2

Ar
2
θT +

2λ2
A

β

(
ηθ

2 r
2
θ + 1

ηθ

)2

yt+1 = PY (yt + gyt /η
y
t ) ηyt = ηy

√∑t−1
s=1 ‖g

y
s‖2 +24λM

(
ηycλ2

A

2β2 r2
θ + 1

ηy

)2

Table 2: Algorithm configurations that result in a robust O(1/
√
T ) convergence guarantee for bounded Θ. All update

rules apply for t ∈ [T ]. In all cases, θ1 ∈ Θ is arbitrary, and y1 = y∗ = 0. Note that the adaptive step sizes may be zero
before the first non-zero gradient estimate is observed. In that case, the possible 0/0 in the update rule is evaluated to 0
by convention: the algorithm keeps predicting θt+1 = θ1 until it receives a non-zero update direction. In the last update,
Y is any closed convex set containing the `2-ball of radius λ2

Ar
2
θ/β

2 satisfying supy∈Y ‖y‖2 ≤ cλ2
Ar

2
θ/β

2 for some c ≥ 1.

Update rule Step-size
θt+1 = PΘ

(
θt − gθt /ηθ

)
ηθ = 2λ2

A/β

yt+1 = yt + gyt /η
y
t ηyt = 16λM + β

2 t

θt+1 = PΘ

(
θt − gθt /ηθt

)
ηθt = ηθ

√∑t−1
s=1 ‖gθs‖2

yt+1 = yt + gyt /η
y
t ηyt = 16λM + β

2 t

θt+1 = PΘ

(
θt − gθt /ηθt

)
ηθt = ηθ

√∑t−1
s=1 ‖gθs‖2

yt+1 = PY (yt + gyt /η
y
t ) ηyt = β

2 t

Table 3: Algorithm configurations that result in a fast
O(1/T ) convergence guarantee for bounded Θ. All update
rules apply for t ∈ [T ]. In all cases, θ1 ∈ Θ is arbitrary,
and y1 = y∗ = 0. Similar comments as in Table 2 apply to
adaptive steps and Y.

where L1 = λAry, L2 = B+λArθ +λmry, C1 = 2λ2
Ar

2
θ ,

C2 = 4
[
2ryλML2 + 2rθλAL2 + 3L2

2

]
, and τ = τ0(∆).

The result obtained above illuminates the effect of
Markov noise on the convergence guarantee, and ex-
poses the problem parameters appearing in the rate.
Next, in Theorem 5, we consider the unbounded setting
Θ = Y = Rd and analyze Algorithm 1 under Markov
noise, proving a counterpart of Theorem 1.

Theorem 5. Suppose Assumptions 2.1 and 2.3 hold.
Assume that the iterates θt and yt are given by Algo-
rithm 1 with step sizes η(s)

θ = Θ
(

max
{
µT1:s,

βT1:s

λ2
A

})
and η

(s)
y = Θ

(
βT1:s

λ2
A

)
. Then, after S > 0 epochs,

for small enough ∆ = O(β2µ2), and for large enough
T1 = Ω

(
τ

β2µ2

)
, we have

`(θ̄S)− `(θ∗) = Θ

(
τ

βT1:S
+ ∆

)
.

7 IMPLICATIONS FOR GRADIENT
TD LEARNING

In this section, we recall the formal reduction of the off-
policy policy evaluation problem to problem (1), and
discuss the implications of our results for this setting.

Following the notations in Liu et al. (2015), consider
a Markov Decision Process (MDP), which is a tuple(
S,A, (Pass′)s,s′∈S,a∈A , R, γ

)
, where S and A, respec-

tively, are the finite sets of states and actions, Pass′ is the
probability of transition from state s ∈ S to state s′ ∈ S
when performing action a ∈ A, R : S ×A→ [0, Rmax]
is the reward function with R(s, a) denoting the reward
received at state s if the agent performs action a, and
0 ≤ γ < 1 is a discount factor. A stationary policy
π : S × A → [0, 1], where

∑
a∈A π(s, a) = 1 for every

s ∈ S, indicates the probability of performing a partic-
ular action at a particular state. The value function
of a given policy π is denoted by V π : S → R which
happens to be the unique fixed-point of the Bellman
operator Tπ, that is,

V π = TπV π = Rπ + γPπV π.

We consider the off-policy evaluation problem, where
the goal is to estimate the value of a policy π, while
the MDP can only be observed through interactions
via another policy πb, called the behavior policy. For a
state-action pair (s, a), such that πb(a|s) > 0, the im-
portance weighting factor is defined as ρ(s, a) = π(a|s)

πb(a|s)
with ρmax ≥ sups∈S,a∈A ρ(s, a) being the maximum.
For large state spaces, we often approximate the value
function V π with linear functions as v̂ = Φθ where
Φ ∈ R|S|×d and θ ∈ Rd. We assume to have ac-
cess to a stream of training samples which we denote
as {(st, at, rt = r(st, at), s

′
t, ρt)}∞t=1, where rt denotes



Anant Raj, Pooria Joulani, András György, Csaba Szepesvári

the reward after choosing action at at the state st,
st ∼ Pt where Pt is the distribution of st at step t,
at ∼ πb(·|st), s′t ∼ P (·|st, at) and ρt = ρ(st, at). In
the online (Markov noise) setting, we have s′t = st+1.
Alternatively, given a finite batch of n transitions
{(si, ai, ri = r(si, ai), s

′
i, ρ(si, ai))}ni=1 , we can create

the stream above under the i.i.d. noise setting by
sampling from the batch in an i.i.d. fashion.

We use φt = φ(st) to denote the feature vector corre-
sponding to state st, and denote φ(s′t) with φ′t. Further,
denote the TD error by δt(θ) = rt +γφt

′>θ−φ>t θ, and
define ∆φt = φt−γφ′t. Then, the goal of GTD methods
(Maei, 2011) is to solve problem (1) with

A = lim
t→∞

E[At] ,

b = lim
t→∞

E[bt] ,

C = lim
t→∞

E[Ct] ,

where At = ρtφt∆φ
>
t , bt = ρtφtrt, and Ct = φiφ

>
i .

In this case, `(θ) of problem (1) is called the Mean
Squared Projected Bellman Error (MSPBE) objective.

Interpretation of results for the MSPBE objec-
tive. Given the definitions above, it is straightforward
to see that an upper-bound λM on ‖Mt‖ can be imme-
diately obtained as λM = supt ‖φt‖. Thus, Theorem 2
shows that we can adaptively tune the GTD2 algo-
rithm, using only knowledge of the feature norms, and
obtain a convergence guarantee of O(1/

√
T ). Similarly,

note that the minimum eigenvalue of C, lower-bounded
by β, is independent of the tagert policy π. Hence,
Theorem 3 implies a O( 1

βT ) bound with proper adap-
tive tuning of GTD2. In both cases, the step sizes are
independent of the potentially large factor ρmax; this
would not be the case if we had to tune the step size
based, e.g., on upper-bounds of the gradient norms
obtained from λA or µ.

8 CONCLUSIONS

In this paper, we studied the problem of linear com-
position optimization, a special case of which arises in
policy evaluation for reinforcement learning using gradi-
ent temporal difference learning algorithms. Applying
a simple alternative to the saddle-point formulation of
Liu et al. (2018), we exploited the structure (specifically,
the curvature) of this optimization problem to achieve
convergence rates for the objective that: a) remove
or relax unnecessary assumptions about availability
of prior knowledge, b) apply to adaptive, simple-to-
tune algorithms, and c) enjoy better dependence on
the problem parameters compared to previous work.
In particular, we analyzed an unconstrained restart-
ing scheme that, under both i.i.d. and Markov noise,

achieves a O(1/(βT )) rate, which to our knowledge
has not been available in previous work. Finally, we
discussed the implications of these results applied to
the adaptive tuning of GTD algorithm for policy eval-
uation. In particular, we noted that the new step-size
schedules do not depend on the largest importance sam-
pling ratio ρmax, preventing the aggressive scale-down
of the step-size that would potentially occur when the
algorithm is tuned based on other problem parameters.

The next immediate research problem is to extend
the analysis to non-linear gradient temporal difference
learning, to value iteration, and to universal adap-
tive step-size algorithms that do not require any prior
knowledge to converge in the unconstrained setting.
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