
Ada-BKB: Scalable Gaussian Process Optimization on Continuous
Domains by Adaptive Discretization

Marco Rando1 Luigi Carratino1 Silvia Villa2 Lorenzo Rosasco1,3,4

1MaLGa - DIBRIS, University of Genova, Italy. 2MaLGa - DIMA, University of Genova, Italy.
3CBMM - Massachusetth Institute of Technology, USA. 4Istituto Italiano di Tecnologia, Genova, Italy

Abstract

Gaussian process optimization is a successful
class of algorithms(e.g. GP-UCB) to opti-
mize a black-box function through sequential
evaluations. However, for functions with con-
tinuous domains, Gaussian process optimiza-
tion has to rely on either a fixed discretization
of the space, or the solution of a non-convex
optimization subproblem at each evaluation.
The first approach can negatively affect per-
formance, while the second approach requires
a heavy computational burden. A third op-
tion, only recently theoretically studied, is
to adaptively discretize the function domain.
Even though this approach avoids the ex-
tra non-convex optimization costs, the overall
computational complexity is still prohibitive.
An algorithm such as GP-UCB has a runtime
of O(T 4), where T is the number of itera-
tions. In this paper, we introduce Ada-BKB
(Adaptive Budgeted Kernelized Bandit), a
no-regret Gaussian process optimization al-
gorithm for functions on continuous domains,
that provably runs in O(T 2d2

eff), where deff is
the effective dimension of the explored space,
and which is typically much smaller than T .
We corroborate our theoretical findings with
experiments on synthetic non-convex func-
tions and on the real-world problem of hyper-
parameter optimization, confirming the good
practical performances of the proposed ap-
proach.

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

1 INTRODUCTION

The maximization of a function given only finite, pos-
sibly noisy, evaluations is a key and common prob-
lem in applied sciences and engineering. Approaches
to this problem range from genetic algorithms (Whit-
ley, 1994) to zero-th order methods (Nesterov and
Spokoiny, 2017). Here, we take the perspective of ban-
dit optimization, where indeed a number of approaches
have been proposed and studied: for example Thomp-
son sampling, or the upper confidence bound algorithm
(UCB), see (Lattimore and Szepesvári, 2020) and ref-
erences therein. Relevant to our study is a whole
line of work developing the basic UCB idea, consid-
ering in particular kernels (kernel-UCB) (Kung, 2014)
or Gaussian processes (GP-UCB) (Rasmussen, 2003).
In the basic UCB algorithm, the function domain is
typically assumed to be discrete (or discretized) and
an upper bound to the function of interest is itera-
tively computed and maximized. This approach is
sound and amenable to a rigorous theoretical analysis
in terms of regret bounds. Considering Gaussian pro-
cesses/kernels, it is possible to extend the applicability
of UCB while preserving the nice theoretical proper-
ties (Kung, 2014; Rasmussen, 2003). However, this is
at the expenses of computational efficiency. Indeed, a
number of recent works has focused on scaling UCB
with kernels/GP by taking advantage of randomized
approximations based on random features (Mutnỳ and
Krause, 2019) and Nystrom/inducing points meth-
ods (Calandriello et al., 2020, 2019), or by perform-
ing a smart candidate selection strategy (Calandriello
et al., 2022). These studied solutions show that im-
proved efficiency can be achieved without degrading
the regrets guarantees. The other line of work rele-
vant to our study focuses on how to tackle functions
defined on continuous domains. In particular, we con-
sider optimistic optimization, introduced in (Munos,
2011) and developed in a number of subsequent works,
see (Valko et al., 2013a; Kleinberg et al., 2013; Bubeck
et al., 2011; Wang et al., 2014; Shekhar and Javidi,

Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by Adaptive Discretization

2018; Salgia et al., 2020; Kleinberg et al., 2008). The
basic idea is to iteratively build discretizations in a
coarse to fine manner. This approach, related to
Monte Carlo tree search, can be analyzed theoret-
ically to derive rigorous regrets guarantees (Munos,
2014). In this paper we propose and analyze a novel
and efficient approach called Ada-BKB, that combines
ideas from optimistic optimization and UCB with ker-
nels. A first attempt in this direction has been done
in (Shekhar and Javidi, 2018; Salgia et al., 2020). How-
ever, the corresponding computational costs are pro-
hibitive since exact (kernel) UCB computations are
performed. So, we take advantage of the latest ad-
vances on scalable kernel UCB and adapt optimistic
optimization techniques to derive a provably accurate
and efficient algorithm. Our main theoretical contribu-
tion is the derivation of sharp regret guarantees, that
shows that Ada-BKB is as accurate as an exact UCB
with kernels, with much smaller computational costs.
We provided an efficient implementation of Ada-BKB
which uses techniques such as pruning and early stop-
ping. We investigate empirically its performance both
in numerical simulations and in a hyper-parameter
tuning task. The obtained results confirm that Ada-
BKB is a scalable and accurate algorithm for efficient
bandit optimization on continuous domains. The rest
of the paper is organized as follows. In Section 2, we
describe the problem setting and in Section 3, we de-
scribe the algorithm we propose. In Section 4 and 5
we present our empirical and theoretical results. In
Section 6 we discuss some final remarks.

2 PROBLEM SETUP

Let (X, d) be a compact metric space, for exampleX =
[0, 1]p ⊆ Rp. Let f : X → R be a continuous function
and consider the problem of finding

x∗ ∈ arg max
x∈X

f(x).

We consider a setting where only noisy function eval-
uations yt = f(xt)+ εt are accessible. Here, εt is ξ-sub
Gaussian noise. This problem is relevant in black-box
or zero-th order optimization (Nesterov, 2014), as well
as in muti-armed bandits (Lattimore and Szepesvári,
2020). In this latter context, the function f is also
called the reward function and X the arms set. Given
T ∈ N, the goal is to derive a sequence x1, · · · , xT ∈ X,
with small cumulative regret,

RT =

T∑
t=1

(f(x∗)− f(xt)).

This can be contrasted to considering the simple regret
ST = f(x∗) − f(xT) as typically done in optimiza-
tion. The regret considers the errors accumulated by

the whole sequence rather than just the last iteration.
The sequence (xt)t is computed iteratively. At each
iteration t, an element xt ∈ X is selected and a corre-
sponding noisy function value yt made available. The
selection strategy, also called a policy, is based on all
the function values obtained in previous iterations. In
the following we assume f to belong to a reproducing
kernel Hilbert space (RKHS). The latter is a Hilbert
space of (H, 〈·, ·〉 , ‖ · ‖) of functions from X to R, with
associated a function k : X × X → R, called repro-
ducing kernel or kernel, such that for all x ∈ X and
f ′ ∈ H,

k(x, ·) ∈ H, and f ′(x) = 〈f ′, k(x, ·)〉 .

We assume that k(x, x) ≤ κ2 for all x ∈ X and κ ≥ 1.
We let dk : X × X → [0,∞) be the distance in the
RKHS H defined as dk(x, x′) = ‖k(x, ·)− k(x′, ·)‖ =√
k(x, x) + k(x′, x′)− 2k(x, x′) with x, x′ ∈ X. Fur-

ther, we consider kernels for which the following as-
sumptions hold.

Assumption 1. There exists a non-decresing func-
tion g : [0,∞)→ [0,∞) such that g(0) = 0 and for all
x, x′ ∈ X

dk(x, x′) ≤ g(d(x, x′)). (1)

Assumption 2. Let g be the non-decreasing function
indicated in Assumption 1. There exist δk > 0, α ∈
(0, 1], and C ′k, Ck > 0 such that

(∀r ≤ δk) Ckr
α ≤ g(r) ≤ C ′krα (2)

It is easy to see that, the above condition is satis-
fied, for example, for the Gaussian kernel k(x1, x2) =

e−
‖x1−x2‖

2

l with α = 1 and suitable constants

δk, Ck, C
′
k, for g(r) =

√
2
l r.

3 ALGORITHM

The new algorithm we propose combines ideas
from AdaGP-UCB (Shekhar and Javidi, 2018) and
BKB (Calandriello et al., 2019) (a scalable implemen-
tation of GP-UCB/KernelUCB (Srinivas et al., 2010;
Valko et al., 2013b)). We begin recalling the ideas
behind GP-UCB and BKB.

From kernel bandits to budgeted kernel ban-
dits. The basic idea in GP-UCB/KernelUCB is to
derive an upper estimate ft of f at each step, and
then select the new point xt+1 maximizing such an
estimate. The upper estimate is defined using a repro-
ducing kernel k : X×X → R. Let (x1, y1), . . . , (xt, yt)
be the sequence of evaluations points and noisy evalu-
ation values up-to the t-th iteration. Let Kt ∈ Rt×t be
the matrix with entries (Kt)ij = k(xi, xj), for i, j =

Marco Rando1, Luigi Carratino1, Silvia Villa2, Lorenzo Rosasco1,3,4

1, . . . , t, denote kt(x) = (k(x, x1), . . . , k(x, xt)) ∈ Rt
and Yt = (y1, . . . , yt) ∈ Rt. For λ > 0, let

µt(x) = kt(x)>(Kt + λI)−1Yt

σt(x)2 = k(x, x)− kt(x)>(Kt + λI)−1kt(x).
(3)

For βt > 0, the upper estimate of f , known as upper
confidence bound (UCB), is defined as

ft(x) = µt(x) + βtσt(x).

Note that λ and βt are parameters that need to be
specified. The quantities µt, σt can be seen as a
kernel ridge regression estimate and a suitable con-
fidence bound, respectively. Also, they have a nat-
ural Bayesian interpretation in terms of mean and
variance of the posterior induced by a Gaussian Pro-
cess, hence the name GP-UCB (Srinivas et al., 2010).
KernelUCB/GP-UCB have favorable regret guaran-
tees (Valko et al., 2013b; Srinivas et al., 2012), but
computational requirements that prevent scaling to
large data-sets. BKB (Calandriello et al., 2019) tack-
les this issues considering a Nyström-based approxi-
mation (Drineas et al., 2005). Let Xt = (x1, . . . , xt) ∈
Rt×p be the collection of evaluation points up-to iter-
ation t and St ⊆ Xt a subset of cardinality m ≤ t.
Let KSt ∈ Rm×m such that (KSt)ij = k(xi, xj) with
xi, xj ∈ St, and kSt(x) ∈ Rm such that (kSt(x))i =

k(x, xi) with xi ∈ St. Let k̃ : X × X → R be the
approximate Nyström kernel defined as

k̃(x, x′) = kSt(x)>K†StkSt(x
′). (4)

Let K̃St ∈ Rt×t such that (K̃St)ij = k̃(xi, xj) with

xi, xj ∈ Xt, and k̃St(x) ∈ Rt such that (k̃St(x))i =

k̃(x, xi) with xi ∈ Xt.

For λ > 0, let

µ̃t(xi) = k̃St(xi)
>(K̃St + λI)−1Yt

σ̃2
t (xi) =

1

λ
(k(xi, xi)− k̃St(xi)>(K̃St + λI)−1k̃St(xi))

(5)
and, for βt > 0

f̃t(x) = µ̃t(x) + βtσ̃t(x). (6)

BKB uses the above approximate estimate and select
at each iterations the points in St proportionally to
their variance at the previous iterate σ̃2

t−1(xi) (Calan-
driello et al., 2019). This sampling strategy guaran-
tees that, for the proper values of βt, |St| ≤ O(deff(t))

where X̃t is the set of explored points until function
evaluation t and deff is the effective dimension, a quan-
tity typically much lower than t and defined as

deff(t) =

T∑
t=1

σ2
t (xt). (7)

where with xt is the point evaluated at time t. To
maximize the upper estimate (ft for KernelUCB/GP-

UCB and f̃t for BKB) these algorithms rely on the as-
sumption that the arms set X is discrete. In practice,
when X is continuous, a fixed discretization is consid-
ered. In the next section we discuss how the latter can
be computed adaptively and introduce some necessary
concepts and assumptions.

Partition Trees. Key for adaptive discretization is
a family of partitions called partition trees. Follow-
ing (Shekhar and Javidi, 2018), the notion of partition
tree for metric spaces is formalized by the following
definition.

Definition 1. Let (Xh)h∈N be families of subsets of
X, with X0 = X. For each h ∈ N (called depth), the
family of subsets Xh has cardinality Nh with N ∈ N.
The elements of Xh are denoted by Xh,i and called
cells. Each cell Xh,i is identified by the point xh,i ∈
Xh,i (called centroid) such that

Xh,i = {x ∈ X : d(x, xh,i) ≤ d(x, xh,j) ∀j 6= i}.

Further, for all h ∈ N and i = 1, . . . , Nh,

Xh,i = ∪Nij=N(i−1)+1Xh+1,j .

The cells (Xh+1,j)j are called children of Xh,i, and
Xh,i is called parent of (Xh+1,j)j.

Note that each cell Xh,i identifies a node in the tree
denoted by the index (h, i). To describe the above par-
ent/children relationship we define the following func-
tion on indexes. Let (0, 1) be the index of the root cell
X0,1 = X, we denote with p that function that given
the index of a cell (h + 1, j) returns the index of its
parent (h, i), and with c that function that given the
index of a cell (h, i) returns the indexes of its children
{(h+1, N(i−1)+1), . . . , (h+1, Ni)}. In the following
we refers to p and c as parent function and children
function.

Partition growth and maximum local reward
variation. We make the following assumption which
formalizes the idea that the cell size decreases with
depth.

Assumption 3. Let B(x, r, d) be a d-ball with radius r
and centered in x, we assume that there exist ρ ∈ (0, 1)
and 0 < v2 ≤ 1 ≤ v1 such that for h ≥ 0 and all
i = 1, . . . , Nh

B(xh,i, v2ρ
h, d) ⊂ Xh,i ⊂ B(xh,i, v1ρ

h, d)

Knowing that f ∈ H, from the above assumption and
Assumption 1 we can derive the following upper bound
on the maximum variation of f in the cells (Xh,i)i at
each depth h.

Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by Adaptive Discretization

Lemma 1. Under Assumptions 1 and 3, let f ∈ H
and let F = ‖f‖. Then, for all h ≥ 0 and for all
1 ≤ i ≤ Nh,

sup
x,x′∈Xh,i

|f(x)− f(x′)| ≤ Vh (8)

with Vh = Fg(v1ρ
h)

We provide the proof in Appendix B.1

3.1 Ada-BKB

We now present the new algorithm called Adaptive-
BKB (Ada-BKB). Given a partition tree and a func-
tion evaluation budget T , the basic idea is to explore
the set of arms in a coarse to fine fashion, considering
a variation of BKB on the cells’ centroids of the parti-
tion tree. The algorithm is given in Algorithm 1 and
we next describe its various steps.

Preliminaries: index function and leaf set. Re-
calling the definition of the parent function p, given
xh,i ∈ Xh,i we let xp(h,i) be the centroid of the parent
cell. Then, we define the so called index function as

It(xh,i) = min(f̃t(xh,i), f̃t(xp(h,i)) + Vh−1) + Vh (9)

with f̃t as in (6). In other terms, we compute an high
probability upper bound of f on xh,i and, adding Vh,
we get an high probability upper bound over the max-
imum values of f in the cell Xh,i.

Ada-BKB proceeds iteratively. The algorithm main-
tains two counters, τ which counts the total number of
function evaluations and refinements (see below), and
t which keeps track of the number of function evalu-
ations performed. A set of cells’ centroids Lτ (called
the leaf set) is updated at each iteration τ ≥ 0. We
next describe how the leaf set is used and populated
recursively.

First evaluation-update steps. The leaf set ini-
tially contains only the centroid of root cell, that is

L0 = {x0,1}.

The function value is queried at x0,1 to obtain y1 =
f(x0,1)+ε1 and the first estimates µ̃1, σ̃1 are computed.
Then, given a suitable parameter βt, the condition,

βtσ̃1(x0,1) ≤ V0,

is checked. Initially the term σ̃1(x0,1) is typically large
and the condition is violated. In this case, another
function value

y2 = f(x0,1) + ε2

is queried to derive new estimates µ̃2, σ̃2 using all
available data. Then, the condition βtσ̃2(x0,1) ≤ V0

is checked again. If violated more function values
yt = f(x0,1)+εt are queried, and estimates µ̃t, σ̃t com-
puted, until the condition βtσ̃t(x0,1) ≤ V0 is satisfied .
Both counters are updated i.e. τ = t.

First leaf-set-expansion step. During all the
above iterations the leaf set is unchanged, so that
Lτ = L0. When the condition βtσ̃t(x0,1) ≤ V0 is sat-
isfied, then the leaf set is expanded according to the
following rule

Lτ+1 = (Lτ \ {x0,1}) ∪ {x1,j |1 ≤ j ≤ N},

and the counter τ is incremented by 1. In words, the
cell we just evaluated is taken off the leaf set and its
children included.

Figure 1: Description of the first and second refine-
ment procedures. The xh,i are the centroids contained
in the leaf set while the • represent the centroid re-
moved after the refinement procedure. From left to
right, the initial state of the leaf set (containing only
the centroid of the root cell), the first refinement and
a second refinement with number of children per cell
N = 2.

Further evaluation-update steps. The estimates
µ̃t, σ̃t are computed1 and used to build It as in (9).
Then, the cell x1,i in the leaf set Lτ maximizing the
index function is selected,

x1,i = arg max
x∈Lτ

It(x).

The condition βtσ̃t(x1,i) ≤ V1 is then checked. If vio-
lated a value yt+1 = f(x1,i) + εt+1 is queried and then
the estimates µ̃t+1, σ̃t+1and It+1 computed. A new
cell is then selected as above

x1,i′ = arg max
x∈Lτ+1

It+1(x).

Note that, we might obtain the same cell i = i′ or a dif-
ferent cell i 6= i′. Again the condition βtσ̃t+1(x1,i′) ≤
V1 is checked until satisfied, and this can entail query-
ing multiple evaluations, possible at more cells.

1Notice that the computation include re-sampling the
points in St proportionally to σ̃2

t−1(xi) (Calandriello et al.,
2019)

Marco Rando1, Luigi Carratino1, Silvia Villa2, Lorenzo Rosasco1,3,4

Further leaf-set-expansion steps. Note that,
throughout the possible function evaluations the leaf
set remains unchanged. Also, while we might eval-
uate multiple cells, at some point the condition
βtσ̃t+1(x1,i′) ≤ V1 will be satisfied by a given cell.
Then, indicating with c(·) the function which given a
centroid returns the set of children of node represented
by the given centroid i.e.

c(xh,i) = {xh+1,j |N(i− 1) + 1 ≤ j ≤ Ni}

the leaf set will be updated as follow

Lτ+1 = (Lτ \ {xh,i′}) ∪ c(xh,i′)

The cell xh,i′ we last evaluated is taken off the leaf
set, its children xh+1,j , N(i− 1) + 1 ≤ j ≤ Ni added,
but note that also all the cells xh,i, i 6= i′ in the same
partition as xh,i′ are kept in the leaf set. Moreover,
in order to avoid the (unlikely) scenarios in which the
algorithm keeps refining indefinitely without evaluat-
ing the function, a maximum depth threshold hmax is
added.

Figure 2: Consider X = [0, 1]2 and N = 3. Here •
denotes the centroids. The first picture (from top to
bottom), represent the initialization of the algorithm
where we have only the root (X = X0,1 = [0, 1]2); the
second picture, represent the first refinement in which
we split the root cell in N = 3 cells associated to the
children ((1, 1) has X1,1 = [0, 1/3] × [0, 1], (1, 2) has
X1,2 = [1/3, 2/3]×[0, 1] and (1, 3) has X1,3 = [2/3, 1]×
[0, 1]). The third picture, represent the expansion of
cell (1, 1).

Pruning rule. One of the core differences between
Ada-BKB and AdaGP-UCB is the presence of a prun-
ing rule. This rule eliminates the cells that in high
probability don’t contain a global maximizer. Let Xt

be the set of centroids observed until time t, and let
the highest lower confidence bound (LCB) be defined
as

l∗t = max
x∈Xt

µ̃t(x)− β̃tσ̃t(x)

After each iteration, the pruning rule erases every cen-
troid in the leaf set Lτ that have their upper bound on
the maximum over the cell smaller than l∗t . Formally,
we define a function er t : X → {0, 1} which, given
a centroid xh,i, returns 1 if the centroid needs to be
pruned and 0 otherwise

ert(xh,i) =

{
1 if f̃t−1(xh,i) + Vh < l∗

0 otherwise

Thus, the leaf set is updated as Lτ+1 = Lτ+1 \ {xh,i ∈
Lτ+1 : er(xh,i) > 0}. Notice that this pruning rule
doesn’t increase the computational cost since all the
information used for the check must be computed pre-
viously for different reasons (as the UCB + Vh) and
the best lower bound can be stored and updated af-
ter every evaluation (the informations used for the best
lower bound, i.e. µ̃t and β̃tσ̃t−1, are already computed
for the index function). Notice that if an expansion is
performed the centroids to check are just the new ones
(since the model is not updated).

Moreover, this pruning rule automatically provide us
an early stopping condition, infact, if after the prun-
ing procedure the leaf set size is 0 or 1 and the only
centroid contained in the set is xhmax,i, we can inter-
rupt the execution and terminate the algorithm since
every subsequent evaluation will be performed on this
centroid. In practice, this procedure is very useful be-
cause it allows to limit the effects of over-expansion
of the tree that would make the algorithm very time-
expensive (see Section 5 and Appendix C.4).

Algorithm 1 Ada-BKB

1: Input: T > 0, hmax, N , βt
2: Initialize L0 = {x0,1}, τ = 0, t = 1

3: while t ≤ T do

4: xh,i = arg max
xi∈Lτ

It(xi)

5: if βtσ̃t−1(xh,i) ≤ Vh and ht < hmax then

6: Lτ+1 = (Lτ \ {xh,i}) ∪ c(xh,i)
7: else

8: yt = f(xh,i) + εt (with εt noise)

9: compute µ̃t+1, σ̃t+1, l
∗
t+1

10: Lτ+1 = Lτ
11: t = t+ 1

12: Lτ+1 = Lτ+1 \ {xh,i : er(xh,i) > 0}
13: if |Lτ+1| == 0 or Lτ+1 == {xhmax,i} then

14: break

15: τ = τ + 1

Note that, when performing a leaf-set-expansion step,
we have yet to specify how to choose N children. Thus
we consider the refinement of a cell Xh,i is performed

Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by Adaptive Discretization

by dividing it equally in N parts along its longest side.
This is a common method which allows to get a par-
tition tree defined as in Definition 1 satisfying also
Assumption 3 as shown in (Shekhar and Javidi, 2018;
Bubeck et al., 2011; Salgia et al., 2020)

4 MAIN RESULTS

In this section we present the two main theorems of
the paper. Theorem 1 shows that the regret bounds
for Ada-BKB are the same as those of exact GP-UCB,
while in Theorem 2 we prove that the computational
cost of Ada-BKB is smaller that the one of other
adaptive methods. Altogether, our results show that,
thanks to the use of sketching, Ada-BKB a fast adap-
tive method achieving state-of-the-art regret bounds.

4.1 Regret Analysis

We next present the first main contribution of the pa-
per on the cumulative regret, for a given function in
the considered reproducing kernel Hilbert space. We
recall that we have access to noisy function evaluations
yt = f(xt) + εt, where εt is ξ-sub Gaussian.

Theorem 1 (Regret Bounds). Let f ∈ H, and let F =
‖f‖. Let δ ∈ (0, 1), ε ∈ (0, 1) and ᾱ = 1+ε

1−ε . Suppose
that Assumptions 1,2,3 are satisfied. Consider Ada-
BKB (Alg. 1) with N ≥ 1, T ≥ (v1/δk)2α, hmax ≥

log(T)
2α log(1/ρ) , λ = ξ2, ζt = ᾱ log(κ2t)

(t∑
s=1

σ̃2
t (xs)

)
and

βt defined as

βt = 2λ2
√
ζt + log(1/δ) +

(
1 +

1√
1− ε

)√
λF. (10)

Then, with probability at least 1− δ,

RT ≤ O(
√
Tdeff(T) log(T)). (11)

Moreover, if the evaluation model is yt = f(xt) +
ηt ηt ∼ N (0, σ2), the cumulative regret can be
bounded as:

RT ≤ O

(√
Tdeff(T) log(T)

Nhmax − 1

N − 1

)
. (12)

The above Theorem shows that the regret bound for
Ada-BKB matches exactly the regret bounds of the
non-adaptive methods BKB and BBKB (Calandriello
et al., 2020). The comparison is straightforward,
since the bounds for all the methods are expressed
in terms of the same quantities. AdaGP-UCB and
the non-adaptive methods GP-UCB (Srinivas et al.,
2010), TS-QFF (Mutnỳ and Krause, 2019) have a re-
gret of O(

√
TγT), where γT is the mutual informa-

tion gain. It is shown in (Calandriello et al., 2019)

that γT is of the same order of deff(T), and there-
fore the regret bounds for Ada-BKB are better when√

log(T)N
hmax−1
N−1 ≤

√
deff(T). Finally, we recall that

GP-ThreDS (Salgia et al., 2020) has a regret bound of
O(
√
TγT (log T)2), namely O(

√
Tdeff(T)(log T)2) and

thus in this case Ada-BKB can be advantageous if√
log(T)N

hmax−1
N−1 ≤ (log T)2. We extend the discus-

sion in appendix D

4.2 Computational Cost Analysis

In this section we compute the total computational
cost of Ada-BKB, for a specific choice of the family of
partition, in the case X = [0, 1]p. The computational
cost of Ada-BKB is due to the following operations:
1) the computation of f̃t, 2) the computation of It(x)
for all x ∈ Lτ , 3) the discretization refinement. We
bound each cost separately.

1) The cost of computing f̃t is the cost of computing
µ̃t, σ̃t and βt. The time complexity of computing these
quantities over T observations is O(Td2

eff(T)) (Calan-
driello et al., 2019).

2) Since the evaluation cost of µ̃t, σ̃t is bounded by
O(d2

eff(t)), the worst case cost of evaluating It on the
leaf set is O(Td2

eff(T)Nhmax)

3) For X = [0, 1]p with the euclidean norm, consider
the following rule to refine the partition from level h
to h+ 1. X0,1 is cut along one of its sides in N equal
parts, obtaining N rectangles. Then, each set Xh,i in
the partition Xh is divided in N parts equally again
along the longest side. This partition is built using
the same refinement procedure used in (Shekhar and
Javidi, 2018) which costs O(TpNhmax).

Theorem 2 (Computational Cost). Let X = [0, 1]p

endowed with the euclidean distance. Then, Ada-BKB
with the same parameters as in 1 has time complexity

O(Td2
eff(T)Nhmax + TpNhmax)

Remark 1. Using the arguments in (Shekhar and Ja-
vidi, 2018), for N odd, the leaf set size is bounded, for
every τ , by

|Lτ | ≤ TNhmax.

Then, for a fixed p and N the overall computational
cost become:

O(T 2d2
eff(T)hmax).

Discussion on Computational Cost. Ada-BKB
has the provably smallest computational complexity
of all methods with adaptive discretization which can
deal with noisy observation cases: Ada-GPUCB costs
O(T 4(N − 1)hmax + TpNhmax), GP-ThreDS costs

Marco Rando1, Luigi Carratino1, Silvia Villa2, Lorenzo Rosasco1,3,4

O(T 4). Note that GP-ThreDS has a computational
complexity which is independent from p while Ada-
BKB and Ada-GPUCB are linear in the dimension.
Comparing our algorithm with GP-UCB (O(T 3A)
with A size of the discretization of X), we note that we
get smaller computational cost in most cases. Indeed,
usually the cardinality of the discretization grows ex-
ponentially with the dimension of X. Analogously, in
the same setting, our algorithm is faster than BKB
(O(TAd2

eff)) and TS-QFF(Õ(TA2pdeff)) (Mutnỳ and
Krause, 2019).

5 EXPERIMENTS

In this section, we study the empirical performances
of Ada-BKB compared with GP-UCB (Srinivas et al.,
2010), BKB (Calandriello et al., 2019) and AdaGP-
UCB (Shekhar and Javidi, 2018). We refer to Ap-
pendix C for further details and results. The hyper-
parameters of the algorithms are fixed according to
theory, or, when not possible, by cross-validation, as
for the kernel parameters.

Function minimization. We consider the mini-
mization of a number of well known functions cor-
rupted by Gaussian noise with zero mean and standard
deviation 0.01. For GP-UCB and BKB, a fixed dis-
cretization of the function domain is considered. For
each experiment we report mean and a 95% confidence
interval using 5 repetitions.

Figure 3: from left to right leaf set size of the algo-
rithms in optimizing Six-Hump Camel, Hartmann 6,
Levy 8 and Dixon-Price 10 functions.

For a budget T , in Figure 4 we show the average regret
and the cumulative time per function evaluation. In
Figure 3 we show the leaf set size per iteration for Ada-
BKB and AdaGP-UCB. We added a time threshold of

Figure 4: from left to right average regret and cumu-
lative time obtained by algorithms in optimizing, from
top to bottom, Six-Hump Camel, Hartmann 6, Levy 8
and Dixon-Price 10 functions.

600 seconds. The red vertical line in Figure 4 and 3,
if present, indicates the (mean) iteration in which the
early stopping condition is satisfied. We do not inter-
rupt the execution just to show the behaviour of the
algorithm (as you can notice in leaf set size plots, af-
ter the red line leaf set of Ada-BKB has cardinality 1).
From second column of Figure 4, we immediately note
that AdaGP-UCB and Ada-BKB scale better with the
search space dimension, but for low dimensional spaces
(as Six-Hump Camel) AdaGP-UCB is more time con-
suming than GP-UCB. This is because for small di-
mensions we used small discretizations (15 points per
dimension, see Appendix C) and hence the computa-
tions to build the matrices are cheap, while for the
adaptive discretization we have to perform the expan-
sion procedure. This is not necessarily always true for
Ada-BKB thanks to the pruning procedure that let us
balance the cost of expansion with the cost of evalu-
ating the index. More experiments in Appendix C.4.

Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by Adaptive Discretization

Hyper-parameter tuning. We performed experi-
ments to tune the hyper-parameters of a recently pro-
posed large scale kernel method (Rudi et al., 2017).
We compared Ada-BKB with AdaGP-UCB and BKB
in minimizing the target function f which takes as in-
puts a set of hyper-parameters to compute a hold-out
cross-validation estimate of the error using 40% of the
data. The method in (Rudi et al., 2017) is based on
a Nyström approximation of kernel ridge regression.
In our experiments, we used a Gaussian kernel k and
tuned a lengthscale parameters σ1, · · · , σp in each of
the p input dimensions. Indeed, we fixed the ridge
parameters and the centers of the Nyström approxi-
mation (see Appendix C.2 for details). We considered
also BKB on a random discretization of size equal to
the number of points evaluated by Ada-BKB, called
Random-BKB in the following. Again, for each exper-
iment, we report mean and 95% confidence interval
using 5 repetitions. We added a time-threshold of 20
minutes.

Figure 5: Average regret and cumulative time in op-
timizing the target function on HTRU2, CASP and
Magic04 dataset.

In Figure 5, we note that Ada-BKB obtains smaller or
similar regret to other algorithms. In terms of time,
Ada-BKB is typically the fastest method. In some
cases, we note that Random BKB can obtain similar
time performance than Ada-BKB, but typically the
regret is larger, see e.g. the first line of Figure 5.

Finally, we report the test error obtained fitting the

Figure 6: Leaf set size in optimizing the target function
on HTRU2, CASP and Magic04 dataset.

model with the hyper-parameter configuration found
by Ada-BKB and the time nedeed to perform ev-
ery function evaluation until the budget or the time
threshold is reached.

Table 1: Mean ± standard deviation of test error
(MSE) using the configuration found by the algorithms
with 5 repetition

ALGORITHM HTRU2 CASP

BKB 0.067± 0.004 33.67± 17.79
Random BKB 0.24± 0.34 47.79± 35.81
Ada-BKB 0.068 ± 0.005 17.07 ± 0.09
AdaGPUCB 0.071± 0.003 18.65± 0.34

MAGIC04
BKB 0.99± 0.0005
Random BKB 0.412± 0.01
Ada-BKB 0.383 ± 0.014
AdaGPUCB 0.389± 0.010

Marco Rando1, Luigi Carratino1, Silvia Villa2, Lorenzo Rosasco1,3,4

Table 2: Mean ± standard deviation of time (seconds)
used for perform every function evaluation or before
interruption with 5 repetition

ALGORITHM HTRU2 CASP

BKB 956.26± 622 818.21± 332
Random BKB 144.47± 5.09 120.82± 28.85
Ada-BKB 115.21 ± 35.65 109.12 ± 1.09
AdaGPUCB 181.91± 1.81 151.57± 0.59

MAGIC04

BKB 950.98± 1.30
Random BKB 299.63± 5.05
Ada-BKB 230.06 ± 3.61
AdaGPUCB 251.48± 0.65

6 CONCLUSION

In this paper, we presented a scalable approach to
Gaussian Process optimization on continuous domains,
combining ideas from BKB and optimistic optimiza-
tion. The proposed approach is analyzed theoreti-
cally in terms of regret guarantees, showing that im-
proved efficiency can be achieved with no loss of accu-
racy. Empirically we report very good performances
on both simulated data and a hyper-parameter tuning
task. Our work opens a number of possible research
directions. For example, efficiency could be further
improved using experimentation batching, see (Calan-
driello et al., 2020). Another interesting question could
be to extend the ideas in the paper to other way to
define upper function estimates for example based on
expected improvements (Qin et al., 2017).

Acknowledgments

This material is based upon work supported by the
Center for Brains, Minds and Machines (CBMM),
funded by NSF STC award CCF-1231216, and the
Italian Institute of Technology. We gratefully ac-
knowledge the support of NVIDIA Corporation for the
donation of the Titan Xp GPUs and the Tesla k40
GPU used for this research. L. R. acknowledges the
financial support of the European Research Council
(grant SLING 819789), the AFOSR projects FA8655-
20-1-7028, FA9550-18-1-7009, FA9550-17-1-0390 and
BAA-AFRL-AFOSR-2016-0007 (European Office of
Aerospace Research and Development), and the EU
H2020-MSCA-RISE project NoMADS - DLV-777826.
S. V. acknowledges the support of GNAMPA 2020:
“Processi evolutivi con memoria descrivibili tramite
equazioni integro-differenziali”

References

Bubeck, S., Munos, R., Stoltz, G., and Szepesvári,
C. (2011). X-armed bandits. Journal of Machine
Learning Research, 12:1655–1695.

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F.,
Mueller, A., Grisel, O., Niculae, V., Prettenhofer,
P., Gramfort, A., Grobler, J., Layton, R., Van-
derPlas, J., Joly, A., Holt, B., and Varoquaux, G.
(2013). API design for machine learning software:
experiences from the scikit-learn project. In ECML
PKDD Workshop: Languages for Data Mining and
Machine Learning, pages 108–122.

Burt, D., Rasmussen, C. E., and Van Der Wilk, M.
(2019). Rates of convergence for sparse variational
Gaussian process regression. In Chaudhuri, K. and
Salakhutdinov, R., editors, Proceedings of the 36th
International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Re-
search, pages 862–871. PMLR.

Calandriello, D., Carratino, L., Lazaric, A., Valko, M.,
and Rosasco, L. (2019). Gaussian process optimiza-
tion with adaptive sketching: Scalable and no regret.
In Conference on Learning Theory, pages 533–557.
PMLR.

Calandriello, D., Carratino, L., Lazaric, A., Valko, M.,
and Rosasco, L. (2020). Near-linear time gaussian
process optimization with adaptive batching and
resparsification. In International Conference on Ma-
chine Learning, pages 1295–1305. PMLR.

Calandriello, D., Carratino, L., Lazaric, A., Valko, M.,
and Rosasco, L. (2022). Scaling gaussian process
optimization by evaluating a few unique candidates
multiple times. arXiv preprint arXiv:2201.12909.

Drineas, P., Mahoney, M. W., and Cristianini, N.
(2005). On the Nyström method for approximating
a Gram matrix for improved kernel-based learning.
Journal of Machine Learning Research, 6(12):2153–
2175.

Dua, D. and Graff, C. (2017). UCI machine learning
repository.

Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel,
D., and Wilson, A. G. (2018). Gpytorch: Blackbox
matrix-matrix gaussian process inference with gpu
acceleration. In Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett,
R., editors, Advances in Neural Information Pro-
cessing Systems, volume 31. Curran Associates, Inc.

Harris, C. R., Millman, K. J., van der Walt, S. J.,
Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern,
R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett,
M., Haldane, A., del Ŕıo, J. F., Wiebe, M., Peter-
son, P., Gérard-Marchant, P., Sheppard, K., Reddy,

Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by Adaptive Discretization

T., Weckesser, W., Abbasi, H., Gohlke, C., and
Oliphant, T. E. (2020). Array programming with
NumPy. Nature, 585(7825):357–362.

Hensman, J., Matthews, A., and Ghahramani, Z.
(2015). Scalable Variational Gaussian Process Clas-
sification. In Lebanon, G. and Vishwanathan, S.
V. N., editors, Proceedings of the Eighteenth Inter-
national Conference on Artificial Intelligence and
Statistics, volume 38 of Proceedings of Machine
Learning Research, pages 351–360, San Diego, Cali-
fornia, USA. PMLR.

Kleinberg, R., Slivkins, A., and Upfal, E. (2008).
Multi-armed bandits in metric spaces. In Proceed-
ings of the fortieth annual ACM symposium on The-
ory of computing, pages 681–690.

Kleinberg, R., Slivkins, A., and Upfal, E. (2013). Ban-
dits and experts in metric spaces. arXiv preprint
arXiv:1312.1277.

Kung, S. Y. (2014). Kernel Methods and Machine
Learning. Cambridge University Press.

Lattimore, T. and Szepesvári, C. (2020). Bandit algo-
rithms. Cambridge University Press.

Lyon, R. J., Stappers, B. W., Cooper, S., Brooke,
J. M., and Knowles, J. D. (2016). Fifty years of
pulsar candidate selection: from simple filters to
a new principled real-time classification approach.
Monthly Notices of the Royal Astronomical Society,
459(1):1104–1123.

Meanti, G., Carratino, L., Rosasco, L., and Rudi, A.
(2020). Kernel methods through the roof: Handling
billions of points efficiently. In Larochelle, H., Ran-
zato, M., Hadsell, R., Balcan, M. F., and Lin, H.,
editors, Advances in Neural Information Processing
Systems, volume 33, pages 14410–14422. Curran As-
sociates, Inc.

Munos, R. (2011). Optimistic optimization of a
deterministic function without the knowledge of
its smoothness. In Shawe-Taylor, J., Zemel, R.,
Bartlett, P., Pereira, F., and Weinberger, K. Q.,
editors, Advances in Neural Information Processing
Systems, volume 24. Curran Associates, Inc.

Munos, R. (2014). From bandits to monte-carlo tree
search: The optimistic principle applied to opti-
mization and planning. Foundations and Trends in
Machine Learning, 7(1):1–129.

Mutnỳ, M. and Krause, A. (2019). Efficient high di-
mensional bayesian optimization with additivity and
quadrature fourier features. Advances in Neural In-
formation Processing Systems 31, pages 9005–9016.

Nesterov, Y. (2014). Introductory Lectures on Convex
Optimization: A Basic Course. Springer Publishing
Company, Incorporated, 1 edition.

Nesterov, Y. and Spokoiny, V. (2017). Ran-
dom gradient-free minimization of convex func-
tions. Foundations of Computational Mathematics,
17(2):527–566.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang,
E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L.,
and Lerer, A. (2017). Automatic differentiation in
pytorch.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O., Blondel, M., Pretten-
hofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot,
M., and Duchesnay, E. (2011). Scikit-learn: Machine
learning in Python. Journal of Machine Learning
Research, 12:2825–2830.

Qin, C., Klabjan, D., and Russo, D. (2017). Improv-
ing the expected improvement algorithm. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus,
R., Vishwanathan, S., and Garnett, R., editors, Ad-
vances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Quiñonero Candela, J. and Rasmussen, C. E. (2005).
A unifying view of sparse approximate gaussian pro-
cess regression. J. Mach. Learn. Res., 6:1939–1959.

Rasmussen, C. E. (2003). Gaussian processes in ma-
chine learning. In Summer school on machine learn-
ing, pages 63–71. Springer.

Rudi, A., Carratino, L., and Rosasco, L. (2017).
Falkon: An optimal large scale kernel method. In
Guyon, I., Luxburg, U. V., Bengio, S., Wallach,
H., Fergus, R., Vishwanathan, S., and Garnett, R.,
editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc.

Salgia, S., Vakili, S., and Zhao, Q. (2020). A compu-
tationally efficient approach to black-box optimiza-
tion using gaussian process models. arXiv preprint
arXiv:2010.13997.

Shekhar, S. and Javidi, T. (2018). Gaussian pro-
cess bandits with adaptive discretization. Electronic
Journal of Statistics, 12(2):3829 – 3874.

Shekhar, S. and Javidi, T. (2020). Multi-scale zero-
order optimization of smooth functions in an rkhs.

Srinivas, N., Krause, A., Kakade, S., and Seeger,
M. (2012). Information-theoretic regret bounds for
gaussian process optimization in the bandit setting.
IEEE Transactions on Information Theory - TIT,
58:3250–3265.

Srinivas, N., Krause, A., Kakade, S. M., and Seeger,
M. (2010). Gaussian process optimization in the
bandit setting: No regret and experimental design.
In Proceedings of the 27th International Conference
on International Conference on Machine Learning,
pages 1015–1022.

Marco Rando1, Luigi Carratino1, Silvia Villa2, Lorenzo Rosasco1,3,4

Titsias, M. (2009). Variational learning of induc-
ing variables in sparse gaussian processes. In van
Dyk, D. and Welling, M., editors, Proceedings of the
Twelth International Conference on Artificial Intel-
ligence and Statistics, volume 5 of Proceedings of
Machine Learning Research, pages 567–574, Hilton
Clearwater Beach Resort, Clearwater Beach, Florida
USA. PMLR.

Valko, M., Carpentier, A., and Munos, R. (2013a).
Stochastic simultaneous optimistic optimization.
In International Conference on Machine Learning,
pages 19–27. PMLR.

Valko, M., Korda, N., Munos, R., Flaounas, I., and
Cristianini, N. (2013b). Finite-time analysis of ker-
nelised contextual bandits. In Proceedings of the
Twenty-Ninth Conference on Uncertainty in Artifi-
cial Intelligence, page 654?666.

Wang, Z., Shakibi, B., Jin, L., and Freitas, N. (2014).
Bayesian multi-scale optimistic optimization. In Ar-
tificial Intelligence and Statistics, pages 1005–1014.
PMLR.

Whitley, D. (1994). A genetic algorithm tutorial.
Statistics and computing, 4(2):65–85.

Wild, V., Kanagawa, M., and Sejdinovic, D. (2021).
Connections and Equivalences between the Nyström
Method and Sparse Variational Gaussian Processes.
arXiv e-prints, page arXiv:2106.01121.

Supplementary Material:
Ada-BKB: Scalable Gaussian Process Optimization on Continuous

Domains by Adaptive Discretization

A AUXILIARY RESULTS

In the following, we state the propositions and lemmas required to prove Theorem 1.

Proposition 1. (Calandriello et al., 2019, App. D, Theorem 9) Let ε ∈ (0, 1), δ ∈ (0, 1), λ > 0, F = ‖f‖H
and let ᾱ = 1+ε

1−ε . Then, with probability at least 1− δ and for all t > 0:

µ̃t(x)− βtσ̃t(x) ≤ f(x) ≤ µ̃t(x) + βtσ̃t(x)

with

βt = 2λ2

√√√√ᾱ log(κ2t)
(t∑
s=1

σ̃2
t (xs)

)
+ log(1/δ) +

(
1 +

1√
1− ε

)√
λF (13)

We show that the index function It(·) (eq. (9)) is an upper bound on the maximum value of the function f in a
cell:

Proposition 2 (Upper bound on maximum of the function f). Supposing Assumption 1 holds and assuming
f ∈ Hk, let f(x∗h,i) be the maximum of f in cell Xh,i and let xh,i be a point in the same cell. For an arbitrary
number of children per cell N ≥ 1, setting βt as defined in Proposition 1 and with Vh defined in equation (8),
with probability at least 1− δ, for all h ≥ 0, 1 ≤ i ≤ Nh and for all t > 0, we have:

f(x∗h,i) ≤ It(xh,i)

with It(·) index function defined in (9)

Proof. Let p be the parent function of (Xh)h∈N. For all t > 0, the index function It is defined as follow:

It(xh,i) = min{µ̃t(xh,i) + βtσ̃t(xh,i), µ̃t(xp(h,i)) + βtσ̃t(xp(h,i)) + Vh−1}+ Vh

From the definition of Vh (see equation (8)), for all h ≥ 0 and 1 ≤ i ≤ Nh:

|f(x)− f(x′)| ≤ ‖f‖k dk(x, x′) ≤ Vh ∀x, x′ ∈ Xh,i

where dk is defined in Assumption 1. Let x∗h,i be the maximizer of f in cell Xh,i and let xh,i be any point in

Xh,i. It follows that ∀h ≥ 0 and 1 ≤ i ≤ Nh:

f(x∗h,i) ≤ f(xh,i) + Vh

Using Proposition 1 to upper bound f(x∗h,i), it follows

f(x∗h,i) ≤ µ̃t(xh,i) + βtσ̃t(xh,i) + Vh

for all t > 0 (with probability at least 1 − δ). For the same reason and by construction of the partition tree
(Definition 1), we have:

f(x∗h,i) ≤ µ̃t(xp(h,i)) + βtσ̃t(xp(h,i)) + Vh−1

where Vh−1 is an upper bound of the function variation at level h− 1. Since Vh ≥ 0,

f(x∗h,i) ≤ µ̃t(xp(h,i)) + βtσ̃t(xp(h,i)) + Vh−1 + Vh

Marco Rando1, Luigi Carratino1, Silvia Villa2, Lorenzo Rosasco1,3,4

Remark 2. Note that for the root cell (0, 1) the parent function is not defined. In this case, the index function
is defined as:

It(x0,1) = µ̃t(x0,1) + βtσ̃t(x0,1) + V0

Let x∗ be a global maximizer of the function f and suppose x∗ ∈ Xh,i∗ . Let xh,i∗ be the centroid of Xh,i∗ . Then,
Proposition 2 implies that with probability at least 1− δ,

f(x∗) ≤ It(xh,i∗)

Now, we procede providing an upper-bound UV of the ratio Vh
Vh+1

described by the following Proposition.

Proposition 3. Suppose Assumption 2 holds and set h0 = log(δk/v1)
log(ρ) . For all h ≥ 0,

Vh
Vh+1

≤ max
{

max
0≤h≤h0−1

Vh
Vh+1

,
C ′k
Ck

ρ−α
}

=: UV (14)

Proof. Using the definition of Vh (Equation (8)), we can write the ratio as:

Vh
Vh+1

=
Fg(v1ρ

h)

Fg(v1ρh+1)
=

g(v1ρ
h)

g(v1ρh+1)

Now, we have that ∃δk > 0 such that:

Ckv
α
1 ρ

hα ≤ g(v1ρ
h) ≤ C ′kvα1 ρhα ∀v1ρ

h ≤ δk

then for all v1ρ
h lower than δk, we can write:

Vh
Vh+1

=
g(v1ρ

h)

g(v1ρh+1)
(15)

≤ C ′kv
α
1 ρ

hα

Ckvα1 ρ
hα+α

(16)

=
C ′k
Ck

1

ρα
=
C ′k
Ck

ρ−α (17)

Now, to conclude the proof, it is enough to observe that in Assumption 2

(∀h ≥ h0) v1ρ
h ≤ δk

For h < h0, we can upper bound the ratio Vh
Vh+1

just with the maximum of the ratios for all h ∈ [0, h0 − 1]. So

the statement follows.

Proposition 3 states that ∀h ≥ 0 we have Vh ≤ UV Vh+1 and this fact is exploited in the following lemma which
give us information about the points selected by the algorithm.

Lemma 2. Suppose that Assumptions 1,2,3 hold. Set βt as in eq. (13), define Vh as in (8), and let f(x∗) be the
global maximum of f . If at time t, xht,it ∈ Lτ is evaluated then with probability at least 1− δ:

f(x∗)− f(xht,it) ≤ (4UV + 1)Vht

Moreover, if h < hmax then
f(x∗)− f(xht,it) ≤ 3βtσ̃t(xht,it)

Proof. According to the Proposition 1, setting βt as in eq. (13), we have that

µ̃t(x)− βtσ̃t(x) ≤ f(x) ≤ µ̃t(x) + βtσ̃t(x)

with probability of 1− δ. From equation (8)), we have for all h ≥ 0 and 1 ≤ i ≤ Nh:

sup
x1,x2∈Xh,i

|f(x1)− f(x2)| ≤ Vh

Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by Adaptive Discretization

Suppose that at time t x∗ is contained in the cell Xh∗t ,i
∗
t

represented by xh∗t ,i∗t ∈ Lτ and that the algorithm selects
and evaluate the point xht,it . From Proposition 2, with probability at least 1− δ, we have that

f(x∗) ≤ It(xh∗t ,i∗t). (18)

Since the algorithm selected xht,it , according to the selection rule (row 5 of Algorithm 1) it follows that

It(xh∗t ,i∗t) ≤ It(xht,it). (19)

We recall that It is defined as:

It(xht,it) = min{µ̃t(xht,it) + βtσ̃t(xht,it), µ̃t(xp(ht,it)) + βtσ̃t(xp(ht,it)) + Vht−1}+ Vht

therefore

f(x∗) ≤ It(xh∗t ,i∗t) ≤ It(xht,it) ≤ µ̃t(xp(ht,it)) + βtσ̃t(xp(ht,it)) + Vht−1 + Vht . (20)

In the rest of the proof we upper bound the right hand side. Proposition 1, yields (with probability at least
1− δ):

f(xp(ht,it)) ≥ µ̃t(xp(ht,it))− βtσ̃t(xp(ht,it)),

and therefore

µ̃t(xp(ht,it)) + βtσ̃t(xp(ht,it)) + Vht−1 + Vht ≤ f(xp(ht,it)) + 2βtσ̃t(xp(ht,it)) + Vht−1 + Vht (21)

Since the algorithm evaluated xht,it , then β̃σ̃t(xp(ht,it)) ≤ Vht−1 therefore

f(xp(ht,it)) + 2βtσ̃t(xp(ht,it)) + Vht−1 + Vht ≤ (f(xp(ht,it)) + Vht−1) + 2Vht−1 + Vht (22)

By construction of the partition tree, xht,it lies in the cell associated to xp(ht,it), and so f(xp(ht,it)) ≤ f(xht,it) +
Vht . Hence,

(f(xp(ht,it)) + Vht−1) + 2Vht−1 + Vht ≤ f(xht,it) + 4Vht−1 + Vht (23)

and, using Proposition 3:

f(xht,it) + 4Vht−1 + Vht ≤ f(xht,it) + (4UV + 1)Vht . (24)

The latter combined with (20), implies that

f(x∗) ≤ f(xht,it) + (4UV + 1)Vht . (25)

To prove the second bound of the statement, note that

It(xh∗t ,i∗t) ≤ It(xht,it) ≤ µ̃t(xht,it) + βtσ̃t(xht,it) + Vht (26)

Proposition 1 yields that, with probability at least 1− δ

f(xht,it) ≥ µ̃t(xht,it)− βtσ̃t(xht,it)

then it follows:

µ̃t(xht,it) + βtσ̃t(xht,it) + Vht ≤ f(xht,it) + 2βtσ̃t(xht,it) + Vht (27)

Next, if h < hmax, since xht,it is evaluated, then βtσ̃t(xht,it) > Vht , and

f(x∗) ≤ µ̃t(xht,it) + 2βtσ̃t(xht,it) + Vht ≤ f(xht,it) + 3βtσ̃t(xht,it) (28)

In conclusion, we derive that if h < hmax

f(x∗)− f(xht,it) ≤ 3βtσ̃t(xht,it).

Marco Rando1, Luigi Carratino1, Silvia Villa2, Lorenzo Rosasco1,3,4

Proposition 4. (Calandriello et al., 2019, Theorem 2) For any desired 0 < ε < 1, 0 < δ < 1, λ > 0, let
ᾱ = 1+ε

1−ε . For βt defined as :

βt = 2λ2

√√√√ᾱ log(κ2t)
(t∑
s=1

σ̃2
t (xs)

)
+ log(1/δ) +

(
1 +

1√
1− ε

)√
λF

and σ̃t defined as in equation (5) we have that:

3β̃T

T∑
t=1

σ̃t(xt) ≤ O(
√
Tdeff(λ, X̃T) log T)

where X̃T is the set containing every centroid evaluated until timestep T .

Proposition 5 (Standard deviation upper bound). Consider the evaluation model yt = f(xt) + ηt with ηt ∼
N (0, σ2), and let be nt : X → N a function which given a centroid xh,i returns the number of times that it has
been evaluated until time step t. For a desired ε ∈ (0, 1), let ᾱ = 1+ε

1−ε . Then, if a centroid xh,i is evaluated
nt(xh,i) times we have

σ̃t(xh,i) ≤
√
ᾱ

σ√
nt(xh,i)

Proof. (Shekhar and Javidi, 2018, Part 1 of Proposition 3) yields

σt(xh,i) ≤
σ√

nt(xh,i)

where σt is defined as in eq. (3). (Calandriello et al., 2019, Theorem 1) implies that for a desired ε ∈ (0, 1),
setting ᾱ = 1+ε

1−ε , σ̃
2(x) defined in eq. (5) satisfies the following inequality:

σ̃2
t (x) ≤ ᾱσ2

t (x)

Which gives

σ̃t(x) ≤
√
ᾱσt(x) ≤

√
ᾱ

σ√
nt(x)

B PROOFS OF MAIN RESULTS

In this appendix, we provide the proofs of Lemma 1 and Theorems 12.

B.1 Proof of Lemma 1

For all x, x′ ∈ Xh,i,

|f(x)− f(x′)| = | 〈f, k(x, ·)− k(x′, ·)〉 | ≤ ‖f‖ dk(x, x′) ≤ ‖f‖ g(d(x, x′)) ≤ ‖f‖ g(v1ρ
h)

B.2 Proof of Theorem 1

To prove the bound on the cumulative regret we need to introduce some objects. First, denoting with xht,it the
centroid of Xht,it evaluated at function evaluation t, let’s define QT as the set containing every point evaluated
at each function evaluation:

QT = {xht,it |1 ≤ t ≤ T}

Now, we split QT in two sets Q1, Q2 defined as follow:

Q1 = {xh,i ∈ QT |h < hmax}
Q2 = QT \Q1

(29)

Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by Adaptive Discretization

So, we consider separately the terms which contribute to the cumulative regret:

RT =
∑
x∈QT

f(x∗)− f(x) =
∑
x∈Q1

f(x∗)− f(x) +
∑
x∈Q2

f(x∗)− f(x) = R1 +R2,

where

R1 =
∑
x∈Q1

f(x∗)− f(x) and R2 =
∑
x∈Q2

f(x∗)− f(x).

Let’s start by bounding R2. Using Lemma 2, we can upper-bound R2 as:

R2 =
∑
x∈Q2

f(x∗)− f(x) ≤ (4UV + 1)Vhmax
|Q2|

The size of Q2 can be trivially upper-bounded with the budget T :

(4UV + 1)Vhmax
|Q2| ≤ (4UV + 1)Vhmax

T

Noting that hmax ≥ h0, Assumption 2 implies

(4UV + 1)Vhmax
T ≤ (4UV + 1)C ′kv

α
1 ρ

hmaxαT ≤ O(ρhmaxαT)

Moreover, since hmax ≥ 1/2 log T
α log 1/ρ ,

ρhmaxαT ≤
√
T log T

To upper-bound R1, since |Q1| ≤ T , Lemma 2 yields:

R1 =
∑
x∈Q1

f(x∗)− f(x) ≤ 3
∑

xht,it∈Q1

β̃tσ̃t(x)

Again, since |Q1| ≤ T , we get

3
∑

xht,it∈Q1

β̃tσ̃t(xht,it) ≤ 3

T∑
t=1

β̃tσ̃t(xht,it) ≤ 3β̃T

T∑
t=1

σ̃t(xht,it)

Proposition 4 implies

3β̃T

T∑
t=1

σ̃t(xht,it) ≤ O(
√
Tdeff(T) log T)

Summing R1 and R2:

RT = R1 +R2

≤ O(
√
Tdeff(T) log T +

√
T log T)

≤ O(
√
Tdeff(T) log T)

Now assume that the evaluation model is

yt = f(xt) + ηt with ηt ∼ N (0, σ2)

In this scenario, We follow a similar proof strategy of (Salgia et al., 2020, Proof of Lemma 1). Let Q1 be the set
of observed centroids at depth h < hmax (eq. (29)) and let ni be the number of times that the i-th centroid (in
the set Q1) has been evaluated. Let J be the set containing the indices of distinct points evaluated at least one
time at depth h < hmax:

J = {j : ni > 0}.

It follows |J | ≤ Nhmax−1
N−1 , which corresponds to the case in which Ada-BKB evaluates every point in the partition

tree with maximum depth hmax − 1. Considering xi as the i-th centroid in Q1, let’s denote with tj the time in

Marco Rando1, Luigi Carratino1, Silvia Villa2, Lorenzo Rosasco1,3,4

which xi has been selected and evaluated for the j-th time at timestep t i.e. for all 2 ≤ j ≤ ni, at timestep tj ,
the centroid xi has been evaluated j − 1 times. By Proposition 5, we have that

σ̃tj−1(xtj) ≤
√
α

σ2

√
j − 1

.

The contribution of every point xj with j ∈ J to the sum of approximate variances is upper bounded by

1 +
√
ασ2

n

nj−1∑
i=1

1√
i

(30)

Lemma 2 implies

R1 =
∑
x∈Q1

f(x∗)− f(x) ≤ 3β̃T

T∑
t=1

σ̃t−1(x(ht,it))

We derive from (30) that

R1 ≤ 3β̃T
∑
j∈J

(
(1 +

√
ᾱσ2)

nj−1∑
k=1

1√
k

)

≤ 3β̃T
∑
j∈J

(
(1 + 2

√
ᾱσ2)

√
nj − 1

)
≤ 3β̃T (1 + 2

√
ᾱσ2)

∑
j∈J

√
nj

By Jensen’s inequality,

R1 ≤ 3β̃T (1 + 2
√
ᾱσ2)|J |

√
1

|J |
∑
j∈J

nj

≤ 3β̃T (1 + 2
√
ᾱσ2)

√
|J |T

≤ 3β̃T (1 + 2
√
ᾱσ2)

√
Nhmax − 1

N − 1
T

(Calandriello et al., 2019, Appendix D.2) implies that

β̃T ≤ 2λ
√
deff log(k2T) + log(1/δ) + (1 +

1√
1− ε

)
√
λF

Therefore,

R1 ≤ O

(√
Tdeff log(k2T)

Nhmax − 1

N − 1
+

√
T
Nhmax − 1

N − 1

)

If we take N > 1 s.t.
√

Nhmax−1
N−1 < T , we derive from (B.2) that

O

(√
Tdeff log(k2T)

Nhmax − 1

N − 1

)

Notice that
√

Nhmax−1
N−1 doesn’t grow with p (search space dimension) as deff.

Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by Adaptive Discretization

B.3 Proof of Theorem 2

Let j be the number of observations at a certain time step. We analyze the sources of cost of Algorithm 1 to get
the computational cost.

Model update. According to the algorithm, every time we evaluate the function (i.e. we observe y = f(x)+η),
we update our model. With BKB (Calandriello et al., 2019), we know that an update consists in recomputing
µ̃, σ̃ and in ”resparsificating” the approximation. As indicated in (Calandriello et al., 2019), the computational
cost of performing these operations is O(Td2

eff(T)).

Index computation. The computation of the index is the most expensive operation, see (Shekhar and Javidi,
2018). In order to get a similar analysis to AdaGP-UCB, we consider the total cost of computing It. Since the
cost of evaluating µ̃t, σ̃t for a point is O(d2

eff(T)), let’s analyze two different scenarios:

1. Refinement steps: if we have expanded a node, we don’t perform an update of the model, so we can compute
the index only for the new nodes (i.e. we just compute the approximated mean and variance for new nodes).
Each refinement operation adds N new points to the leaf set and remove the expanded node, thus, the
overall computational cost is:

O(Td2
eff(T)(N − 1)hmax)

2. Evaluation steps: after an evaluation, we update our model and, we have to recompute the index for the
entire leaf set. In the worst case, the leaf set Lτ at time t contains every representative point of the nodes
of the partition tree at depth hmax and since the sub-tree of partition tree at depth hmax (and at any h ≥ 0)
is a perfect N -ary tree,

|Lτ | ≤ Nhmax .

So, the overall computational cost is:
O(Td2

eff(T)Nhmax).

Candidate selection. The selection procedure consists in chosing the x ∈ Lτ which maximize It, i.e.:

arg max
x∈Lτ

It(x)

Ignoring the cost of computing the index (since we analyzed it in the previous point), we have to consider the
cost of computing the argmax in case we did refinement steps or evaluation steps:

1. Refinement steps: after refinement steps, the model is not changed so we can take the argmax of new nodes
(since the previous maximizer was the expanded node) and this costs O((N − 1)hmaxT).

2. Evaluation steps: we have to perform an exhaustive search on the leaf set and, this will cost:

O(TNhmax)

Search space refinement. When X ⊂ Rp, the refinement of a cell Xh,i is performed by dividing it equally
in N parts along its longest side (see also (Shekhar and Javidi, 2018)). This operation involves specifying the
centers and the p side lengths of each of the N new cells and is thus a O(pN) operation. So the overall cost of
search space refinement is:

O(ThmaxNp)

So, the total cost for the algorithm is O(Td2
eff(T)Nhmax + ThmaxNp) and thus, fixed p:

O(Td2
eff(T)Nhmax)

C EXPERIMENT DETAILS

In this appendix, we describe the optimizer settings used to perform experiments presented in Section 5, showing
also other experiments performed. Every experiment is realized in Python 3.6.9 using sklearn(Pedregosa et al.,
2011; Buitinck et al., 2013), pytorch(Paszke et al., 2017), gpytorch(Gardner et al., 2018) and numpy(Harris
et al., 2020) libraries.
The implementation of BKB used can be found on GitHub at the following link https://github.com/

luigicarratino/batch-bkb

https://github.com/luigicarratino/batch-bkb
https://github.com/luigicarratino/batch-bkb

Marco Rando1, Luigi Carratino1, Silvia Villa2, Lorenzo Rosasco1,3,4

C.1 Synthetic experiments details

Synthetic experiments consist in finding global minima in well-known function, in particular, we considered the
following functions and search spaces:

Table 3: Function used and relative search space considered for Ada-BKB and AdaGP-UCB.
FUNCTION SEARCH SPACE X

Branin [−5.0, 10.0]× [0.0, 15.0]
Beale [−4.5, 4.5]2

Bohachevsky [−10.0, 190.0]× [−180.0, 20.0]
Rosenbrock 2 [−5.0, 10.0]2

Six-Hump Camel [−2.0, 2.0]× [−3.0, 3.0]
Ackley 2 [−10.0, 52.768]2

Trid 2 [−4.0, 4.0]2

Hartmann 3 [0.0, 1.0]3

Trid 4 [−16.0, 16.0]4

Shekel [0.0, 10.0]4

Ackley 5 [−10.0, 52.768]5

Hartmann 6 [0.0, 1.0]6

Levy 6 [−10.0, 10.0]6

Levy 8 [−10.0, 10.0]8

Rastrigin 8 [−1.12, 5.12]8

Dixon-Price 10 [−10.0, 10.0]10

Ackley 30 [−10.0, 52.768]30

The parameter δ is set to 10−5 for every experiments.

Table 4: Parameters of the optimizer used for experiments presented in Section 5 and Appendix C.4.
FUNCTION σ hmax N p

Branin 0.5 5 3 2
Beale 1.0 5 3 2
Bohachevsky 1.70 9 3 2
Rosenbrock 2 0.70 10 11 2
Six-Hump Camel 0.5 6 5 2
Ackley 2 3.5 7 3 2
Trid 2 1.5 7 5 2
Hartmann 3 0.5 7 3 3
Trid 4 10.75 7 13 4
Shekel 1.75 6 9 4
Ackley 5 5.0 6 3 5
Hartmann 6 0.35 5 5 6
Levy 6 5.0 7 5 6
Levy 8 2.5 7 3 8
Rastrigin 8 7.0 10 3 8
Dixon-Price 10 2.0 10 5 10
Ackley 30 20.50 300 3 30

Detailed information about the test functions is available at the following website: https://www.sfu.ca/

~ssurjano/optimization.html.
For every algorithm, we used a Gaussian kernel with lengthscale σ specified in Table 4. The noise standard
deviation (indicated with λ) is set to 0.01 for every experiment. Values for other parameters (like the kernel

https://www.sfu.ca/~ssurjano/optimization.html
https://www.sfu.ca/~ssurjano/optimization.html

Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by Adaptive Discretization

lengthscale σ) specified in Table 4 are obtained using cross-validation (the value of hmax is just the logarithm of
the budget).
For GP-UCB and BKB, the discrete search space was built by taking 15 points for every dimension and com-
puting the Cartesian product. For ”mid dimensional” cases (5 and 6 dimensions), the number of points per
dimension taken is 10 and for higher dimensional spaces 5 points per dimension are taken .
The parameter F is set to be 1.

C.2 Hyper-parameter tuning experiments details

For FALKON hyper-parameter tuning experiments, we used the following datasets

Table 5: Dataset used with number of features and search spaces considered
DATASET p SEARCH SPACE

HTRU2 8 [0.0, 1.0]8

CASP 9 [0.0, 1.0]9

Magic04 10 [0.1, 10.0]10

In following tables, for each dataset, we indicate the number of rows, size for the training and test part and we
also indicate the value for M and λ (Falkon parameters) used:

Table 6: Falkon fixed parameter per dataset used and size of dataset and relative training and test parts
DATASET ROWS TRAINING TEST M λ
HTRU2 17897 15216 3804 1000 1e− 5
CASP 45730 32010 13720 2000 1e− 5
Magic04 19020 14317 3580 2000 1e− 6

Table 7: parameter for the optimizer used for parameter tuning experiments
DATASET σ λ hmax N δ

HTRU2 10.0 1e− 9 6 3 1e− 5
CASP 5.0 1e− 9 7 5 1e− 5
Magic04 5.0 1e− 9 6 3 1e− 5

Again, the parameter F is set to be 1. We used a Gaussian kernel k with many lengthscale parameters σ1, · · · , σp
with p number of features of the dataset

k(x, x′) = e−
1
2xΣ−1x′ Σ =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

p


Target function f used is the 70-30 hold-out cross-validation which splits the training set in training and validation
where:

1. training part is composed by the 70% of the points of the training set and it is used to fit the model.

2. validation part is composed of the remaining 30% of the points of the training set and it is used to test our
model fitted with the training part.

Before splitting the training set, it is shuffled. The metric used to evaluate the model is the mean square error
(MSE) which, given y corresponding labels of the validation part and ỹ the label predicted by the model (on the

Marco Rando1, Luigi Carratino1, Silvia Villa2, Lorenzo Rosasco1,3,4

validation part) is defined as follow:

MSE(y, ỹ) =
1

n

n∑
i=1

(yi − ỹi)2

Thus, we want to minimize the function f which takes a parameter configuration, performs the hold-out cross-
validation, and returns the MSE. Since, we don’t know which is the best parameter configuration and how large
is the minimum MSE, to compute the average regret we assume that let x∗ be the optimal configuration, then
f(x∗) = 0. We don’t expect that our algorithm finds this configuration (also because it could not exist) but
this strategy allows us to see which algorithm get the highest performance. As for synthetic experiments, the
parameters of the optimizer (Table 7) are set using the value suggested by the theory and using cross-validation
(for the number of children per node N , kernel lengthscale σ, etc) when it wasn’t possible. Falkon library (Meanti
et al., 2020) used can be found at following url: https://github.com/FalkonML/falkon (in particular, since
dataset used are small enough, to speed-up computations we used InCore Falkon (Meanti et al., 2020)). Dataset
used to perform experiments are split in training and test part (described in Table 6). Preprocessing mostly
consisted of data standardization to zero mean and unit standard deviation and, when a dataset is used for
binary classification, labels are set to be −1 and 1 (for instance for Magic04 dataset where labels are ’g’ and ’h’).
Dataset used can be downloaded at the following links:

1. HTRU2 (Lyon et al., 2016; Dua and Graff, 2017): https://archive.ics.uci.edu/ml/datasets/HTRU2

2. CASP (Dua and Graff, 2017): https://archive.ics.uci.edu/ml/datasets/Physicochemical+

Properties+of+Protein+Tertiary+Structure

3. Magic04 (Dua and Graff, 2017): https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope

For each dataset, we estimated also the evaluation time of the target function on random parameter configuration
to get an idea about how much this target function is expensive in time:

Table 8: mean ± standard deviation time of evaluating the target function f with a random configuration with
50 repetition

DATASET FUNCTION EVALUATION

HTRU2 0.1877± 0.4682s
CASP 0.2562± 0.4565s

Magic04 0.1971± 0.4565s

C.3 Machines used for experiments

In the following tables, we describe the features of the machine used to perform the experiments presented in
Section 5 and Appendix C.4.

Table 9: machine used to perform the experiments
FEATURE

OS Ubuntu 18.04.1
CPU(s) 2× Intel(R) Xeon(R) Silver 4116 CPU
RAM 256GB
GPU(s) 2× NVIDIA Titan Xp (12 GB RAM)
CUDA version 10.2

Further details of GPUs used can be found in the following links: https://www.nvidia.com/en-us/titan/

titan-xp/

https://github.com/FalkonML/falkon
https://archive.ics.uci.edu/ml/datasets/HTRU2
https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure
https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure
https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope
https://www.nvidia.com/en-us/titan/titan-xp/
https://www.nvidia.com/en-us/titan/titan-xp/

Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by Adaptive Discretization

C.4 Other experiments

We performed other experiments in minimizing well-known functions specified in Table 3. Again, for showing
better the results, we just plot the first 700 evaluations. The red vertical dashed line indicates when the early
stopping condition is satisfied. We added a time threshold of 600 seconds.

Figure 7: Average regret obtained by the algorithms in optimizing functions in Table 4

Marco Rando1, Luigi Carratino1, Silvia Villa2, Lorenzo Rosasco1,3,4

Figure 8: Average regret obtained by the algorithms in optimizing functions in Table 4

Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by Adaptive Discretization

As in Section 5, we plot the average regret, cumulative time and leaf set size per iteration (Figure 7 and 8). As we
expected, (in general) in low dimensional cases GP-UCB is faster than AdaGP-UCB because the discretization is
composed of few points so the computations are fast and convergency is reached in few iterations. In Ada-BKB
this problem is faced with the pruning procedure which reduces the number of nodes i.e. the number of points
in which we have to evaluate the index function. In case the number of pruned nodes is 0 we could expect that
in low dimensional cases BKB is faster than Ada-BKB (notice in Rosenbrock 2 case that Ada-BKB achieves
cumulative time similar to BKB and that the number of the pruned node during iteration is lower than the
other low dimensional cases). However, we can notice that in these cases Ada-BKB is less time expensive than
GP-UCB and Ada-GP-UCB. In the worst-case observed, it is similar (in time) to BKB.
Increasing the dimension of the search space (for instance in Ackley 5), Ada-BKB and AdaGP-UCB are faster
than GP-UCB and BKB, and also the optimum found is better (according to the average regret). In the last
line of Figure 8, we couldn’t realize the experiments for BKB and GP-UCB because the time cost was too high.
Moreover, we can observe that in a 30-dimensional case, AdaGP-UCB is interrupted due to the time threshold
while Ada-BKB is able to complete the 700 time steps. In general, we observe that AdaGP-UCB expands
more than Ada-BKB because in AdaGP-UCB there is no pruning procedure (and probably because a different
expression of Vh is used) which reduce the number of nodes allowing to obtain a better performance in time.

C.5 Robustness to small pertubation of F

Since the choice of F = 1 is an heuristic, we did some synthetic experiments comparing performances of Ada-BKB
with different values for F .

Figure 9: Average regret and cumulative time of Ada-BKB changing F

We can observe that for small changes of F , results in regret and time are similar i.e. the algorithm is robust
to small changes of F . Obviously, taking F too small will lead to small values for Vh (eq. (8)) and, thus, the
algorithm can evaluate centroid more times because of the expansion rule. On the other hand, taking F too high
can lead to over-expansion.

Marco Rando1, Luigi Carratino1, Silvia Villa2, Lorenzo Rosasco1,3,4

Figure 10: Leaf set size per iteration of Ada-BKB changing F

C.6 Partition tree selection

In practice, to run Ada-BKB, we have to choose the number of children per node N (see Algorithm 1). The
choice of a value for this parameter let us choose a partition tree used and explored as indicated in Section 3.
Main results (see Section 4) suggest to choice this parameter as small as possible (i.e. 2 or 3) since it affects
both computational cost and cumulative regret.

Figure 11: Average regret, cumulative time and leaf set size per iteration of Ada-BKB changing N

Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by Adaptive Discretization

Considering a scenario in which we have a depth threshold hmax and a budget T high enough, we can observe
that the number of children per node N doesn’t drastically change the best configuration found by the algorithm
(see Figure 11). Obviously, increasing N will require a higher execution time since the cardinality of the leaf set
will increase faster. However, in scenarios in which hmax is low and the search space is a large hypercube, an high
number of children per node can be usefull. Indeed, an high N allows to produce small partitions faster than
small N according to the splitting procedure (see Section 3). This let Ada-BKB to provide good performance in
regret (in practice) even when the maximum depth threshold hmax is low.

Figure 12: Average regret, cumulative time and leaf set size per iteration of Ada-BKB changing N with hmax = 2

In Figure 12, we optimize Bohachevsky function (see Appendix C for details on search space) with a maximum
depth threshold hmax = 2. In this case, we can observe that increasing N , we obtain better results in average
regret but it decreases slower as expected (see Theorem 1). When we performed the experiments, we observed
that a good way to select N consists in starting with small values (2 or 3) and increase it if the budget is large
enough (which depends from the application), the search space is large and low-dimensional.

C.7 RandomBKB and Ada-BKB

To show the importance and the strength of adaptive discretizations, we compared Ada-BKB with BKB over
a random discretization (called RandomBKB). The red vertical dashed line indicates when the early stopping
condition is satisfied.

Figure 13: Average regret and cumulative time of Ada-BKB and RandomBKB with different discretization size

Marco Rando1, Luigi Carratino1, Silvia Villa2, Lorenzo Rosasco1,3,4

As we expected, in low dimensional case (Branin case) it is possible to build a random discretization which
contains a sub-optimal configuration. Increasing the dimensions of the search space (as in Rastrigin 8 case),
we can observe that even if we increase the size of discretizations used in RandomBKB, we still do not obtain
results in regret as good as in Ada-BKB. This happens because in high dimensional cases the search space is
too large and we need to generate many random points to have a good probability of obtaining a search space
with suboptimal candidates. However, large discretizations, as we observed in Appendix C.4, will make BKB
(and consequently also RandomBKB) very time-expensive due to the computations required to compute the
posterior eq. (5) (indeed, obviously, we can notice that increasing the size of the random discretizations, the
cumulative time spent to execute RandomBKB increases). Moreover, we can notice that Ada-BKB still achieves
good performances in time and maintains (in mid and high dimensional search spaces) the best results in regret
w.r.t. Random-BKB executions with lower variance (this because RandomBKB does not have a strategy to
explore the search space, but it just builds random grids). This shows us that adaptive discretizations are more
convenient than random discretizations.

C.8 Ada-BKB and GP-ThreDS

Ada-BKB parameters are indicated in Table 11. The implementation of GP-ThreDS used in these experiments
can be downloaded from the official repository: https://github.com/sudeepsalgia/GP_ThreDS. The machine
used to performe these experiments is less powerfull than the one described in Appendix C.3. We decided to
use it in order to show that our algorithm can run and provide high performance also in low-powered machines.
Details about this machine are reported in Table 12. We consider the same setting of Salgia et al. (2020) in
which the Branin and Rosenbrock functions (defined in the same work) are optimized. As in Salgia et al. (2020),
we will consider a search space X = [0, 1]2 for both functions. The hyperparameters used for GP-ThreDS are
indicated in Salgia et al. (2020)[Appendix D.1]. The function evaluation budget is set to T = 700.

Figure 14: From left to right, average regret and cumulative time of Ada-BKB and GP-ThreDS in optimizing
Branin and Rosenbrock functions.

https://github.com/sudeepsalgia/GP_ThreDS

Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by Adaptive Discretization

As we can observe in Figure 14, Ada-BKB performs better than GP-ThreDS both in regret and cumulative time.
Moreover, we can notice that GP-ThreDS performs better than Ada-GP-UCB in time but performs ≈ 10 times
worse than Ada-BKB (in computational time). In Table 10, we report the total time elapsed by three algorithms.

Table 10: Total time elapsed by algorithms to optimize Branin and Rosenbrock functions

ALGORITHM BRANIN ROSENBROCK

Ada-GP-UCB 318.65s 216.14s
GP-ThreDS 105.30s 190.17s
Ada-BKB 10.43s 16.56s

Table 11: Parameters of Ada-BKB algorithm to optimize Branin and Rosenbrock functions

FUNCTION σ λ F N hmax

Branin 0.5 0.001 1.0 3 7
Rosenbrock 0.5 0.001 1.0 5 5

Table 12: Machine used to perform these experiments

FEATURE

OS Debian 11
CPU Intel(R) Core(TM) i7-8550U CPU 1.80GHz
RAM 16 GB

D EXPANDED DISCUSSION

In this appendix, we discuss the relationship of Algorithm 1 and the other similar recent algorithms. We focus
to compare our Ada-BKB with GP-ThreDS (Salgia et al., 2020), AdaGP-UCB (Shekhar and Javidi, 2018), LP-
GP-UCB (Shekhar and Javidi, 2020) and BKB (Calandriello et al., 2019). Despite BKB, our algorithm can
work on continuous search spaces without building an offline discretization which can be very expensive, see
Appendix C.4(notice that using random discretizations doesn’t provide good results in high-dimensional search
spaces, see Appendix C.7). We followed the direction indicated in (Shekhar and Javidi, 2020) to sketch the
model confirming and proving that we get better performance in time. We also noticed that using a partition
schema as in (Shekhar and Javidi, 2018), let us obtain similar or potentially improved regret bounds with a lower
computational cost:

(LP-GP-UCB Regret:) O(
√
Tdeff(T))

(Ada-BKB Regret:) O(
√
Tdeff(T) log T) or O

(√
Tdeff(T) log T

Nhmax − 1

N − 1

)

Moreover, introducing a pruning procedure and an early stopping condition, we observed in the experiments (see
Appendix C.4) that we can further reduce the time-cost in practice.

BKB and SVGP. This work open other directions in particular in using different sketching models as
SVGP (Titsias, 2009; Burt et al., 2019) which mainly differs from BKB for inducing point selection. While
in SVGP, inducing points are selected by maximizing the evidence lower bound (ELBO) (Hensman et al., 2015),
BKB uses a procedure called resparsification which provides guarantees on the size of the set containing the
inducing points (Calandriello et al., 2019, Theorem 1). Moreover, as shown in (Shekhar and Javidi, 2018), using
a Gaussian Process let us avoid to include in the Vh expression (eq. (8)) the norm of the reward function f which

Marco Rando1, Luigi Carratino1, Silvia Villa2, Lorenzo Rosasco1,3,4

is not known a priori. In our experiments, we observed that a valid heuristic consists in setting it as 1 (see also
Appendix C.5).

Tuning the hyper-parameters of the model As shown in (Wild et al., 2021; Calandriello et al., 2019),
BKB is equivalent to a DTC approximation of a Gaussian Process (Quiñonero Candela and Rasmussen, 2005)
and thus, in practice, we can tune the hyper-parameters of BKB by maximizing the marginal likelihood.

	INTRODUCTION
	PROBLEM SETUP
	ALGORITHM
	Ada-BKB

	MAIN RESULTS
	Regret Analysis
	Computational Cost Analysis

	EXPERIMENTS
	CONCLUSION
	AUXILIARY RESULTS
	PROOFS OF MAIN RESULTS
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2

	EXPERIMENT DETAILS
	Synthetic experiments details
	Hyper-parameter tuning experiments details
	Machines used for experiments
	Other experiments
	Robustness to small pertubation of F
	Partition tree selection
	RandomBKB and Ada-BKB
	Ada-BKB and GP-ThreDS

	EXPANDED DISCUSSION

