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Abstract

We study the statistical and computational
complexities of the Polyak step size gradient
descent algorithm under generalized smooth-
ness and Lojasiewicz conditions of the popu-
lation loss function, namely, the limit of the
empirical loss function when the sample size
goes to infinity, and the stability between
the gradients of the empirical and popula-
tion loss functions, namely, the polynomial
growth on the concentration bound between
the gradients of sample and population loss
functions. We demonstrate that the Polyak
step size gradient descent iterates reach a fi-
nal statistical radius of convergence around
the true parameter after logarithmic number
of iterations in terms of the sample size. It
is computationally cheaper than the polyno-
mial number of iterations on the sample size
of the fixed-step size gradient descent algo-
rithm to reach the same final statistical ra-
dius when the population loss function is not
locally strongly convex. Finally, we illustrate
our general theory under three statistical ex-
amples: generalized linear model, mixture
model, and mixed linear regression model.

1 INTRODUCTION

From its origin in mathematics, gradient descent al-
gorithm [Polyak, 1987, Bubeck, 2015, Nesterov, 2018]
has played a central role in large-scale machine learn-
ing and data science applications. In general uncon-
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strained settings, this algorithm can be used for find-
ing optimal solutions of optimization problems of the
following form:

min f,(6). (1)

fERY

Here, n stands for the sample size of i.i.d. data
X1, X, ..., X, coming from an unknown distribution
Py« where 6* is true but unknown parameter and f,
is a given empirical loss function whose optimal solu-
tions, denoted by 6,,, can be used to approximate the
true parameter 8*. While the difference between 6,
and #* had been studied extensively in the literature
via several tools from the empirical process theory, the
convergence rates of 6¢ , updates from the gradient de-
scent algorithm, to optimal neighborhood around the
true parameter 6*, has still remained a nascent topic.

A natural approach to analyze the difference between
the updates ¢, and the true parameter 6* is to study
the convergence rate of 6!, to @L, stationary points of
optimization problem (1), and the gap between gn and
0*, namely, we use the following triangle inequality:

167, = 071 < 116, = nll + (16 — 67| (2)

This approach is often referred to as direct approach
and has been used in several earlier works (e.g., [Agar-
wal et al., 2012, Yuan and Zhang, 2013, Loh and Wain-
wright, 2015, Chen et al., 2018]). However, to en-
sure that the radius of convergence for [|0f — 6*|| is
at the order of final statistical rate, we need to ob-
tain a tight optimization convergence rate of the term
6L — 6, based on the sample size n and the num-
ber of iterations ¢. It requires a precise understanding
of the noise-structure in the gradient of the empirical
loss function, which is generally non-trivial to study in
practice.

To circumvent the challenges of the direct analy-
sis (2), a popular approach to analyze the difference
between the updates 6! and the true parameter 6* is
the population to sample analysis [Yi and Caramanis,
2015, Hardt et al., 2016, Balakrishnan et al., 2017,
Kuzborskij and Lampert, 2018, Charles and Papail-
iopoulos, 2018, Dwivedi et al., 2020, Ho et al., 2020,
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Kwon et al., 2021]. In particular, we define the cor-
responding population version of optimization prob-
lem (3) as follows:

min f(0). (3

where f(-) := Exn [fn(+)] is the population loss func-
tion and X™ = (Xq,...,X,).

When the step size 1 of the gradient descent algorithm
is fixed, which we refer to as fized-step size gradient
descent algorithm, the idea of the population to sample
analysis is to analyze the radius of convergence of 6,
via the following triangle inequality:

16771 — 0% < | Fep(67,) — 67
+0llVfu(0n) = VO = A+ B, (4)

where Fgp(0) := 0—nV f(0) is the corresponding pop-
ulation operator of the fixed-step size gradient descent
algorithm. The bound (4) suggests that we can relate
the behaviors of the sample fixed-step size gradient de-
scent iterate 05! to two terms: (i) Term A: the con-
vergence rate of gradient descent iterates for solving
population loss function (3); (ii) Term B: the uniform
concentration of Vf,(0) around V f(#) when 6 lies in
a certain neighborhood around 6*.

Complexity of fixed-step size gradient descent:
When the population loss function is locally strongly
convex and smooth around 6*, under the local initial-
ization the convergence rate of gradient descent iter-
ates for solving the population loss function is linear,
i.e., the term A in equation (4) behaves like x||6f, — 6|
where x < 1 is some constant. When the devia-
tion bound between V f,, () and V f(0) is at the order
e(n,0) with probability 1 — J as long as ||§ — 6*|| < r
where €(n,d) is the noise function, the statistical ra-
dius of the sample fixed-step size gradient descent up-
dates is at the order of O(g(n, d)) as long as the number
of iterations is at least O(log(1/e(n,d))). For practi-
cal high dimensional statistical models, the noise func-
tion e(n,d) is at the order of /d/n (here we skip ¢
for simplicity); therefore, we have parametric statisti-
cal radius of the sample gradient descent iterates after
log(n/d) number of iterations.

When the population loss function is no longer locally
strongly convex around the true parameter 8*, analyz-
ing the convergence rate of !, is non-trivial as simply
applying triangle inequality in equation (4) can get to
sub-optimal rate. To get a sharp statistical radius of
6%, Ho et al. [2020] recently utilize a localization ar-
gument from the empirical process theory to progres-
sively balance the two terms A and B when the sam-
ple fixed-step size gradient descent updates 6, move
closer to the true parameter 8*. They show that when

the convergence rate of the population fixed-step size
gradient descent iterates is slow and at the order of
O(1/t**) for some o > 0 and the deviation bound
between V f,,(0) and Vf(0) is polynomial and at the
order of O(r7e(n,d)) with probability 1 — § as long
as [|0 — %] < r where v > 0, the final statistical
radius of the fixed-step size gradient descent iterates
(6%, —6* || is upper bounded by O(e(n, 5)ﬁ) as long
as t > O(g(n,6)"a1=7) and a > ~. In practical
high dimensional statistical models, the noise function
g(n, d) is proportional to /d/n; therefore, the required
number of iterations for the fixed-step size gradient de-
scent updates to reach the final radius is proportional
to (n/d)=¥1=7. Since each iteration of the gradient
descent requires O(nd) arithmetic operations, the to-
tal computational complexity for the fixed-step size
gradient descent algorithm to reach the final statis-
tical radius is of the order of O(naF1=7 1) for fixed
dimension d. It is much more computationally expen-
sive than the optimal computational complexity O(n)
when the sample size is sufficiently large in practice.

Contribution. In this paper, we show that by us-
ing Polyak step size gradient descent method [Polyak,
1987], an adaptive gradient descent algorithm, we can
overcome the high computational complexity of the
fixed-step size gradient descent algorithm for reaching
the final statistical radius when the population loss
function is not locally strongly convex. Our contribu-
tion is two-fold and can be summarized as follows:

Complexity of Polyak step size gradient descent
algorithm: We study the computational and statis-
tical complexities of the Polyak step size gradient de-
scent iterates under the generalized smoothness and
Lojasiewicz properties of the population loss function,
which are characterized by parameter o > 0. Under
these assumptions, we demonstrate that the popula-
tion Polyak step size gradient descent iterates have
a linear convergence rate to the true parameter 6*.
When the deviation bound between the gradients of
sample and population loss functions is growing at
the order of O(r7e(n,d)) with probability 1 — §, we
further prove that the sample Polyak step size gra-
dient descent updates reach the final statistical ra-
dius O(a(n,é)ﬁ) around the true parameter 6*
as long as t > O(log(1/e(n,d))). It indicates that
the sample Polyak step size gradient descent iterates
reach the same final statistical radius as that of the
fixed-step size gradient descent iterates and they only
require a logarithmic number of iterations, which is
much smaller than those from the fixed-step size gra-
dient descent updates. Since each iteration of the
Polyak step size gradient descent algorithm only re-
quires O(nd) arithmetic operations, the total compu-
tational complexity for the Polyak step size algorithm
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to reach the final statistical radius is at the order
of O(nlog(1/e(n,d))) for fixed dimension d, which is
much cheaper than O(n-e(n, §)~a%1=7 ) from the fixed-
step size gradient descent algorithm. See Table 1 for
a more detailed comparison between the Polyak step
size and fixed-step size gradient descent methods.

Illustrative examples: We illustrate the general the-
ory under three statistical models: generalized lin-
ear model, symmetric two-component mixture model,
and mixed linear regression model. For the general-
ized linear model with link function g(z) = z? where
p € N and p > 2, we demonstrate that when we have
no signal, i.e., * = 0, the Polyak step size gradi-
ent descent iterates converge to a radius of conver-
gence O((d/n)'/?P) around the true parameter after
O(log(n/d)) number of iterations. It is much faster

than the required number of iterations O((n/d)%l)
of the fixed-step size gradient descent algorithm. For
both the symmetric two-component mixture model
and mixed linear regression, under the low signal-to-
noise regime, e.g., 8* = 0, we prove that the final op-
timal statistical radius of the Polyak step size iterates
are at the order of O((d/n)'/*) as long as we run the
algorithm for O(log(n/d)) iterations, which is faster
than O(y/n/d) number of iterations required for the
EM algorithm, which in these settings is equivalent to
gradient descent with step size 1, in order to reach the
same final statistical radii.

Organization. The paper is organized as follows.
In Section 2, we first introduce our assumptions on
generalized smoothness and Lojasiewicz property of
the population loss function and the growth condition
on the concentration of the gradient of sample loss
function around the gradient of the population loss
function. Then, we establish convergence rates of the
Polyak step size gradient descent iterates under these
assumptions. In Section 3 and Appendix A, we illus-
trate these convergence rates under specific settings of
generalized linear model, mixture model, and mixed
linear regression. We carry out experiments in Ap-
pendix G to verify the convergence rates studied in
the specific models in Section 3 and and Appendix A
while concluding the paper with a few discussions in
Section 4. Proofs of main results are in Appendix B
while proofs of the remaining results are in the remain-
ing Appendices.

Notation. For any matrix A € R?¢ we denote by

Amax(A) the maximum eigenvalue of the matrix A. For
any x € R, ||z denotes the £ norm of z. For any two
sequences {an }n>1, {bn}n>1, we denote a,, = O(by,) to
mean that a,, < Cb,, for all n > 1 where C is some uni-
versal constant. Furthermore, we denote a,, = ©(b,)
to indicate that Cib, < a, < C3b, for any n > 1
where C1, Cy are some universal constants.

2 POLYAK STEP SIZE GRADIENT
DESCENT

In this section, we first provide a set of assumptions
used in our analysis of the Polyak step size gradient de-
scent algorithm in Section 2.1. We then study the con-
vergence rate of that algorithm under these assump-
tions in Section 2.2.

2.1 Assumptions

We first start with the following assumption about
the local generalized smoothness of the population loss
function in equation (3).

(W.1) (Generalized Smoothness) There exists a constant

a > 0 such that for all € B(6*, p) for some radius
p > 0, we have

Amax (V2 £(0)) <eal|0 — 07|,

where ¢; > 0 is some universal constant.

When a = 0, Assumption (W.1) corresponds to the
standard local smoothness condition. When o« > 0,
Assumption (W.1) provides a polynomial growth con-
dition on the Lipschitz constant when the parameter
lies in some neighborhood around the true parame-
ter 0*. An example of the function f that satisfies
Assumption (W.1) is f(8) = Y0, 67 for all § =
(01,02,...,04) € R where a1, s, ...,aq > 1 are some
given positive integers. In this simple example, the
true parameter 8* = 0 and the constant « in Assump-
tion (W.1) takes the value a = min;<;<4{2a; — 2}.

Now, to obtain a convergence rate for the Polyak step
size gradient descent algorithm for solving the minima
of the population loss function, we need another as-
sumption, which we refer to as generalized Lojasiewicz
property, on the growth of the gradient of the popula-
tion loss function f.

(W.2) (Generalized Lojasiewicz Property) For all 6 €

B(6*, p) for some radius p > 0, there exists a con-
stant o > 0 such that we have

IVFO)] = ea(f(8) — f(67))} =52,

where ¢y > 0 is some universal constant.

When o = 0, the generalized Lojasiewicz property
is simply the well-known local Polyak-Lojasiewicz in-
equality [Bubeck, 2015]. This inequality has been
used to guarantee the linear convergence of the fixed-
step size gradient descent algorithm. When o > 0,
the inequality in Assumption (W.2) indicates that the
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Method Smoothness (W.1), Concentration Number of Statistical
Lojasiewicz (W.2) Bound (W.3) Iterations Radius
Fixed-step size 1
gradient descent a>0 vz0 e(n, 8)” T e(n, 8) 1=
(Proposition 1) a=0 7=0 log(1/e(n, ) g(n,d)
Polyak step size )
gradient descent a>0 ~v>0 log(1/e(n,d)) e(n,8)=+i=—=

(Theorem 1)

Table 1: An overview of the convergence rates of fixed-step size and Polyak step size gradient descent iterates
under the assumptions on generalized smoothness of the population loss function (Assumption (W.1)), gen-
eralized Lojasiewicz property of the population loss function (Assumption (W.2)), and uniform concentration
bound between the gradients of the population and sample loss functions (Assumption (W.3)). The results in
the table show that when o > 0, the Polyak step size gradient descent iterates reach to the same statistical
radius (n, 6)ﬁ1*v as that of the fixed-step size gradient descent iterates after much fewer number of iterations,

namely, log(1/e(n,d)) iterations of Polyak step size method versus e(n, 5)#17v of fixed-step size method. As
the complexity per iteration of the Polyak step size method and the fixed-step size method is similar, the Polyak
method is more computationally efficient than the fixed-step size method for reaching the same final statistical
radius. When a = 0 and v = 0, e.g., locally strongly convex setting, both the Polyak step size and fixed-step
size methods reach the statistical radius e(n, ) after a logarithmic number of iterations.

gradient locally grows faster than a high order poly-
nomial function as we move around the global min-
ima 6* where the maximum degree of the polyno-
mial function is determine by the constant a. Sim-
ilar to Assumption (W.1), a simple example of the
function f that satisfies Assumption (W.2) is f(0) =
El L07% for all @ = (01,02,...,0,) € R where
a1,Q2,...,0q > 1 are some given positive integers.
The constant « in Assumption (W.2) takes the value
a = maxi<i<q{2a; — 2}. If we would like the function
f in this example to satisfy both Assumptions (W.1)
and (W.2) with the same constant «, we need to have
a1 = ag = ... = aqg = «, namely, homogeneous poly-
nomial function. This behavior turns out to be pop-
ular in several statistical models, such as generalized
linear model, mixture model, and mixed linear regres-
sion that we study in Section 3 and Appendix A. In
Appendix F, we also briefly discuss the behavior of the
Polyak step size gradient descent algorithm when the
simple polynomial function f does not have homoge-
neous order, i.e., the constants in Assumptions (W.1)
and (W.2) are different.

Finally, to analyze the iterates from the Polyak step
size gradient descent algorithm for minimizing the
sample loss function in equation (1), we need a growth
condition on the uniform deviation bound between the
gradients of the sample and population loss functions.

.3) (Stability Property) For a given parameter v >
0, there exist a noise function ¢ : N x (0,1] —
R*, universal constant c3 > 0, and some positive
parameter p > 0 such that

IV1n(0) = VF(O)]] < csr7e(n, ),

sup
0€B(0*,7)

for all r € (0, p) with probability 1 — 4.

A simple interpretation of the Assumption (W.3) is
that we would like to control the growth of the noise
function, resulting from the difference between the
sample and population loss functions, when the ra-
dius of the ball around 6* goes to 0. That assump-
tion also suggests that 6* is some stationary point
of the sample loss function f, when v > 0. A sim-
ple example for Assumption (W.3) is that f,(0) =

% — w”aHQq \/7 where w ~ N(0,1) and p, q are pos-
itive integers such that p > ¢. Under this simple case,
f(0) = IIGHP and the constant v in Assumption (W.3)
takes the value v = 2¢ — 1 while the noise function
E(?’L, (5) _ dlogy(Ll/(S)

refer readers to Section 3 and Appendix A.

. For more practical examples, we

2.2 Convergence rate of the Polyak step size
gradient descent

The Polyak step size gradient descent iterates %71 :=
F,(0%) for solving the sample loss function f,, in equa-
tion (1) take the following form:

Fa(0) = fu(02)

F,(0!) = ¢! — o~ ohe
(6) A

Via(0),  (5)

where ﬁn is some optimal solution of the optimiza-
tion problem (1) (See our discussion after Theorem 1
about an adaptive version of Polyak step size gradient
descent algorithm to deal with the unknown value of
Il n)) The operator F,, in equation (5) is referred to
as sample Polyak operator. To analyze the convergence
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rate of the sample iterates 6!, we will use the popula-
tion to sample analysis discussed in equation (4). In
particular, we define the following population Polyak
operator for solving the population loss function f in
equation (3):

f(0) = f(67)
IV£(0)]?

As being indicated in the population to sample anal-
ysis for analyzing the fixed-step size gradient descent
algorithm, to analyze the sample iterates {6, };>¢ of
the Polyak step size gradient descent algorithm we use
the following triangle inequality:

F(0) =0 — -V £(0). (6)

16771 = 0%l < 11Fn(07) — F(OL)] + [1F(0),) — 0%]-

Therefore, to obtain an upper bound for the gap be-
tween 05! and 6%, we need to understand the contrac-
tion of the population operator F' to 6* as well as the
deviation between the sample operator F;, and popula-
tion operator F. The following lemma shows the linear
contraction of the population operator F' towards 6*.

Lemma 1. Assume that Assumptions (W.1)
and (W.2) hold. Then, given the definition of Polyak
population operator in equation (6) we have

IF(0) — 07|l < sll6 — 07,

cot2 1/2 )
where Kk 1= (1 — W) and ¢y, co are univer-

sal constants in Assumptions (W.1) and (W.2).

The proof of Lemma 1 is in Appendix B.1.

The result of Lemma 1 indicates that if {6'};>0 is a se-
quence of population Polyak step size gradient descent
iterates, i.e., 0! = F(6'), then we have

16" — 67| < s"[16° — 67

The linear convergence of population Polyak step size
gradient descent iterates is in stark different from the
sub-linear convergence ©(t~1/) of the fixed-step size
gradient descent iterates under Assumptions (W.1)
and (W.2) (See Lemma 4 in Appendix E).

Our next result establishes an uniform concentration
bound between the sample Polyak operator F;, and the
population Polyak operator F'.

Lemma 2. Assume that Assumptions (W.1), (W.2),
and (W.3) hold with o > ~. Assume that H§n -
0*|| < r,, where 0, is the optimal solution of the sam-

. = 1
ple loss function f, and r, := Ce(n,d)>+1=7 where
= .cs 2 a+1 Tfa— 3
C = (%) " ¢a, ¢35 are the universal
C2

constant in Assumption (W.2) and (W.3) and C is

some universal constant. Then for any r, < r < p
and for some universal constants cy > 1, we have

sup [Fn(0) — F(O)[| < car?™%e(n, d).
0€B(0*,r)\B(6*,ry,)

The proof of Lemma 2 is in Appendix B.2.

A few comments with that lemma are in order. First,
the condition o > 7y is to guarantee that the signal is
stronger than the noise in statistical model in which
we can derive the meaningful statistical rate for our es-
timator. Second, the assumption that |0, — 0*| < rp,
is natural as from Proposition 1, we demonstrate that
the statistical radius is at the order of O(e(n, 6)ﬁ1*v)
Third, as indicated in Lemma 2, the uniform concen-
tration bound between the sample Polyak operator F),
and the population Polyak operator F' only holds when
rn < || — 0% < r. The condition ||§ — 6*| > 7,
is important to ensure that the concentration bound
is stable. When ||0 — 0*|| < ry,, it happens that
|1En(0) — F(6)] goes to infinity. This instability be-
havior of the concentration bound between F,, and F
when the parameter approaches 6* is different from the
stable concentration bound of the sample fixed-step
size gradient descent operator around the population
fixed-step size gradient descent operator, which is pro-
portional to 77-£(n, §) according to Assumption (W.3)
and holds for all 6 € B(6*, ).

Equipped with the linear convergence of the popula-
tion Polyak operator in Lemma 1 and the uniform de-
viation bound between the sample Polyak operator F;,
and the population Polyak operator F', we are ready
to state our main result about the statistical and com-
putational complexity of the sample Polyak step size
gradient descent iterates.

Theorem 1. Assume that Assumptions (W.1), (W.2)
and (W.3) and assumptions in Lemma 2 hold with

a > . Assume that the sample size n is large
1 _
enough such that e(n,d)=+1-7 < C(jc—,%)fi where K is

defined in Lemma 1, ¢4 and C are the universal con-
stants in Lemma 2, and p is the local radius. Then,
there exist universal constants Cy, Cy such that for
t > Cylog(1/e(n,d)), the following holds:

1
min 0F —0*|| < Oy -e(n,d)a 7.
i 65 0] < Ca e, 8)

The proof of Theorem 1 is in Appendix B.3.

Below, we have the following discussions with the re-
sult of Theorem 1:

Comparing to fixed-step size gradient descent:
Since the convergence rate of the fixed-step size gradi-
ent descent iterates is at the order of O(t~'/®) when
a > 0 under Assumptions (W.1) and (W.2) (See
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Lemma 4 in Appendix E) and the concentration bound
between the sample gradient descent and population
gradient descent operators are of the order r7 - &(n, d)
under Assumption (W.3), the result of Theorem 1
in Ho et al. [2020] indicates the following convergence
rate of the fixed-step size gradient descent updates
when o > 0 and o > 7.

Proposition 1. Assume that Assump-
tions (W.1), (W.2) and (W.3) hold with o > =~
and o« > 0. As long as the sample size n is large
enough such that e€(n,d) < C for some wuniversal
constant C, there exist universal constants C1 and
CY such that for any fized T € (0, ﬁ) as long as

t > Cle(n,d)” o= log(1/7), we have
165, o — 07| < Che(n, ) 7=,

where {0}, op}i>o is a sequence of sample fived-step
size gradient descent iterates.

When a > v and « > 0, the result of Proposition 1
indicates that the fixed-step size gradient descent algo-
rithm requires O(e(n, §)” o= ) number of iterations
such that its updates can reach to the final statistical
radius O(e(n, 5)TL7 ). Since each step of the gradient
descent algorithm takes O(nd) arithmetic operations,
it demonstrates that the total computational complex-
ity for the fixed-step size gradient descent algorithm to
reach the final statistical radius is O(n-e(n,d)” o= )
for fixed dimension d. On the other hand, with a simi-
lar argument, Theorem 1 indicates that the total com-
putational complexity for the Polyak step size gradient
descent iterates to reach the final statistical radius is at
the order of O(n-log(1/e(n,d)), which is much cheaper
than that of the fixed-step size gradient descent algo-
rithm when « > 7.

Cross-validation with the minimum number of
iterates: Note that, in Theorem 1 we only guar-
antee for the existence of some k < t in the iter-
ate that |0 — 0*|| = O(s(n,é)rtw), instead of the
generally desired last iterate ¢. As Ho et al. [2020]
pointed out, such minimum is unavoidable without
further regularity conditions. Fortunately, we can still
obtain the desired estimator in the iterate by cross-
validation [Stone, 1974], which only accounts for an
additional O(nd) computation and keeps the compu-
tational efficiency of the Polyak step-size gradient de-
scent algorithm.

Practical consideration of the Polyak step size
gradient descent: A practical issue of the original
Polyak step size gradient descent algorithm is that
it requires the knowledge of the optimal value of the
sample loss function f,(6,) (see equation (5)). Even
though it may look restrictive at the first sight, it ap-
pears that we can utilize an adaptive version of that

(< SV I G

Algorithm 1: Adaptive Polyak Step Size Gradient
Descent

Input: Sample loss function f,,, initialization 69,
lower bound fy such that fu < fn(gn)
where §n is some optimal solution of f,,
time horizon T', number of epochs K

j— g0
for k=0,1,2,..., K —1do
6Tk = §
fort=0,1,2,..., T —1do
0Tk+7,'+1 —
Thti _ FaOF )~ Th+i
On [V fn (655712 Vin (02"
end
9 = arg IniIEOS,;ST fn(angﬂ)
Frop1 = fn(92)—fk
end -
Output: 6

algorithm, named adaptive Polyak step size gradient
descent, from Hazan and Kakade [2019] to deal with
the unknown value of fn(én) The detailed description
of that algorithm is in Algorithm 1.

As indicated in Algorithm 1, we first choose some
lower bound fy of f,(6,) and using it as a surrogate
for fn(@\n) Then, we run the Polyak step size algo-
rithm for T times, which is the time horizon, with
that surrogate choice. We then perform binary search
to update that surrogate value to fl based on the cur-
rent Polyak step size gradient descent iterates. We
repeat that procedure K times where K is some given
number of epochs to obtain a surrogate value fK of
fn(6,). As indicated in Theorem 2 of Hazan and
Kakade [2019], to have fx — fn(gn) < g, we can
choose K = O(log({2n)=Jo)) and T = O(log(L)).

Therefore, if we choose ¢ = O(e(n, 5)%) (note
that here ¢ is the gap for value of the objective func-
tion), then based on the proof of Theorem 1, the adap-
tive Polyak step size gradient descent iterates converge
to a final radius of convergence O(E(n,é)ﬁlfv) after
O(log(1/(n,d))?) number of iterations. It indicates
that the adaptive Polyak step size gradient descent is
still cheaper than the fixed-step gradient descent al-
gorithm for reaching the same final statistical radius
when a > v and a > 0, i.e., when the population loss
function is not locally strongly convex.

3 EXAMPLES

In this section, we consider an application of our the-
ories in Section 2 to the generalized linear model. In
Appendix A, we further apply our theories to Gaus-
sian mixture model and mixed linear regression model.



Tongzheng Ren, Fuheng Cui, Alexia Atsidakou, Sujay Sanghavi, Nhat Ho

The experiment results with these examples are in Ap-
pendix G.

3.1 Generalized Linear Model

Generalized linear model is a generalization of linear
regression model that allows the response variable to
relate to the covariates via a link function. In par-
ticular, assume that (Y1, X1),...,(Y,, X,) € R x R?
satisfy

Y= g(X] 0+, Vien) (7)

where ¢ : R — R is a given link function, #* is a
true but unknown parameter, and €1,...,&, are i.i.d.
noises from N(0,02) where o > 0 is a given variance
parameter. Note that, the Gaussian assumption on the
noise is just for the simplicity of the proof argument;
the result in this section still holds for sub-Gaussian
i.i.d. noise. Furthermore, we assume the random de-
sign setting of the generalized linear model, namely,
X1, Xo,..., X, are i.i.d. from N (0, 1;).

For our study, we specifically consider g(r) := rP for
any p € N and p > 2. Note that, our choice of g is
motivated by phase retrieval problem [Fienup, 1982,
Shechtman et al., 2015, Candes et al., 2011, Netrapalli
et al., 2015] where g(r) = r2. To estimate §*, we con-
sider minimizing the least-square loss function, which
is given by:

Y- (X)) (8)

i=1

. 1
e =5,

We then also have the corresponding population least-
square loss function, which admits the following form:
1

min £(8) := 5Exy[(V — (XTO))?)

where the outer expectation is taken with respect to
X ~ N(0,I5) and Y = g(X ') + ¢ where ¢ ~
N(0,0%). Note that E[Y?|X] = E[g(X T0*)?] + o2
Thus, by taking the conditional expectation, the pop-
ulation loss function has the following form:

1
L) == (E [((XTe*)P - (XTe)p)Q} + 02) . (9)
2
It is clear that #* is the global minimum of the popu-

lation loss function L.

Strong signal-to-noise regime: When 6% is
bounded away from 0, i.e., ||#*|] > C for some univer-
sal constant C, the population least-square loss func-
tion L is locally strongly convex around 6* and locally
smooth, namely, the Assumptions (W.1) and (W.2)
become

Amax(v2£(a)) <ci, (10)

IVLO) Ze2(f0) = F(O)V2 (11)

for all 0 € B(6*, p) where p is some universal constant
depending on p, as we demonstrate in Appendix D.1.
Furthermore, for Assumption (W.3), for any r > 0 we
can demonstrate that there exist universal constants
Cy and Cy such that as long as n > Cy(dlog(d/d))??
with probability 1 — ¢

sup [VLA(B) — VLB < Cyy L1080

0EB(6*,1) n
(12)

The proof for this uniform concentration bound is also
in Appendix D.1.

These results indicate that « = v = 0 in Assump-
tions (W.1)-(W.3). Therefore, a direct application
of Theorem 1 shows that we have the iterates of
Polyak step size gradient descent algorithm converge
to a radius of convergence O(y/d/n) around 6* within
O(log(n/d)) number of iterations.

Low signal-to-noise regime: On the other hand,
when ||0*|| is sufficiently small, the population loss
function is no longer locally strongly convex and the
precise understandings of the sample updates from the
Polyak step size gradient descent algorithm for solving
the sample loss function £,, have remained poorly un-
derstood. To illustrate the behaviors of the Polyak
step size gradient descent algorithm, we only focus on
the no signal-to-noise setting 6* = 0 in this section.

Under this setting, the population least-square loss
function can be written as

2 —_ 1\l — p*||2p
min £(0) = &P = DO — 07|
HERd 2

(13)

Different from the setting when 6* is bounded away
from 0, the population loss function in equation (13)
is not locally strongly convex around 6* when 6* = 0.
Indeed, we demonstrate in Appendix D.1 that for all
0 € B(9*, p) for some p >0

AI]rlel)c(v2£(0)) S C1||0 - 0*”21772’ (14)

IVLO)] = e2(L(0) — £(O7) "2, (15)

where c1,co are some universal constants depending
on p. Furthermore, for Assumption (W.3), from Ap-
pendix A.2 in [Mou et al., 2019], there exist universal
constants C7 and Cs such that for any r > 0 and
n > C1(dlog(d/))? we have

sup [[VLn(0) — VL)
0€B(0*,r)
d + log(1/0)

< C’g(rp_1 + r2p—1)
n

(16)
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with probability at least 1 — §. These results suggest
that as long as r € (0, p) for some given p, the values
of constants o and ~ in Assumptions (W.1)-(W.3) are
a=2p—2and y=p-—1.

Given the above studies, a direct application of Theo-
rem 1 leads to the following bounds on the statistical
radius of the sample Polyak step size gradient descent
iterates.

Corollary 1. For the generalized linear model (7)
with the link function g(r) = rP for some natural num-
ber p > 2, as long as n > c(dlog(d/8))?P for some pos-
itive universal constant ¢ and 02 € B(0*, p) for some
p > 0, with probability 1 — § the sequence of sample
Polyak step size gradient descent iterates {0} }i>0 sat-
isfies the following bounds

(i) Strong signal-to-noise regime: When ||0*|] > C
for some constant C, we have

d+log(1/6
min (05— 07| < oy T EU),
1<k<t n

fort>clog [ — 1
ot =28\ T 0g(1/8) )

(i1) Low signal-to-noise regime: When 0* = 0, we find
that

: E_o*|| < ¢
in 16, — 07 < ¢y

<d+ log(1/5))1/ (2p) |

n

fort > c,log I
d+ log(1/9)

Here, €1, ¢, ¢}, chy are some universal constants.

In light of Proposition 1, when 8* = 0 the iterates
from the fixed-step size gradient descent algorithm
have similar statistical radius (d/n)/(?P) as that of the
Polyak step size gradient descent updates. However,
the fixed-step size gradient descent algorithm need at

least O(n%) number of iterations for fixed dimension
d to reach that radius of convergence while the Polyak
step size gradient descent algorithm only needs loga-
rithmic number of iterations. It demonstrates that the
Polyak step size gradient descent algorithm is much
cheaper than the fixed-step size gradient descent algo-
rithm in terms of the sample size n.

4 DISCUSSION

In this paper, we have provided statistical and compu-
tational complexities of the Polyak step size gradient
descent iterates under the generalized smoothness and
Lojasiewicz property of the population loss function
as well as the uniform concentration bound between

the gradients of the population and sample loss func-
tions. Our results indicate that the Polyak step size
iterates only take a logarithmic number of iterations
to reach a final statistical radius, which is much fewer
than the polynomial number of iterations of the fixed-
step size gradient descent iterates to reach the same
final statistical radius, when the population loss func-
tion is not locally strongly convex. Given that the
complexity per iteration of the Polyak step size and
fixed-step size gradient descent methods are similar,
these results indicate that the Polyak step size gradi-
ent descent method is computationally more efficient
than the fixed-step size gradient descent method in
terms of the number of sample size when the dimen-
sion is fixed. Finally, we illustrate our findings under
three statistical models: generalized linear model, mix-
ture model, and mixed linear regression model. A few
natural future questions arising from our work.

First, our general theory for the convergence rate of
the Polyak step size gradient descent iterates relies on
the assumptions that the constants of the generalized
smoothness and the generalized Lojasiewicz condition
are similar. While this assumption is natural in sev-
eral statistical models, there are also certain instances
of statistical models that this requirement does not
hold, such as general over-specified low rank matrix
factorization problem, and factor analysis. Therefore,
extending our theory of the Polyak step size gradient
descent algorithm to the settings when the constants
in these assumptions are not similar is of interest.

Second, our results are restricted to the settings of
i.i.d. data in which we can define the corresponding
population loss function of the sample loss function. In
dependent settings, such as time series data, since the
notion of population loss function is not well-defined,
it is of interest to develop a new framework beyond the
population to sample framework in the current paper
to analyze the behavior of Polyak step size gradient
descent method for solving the optimal solution of the
sample loss function.

Finally, our results shed light on the favorable per-
formance of adaptive gradient methods for dealing
with the singular settings of the statistical models,
namely, those settings when the Fisher information
matrix around the true parameter is degenerate or
close to be degenerate, which leads to the slow con-
vergence rates of estimating the true parameters. For
the future work, it is of practical interest to extend
our general theoretical studies under these settings to
other popular adaptive gradient descent methods, such
as Adagrad [Duchi et al., 2011] and Adam [Kingma
and Ba, 2015], that have been observed to have favor-
able performance in several machine learning and deep
learning models.



Tongzheng Ren, Fuheng Cui, Alexia Atsidakou, Sujay Sanghavi, Nhat Ho

Acknowledgement

This work was partially supported by the NSF IFML
2019844 award and research gifts by UT Austin ML
grant to NH, and by NSF awards 1564000 and 1934932
to SS.

References

A. Agarwal, S. Negahban, and M. J. Wainwright. Fast
global convergence of gradient methods for high-
dimensional statistical recovery. Annals of Statis-
tics, 40(5):2452-2482, 2012.

S. Balakrishnan, M. J. Wainwright, and B. Yu. Statis-
tical guarantees for the EM algorithm: From popu-
lation to sample-based analysis. Annals of Statistics,
45:77-120, 2017.

J. Bolte, T. P. Nguyen, J. Peypouquet, and B. W.
Suter. From error bounds to the complexity of first-
order descent methods for convex functions. Math-
ematical Programming, 165(2):471-507, 2017.

S. Boucheron, G. Lugosi, and P. Massart. Concentra-
tion inequalities: A nonasymptotic theory of inde-
pendence. Oxford university press, 2013.

S. Bubeck. Convex optimization: Algorithms and
complexity. Foundations and Trends®) in Machine
Learning, 8(3-4):231-357, 2015.

E. J. Candes, Y. Eldar, T. Strohmer, and V. Voronin-
ski. Phase retrieval via matrix completion, 2011.

Z. Charles and D. Papailiopoulos. Stability and gen-
eralization of learning algorithms that converge to
global optima. In International Conference on Ma-
chine Learning, pages 745-754, 2018.

Y. Chen, Y. Chi, J. Fan, and C. Ma. Gradient descent
with random initialization: Fast global convergence
for nonconvex phase retrieval. Mathematical Pro-
gramming, pages 1-33, 2018.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Max-
imum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 39:1-38, 1997.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgra-
dient methods for online learning and stochastic op-
timization. Journal of Machine Learning Research,
12:2121-2159, 2011.

R. Dwivedi, N. Ho, K. Khamaru, M. J. Wainwright,
M. 1. Jordan, and B. Yu. Singularity, misspecifica-
tion, and the convergence rate of EM. Annals of
Statistics, 44:2726-2755, 2020.

J. R. Fienup.
comparison.

Aug 1982. doi:

Phase retrieval algorithms: a
Appl.  Opt., 21(15):2758-2769,
10.1364/A0.21.002758. URL

http://www.osapublishing.org/ao/abstract.
cfm?URI=a0-21-15-2758.

M. Hardt, B. Recht, and Y. Singer. Train faster, gen-
eralize better: Stability of stochastic gradient de-
scent. In M. F. Balcan and K. Q. Weinberger, ed-
itors, Proceedings of The 33rd International Con-
ference on Machine Learning, volume 48 of Pro-
ceedings of Machine Learning Research, pages 1225—
1234, New York, New York, USA, 20-22 Jun 2016.
PMLR. URL http://proceedings.mlr.press/
v48/hardt16.html.

E. Hazan and S. M. Kakade. Revisiting the Polyak
step size. Arxiv Preprint Arziv: 1905.00313, 2019.

N. Ho and X. Nguyen. Convergence rates of param-
eter estimation for some weakly identifiable finite
mixtures. Annals of Statistics, 44:2726-2755, 2016a.

N. Ho and X. Nguyen. On strong identifiability and
convergence rates of parameter estimation in finite

mixtures. FElectronic Journal of Statistics, 10:271—
307, 2016b.

N. Ho, K. Khamaru, R. Dwivedi, M. J. Wainwright,
M. I. Jordan, and B. Yu. Instability, computational
efficiency and statistical accuracy. Arxiv Preprint
Arxiv: 2005.11411, 2020.

R. A. Jacobs, M. 1. Jordan, S. J. Nowlan, and G. E.
Hinton. Adaptive mixtures of local experts. Neural
Computation, 3, 1991.

M. I. Jordan and R. A. Jacobs. Hierarchical mixtures
of experts and the EM algorithm. Neural Computa-
tion, 6:181-214, 1994.

A. Khalili and J. Chen. Variable selection in finite mix-
ture of regression models. Journal of the American
Statistical Association, 102:1025-1038, 2007.

D. P. Kingma and J. L. Ba. Adam: a method for
stochastic optimization. In ICLR, 2015.

I. Kuzborskij and C. Lampert. Data-dependent stabil-
ity of stochastic gradient descent. In International
Conference on Machine Learning, pages 2815-2824,
2018.

J. Y. Kwon, N. Ho, and C. Caramanis. On the min-
imax optimality of the EM algorithm for learning
two-component mixed linear regression. In AIS-

TATS, 2021.

B. Lindsay. Mizture Models: Theory, Geometry and
Applications. In NSF-CBMS Regional Conference
Series in Probability and Statistics. IMS, Hayward,
CA., 1995.

P.-L. Loh and M. J. Wainwright. Regularized M-
estimators with nonconvexity: Statistical and algo-
rithmic theory for local optima. Journal of Machine
Learning Research, 16:559-616, 2015.


http://www.osapublishing.org/ao/abstract.cfm?URI=ao-21-15-2758
http://www.osapublishing.org/ao/abstract.cfm?URI=ao-21-15-2758
http://proceedings.mlr.press/v48/hardt16.html
http://proceedings.mlr.press/v48/hardt16.html

Complexities of Polyak Step Size Gradient Descent

G. J. McLachlan and K. E. Basford. Mizture Models:
Inference and Applications to Clustering. Statistics:
Textbooks and Monographs. New York, 1988.

J. Mei, Y. Gao, B. Dai, C. Szepesvari, and
D. Schuurmans. Leveraging non-uniformity in first-
order non-convex optimization. arXiv preprint
arXiw:2105.06072, 2021.

W. Mou, N. Ho, M. J. Wainwright, P. Bartlett, and
M. I. Jordan. A diffusion process perspective on
posterior contraction rates for parameters. arXiv
preprint arXiv:1909.00966, 2019.

Y. Nesterov. Lectures on Conver Optimization.
Springer, 2018.

P. Netrapalli, P. Jain, and S. Sanghavi. Phase retrieval
using alternating minimization. IEEFE Transactions
on Signal Processing, 63(18):4814-4826, 2015. doi:
10.1109/TSP.2015.2448516.

B. T. Polyak. Introduction to Optimization. Optimiza-
tion Software, Inc., New York, 1987.

J. Rousseau and K. Mengersen. Asymptotic behaviour
of the posterior distribution in overfitted mixture
models. Journal of the Royal Statistical Society: Se-
ries B (Statistical Methodology), 73:689-710, 2011.

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chap-
man, J. Miao, and M. Segev. Phase retrieval with
application to optical imaging: A contemporary
overview. IEEE Signal Processing Magazine, 32(3):
87-109, 2015. doi: 10.1109/MSP.2014.2352673.

M. Stone. Cross-validatory choice and assessment of
statistical predictions. Journal of the royal statis-
tical society: Series B (Methodological), 36(2):111—
133, 1974.

M. J. Wainwright. High-Dimensional Statistics: A
Non-Asymptotic Viewpoint. Cambridge University
Press, 2019.

X. Yi and C. Caramanis. Regularized EM algo-
rithms: A unified framework and statistical guaran-
tees. In Advances in Neural Information Processing
Systems, pages 1567-1575, 2015.

X.-T. Yuan and T. Zhang. Truncated power method
for sparse eigenvalue problems. Journal of Machine
Learning Research, 14(Apr):899-925, 2013.



Tongzheng Ren, Fuheng Cui, Alexia Atsidakou, Sujay Sanghavi, Nhat Ho

Supplement to “Towards Statistical and Computational
Complexities of Polyak Step Size Gradient Descent”

In this supplement, we first discuss an application of our general theories to remaining examples of Gaussian
mixture model and mixed linear regression model in Appendix A. In Appendix B, we present the proofs of
main results in Section 2.2. Then, we present the proofs of the convergence rates of Polyak step size gradient
descent iterates for specific models in Appendix D. The auxiliary results and their proofs are in Appendix E. We
provide a brief discussion on the behaviors of the Polyak step size gradient descent iterates when the constants in
Assumptions (W.1) and (W.2) are different in Appendix F. Finally, we present the experimental studies for the
convergence rates of Polyak step size gradient descent iterates under specific statistical models in Appendix G.

A REMAINING EXAMPLES

In this appendix, we consider an application of our general theories in Section 2 to Gaussian mixture model and
mixed linear regression model.

A.1 Gaussian mixture model

Gaussian mixture models are one of the most popular tools in machine learning and statistics for modeling
heterogeneous data [Lindsay, 1995, McLachlan and Basford, 1988]. In these models, learning location and
scale parameters associated with each sub-population is important to understand the heterogeneity of the data.
A popular approach to estimate these parameters is to maximize the log-likelihood function. Since the log-
likelihood function of Gaussian mixture models is non-concave and complicated to study, a full picture about the
convergence rates of optimization algorithms for solving the log-likelihood function of the over-specified Gaussian
mixture models has still remained elusive.

In this section, we aim to shed light on the convergence rates of the Polyak step size gradient descent algorithm
for solving the parameters of Gaussian mixture models. We specifically consider the symmetric two-component
Gaussian mixture and provide comprehensive analysis of that algorithm. In particular, we assume that the data
X1,Xa,..., X, are iid. samples from JN(—60%, 0%1) + 2N (0*,0%1;) where o > 0 is given and 6* is true but
unknown parameter. To estimate 6*, we fit the data by symmetric two-component Gaussian mixture

1 1
5./\/.(—0, 0'21(1) + iN(e,O'ZId). (17)
The maximum likelihood estimation is then given by:
in £,(6) L f:lo 1¢(X l 2I)+1¢(X| 0,0%14) (18)
min = —— = 10,0 = | —0,0
9cRd n n o g 2 Yy d 2 i ) d )

where ¢(+|0, 0%1,) is the density function of multivariate Gaussian distribution with mean 6 and covariance matrix
021,. The corresponding population version of the maximum likelihood estimation (18) takes the following form:

_ 1 1
min £(0) := —Ex |log | =¢(X|0,0%14) + =¢(X| — 0,5%14) ) | , (19)
OER 2 2
where the outer expectation is taken with respect to X ~ N (—0*,021,) + IN(0*,0%1,).
Strong signal-to-noise regime: When |[0*|| > Co for some universal constant C, the Corollary 1 in Bal-
akrishnan et al. [2017] demonstrates that the population loss function L is locally strongly convex and locally
smooth as long as 6 € B(6*, ”04—”). It indicates that we have

Amas (VEL(O)) < e1, [VLO) = ea(F(0) = £(67))'%, (20)

o1l

i.e., the Assumptions (W.1) and (W.2) are satisfied with the constant o = 0. Furthermore, for any » < *=- and
n > C1dlog(1/6) for some universal constant C; we have

sup VL, (0) — VE(@)| < o/ 081/

(21)
0EB(0* ) n
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with probability at least 1 —d where Cy is some universal constant. See Corollary 4 in Balakrishnan et al. [2017]
for the proof of this concentration result.

Low signal-to-noise regime: We specifically consider the setting #* = 0. This setting corresponds to the
popular over-specified Gaussian mixture models [Rousseau and Mengersen, 2011, Ho and Nguyen, 2016a], namely,
when we choose some given number of components that can be (much) larger than the true number of components
and estimating the parameters from the mixture models with that chosen number of components. We prove in
Appendix D.2 that for all § € B(0*, §):

Amax(V2L(0)) < |6 — 07|, (22)
IVLO)I| > ea(L(8) — £(67))**. (23)

Furthermore, from Lemma 1 in [Dwivedi et al., 2020], there exist universal constants C; and Cs such that for
any r > 0 and n > Cydlog(1/5) we have:

sup VL, (0) — VE©)] < Cary | 1B/

24
0cB(0*,r) n ( )

with probability at least 1 — §.

Combining the above results to Theorem 1, we have the following results on the final statistical radius of the
Polyak step size iterates under different regimes of the two-component Gaussian mixture model.

Corollary 2. For the symmetric two-component mizture model (17), there exist positive universal constants
1, ¢, ¢y, ¢y such that when n > cdlog(1/0) for some universal constant ¢, with probability 1 — 6 the sequence of
sample Polyak step size gradient descent iterates {0% }1>0 satisfies the following bounds:

(i) Strong signal-to-noise regime: When ||0*|| > C' for some constant C' and 6° € B(0*, H94H* ), we have

. dlog(1/9) n
E_ g% < oV I/ > R —
1211215 167 — &7 < e n ’ fort = e;log dlog(1/8) )’

(it) Low signal-to-noise regime: When 6* =0 and 65 € B(6*, %) we find that

) . dlog(1/d 1/4 n
min [|6F —6*|| < ¢} <7§/)) ) for t > chlog Tloa(1/3) )

1<k<t

A few comments with the results of Corollary 2 are in order. First, the Expectation-Maximization (EM) al-
gorithm [Dempster et al., 1997] is a popular algorithm for solving the parameters of Gaussian mixture models.
In the symmetric two-component Gaussian mixture (17), the EM algorithm is simply the gradient descent with
step size being 1. In light of the results of Proposition 1 and the results in [Dwivedi et al., 2020], the EM iterates
reach to the final statistical radius O((d/n)'/*) after O(y/n) number of iterations. The results in Corollary 2
indicate that the Polyak step size gradient descent iterates reach to the final statistical radius with a much fewer
number of iterations, namely, O(log(n)), while each iteration of the Polyak step size gradient descent has similar
computational complexity as that of the EM algorithm. Therefore, the Polyak step size gradient descent algo-
rithm is more efficient than the EM algorithm for the low-signal-to noise regime of symmetric two-component
Gaussian mixture model. Second, the statistical radius (d/n)'/* that the Polyak iterates reach to in the low
signal-to-noise regime is optimal according to the work of Ho and Nguyen [2016b].

A.2 Mixed linear regression

Mixed linear regression is a generalization of vanilla linear regression model when we have multiple mean pa-
rameters and each data can associate with one of these parameters. In statistics, mixed linear regression is
often referred to as mixture of regression [Khalili and Chen, 2007], which is also a special case of mixture of
experts [Jacobs et al., 1991, Jordan and Jacobs, 1994] where the mixing weights are assumed to be independent
of the covariates.
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Similar to mixture model in Section A.1, we also aim to shed light on the convergence rate of the Polyak step
size gradient descent algorithm under the simple symmetric two-component mixed linear regression setting. In

particular, we assume that (X1,Y7), (X2,Y2),...,(X,,Y,) are i.i.d. samples from symmetric two components
1 1
<2N(Y| — (0" X, 0% + §N(Y|(9*)TX, 02)> -N(X]0, 1), (25)

where o > 0 is known variance and #* is true but unknown parameter. To estimate 60*, we fit the data with the
following symmetric two-component mixed linear regression:

(;Nm —-0TX,0%) + %/\/(YWTX, 02)> -N(X10, I,). (26)

A common approach to obtain an estimator of #* is maximum likelihood estimator, which is given by:

min L, ( Zlog( o(Y;]0" Xi,02) + qs( 3| — (le-,a?)). (27)

HcRa

The corresponding population version of the optimization problem (27) is

~ 1
min L) = -Exy {log( d(Y0T X, 0%) + 56V = 0" X, 0 ))] : (28)
€

where the outer expectation is taken with respect to X ~ N(0,1;) and Y|X ~ IN(Y| - (0*)7X,0?) +
IN(Y[(07)T X, 0?).

Strong signal-to-noise regime: We first consider the setting when ||0*| > C' where C is some universal
constant. Corollary 2 in Balakrishnan et al. [2017] proves that for that strong signal-to-noise regime, the popu-
lation negative log-likelihood function £ is locally strongly convex and smooth when 6 € B(6*, ”6 ”) Therefore,
the Assumptions (W.1) and (W.2) are satisfied with the constant o = 0. Furthermore, accordmg to the re-
sult of Corollary 5 in Balakrishnan et al. [2017], Assumption (W.3) is satisfied with v = 0 and for any radius
r < ||6*]|/32.

Low signal-to-noise regime: We prove in Appendix D.3 that for all § € B(6*, \/%0), there exist universal
constants ¢; and ¢y such that:

Amax (V2L(0)) < e1[10 - 07|, (29)
IVLO)]| = ea(£(0) — L(67))*/*. (30)

These results indicate that the Assumptions (W.1) and (W.2) are satisfied with the constant o = 2. Furthermore,
from the concentration result from Lemma 2 of Kwon et al. [2021], there exist universal constants C; and Cs
such that as long as n > Cidlog(1/§), we have for any r > 0

~ ~ log(1
P ( sup  ||VLn(0) — VL) < Cor dog(/‘”) >1-6.
0EB(0* 1) n

It indicates that Assumption (W.3) is satisfied when v = 1. Collecting all of the above results under both the
strong and low signal-to-noise regimes, we have the following bounds on the statistical radii of the Polyak step
size gradient descent iterates.

Corollary 3. For the symmetric two-component mized linear regression (25), when n > ¢ - dlog(1/§) for some
universal constant c, there exist positive universal constants cy,ca,cy,ch such that with probability 1 — & the
sequence of sample Polyak step size gradient descent iterates {0% }¢>0 satisfies the following bounds:

6~

(i) Strong signal-to-noise regime: When ||6*|| > C' for some constant C' and 69 € B(0*, 1=

), we have

log(1
min [|0F — 0% < ¢ dlog(1/6)
1<k<t n

fort > ealog [
o ot =208 Glog(1/5) )
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(ii) Low signal-to-noise regime: When 0* =0 and 0% € B(6*, \/%) we find that

loa(1 1/4
min [|6% —6*|| < ¢} (d o8 /6)) ,
1<k<t n

n

dlog<1/6>> |

Similar to the symmetric two-component Gaussian mixture, the EM algorithm for solving the symmetric two-
component mixed linear regression is simply the gradient descent with step size one. The results of Corollary 3
and Proposition 1 indicate that the Polyak iterates take much fewer number of iterations, i.e., O(log(n)) than
that of the EM algorithm, which is O(y/n). It indicates that the Polyak step size gradient descent algorithm is
computationally more efficient than the EM algorithm for reaching to the optimal statistical radius O((d/n)/*)
in the low signal-to-noise regime.

for t > chlog (

B PROOFS OF MAIN RESULTS

In this section, we provide the proofs for main results in Section 2.2.

B.1 Proof of Lemma 1

First, we notice that

(f(0%) — £(67))* _ 2(f(8") — f(6"))

t+1 _ p*x(2 t_ p*||2 — o t t _ p*
167 = 671 = 107 =07l = = e NG
= LG (16— 567) = 29 16,6~ 07)
() — F67)?
S 7 B

where the inequality is due to the convexity of the population loss function f. This result indicates that the
sequence {[|0® — 6*||}+>0 is monotonically decreasing and thus 6 € B(6*, p) for all t > 0 as long as 0 € B(6*, p).
Furthermore, we find that

N 01 o Il a0 PR (O B0 (Ui
[0 =677 — 16" "I < = S g s

a+2
Co

S ARV
T 2c(a+2)xt? |

-6,

where the second inequality is based on the fact that f(6%) — f(0*) > % which can be recovered from
Lemma 3.5 in [Bubeck, 2015] and Assumption (W.1), and the third inequality is from Lemma 3. The above
inequality is equivalent to

a+2
1l _gr 2 < (1 — ) t_ g*|2. 1
R Y (R e L (31)
We can further see that for any 6 € B(6*, p)
. o+ 2 oL _a+2 sc\ar N
— < — atz2 < = —
661l < =2 0) = 7O 7= < 2= (5) 7 o -0,
a+2 at2

< %. Thus, the contraction coefficient % <1- W < 1,

C.
a+2 2 2c1 (cv2+2)"‘Jr2
which means that it is positive and strictly less than 1. By repeating the inequality (31), we eventually have the
following inequality:

a+2
which means ( €2 ) < % and

9t+1 9* 2 < 1 Cg+2 ' ”90 9* 2
ot =01 < (1= gy ) 00— o)

As a consequence, we reach the conclusion of Lemma 1.
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B.2 Proof of Lemma 2

Recall that, from Assumptions (W.1), (W.2) and Lemma 3, as long as 6 € B(6*, p) we have the following
relations:

1O) = 10y <50 - 07|+, (32)

a+1
C2 * *|a+1
— < < _ .
2 <a+2ll9 0 ||) <IVFO)] < a6 — 07 (33)

From the definitions of the population and sample Polyak operators F,, and F' in equations (5) and (6), we make
the following decomposition on || F,,(8) — F(0)]|:

o) P = | BG o - (ETEw0)
Fal®) = fa(0)  F(O) — £(67)
H( IV £ (9)]2 IV f0)]2 )an(f))
LB G
H VvioE VO anw))H
::Tl +T2 (34)

Upper bound on T3: We first deal with the second term T5. With Assumption (W.3), with probability 1 —§
we have that

IO 0D wr0) - _10) - £(67)
ez o0~ w00 g 1wse) - w00
<0 510) - g0

for all 8 € B(6*,7)\B(6*,r,) where r < p. Combining the above inequality with the inequality (32), we obtain

waz)(Vf( ) — an(e»H < % : (%)“%2’1 P~ (n, §) (35)

for all 8 € B(6*,7)\B(6*,r,) where r < p.

Upper bound on Tj: For the first term 77, we have that

|<fn(0) — fal0)  £(0) - f<"*>> V £a(0)

IV £ (0)]12 IVF©O)I2

- (fa(0) = FaBDIV SO = (f(0) - f(9*))Han(9)||2‘

B IV (OIIIVF©)I2

- (fn(9)—fn(§n)—f(9)+f(9*))||Vf(9)||2’+(f( FON NV E O = IV £ O]
- IV F O = carre(n, 6))[[VF(0)]]?

_ 50) ~ £a@) — £0) + SOV IOI +2(56) ~ 1OV O)lesre(n, )
(V@) = carre(m, )V F @)
((0) - F(0")3re2(n. o)
V7O = car=(m, IV IO (36)

To bound the RHS of equation (36), we need to upper bound

Fa(0) = £(6) = (fa(Bn) — £(67))

+
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= [a(0) = Fa(07) = (F(0) = F(67)) = (fu(Bn) — £u(67)).
Indeed, from Assumption (W.3), with probability 1 — ¢ we have that

£2(6) = Fa(6) = (F6) = £(6))
< [ VA8 +1(6 - 07) ~ VF(0" +1(0 — 0]
0

< c3r’e(n, d)

B v+1 (37)
for any 6 € B(6*,r). Furthermore, we find that
a(8) = Fu(0)] < [ fa(Bn) — F(8,) — Fu(07) + F(O)| + | f(Bn) — f(67)]
_ e tle(n,0) cma—WWH (38)

v+1 2 ’

where the final inequality is due to inequalities (37) and (32). Plugging the bounds (37) and (38) into (36), we
find that

[(Sere S 7@

2¢3r7 T e(n,d)
1

G, —g=|ot2 2
+ al 5 I )clrz(“'2 + Begr?at3tig(n, §) + C1263 r2tat2e2(n §)
5 oo 2a+2 oo a+1
2 2 —
=5 ((a+2)) C2 (((x+2)) 037"76(7’1,5)

1
_ _ T +1
71, _ C‘C3(a+2)a+1 atl=y C: cor «
As r > Ce(n,d)>F1=7 where C' = ( s , we know c3r?e(n,d) < & =5 , and we can

<

simplify this term to

|(Serme Lm0

< ¢ 2cics( +2)07 7" %(n,d) ot ) (003(0‘ + 2)3a+3€(n 6)> T e
TC-1\ (y+D)egte T 2(y 4 1)t gt ’

2 30+3 2 3043
+2 +2
0103(33(1%) P (n, 6) 0163(;03a+2 220122 5))
2 2

C 2cicz(a + 2)3+3 Ccjez(a+2)%tt

< T (n, § P
C - (4 D@ e T e (n,6)
Aez(a+2)3e+3 crez(a+2)2e+2
NI AN A 3( 3a+6) % (n, ) b 4 32(02a+4)c 2l s(n,5)), (39)
2 2

for any 6 € B(0*,r)\B(6*, r,,). Combining inequalities (35) and (39) and taking the constant ¢4 accordingly, we
can obtain the desired result.

B.3 Proof of Theorem 1

Recall that for the radius of r, in Lemma 2, we denote r, = C - £(n,J) =17, Without loss of generality,
we assume |[0F — 0% > (% + 1) rn, holds for all k < T where ¢4 is the universal constant in Lemma 2,
T := Clog(1/e(n,d) and C is some constant that will be chosen later; otherwise the conclusion of the theorem
already holds.

We first show that, 08 € B(0*, p)\B(0*,r,) for all k < T. The inequality [|0% — 6*|| > r, is direct from the
hypothesis. Therefore, we only need to prove that ||[#% — 6%|| < p. Indeed, we have

165+ = 0% || =I| Fn (65) — 6"
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<[1Fa(05) = F(OR)] + 1F(05;) — 0°

< sup 152(0) = F(O)] + | F(67) — 67|
O€B(6*,p)\B(0*,7n)

(i)
<eqp?"%(n,0) + /i||9£ — 67

(@)

<eyC7 % (n, 9) e — + Kp

(ddd)
<p

with probability 1 —§ where the inequality (i) is due to Lemma 2 and ¢4 is the universal constant in that lemma;
. 1
the inequality (ii) is due to p > r, = Ce(n,d)*¥1=7 and v < «; the inequality (iii) is due to the assumption

that n is sufficiently large such that c4C7~%¢(n, d) a1 < (1 — k)p. As a consequence, we can guarantee that
0F € B(0*, p)\B(6*,7,) for all k < T.

Now, we would like to show that [|6f — 6*|| < 2=£r,,. Indeed, following the earlier argument, we find that
167 — %[ <I1Fo (05 ~1) — F @I+ £ ") — 07|

< sup |Fn(0) — F(0)|| + &[0T~ — 67|
0cB(0*,p)\B(0*,ry,)

Seq - %e(n,0) + Kll65 T — 07

=caC7 - g(n, )7 7 + k)07 — 6%

By repeating the above argument T times, we finally obtain that

T-1
|m>wwym%“dmwﬁ”<iﬁﬁ+ﬂw&ww
t=0

640770‘

— 1—-k

g(n,0) STy + wLp.

log(p)+ 5y— log(1/e(n,9))

By choosing T such that «Tp < &:(n,é)wi*w7 which is equivalent to T > Toa (/) ,

guarantee that

we can

.
o5 - 071 < (4

— K

+ 1> g(n,0) S

As a consequence, we obtain the conclusion of the theorem.

C PROOFS OF REMAINING KEY RESULTS

D Proofs of remaining key results

In this appendix, we provide proofs for the generalized smoothness and PL conditions of the generalized linear
model, over-specified mixture model, and over-specified mixed linear regression model in the main text.

D.1 Generalized linear model

We first prove the local strong convexity (11) and uniform concentration bound (12) under the strong signal-to-
noise regime in Section D.1.1. Then, we prove the generalized Lojasiewicz property (16) of the population loss
L for the low signal-to-noise regime in Section D.1.2.

D.1.1 Strong signal-to-noise regime

Local strong convexity: We first prove the local strong convexity in equation (11). Recall that, we have

£(6) :% (B[(xToy — (xTor)’] +07).
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where the outer expectation is taken with respect to X ~ A(0,1;). Hence, £ is a polynomial function with
degree at most 2p and coefficients bounded (as for Gaussian we have any finite order moment bounded). So £
should be smooth around the optima. Furthermore, when ||§ — 6*| is small enough we have that
((XT0)" = (XT0"))* = p(X 0" XT (0. - 0°) + (|10 — 0.

Thus, we have that

__1 T px\p Tp\p 2 2

£6) =5 (B[(xXTo) = (xT0))*] +0?)
2
=D (0 -0 TE [XT(XT07)272X] (0- 0°) + 5 +o(0 = 0?)

As 2p — 2 is even, it is clear that we have E [XT(XT6*)%~2X] is positive definite matrix, which shows £ is
locally strongly convex function (by manipulating ||§ — 6*|| and the constant).

Uniform concentration bound: For the uniform concentration of the gradient in equation (12), direct
calculations show that

—

Hence, with triangle inequality, we have that

(i S0 - (T 9>p—1xi> H

i=1

IVLA(0) = VLO)| <

( f:XTe* PXTO)PIX; —E[(XT6%)P (XTo)Pl)(])H
=1

( zn: X, 0)?¥71X, —E[(XT0)*~ 1X>H

22111 +—75 +’1§.

The first and the third terms T} and T3 can be upper bounded via the identical method introduced in Section
A.2 in [Mou et al., 2019] and we only need to change the radius from r to r + ||#*|| when 6 € B(6*, ), namely,
we have the following bounds:

et (R 0 (7)), @0
1yt e (L e () @

with probability 1 — § where ¢; and ¢y are some universal constants. Therefore, it is sufficient to focus on the
second term T5. Without the loss of generality, we assume ||f|| = 1, and the results can be generalized to other
norm of 6 by rescaling. First, we know that

H (; En:(xfe*)p(xfe)p‘lXi - E[(XTH*)”(XTH)””XO H
=1

= sup
u€eSd—1

<jl S X0 (X0 X E[(XT@*)?(XT@)?W@) ,

i=1

where S?~! is the unit norm Euclidean sphere in R?. With standard discretization arguments (e.g., Chapter 6
in [Wainwright, 2019]), let U be a 1/8-cover of S¥~! under || - |2 whose cardinality can be upper bounded by 17¢,
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we know
1 n
sup (Z X 0P (X, o) X, u [(XTH*)p(XTG)”‘lXTu]>‘
weSd—1 n —1
< 2 sup ( ZXTG* Toy—1xu E[(XTG*)”(XTG)plXTu]>|.
uelU —

Hence we can focus on the upper bound with a fixed u where ||u|| = 1. We then apply a symmetrization argument
(e.g., Theorem 4.10 in [Wainwright, 2019]), we have that, for any even integer ¢,
q
( Z (X, 0 )P(X o)X, u IE[(XTH*)p(XTG)plXTu]> ]
— q]

where {€;};c[n) is a set of i.i.d. Rademacher random variables. We then follow the proof strategy used in Section
A.2 in [Mou et al., 2019]. For a compact set €2, define

<E

(2 M e oo “)
n

i=1

R(Q):=  sup
0eQ,p’€[1,p]

Zsl (X, 0P (X0 1 X u

and N (t) is a t-cover of S¥~! under || - ||2. Then,

2 & )
RET) = s S 3 e[ 0)r(XT o X

gesi—1t p'ell,p] |1 5

< su

Zsl (X, 097X (0, + )Y 1 X, u
0 EN(2), Hn||<t p'€[1,p]

< sup Ze (X, 0%)P(Xx, 6,)P _1XiTu

0:eN(t),p’ €[1,p]

2 & ,
=N xS o (X )P T X
n

=1
SOR(N () + 37 ~HR(S?1).

!
+ max 37!
p’€[1,p]

Take t = 377, we have that R(S%!) < 3R(N(37P)). We then move to the upper bound of R(N(377)). With
the union bound, for any ¢ > 1 we have that
q]

> X o0y T X

oo 2 n
= sup / Pl |-
6esi—1,p'ell,p] JO [
sup / P
0eN (3-7),p'€[l,p] JO

SUPpe[1,p] Z@EN(B—P) fooo P (

sup

2 ,
= a(x o xT o T X
0eSd—1,p'e[l,p]

n <
=1

q
25) de

q
25) de

25 si(X-TQ*)P(XZTH)P/—lXZ-Tu’q > 5) de
W (37)]

v

2 & ,
=Y e ooy T X
i=1

V(X007 Xl > ) de

_ SPpeiiy) Jo P (SupeeMB*P) n izt Eil
- WV (3 )l
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. J5™ P (5Poenrsmr i | 2 St e X 07 (X T 0 1 X u’q > ) de
- pIN(377)]
_ E[RIN(3))]

pIN(377)]

, q
Hence, it’s sufficient to consider E H% Sy (X, )P (X, o)P *lXiTu’ ] We apply Khintchine’s inequality
[Boucheron et al., 2013], which guarantees that there is an universal constant C, such that for all p’ € [1,p], we
have

2 & :
E =) e or X oy X7
[n_gl(ze)(ze) 7,“

i=1

q Co q/2
q * r—
| <= |(S3oo oo )

i=1

To further upper bound the right hand side of the above equation, we consider the large deviation property of
random variable (X, 6%)?P(X,70)2® ~V (X Tu)2. It’s straightforward to show that

E [(XJQ*)Qp(XiTe)ﬂP’—l)(X;u)z} S(Q(p_|_p/))(p.|.p’)7
E {((XJH*)%(XJQ)?(P'U(xiTu)z)q/?} S(Q(erp/)q)(erpf)q'

With Lemma 2 in [Mou et al., 2019], with probability at least 1 — §, we have

n ’ /2 /
ES (o0 D Tup) B [0 (0 070 (]
n
=1
n [logd/d nlog4/d
< (80 + )\ B0 2y 4 ) log(n /) 0 B,

Hence, we have that

n 4/2
1 ,
E (n § (X, 0%)% (X, )2 —1>(Xju)2>

i=1

<91/2 (IE [(Xje*)zp()(fay(p/—l)(X;u)2})q/z

o2 q/27]

+ 2R — B [(X7 07 (x]0)20 ) (X wy?]

Zn:(XTQ* 2(x]T9)2 _1)(XiTu)2)

<(4(p+p')FHe)e

+2q/2/0019>l
0

<(4(p+ )PP 4 29 29(p 4 p 4 1)

’ q/2
. ' M) 108 4/6 (2(p + p') log(n/8))Ptr'+1) o
/05<(8(p+p” \ﬁ+ 0 dlog(n/9)

<(4(p -+ p) 01 4 C'(p + p)q ((32(p + ) 920940 (g /4)

+(8(p -+ p)) @200 ((10g ) P42 L D((p + ' +1)q/2) ) )

n ’ /2 ’ 1
S (KT (T () B [ 67 (0] 020 D (X w)?
i=1 -

> )\1 d\9/?

where C” is a universal constant and T'(+) is the Gamma function. Notice that

|

( ZXTH* (X, 0rX u— [(XTe*)p(XTe)XTu]>
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|

<E[RI(S")]
< 3E[RWN(37))]

<3IpINBTP)| sup

fesd—1p! Elp

Zsl X, 007X 0 ' X u

< 39p(3rth)? (C;Lq> <(16p)2pq +2C"pq (64p)"" n =T (q/4)

+(16p) D202 (log m) 7+ D92 4 T((2p 4+ 1)q/2)) )

"

(i SO (KT O (KT 0P X~ B(X 6P (XTO)X Tu])

for any u € U. Eventually, with union bound, we obtain

<E

<,1l i(XiTG*)”(XN)”Xi - E[(XTH*)”(XTQ)X]>
i=1

"

1
q /q

q} 1/q

where C), is a universal constant that only depends on p. Take ¢ = d(p + 3) + log(1/d) and use the Markov
inequality, we get the following bound on the second term T, with probability 1 — §:

Ty < es(r + e*||)P—1< %g(l/@ + % (d+ log (g)) +) (42)

Combining the bounds from equations (40), (42), and (41), as long as n > C;(dlog(d/8))? we have

§2EZ

u€e U]

(i io{; 0 )P (X 0)P X u—E[(XT0)P(X TH)XTU])

<217 sup E
uw€e[U]

(ii X 0P (X, 0Px u— [(XTQ*)p(XTQ)XTu]>

<6-(17- 3p+1)d/q

)

3/4
% + (C’pq> + %(logn + q)(2p+1)/2
n n n

d+log(1/6
sup  [VLa(0) — VL@O)| < Colr + [07]))2—) 41080/
0€B(0*,r) n

where C1, Cy are some universal constants. Since ||6*|| is bounded away from 0, the above bound concludes our
claim in equation (12).
D.1.2 Low signal-to-noise regime

Now, we prove the generalized Lojasiewicz property (16) of the population loss £ for the low signal-to-noise
regime. Recall that, we assume 6* = 0. Now, we will demonstrate that for all § € B(8*, p) for some p > 0, we
have

IVL@O)| > ca(L(B) — L(67))' 2
For the form of £(6), we have that
VL(9) = 2p(2p — 1)1Y(0 — 6%)]|6 — 67[|*P~2,
IVLO)|| = 2p(2p — 1))|6 — 67>~

Also, due to equation (13) we obtain that

(L(6) — £(67))' "% = ((2p - 1)1@9 _ 9*”2,,> Y
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9 — I\ "%
— (( p2 ) ) ”9_9*“21)—1.

2p(2p—1)!!

Thus, the Assumption (W.2) follows by selecting the constant co < W
P; i 2p

Next, with direct computation, we have
VEL(O) = (2p(2p = 0 — 0* P71 (10 — 0°|°1 + (2p — 4)(0 — 0")(0 - 6) ).
Notice that, (§—6*)(0—6*)T is a rank-1 matrix, so the maximum eigenvalue of ||§—6*||?1+(2p—4)(0—6*)(0—6*) T

is (2p — 3)||60 — 0*||?, hence Amax(V2L(0)) = 2p(2p — 3)(2p — VN||@ — 6%||*’~2, which confirms our claim of
Assumption (W.1).

D.2 Over-specified mixture model

We first present a proof of claim (23) about the generalized PL property of the population log-likelihood func-
tion £ of low-signal-to-noise symmetric two-component Gaussian mixture model in Appendix D.2.1. Then, in
Appendix D.2.2; we present a proof of claim (22) about the local smoothness of L.

D.2.1 Proof of claim (23)
Recall that #* = 0 and the population log-likelihood function is given by:

L£(0) = -Ex {log <;¢(X0,02Id) + %¢(X| - 0,02Id))} ,

where the outer expectation is taken with respect to X ~ N(6*,1;). Using Z to absorb the constant that is
independent of 6, we have

- 6] X7 X7
L(0) :HQ%—]EX [log (exp (— =3 )—i—exp( 2 ))} + Z.

It indicates that

210 0= o (s (20) 4o (K20 42

To simplify the calculation, we perform a change of coordinates via an orthogonal matrix R such that R = ||0||e;
where e; denotes the first canonical basis in dimension d. By denoting V' = RX /o, we have V = (V,..., V) ~
N(0,1;). Therefore, we can rewrite the above equation as follows:

200 - 207 = 21—, g (o (2220 e (9]

where the outer expectation is taken with respect to V3 ~ N(0,1). By using the basic inequality exp(—z) +
exp(z) > 2+ 2?2 for all x € R, we find that

5 A+ 6] Al
— < 70 —1 070
L(0) — L(6) 957 Ey, (log |1+ 557 ,

Applying further the inequality log(1 + z) > = — % for all x > 0, we have

- m ey~ SllON*
— < .
L0) - L£(0) <~

Now, we proceed to lower bound [|[VL(6)]||. Direct calculation leads to

VL(O) = L (9 - Ex (Xtanh()f:f))) .

o2
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Direct application of the triangle inequality with |.|| norm indicates that

X7
o? ) '
Using the similar change of coordinates as we did earlier, we obtain that

) H = oEy, (V1 tanh(V19”)> ,
g

where the outer expectation is taken with respect to V3 ~ A(0,1). An application of the inequality z tanh(z) <
$2—%4+%forallxeﬂ¥leadsto

2 2 2 4 4 2 6 6
o (iU < 2, (VEIOE_ VEIOI" , 2vElOly
g

- 1
1920 > 25 (161 - [Ex ( tann(

XTo
0-2

[ (o

= e o2 304 1506
lel® -, 2(el®
=|0|| — —- .
joy - 1 219
As long as [|0] < ., we have 2|0||°/o* < [|0]|*/(20%). Putting the above inequalities together, we find that
- 19]1°
vz > W (a)

when ||§]| < . Combining the results of equations (43) and (44), we obtain

IVLO)] > e2 (L) — £(6%))*

when ||| < § where c; is some universal constant. Therefore, we obtain the conclusion of claim (23).

D.2.2 Proof of claim (22)

Direct calculation shows that
- 1 1 X7
VEL(O) = = (Id - —Ex (XXTsech2 (2)» ,
o o o

where sech?(z) = m for all x € R. Via an application of the change of coordinates that we used
earlier, we can write the above equation as:

V2L(0) = iz (Id ~Ey (VVTsech2 (‘/1'9”») ,
g g

where the outer expectation is taken with respect to V. = (V1,Vs,...,Vy) ~ N(0,I;). The matrix A =
Ey (VVTsech2 (%)) is a diagonal matrix that A;; = Ey, [stech2 (%)} and V;; = Ey, {sech2 (%)}
for all 2 <17 <d.

An application of the inequality sech?(z) > 1 — 2?2 for all z € R leads to

|l 30101
2 I _
AnZEvl[‘ﬁ (102 —1*77

vEle)? 19112
AiiZEvl[lag :1*?a
for all ¢ # 1. These results indicate that
- 3[10)|?
Amax(V22(6)) < 217

a

As a consequence, we obtain the conclusion of claim (22).
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D.3 Mixed linear regression model

We first present a proof of claim (30) about the generalized PL property of the population log-likelihood function
L of low-signal-to-noise symmetric two-component Gaussian mixed linear regression in Appendix D.3.1. Then,
in Appendix D.3.2, we present a proof of claim (29) about the local smoothness of L. The proof ideas of these
claims are similar to those in the mixture model case. Here, we provide the proofs for the completeness.

D.3.1 Proof of claim (30)

When 6* = 0, we have that Y ~ N(0,02). Furthermore, the population log-likelihood function L admits the
following form:

5 1
L(0)=-Exy [1og (2 (VX T"0,0%) + 5oV - XT9,0'2)>:| :
Using Z to absorb the constant that is independent of 6, when X ~ N(0,1;) and Y|X ~ N (Y0,02) we have
. Il Yo' X -YoTX
L) = 191 —Ex,y |log ( exp +exp | —— + Z.
202 o2 o2
Similar to the proof of claim (23), to bound the expectation in the above equation we can perform a change of

coordinates using an orthonormal matrix R such that R0 = [|0][e;. Let V = RX, then V = (V1,Va,...,Vy) ~
N (0, I4). Moreover, since £(6*) does not depend on 6, we can write:

20 20 = 1~ o (o (V225 o (225 )] 12

0] Y0V, =Y'||0||V1
5t o (25 o () )

Using the standard inequality exp(—z) + exp(x) > 2 + 22 for all # € R we find that

L(0) — L(*) < o1 —Ey, v {bg(uyznezvz)]

202 204
From here, the inequality log(1 + z) >z — %- ® for all z > 0 leads to
5 ; H(9||2 v2olPve Y e|tvy
o) _
[:( ) E( )— 2% o0 9 1, 204 80‘8
_ e Ey[Y2I0)Ev, VY] n Ey [Y][10[1*Ev; [V3']
202 204 808
9
= —lal (45)

Now, we establish an lower bound for |[V£(6)|. Indeed, direct calculation shows that

VL) = 01 (9 EXY[YXtanh( ZTX)})

Therefore, we find that |[VL(0)| > % <|0|| - H]EKY [YX tanh( Y4 X)} H) Using the earlier change of coordi-

nates, we have

QTX

HEX?Y |:YX tanh(

H‘ Ev v [YVt (ygmn)}

As we have the inequality = tanh(z) < 22 — ’”—34 + % for all z € R, we obtain

Y Y2V210112  YAVEAOIt  2Y°vE|6)°

ot 308 15012
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3 30, 3
<1161l = SS181° + 5161 < 161l - 55161,

o _

as long as |0 < 55 Putting the above results together, we find that

. 3
OIEET (46)

A combination of the results from equation (45) and (46) indicate that

V2@ > e (£6) - £6))

for all ||0]] < &5 Where c3 is some universal constant. As a consequence, we obtain the conclusion of claim (30).

D.3.2 Proof of claim (29)
Similar to the proof of claim (22), we have

. 1 1 YOTX
V2L(9) = 3 (Id - —Bxy {WXXTsech?( — )D

1 1 Y416
== ([d — SEyy [YQVVTsech?(VlQ|| I )D ,
g g o

where the second equality is from the change of coordinates R = VX and R is an orthogonal matrix such that
RO = ||0||e1. Here, the outer expectation is taken with respect to Y ~ N(0,02) and V = (Vi, ..., Vy) ~ N(0, I,).
The matrix B = %Eyy [YQVVTsechQ(%)} is a diagonal matrix such that By; =
Ey v, [szlzseChQ(%)] and By = Ey v, [stechz(%)} for all i # 1. Using the standard inequality

sech? (x) > 1 — 2?2 for all x € R yields

Y4V30]2
By > Eyyy [Y2V12 - ;4” “ ] =o” —9]|0]”,
Y4V2|0]2
B 2 By, |12 = U] o2 gpope

for all ¢ # 1. Collecting the above results, we obtain
~ 9
)\max(v2£(0)) S ;”0“2
Hence, we obtain the conclusion of claim (29).
E AUXILIARY RESULTS

Lemma 3. If Assumption (W.2) holds, then for all 0 € B(0*, p), we have that

a+2
C2

10 =071l < —=(f(0) = F(67) ==

Furthermore, we have

a+1
C2 «
> — .
VO > 2 (72500 - 0°1)

Proof. The proof idea originates from the proof of Theorem 27 in [Bolte et al., 2017]. We start from the gradient
flow:

()

)]
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By the convexity, we have that

WO o (o0 - 07, T ) = 20000 - 0" T 0100} < 0

which means if 0(0) € B(6*, p), 0(t) € B(0*, p),Vt > 0. Meanwhile, 8(t) — 0* when ¢ — co. We then conclude
the proof by

(F60) = £67)7 = [ ario) = 50

1
f(o )=
o A e M CONEE

> [T 2 vl

0
| i H 3 &

Co
= (0) —07|.

The second argument can be directly obtained via Assumption (W.2), which concludes our proof. O

Lemma 4. Under Assumptions (W.1) and (W.2), there exists a universal constant cq > 0 depending on the
constants of these assumptions such that

€o

t _p* v
||0GD 0 H S (T]t)l/o"

where = — are the fized-step size gradient descent iterates for minimizing the population loss
here 035 = 0L, —nV £(0% the fized-step si dient descent iterat inimizing th lation 1
function f. Furthermore, this bound is tight, means there are population loss functions [ satisfying Assump-
tions (W.1) and (W.2) and

05p — 0% >
|| GD H (T]t)l/a

Proof. Our proof idea originates from [Mei et al., 2021] and we include it for completeness. We start from the
following lemma.

Lemma 5 (Lemma 3.5 in [Bubeck, 2015]). If f is -smooth, then ¥6,,0y € R?, we have that
f(01) = f(62) < (V[f(61),01 — 02) — *llVf(el) V(6:2)]%.
Corollary 4. If f is S-smooth, then V01,60, € R?, we have that

%nwwl) SV < (V) - VF(0)a — ).

Notice that, if 61,6, € B(6*,7), then ||V f(61) — Vf(02)| < c17¥||01 — 2], which means f is ¢;r®-smooth in
B(6*, 7). We assume the step-size satisfies 0 < n < QQ, and define the ”effective step-size” + := n(2—c1r%n) > 0
where 3 > ¢;r®. If 05 € B(6*,7), we have that

[0+ — 0717 — [|0" — (1" =n*|[ V£ (0")|I* — 20(V f(6"), 0" — 67)

< (VIO - ) <0

where the last inequality is due to Corollary 4. Hence, Gng € B(6*,r). Furthermore, from the generalized
smoothness property of the function f in Assumption (W.1) we have

FOU) — 78 STFO) O — ) + S0 - g
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— 1 2
=~ 35IV5@)]

2
C
< _ 2

<= 20 - F67) = <o,

Lemma 6. Given o > 0, Vz € [0, 1],

é(l —z%) > z%(1 —x).

Proof. Consider the mapping g :  — L (z® — 1) — (1 — z).. We can see g(0) = 2 and g(1) = 0. Moreover,

Vy(x) = —(a+1)(@*"" —2%) <0,
which concludes the proof. O

Define §(6%) := f(6') — f(6*), we have that

t—1

1 1
=— + = —
=E Z (5(98)02 5(0++1)7E )
s a+2 95“ atz

—— = T at? =

=St (-G )

1
)
1
)
1 t—1 ﬁ 95+1 5 gs+1
Z&(el)a“z +Z§(99+J;)”+2 ( 6(0¢ ))> ( 5(98)))
1
)
1
)

t—1 a

Y 22 (5(6°) — 5 (6T

;5(95)%m (5(6°) — 6(0°+))
t—1 a 2

4+ at2 . 072 5015 27%+2
s T s s 2500

:%JFZ <a+2)

o(0%)=+2
2 «@
| (m)
- o + * tfl
o(0%)=+2 2p8 ( )
We can conclude that
_at2
2 « @
. 1 2\ arz _axz
F(O) = 1(07) < + ( )-<t—1> <Cn- )=,

(F(6Y) — f(o7))=+ 28

where C is some universal constant. Combined Lemma 3 with the upper bound of f(6') — f(6*), we obtain that
0t — 6% < co(n-t)~*/* where ¢ is some universal constant. As a consequence, we reach the upper bound stated
in Lemma 4.

For the tightness, consider the function f: R — R, f(0) = @i; , which satisfies Assumptions (W.1) and (W.2).

Consider the continuous limit of the fixed-step size gradient descent (i.e., the limit n — 0) starting from 6° = 1,
which corresponds to the following ODE:

g
dt
The solution of the ODE can be written as:

—|6]*“*, 6(0) = 1.

O(t) = (t+ 1)1,

Notice that the ¢ in the solution of ODE is equivalent to nt in the gradient descent dynamics, which concludes
the proof. O
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F BEYOND HOMOGENEOUS ASSUMPTIONS

In this Appendix, we provide a brief discussion on the behaviors of the Polyak step size gradient descent iterates
when the constants in Assumptions (W.1) and (W.2) are different. In particular, we consider the following
two-dimensional population loss function f(6) = 0% + 63 for all § = (61,602) € R%. Under this case, the optima is
(0,0), and the updates of the Polyak step size gradient descent algorithm are given by:

g _ g P01 (61)° + 01(85) (8(0)° — 1)
P 20002 +8(05)° 2(01)* + 8(65)° ’
(0 )2 3

Consider the local convergence in B(0, p) for some sufficiently small radius p, such that (64)? < 1/8, which
corresponds to the approximate update:

8t+1 ~ 91‘, . (9§)2 B (05)4

! b2(61)% +8(65)°
9t+1 ~ 9t . (91{)2 +3(0§)6

R G

For 6, the update is only stable when 6% > C(6%)? where C is some universal constant. However, in this regime,
0> can converge slowly, as

G0 1-0((05)?) =1 (as 65 —0).

(61) + 3(65)°
t £
1 2
On the other hand, if we want 6, to converge linearly, we need 8% = O((6%)?). In this regime, the update of 6,
can be unstable, as

(61) = (65)" ty-2
20017+ siogye = %)

where C is some constant. Hence, it’s pretty hard to characterize the behaviour of Polyak step-size gradient
descent iterates when the constants in Assumption (W.1) and (W.2) are different. We leave the understanding
of this case as an interesting future direction.

G EXPERIMENTS

In this section, we illustrate the behaviors of Polyak step size gradient descent iterates for three statistical
examples in Section 3. In Section G.1, we compare the behaviors of population Polyak step size gradient descent
iterates and population fixed-step size gradient descent iterates for solving the population loss functions of the
given statistical models. In Section G.2, we compare the sample iterates from both (adaptive) Polyak step size
and fixed-step size methods.

G.1 Population loss function

We first use Polyak step size and fixed-step size gradient descent algorithms to find the minima of the population
losses of three examples in Section 3. We consider these examples in d = 2 dimensions. For the strong signal-
to-noise regime, we choose 6* = (2,1). We compare the convergence rates of Polyak step size and fixed-step
size iterates to the optimal solution #* of the population losses in Figure 1. In this figure, GLM, GMM, MLR
respectively stand for generalized linear model, Gaussian mixture model, and mixed linear regression. All the
plots in this figure are log-log scale plots. From this figure, the Polyak step size GD iterates converge linearly
to 6* while the fixed-step size gradient descent iterates converge to sub-linearly to 8*. These experiment results
are consistent with our theories in Section 3.



Tongzheng Ren, Fuheng Cui, Alexia Atsidakou, Sujay Sanghavi, Nhat Ho

Generalized Linear Model with theta*=(0,0) Mixture Model with theta*=(0,0) Mixed Linear Regression with theta*=(0,0)
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Figure 1: The convergence rates of Polyak step size and fixed-step size gradient descent iterates for solving the
population losses of generalized linear model, Gaussian mixture model, and mixed linear regression model in
Section 3. The first row corresponds to the low signal-to-noise regime 6* = (0,0) while the second row is for the
strong signal-to-noise regime 6* = (2, 1).

G.2 Sample loss function

Now, we carry out the experiments to compare the behaviors of Polyak step size and fixed-step size gradient
descent iterates for solving the sample loss functions in three examples in Section 3. In these examples, since we
only observe the data, we do not have access to the optimal value of the sample loss functions. Therefore, we
instead use the adaptive Polyak step size gradient descent in Algorithm 1 for these examples. The strategy for
choosing the lower bound of the optimal value of the sample loss functions in that algorithm will be described in
details in each example. In our experiments, the sample size n is chosen to be in the set {1000, 2000, - - - , 100000}.

Generalized linear model: We first consider the generalized linear model in Section 3.1. We specifically
choose the link functions g(r) = r? | i.e., p = 2. The data (Y1, X1), ..., (Y,, X,,) satisfy

Y= (X707 +e

where X1,..., X, S (0,15) and €1, ..., e, i (0,0.01). We choose 6* = (0,0) for the low signal-to-noise
regime and 6* = (0.5,1) for the strong signal-to-noise regime in our experiments.

Since we do not have access to cn(én) where én is the optimal solution of the sample loss function £, in
equation (8), we will consider its approximated value according to the adaptive Polyak step size gradient descent
algorithm. By concentration inequality with the chi-squared random variables, the concentration of £, (6,,) is
at the order of O(ﬁ) with high probability. Therefore, we use ﬁ to approximate L, (6,), where ¢ here is a
parameter to choose in the our experiment.

The updates from the adaptive Polyak step size gradient descent based on that approximation are given by:

En(ﬁt) - <
t+1 _ pt n Vvn t
O TN (A TER

When implementing the adaptive Polyak step size gradient descent algorithm, we use binary search to update
the value of ¢ periodically. In particular, when the algorithm is stuck at some point, we decrease ¢; when it
become very unstable, we increase c. For the fixed-step size gradient descent algorithm, we choose the step size
to be 0.01.
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Generalized Linear Model with theta*=(0,0) Generalized Linear Model with theta*=(0,0)
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Figure 2: The convergence rates of adaptive Polyak step size gradient descent and fixed-step size gradient descent
iterates for solving the sample loss function of the generalized linear model when the link function g(r) = r?. The
first row corresponds to the low signal-to-noise regime 6* = (0, 0) while the second row is for the strong signal-to-
noise regime 0* = (0.5,1). For the left images, we use log-log plots to illustrate the iteration complexities of these
algorithms to reach the final estimate. For the right images, log-log plots for the final statistical radius versus the
sample size are presented. For the low signal-to-noise regime, both the adaptive Polyak step size and fixed-step
size gradient descent iterates reach the statistical radius n~'/4. The adaptive Polyak step size method takes
much fewer number of iterations to reach the final statistical radius than the fixed-step size method, namely,
from log(n) number of iterations of adaptive Polyak step size method to to v/n number of iterations of fixed-step
size method. For the strong signal-to-noise regime, both adaptive Polyak and fixed-step size methods only take
logarithmic number of iterations to reach the statistical radius n=1/2.

The experiment results are shown in Figure 2. For the left images in that figure, we use log-log plot to illustrate
the iteration complexity of the adaptive Polyak step size and fixed-step size gradient descent algorithms versus
the sample size under the low signal-to-noise setting 8* = (0,0) (first row) and the strong signal-to-noise setting
6* = (0.5,1) (second row). When 6* = (0,0), we observe that the number of iterations for the fixed-step size
gradient descent algorithm to reach the final statistical radius is at the order close to /n while the iteration
complexity for the adaptive Polyak step size gradient descent algorithm is roughly log(n). On the other hand,
when 6* = (0.5,1), both the iteration complexities of these algorithms scale like log(n). For the right images in
Figure 2, we plot the final statistical radii of the adaptive Polyak and fixed-step size gradient descent iterates
versus the sample size under different settings of #*. As being indicated in these images, the radius scales like
n~% when 6* = (0,0) while it is roughly n~'/? when 6* = (0.5,1). These results, along with our comments about
the adaptive Polyak step size gradient descent algorithm after Theorem 1, confirm our theories in Section 3.1.
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Figure 3: Tllustrations for the convergence rates of adaptive Polyak step size and the EM algorithm (equivalently
gradient descent algorithm with step size 1) for solving the sample log-likelihood function of the symmetric
two-component Gaussian mixtures. The first row corresponds to the low signal-to-noise regime 6* = (0, 0) while
the second row is for the strong signal-to-noise regime 6* = (6,6). The structures of the images are similar to
those in Figure 2. The images in the first row for low signal-to-noise regime show that the adaptive Polyak step
size iterates only need roughly log(n) number of iterations in comparison to y/n number of iterations of the EM
algorithm to reach the final statistical radius n~'/%. The images in the second row for strong signal-to-noise
regime show that these optimization methods have similar sample and iteration complexities.

Mixture model: We now move to the symmetric two-component Gaussian mixture model considered in Sec-
tion A.1. We set dimension d = 2, the variance ¢ = 1,6* = (0,0) for the low signal-to-noise regime and
0* = (6,6) for the strong signal-to-noise regime. To obtain an estimation of #*, we maximize the log-likelihood
in equation (18). We use £ to approximate the optimal value of sample log-likelihood function L,, where c is
some universal constant. We also use binary search to adaptively update the value of the constant ¢ when we run
the adaptive Polyak step size algorithm. We compare the performance of that algorithm to the EM algorithm
(equivalently gradient descent algorithm with step size 1) in Figure 3. When 6* = (0,0), the images in the first
row of Figure 3 show that the adaptive Polyak step size iterates only need roughly log(n) number of iterations
in comparison to v/n number of iterations of the EM algorithm to reach the final statistical radius n~*/4. When
0* = (6,6), the images in the second row for strong signal-to-noise regime show that these optimization methods
have similar sample complexities n~/2 and iteration complexities log(n). These experiment results prove that
the adaptive Polyak step size gradient descent algorithm is computationally more efficient than the EM algorithm
to reach the final estimate for the low signal-to-noise regime, which confirms out theories in Section A.1.

Mixed linear regression: Finally, we consider the two-component mixed linear regression example in Sec-
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Figure 4: Plots characterizing the convergence rates of adaptive Polyak step size and EM algorithm (equivalently
gradient descent algorithm with step size 1) for solving the sample log-likelihood function of the symmetric two-
component mixed linear regression model. The first row corresponds to the low signal-to-noise regime 6* = (0,0)
while the second row is for the strong signal-to-noise regime 0* = (4,3). From the images in the first row for
low signal-to-noise regime, the iteration complexity of the adaptive Polyak step size method is roughly log(n)
while that of the EM algorithm scales like y/n to reach the final statistical radius n~1/4. From the images in the
second row for strong signal-to-noise regime, both these optimization algorithms have sample complexity n~—!/2
and iteration complexity log(n).

tion A.2. We consider 8* = (0, 0) for the low signal-to-noise regime and 6* = (4, 3) for the strong signal-to-noise
regime. We choose the variance o = 1 in model (25). Our goal is to maximize the log-likelihood in equation (27).
Similar to the two-component Gaussian mixture model, we use use = to approximate the optimal value of ENn in
the adaptive Polyak step size gradient descent method where ¢ is adaptively updated via the binary search. We
compare the adaptive Polyak step size algorithm to the EM algorithm (equivalently gradient descent algorithm
with step size 1) in Figure 4. When 6* = (4, 3), both optimization algorithms reach the final statistical radius
n~1/? around #* after log(n) number of iterations. When #* = (0,0), the adaptive Polyak step size iterates reach
the statistical radius n=1/* after log(n) number of iterations while the EM algorithm needs roughly /n number

of iterations to reach the same radius. These observations are consistent with our theories in Section A.2.
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