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Abstract

We generalize the continuous observation pri-
vacy setting from Dwork et al. (2010a) and
Chan et al. (2011) by allowing each event in
a stream to be a subset of some (possibly un-
known) universe of items. We design differen-
tially private (DP) algorithms for histograms
in several settings, including top-k selection,
with privacy loss that scales with polylog(T ),
where T is the maximum length of the input
stream. We present a meta-algorithm that
can use existing one-shot top-k private algo-
rithms as a subroutine to continuously release
DP histograms from a stream. Further, we
present more practical DP algorithms for two
settings: 1) continuously releasing the top-k
counts from a histogram over a known do-
main when an event can consist of an arbi-
trary number of items, and 2) continuously
releasing histograms over an unknown do-
main when an event has few items.

1 INTRODUCTION

Providing real-time statistics on streaming data is a
common task in data analytics. For example, one may
want to provide a running count on the number of peo-
ple that have purchased a particular drug at a phar-
macy. This data can be very useful for tracking and
identifying local epidemics in a given region. How-
ever, this particular data is very sensitive so privacy
techniques should be applied to protect those who are
purchasing medications. Differential privacy (DP) has
emerged as the go to method in industry to provide
privacy for aggregate results. In this work, we study
the problem of continually releasing aggregate counts
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over a stream of incoming data subject to DP.

Let U be a set of items and ω1:T = ω1, · · · , ωT be a
stream of T events, e.g. pharmacy purchases, where
ωt ⊆ U .1 Our goal is to release, at every time t, the
counts of all items in the substream ω1:t, or the most
frequent counts, subject to DP. This setting is referred
to as the continual observation model of DP and orig-
inated in works from Dwork et al. (2010a) and Chan
et al. (2011) where it is traditionally assumed that U
is known and |ωt| ≤ 1. In this paper we study settings
where U is either known (Known Domain) or unknown
(Unknown Domain), and where a bound ∆0 on |ωt| is
known (Restricted `0-sensitivity) or where it can be as
large as |U| (Unrestricted `0-sensitivity). In the unre-
stricted `0-sensitivity setting, we only want to return
the top-k counts, rather than the full set of counts
and have privacy loss increase with k or

√
k, rather

than with d := |U|. Simply applying restricted `0-
sensitivity algorithms in the unrestricted `0-sensitivity
setting would require setting ∆0 = d, so that privacy
loss increases with d or

√
d.

The guarantee of a DP algorithm is that the output
distributions for two similar input streams will be sim-
ilar. As is common in the continual observation DP
literature, we do not restrict the number of events ωt
that a user can impact, thus we provide event level
privacy guarantees, as opposed to user level privacy,
which would bound the number of events any user can
contribute. In any of the settings we consider, we could
apply the corresponding one-shot DP algorithms pre-
sented in Table 1 on the data available at time t. How-
ever, releasing a total of T answers would cause the
total privacy loss to scale as O(

√
T ) (using advanced

composition privacy loss bounds). The goal of this
work is to design algorithms for all settings in Table 1
and have the total privacy loss scale as O(polylog(T )),
or equivalently have the noise that we include for DP

1Our setting easily extends to each event consisting of
items in U and counts of each item from that event. We
can accommodate for this more general setting by scaling
the noise by the maximum amount any item can change in
an event, i.e. the `∞-sensitivity
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scale with O(polylog(T )) for a constant privacy loss.

One-shot
Restricted
`0-sensitivity

Unrestricted
`0-sensitivity

Known
Domain KnownGauss KnownGumb

Unknown
Domain

LimitDomLap /

UnkGauss (this work) UnkGumb

Table 1: DP algorithms for data analytics tasks in the
one-shot analytics setting from prior work Dwork et al.
(2006a), McSherry and Talwar (2007), and Durfee and
Rogers (2019).

Continual
Obs.

Restricted
`0-sensitivity

Unrestricted
`0-sensitivity

Known
Domain

Binary Mechanism
(Chan et al., 2011)

SparseGumb

(this work)

Unknown
Domain

UnkBase
(this work)

MetaAlgo

(this work)

Table 2: Our contributions: DP algorithms for data
analytics tasks in the continual observation setting.

Existing DP algorithms for the continual observa-
tion setting include the celebrated Binary Mechanism
(Chan et al., 2011), which can be applied to the known
domain and restricted `0-sensitivity setting. To our
knowledge, we are the first to consider continually re-
leasing the item with the maximum count and its count
at each round subject to DP, despite the one-shot DP
algorithm being the classical Exponential Mechanism
(McSherry and Talwar, 2007). Other works have con-
sidered the problem of continually returning the top-
k (Chan et al., 2011) and heavy hitters in a stream
(Chan et al., 2012), (Mir et al., 2011). The main dif-
ference in our setting is that a single event consists of
multiple distinct items, while earlier works have events
with at most one item or a user can modify at most
one item at each event, which falls under the restricted
`0-sensitivity with known domain setting. Our set-
ting provides stronger levels of privacy because a sin-
gle event in a stream can affect the count of multiple
items at once. In the pharmacy example, an event
would be a purchase occurring and the items would
be the drugs that were purchased, which need not be
a single drug. Note that Mir et al. (2011) considers
a related but more restrictive privacy model, referred
to as pan-privacy from Dwork et al. (2010b), that in-
cludes security considerations so that privacy is pre-
served even if an adversary can access internal states
of the algorithm.

We point out that Dwork et al. (2010a) provides a gen-

eral transformation from one-shot algorithms to those
with privacy guarantees under continual observation.
However, this general transformation requires the one-
shot algorithm to return a scalar, which is then com-
pared with the algorithm’s outcomes at later rounds
and only displays the new outcome if it is significantly
different than the previous result, otherwise it will
show the old result. Our one-shot algorithms return
a histogram of counts with labels that can differ in
each round, so it is not clear what scalar function to
assign to determine when a new outcome should be
used, rather than displaying an older result. We will
use a similar idea to this general transformation in
Section 5 when continually returning the top-k from
a stream of events and only updating results if there
is a count that should be in the top-k but is not at
a current round. Our approach allows for the privacy
loss to increase with the number of times the top-k
should be updated, rather than when the counts from
the previous round’s top-k need to be updated due to
counts increasing but the top-k remaining unchanged
as would be the case by using the approach in Dwork
et al. (2010a) without returning item labels.

We also design algorithms that can be used in scalable
and distributed real-time analytics platforms where
low latency is crucial, so retrieving and passing the
algorithm a substream ω1:t at each time step t is not
feasible. Instead, algorithms in this setting only have
access to the histogram at time t. An example of such
a privacy platform in production is described in detail
in Rogers et al. (2020). The Binary Mechanism can be
implemented in this setting, since we only need access
to the true counts over all items at each round t, rather
than the full sequence of events, as long as the algo-
rithm knows the length of the stream t and the noise
it has used in previous rounds, which can be repli-
cated via using the same seed. For the unrestricted
`0-sensitivity with known domain setting, we design
an algorithm that combines the Binary Mechanism,
the Exponential Mechanism, and the Sparse Vector
technique from Dwork et al. (2009) to continually re-
lease the top-k. We also show that the more practi-
cal version can closely match the error from the less
practical version with access to the full event stream
(see supplementary file). In the case when each event
consists of at most ∆0 items from an unknown set
(restricted `0-sensitivity with unknown domain), we
develop an algorithm that can be viewed as a combi-
nation of UnkGauss (a variant of LimitDomLap (Durfee
and Rogers, 2019) with an improved privacy guaran-
tee) for one-shot analytics and the Binary Mechanism
(Chan et al., 2011).

We now summarize our contributions, also shown in
Table 2. First, we develop a general way to ap-
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ply existing one shot DP top-k algorithms for the
continual observation setting. Second, we design
more practical continual observation DP algorithms
for the restricted `0-sensitivity with unknown domain
(UnkBase) and for the unrestricted `0-sensitivity with
known domain (SparseGumb). Third, we present a
unified argument for the privacy analyses in both
UnkBase and UnkGauss that improves on prior anal-
ysis of LimitDomLap from Durfee and Rogers (2019),
which might be of independent interest.

2 PRELIMINARIES

Since we will provide event level privacy guarantees
we define neighboring histograms as follows. Two
streams ω1:T and ω′1:T are neighboring if for some
t ∈ [T ] := {1, · · · , T}, ωt 6= ω′t where ωt = ∅ or
ω′t = ∅ but ωt′ = ω′t′ for all t′ ∈ [T ] such that
t 6= t′. We will denote a histogram h = {(hu, u) :
u ∈ U , hu ∈ N} to include counts and labels in U .
Given stream ω1:t we define its histogram over U as

h(ω1:t;U) :=
{(
hut :=

∑t
`=1 1 {u ∈ ω`} , u

)
: u ∈ U

}
.

We will refer to ε as the privacy loss parameter in the
definition of DP.

Definition 2.1 (Dwork et al. (2006b), Dwork et al.
(2006a)). A randomized algorithm M : X → Y that
maps input set X to some arbitrary outcome set Y is
(ε, δ)-DP if for any neighboring datasets x, x′ and out-
come sets S ⊆ Y, Pr [M(x) ∈ S] ≤ eε Pr [M(x′) ∈ S]+
δ. When δ = 0, we typically say that M is ε-DP or
pure DP.

The analysis of our algorithms will typically use a vari-
ant of DP called zero-mean Concentrated DP (zCDP)
from Bun and Steinke (2016), which provides tighter
composition bounds than traditional DP analysis.

We will state our privacy guarantees in terms of zCDP
or DP. We can then convert zCDP to DP and back
with the following result.

Lemma 2.1. [Bun and Steinke (2016)] If M is (ε, δ)-
DP then it is δ-approximate ε2/2-zCDP. If M is δ-
approximate ρ-zCDP then M is also (ε(ρ, δ′), δ + δ′)-
DP where

ε(ρ, δ′) := ρ+ 2
√
ρ ln(1/δ′). (1)

3 BINARY MECHANISM:
RESTRICTED `0-SENSITIVITY
WITH KNOWN DOMAIN

The classical Binary Mechanism from Chan et al.
(2011) provides a running count from a bit stream σ1:T

where σt ∈ {0, 1}. The Binary Mechanism works by

maintaining a binary tree and adding the t-th event
from the stream into the t-th leaf. As this is done,
one has to make sure the sum at each node is equal
to the sum of its children. To compute the private
count at t it suffices to add the (noisy) sums cor-
responding to step t. We map the tree of partial
sums into a partial sum table p with entries pi,j for
i ∈ [log2(T )], j ∈ [T/2i−1]. The Binary Mechanism
has multiple applications, including private matchings
(Hsu et al., 2014), congestion games (Rogers and Roth,
2014), and private online learning (Guha Thakurta
and Smith, 2013), (Cardoso and Cummings, 2019).
The Binary Mechanism forms the basis for the new
algorithms we present in the following sections, so we
present it here.

Due to recent work comparing the overall privacy loss
for Laplace noise and Gaussian noise from Cesar and
Rogers (2020) and Canonne et al. (2020), we will use
Gaussian noise, rather than Laplace noise in the orig-
inal algorithm. Further, we note that there is nothing
special with using a binary representation, so we will
keep the base r arbitrary and optimize the base for the
lowest overall variance subject to a given privacy level.
Considering arbitrary bases for the Binary Mechanism
was also considered in Qardaji et al. (2013), although
they optimize for the mean squared error and we con-
sider the worst error on any count. To help ease nota-
tion, we write

Lr := blogr(T )c+ 1. (2)

Let sj(t; r) ∈ {0, 1, · · · r − 1} be the jth digit in
the representation of t with base r, i.e. t =∑blogr(t)c
j=0 sj(t; r)r

j . Keeping the base r arbitrary,
we now present the generalized version of the Bi-
nary Mechanism in Algorithm 1, which we refer to
as BaseMech.

We now state the privacy and utility guarantees of
BaseMech. Due to a lack of space, some algorithms
and all proofs can be found in the supplementary file.

Theorem 1. For any base r ∈ {2, · · · , T}, the
BaseMech(σ1:T ; τ, r) is 1

2τ2 -zCDP.

Proof. The proof follows the same argument as in
Chan et al. (2011). Rather than outputting the noisy
counts, we instead consider outputting the entire table
of partial counts p := {p(j, `)+Zj,` : j ∈ [Lr], ` ∈ [T ]},
where {Zj,`}

i.i.d.∼ N
(
0, Lrτ

2
)
. Let σ1:T and σ′1:T be two

neighboring streams with partial sum tables p = {pj,`}
and p′ = {p′j,`}, respectively. Due to the way we de-
fined neighbors, these two partial sum counts can differ
in at most Lr cells and can differ in each cell by at most
1. Hence, the `2-sensitivity of the partial sum table is
at most Lr, and by adding N

(
0, Lrτ

2
)

to each cell’s
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Algorithm 1 BaseMech; Return a running count

Input: Stream σ1:T = σ1, · · · , σT , where σt ∈
{0, 1}, noise level τ , and base r ∈ {2, · · · , T}.
Output: Noisy counts ŷ1:T = ŷ1, · · · , ŷT , ŷt ∈ R
for all t ∈ [T ]

Sample {Zi,j : i ∈ [Lr], and j ∈ [T ]} i.i.d.∼
N
(
0, Lrτ

2
)

for i ∈ [Lr] do . Populate the partial sum table
START = 1
for j ∈ [bT/ri−1c] do

END = START + ri−1 − 1
pi,j =

∑END
`=START σ`

START = END + 1.

for t = 1, · · · , T do

Let t =
∑blogr(t)c
j=0 sj(t; r)r

j , t′ = t, and ŷt = 0
while t′ > 0 do . fetch partial sums

i← min{j : sj(t
′; r) 6= 0}

ŷt ← ŷt +
∑t′/ri

`=t′/ri−sj(t;r)+1 (pi,` + Zi,`)

t′ ← t′ − si(t; r) · ri

Return ŷ1:T = ŷ1, · · · , ŷT .

true count ensures 1
2τ2 -zCDP (see Lemma 2.5 in Bun

and Steinke (2016)).

We now present the utility guarantee of the BaseMech

for any base r, which follows from tail bounds of Gaus-
sian random variables.

Theorem 2. For any r ∈ {2, · · · , T} and any time t ∈
[T ], the true count yt and ŷt from BaseMech(σ1:T ; τ, r)
satisfies the following for any η > 0

Pr[|ŷt − yt| ≥ η] ≤ Pr[|N
(
0, (r − 1)L2

rτ
2
)
| ≥ η]

≤ 2 exp

(
−η2

2(r − 1)L2
rτ

2

)
.

Proof. The first inequality in the lemma holds since in
the worst case, BaseMech(σ1:T ; τ, r) will add at most
(r − 1)Lr i.i.d samples from N

(
0, Lrτ

2
)
. The sec-

ond inequality holds since for any η > 0, we have

Pr[N
(
0, σ2

)
> η] ≤ exp

(
− η2

2σ2

)
.

Given T , base r can be selected in a way to minimize
the overall variance of any single count, i.e.

r∗ := argmin
r∈{2,··· ,T}

{
(r − 1)L2

r

}
. (3)

In Figure 1 we plot the resulting standard deviation of
noise with various bases r and compare it with what
we would get by using base r = 2 as in the original
Binary Mechanism. Note that it looks like we can
reduce noise by about 15% at the same level of privacy
and for most practical settings r∗ ∈ {3, · · · , 10}. Note
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Figure 1: Comparison of the scale of the noise required
in the classical Binary Mechanism and BaseMech with
various choices of base r.

that the optimal choice of r is pretty stable, so that
even if a gross upper bound T is used on the event
stream, the true optimal base will not change very
much. In our algorithms, we will keep the choice of
base r as arbitrary and remove its dependence in the
later algorithms since it will not impact the privacy
claims.

In the streaming setting, when it is known that a user
can only modify a limited number of counts at each
round t, i.e. |ωt| ≤ ∆0 and the domain U is known
in advance, we can simply apply a stream of counts
for each domain item. This setting was considered
in Chan et al. (2011), and we provide the mechanism
KnownBase in Algorithm 2.

Algorithm 2 KnownBase; Return a running his-
togram

Input: ω1:T , with ωt ⊆ U , r ∈ {2, · · · , T}, and τ .

Output: Noisy histograms ĥ1:T = ĥ1, · · · , ĥT .
for u ∈ U do

Define σut = 1 {u ∈ ωt} for all t ∈ [T ]

ĥu1:T = BaseMech(σu1:T ; τ, r)

Return ĥ1:T =
({

(ĥut , u) : u ∈ U
}

: t ∈ [T ]
)

.

We then have the following privacy guarantee, which
follows from the analysis in Chan et al. (2011) and
composition of zCDP mechanisms (Bun and Steinke,
2016).

Lemma 3.1. For streams ω1:T such that |ωt| ≤ ∆0

for each t ∈ [T ], KnownBase(·; τ) is ∆0

2τ2 -zCDP.

Proof. Let ω1:T and ω′1:T be two neighboring streams



Adrian Rivera Cardoso, Ryan Rogers

where there is a round t where ωt 6= ω′t where w.l.o.g.
|ωt| ≤ ∆0 and ω′t = ∅, while ωt′ = ω′t′ for all t′ 6= t.
Hence, there can be at most ∆0 many items u ∈ U such
that σu1:T 6= σ′u1:T , while all other streams are identical.
Hence, we need only consider the total privacy of ∆0

many instances of BaseMech, which is each 1
2τ2 -zCDP.

Applying composition of zCDP mechanisms gives the
result.

4 META ALGORITHM FOR
CONTINUAL OBSERVATION

In this section we propose a general scheme to re-
turn privatized histogram results in the various set-
tings given in Table 1 but in the continual observa-
tion setting. Before describing the general scheme
we briefly describe how the one-shot algorithms work.
The known domain algorithms can be summarized as
adding either Gaussian noise with standard deviation
τ , then returning the list of items and their counts or
adding Gumbel noise with scale τ/2 and taking the
top-k results then adding fresh Gaussian noise with
standard deviation τ to those discovered items’ counts.
Note that the Exponential Mechanism can be imple-
mented by adding Gumbel noise to counts and then re-
turning the element with the largest noisy count. Fur-
ther, the Exponential Mechanism with privacy param-
eter ε satisfies a property called bounded range (Durfee
and Rogers, 2019), which results in 1

8ε2 -zCDP (Cesar
and Rogers, 2020).

The unknown domain algorithms can be thought of as
the same as the known domain algorithms, except we
only have access to the top-(k̄ + 1) items for k̄ ≥ k
from the full histogram of size d and we include a
noisy threshold that will depend on the privacy pa-
rameters, so that only items above the noisy threshold
will be shown. For completeness we present the pseu-
docode and privacy guarantees for each of the vari-
ous algorithms in the supplementary file, except for
UnkGaussk̄, which we analyze in a later section.

The key observation is that we can generalize the par-
tial sum table from Section 3 to a partial histogram
table were each entry contains the histogram formed
by the corresponding substream from ω1:T . Depend-
ing on what setting from Table 1 we are in, we apply
the corresponding one-shot DP algorithm to each cell
j, ` for j ∈ [logr(T )], ` ∈ [T/rj−1] of the partial his-
togram table, and aggregate the corresponding noisy
histograms to provide a private result at time t. The
pseudocode of MetaAlgo is in the supplementary file.

We state the various privacy guarantees in terms of
the noise level τ and other parameters. The analysis
follows by zCDP composition over at most Lr cells that

can change in neighboring partial histogram tables.

Theorem 3. If we have `0-sensitivity ∆0 and
known domain, then MetaAlgo is ∆0

2τ2 -zCDP. If
we have unrestricted `0-sensitivity and known do-
main, then MetaAlgo is k

τ2 -zCDP. If we have `0-
sensitivity ∆0 and unknown domain, then MetaAlgo

is
(
ε( ∆0

2τ2 , δ
′),∆0δ + δ′

)
-DP for any δ′ > 0, where

ε(·, ·) is given in (1). If we have unrestricted `0-
sensitivity and unknown domain, then MetaAlgo is(
ε( kτ2 , δ

′), 2kδ + δ′
)
-DP for any δ′ > 0, where ε(·, ·)

is given in (1).

The main drawback with this meta-algorithm is that in
order to implement it at a time t, we will need to know
the full stream of events, so that we can apply each DP
algorithm on different subsequences, which then need
to be stored for later calculations. In the following
sections we explore settings where our algorithms only
have access to the aggregated histogram up to time t
at each round, rather than the full stream of events.

5 UNRESTRICTED
`0-SENSITIVITY, KNOWN
DOMAIN

We now consider the case where there is no limit to
how many items a user can contribute for a given event
in a stream, unlike in Section 3 where the bound was
∆0. To ensure there is some bound on privacy, we
only display the top-k results at round t, which are
computed based on all events that have occurred in
the stream up to that round. This is particularly useful
when no preprocessing of the data is in place to restrict
the number of items for each event, yet we still want to
ensure some bounded level of privacy, even for event
level. Otherwise, we would need to add noise that
scales with |U| = d due to users possibly contributing
an arbitrary number of items.

Our algorithm consists of multiple classical DP algo-
rithms, which makes the privacy analysis somewhat
standard. Consider the case when we want to return
the top-1 item at every round. Given a data gener-
ating distribution, one would expect that the top-1
item would not change very many times in a stream
of events. Hence, we introduce a parameter s, which
is the number of switches the algorithm is allowed to
have. A switch takes place when a new item has count
significantly larger than the currently selected one. We
will add noise in our algorithm that scales with s.

We now discuss the algorithm at a high level, and
present the full algorithm in the supplementary file.
At the first round, we will want to find the item with
the top count, which can be done with the Expo-
nential Mechanism (McSherry and Talwar, 2007), i.e.
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KnownGumb1 with only the items returned, not their
counts. Recall that we are in the known domain set-
ting, so we will have the same domain at each round,
which consists of d items. Finding this top item will
cost a single unit of privacy loss in our composition,
despite one user being able to have a set of items the
size of the full domain. Once we have the top selected
item, we can use the BaseMech algorithm to produce
a running count for this selected item. However, we
need to check the counts of other items at each round
to see if there is one with higher count. For this, we
will use the Sparse Vector technique from Dwork et al.
(2009) to continually check whether there is an item
with larger count than the currently selected item. We
will only switch the top item if there is another item
with count ηt ≥ 0 more that the currently selected
item’s count at round t. We can then set ηt for a given
utility level and it does not impact the privacy anal-
ysis, so we keep it arbitrary here. Once we find that
there is an item with larger count than the current
top item, we will then use the Exponential Mechanism
again to find a new top item, and continually return
counts for the new item using BaseMech. By the end
of the stream, we know that there can be at most s+1
many items with counts from BaseMech. It is then
easy to generalize this idea to allow for top-k results
at each round, rather than top-1. We call this gen-
eralization SparseGumbs,k(ω1:T ; {ηt}, τ) and it has the
following privacy guarantee.

Theorem 4. For any {ηt}Tt=1 with ηt ≥ 0 for all t ∈
[T ], SparseGumbs,k(·; {ηt}, τ) is k+2

τ2 -zCDP.

In the supplementary file we evaluate via simple ex-
periments the utility of SparseGumbs,k(·; {ηt}, τ). As
can be expected, given a fixed privacy budget, it does
not beat MetaAlgo in the same setting. However, with
the right parameters it can get close to MetaAlgo, with
the advantage of just requiring the histogram at round
t instead of the full stream of events which is obviously
beneficial in the real-time analytics setting described
in the introduction, since we do not need to apply var-
ious DP algorithms to different substreams.

6 REVISITING ONE SHOT
RESTRICTED `0-SENSITIVITY
AND UNKNOWN DOMAIN

In this section we present a new one-shot algo-
rithm, UnkGaussk̄ for the restricted `0-sensitivity
and unknown domain setting. The first algorithm,
LimitDomLap, for this setting when only a limited num-
ber of top elements are available in the true his-
togram was developed by Durfee and Rogers (2019).
Through a new analysis (which we will also use in

Section 7) we show that UnkGaussk̄ attains a better

privacy guarantee than LimitDomLap with the same
level of noise. The algorithm is simple; given access
to the (k̄ + 1) highest ranked elements in the his-
togram, it adds Gaussian noise to each element and
releases only those with noisy counts above a thresh-
old h⊥ := h(k+1) + 1 +

√
2τΦ−1(1 − δ) with δ > 0,

which we label as ⊥, and also has noise added to it.
The pseudocode of UnkGaussk̄(·; τ, δ) can be found in
the supplementary file.

Theorem 5. For histograms with `0-sensitivity
∆0 and `∞-sensitivity 1, UnkGaussk̄(·; τ, δ) is
(ε( ∆0

2τ2 , δ
′),∆0δ + δ′)-DP for any δ′ > 0 with ε(·, ·) in

(1).

We now describe the proof technique used to prove
Theorem 5, which will also be used in Section 7 to an-
alyze our more practical DP algorithm for the contin-
ual observation setting with `0-sensitivity ∆0 and un-
known domain. We first set up some notation. Let M
be a mechanism that takes input dataset (histogram)
h to some arbitrary outcome space. For any two his-
tograms h(0) and h(1), we define the good outcome sets
GM , as outcomes that can occur with input h(0) and
h(1) and the bad outcome sets BbM for b ∈ {0, 1}, as
outcomes of M that can occur with input h(b) but not
h(1−b).

The following result allows us to determine the privacy
of a particular mechanism by analyzing the privacy of
a related mechanism with access to both neighboring
datasets.

Lemma 6.1. Let h(0) and h(1) be two neighbor-
ing datasets. Suppose there exists a mechanism
A(b; h(0),h(1)) where b ∈ {0, 1} such that for any
outcome set S ⊆ GM , we have Pr[M(h(b)) ∈
S] = Pr[A(b; h(0),h(1)) ∈ S]. Further, suppose that
Pr[M(h(b)) ∈ BbM ] ≤ δ for b ∈ {0, 1}. If A(·; h(0),h(1))
is (ε, δ′)-DP, then M is (ε, δ + δ′)-DP.

Hence, to prove the privacy of UnkGaussk̄, we show
that bad outcomes occur with negligible probability
and that there is a mechanism on shared outcomes of
neighboring datasets that is DP. Note that the param-
eter k̄ in UnkGaussk̄ means that we only have the top-
(k̄+ 1) elements available from the original histogram.
It might be the case that k̄ is larger than the num-
ber of elements in the histogram that actually have
positive count. Hence, UnkGaussk̄ might add noise to
fewer than k̄ + 1 elements.

Consider a slight variant of UnkGaussk̄, which we de-
note as UnkGaussk̄>, that pads the histogram with zero
counts and labels {>i} to ensure that there are exactly
k̄+ 1 many elements to add noise to. The next lemma
shows that adding noise to these dummy elements but
then dropping them from the outcome is the same as
simply not even considering these dummy elements to
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begin with.

Lemma 6.2. Let h = {(hu, u) : u ∈ U} be a histogram
with labels for |U| = p elements and M(h) return k̄ +
1 counts with labels for k̄ ≥ p with noise from some

distribution P where {Zi}
i.i.d.∼ P and

M(h) = {(hu + Zu, u) : u ∈ U}
∪ {(h⊥ + Z⊥,⊥)}
∪ {(Z>j ,>j) : j ∈ {1, · · · , k̄ − p}}.

Let M ′(h) drop elements with counts lower than ⊥ and
then drop any element with label in {>i}. Let M̂ be the
mechanism that adds i.i.d. noise from P to only counts
in h and M̂ ′ drop elements with counts lower than the
count labeled ⊥. Then M ′(h) is equal in distribution
to M̂ ′(h).

Therefore, we prove the privacy of UnkGaussk̄>, rather

than UnkGaussk̄, since the latter is equal in distri-
bution to a post-processing function of the former
and cannot increase the privacy loss of UnkGaussk̄>.
Our privacy analysis consists of analyzing the Gaus-
sian Mechanism and bounding bad events, i.e. events
that cannot occur in both neighboring histograms.
We define two domains of labels from a given his-
togram h = {(hu, u) : u ∈ U} with ordered indices
hi(1)

≥ hi(2)
≥ · · · ≥ hi(d)

. The first only considers
elements with positive count and the second pads the
domain with zero counts and dummy labels:

Dk̄(h) := {i(j) ∈ U : j ≤ k̄ and hi(k̄)
> 0} ∪ {⊥}

Dk̄>(h) :=


{i(j) ∈ U : j ≤ k̄} ∪ {⊥}, if hi(k̄)

> 0

{i(j) ∈ U : j ≤ p} ∪ {>1, · · · >k̄−p} ∪ {⊥},
if hi(p)

> hi(p+1)
= 0

Note that the labels {>j} in h do not exist, and so
for any index >j , its count is h>j = 0. Consider the

Gaussian mechanism GaussMechk̄⊥(b; h(0),h(1), τ) that
takes a bit b ∈ {0, 1} and two neighboring histograms
h(0) and h(1) with noise added to the top-(k̄ + 1) el-
ements from each histogram. Because the labels need
not be the same in the top-(k̄ + 1) in h(0) and h(1),
we assign a common label to the differing bad indices,
denoted as {B` : ` = 1, · · · , |Dk̄>(h(0)) \ Dk̄>(h(1))|}.

Note that once we fix neighboring histograms,
GaussMechk̄⊥(·; h(0),h(1), τ) is simply the Gaussian
mechanism on a new histogram v(b) that uses the
counts from h(b) but whose labels include the common
labels from h(0) and h(1), including the ⊥ element and
dummy elements {>j}, as well as the bad indices {Bj}.
Hence, we want to show that v(0) and v(1) can differ in
at most ∆0 bins, i.e. the `0-sensitivity of h(b), and in
any bin that changes, the counts can differ by at most
1, i.e. the `∞-sensitivity of h(b). We know that for

any j ∈ Dk̄>(h(0))∩Dk̄>(h(1)) that |h(0)
j −h

(1)
j | ≤ 1 and

hence |v(0)
j − v

(1)
j | ≤ 1. We now consider the differing

labels.

Lemma 6.3. Let h(0) and h(1) be neighbors with `∞-
sensitivity 1. For any i ∈ Dk̄>(h(b)) \ Dk̄>(h(1−b)) and

j ∈ Dk̄>(h(1−b)) \Dk̄>(h(b)) we have |h(b)
i − h

(1−b)
j | ≤ 1.

Furthermore, |h(b)

(k̄+1)
− h(1−b)

(k̄+1)
| ≤ 1.

We now show (in the supplementary) that the `0-
sensitivity between v(0) and v(1) is the same as be-
tween h(0) and h(1).

Lemma 6.4. If h(0) and h(1) differ in at most ∆0

bins, then v(0) and v(1) differ in at most ∆0 bins.

With these two results we have the following, which
follows directly from the sensitivity analysis of the in-
termediate histogram v(b) from Lemmas 6.3 and 6.4.

Lemma 6.5. For any two neighboring histograms h(0)

and h(1) with `0-sensitivity ∆0 and `∞-sensitivity 1,
the procedure GaussMechk̄⊥(·; h(0),h(1), τ) is ∆0

2τ2 -zCDP

We now show that, for a pair of fixed neighboring
datasets, UnkGaussk̄ is equivalent to running a post
processing function on GaussMechk̄⊥ for certain out-
comes and that we can bound the probability of other
outcomes where they do not align. We now define good
and bad outcome sets.

Definition 6.1. Given neighbors h(0),h(1), we de-

fine S(b)
Gauss as the outcomes of UnkGaussk̄(h(b); τ, δ).

We then write bad outcomes as B(b)
Gauss := S(b)

Gauss \
S(1−b)
Gauss , for b ∈ {0, 1}.

Next, we bound the probability of outputting some-

thing in B(b)
Gauss, and also show that we can achieve DP

for the remaining outputs that are common in h(0)

and h(1). For bounding the bad outcomes, it suffices
to consider each element in Dk̄>(h(b))\Dk̄>(h(1−b)) and
bound the probability that its respective noisy value
is above a threshold h⊥ with added noise. Note that
the threshold computation will have a simpler analysis
than prior work due to the sum of two Gaussians being
Gaussian, whereas Durfee and Rogers (2019) consid-
ered Laplace noise which does not satisfy the same
property.

Lemma 6.6. For neighboring h(0),h(1) with `0-
sensitivity ∆0 and `∞-sensitivity 1, with b ∈ {0, 1}
we have Pr[UnkGaussk̄(h(b); τ, δ) ∈ B(b)

Gauss] ≤ δ∆0.

We can now prove Theorem 5 using Lemma 6.1.
From Lemma 6.6, we have the probability of bad
outcomes being negligible. We now need to define
a mechanism A(b; h(0),h(1)) that matches UnkGaussk̄

on good outcomes and is DP. Lemma 6.5 shows
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that GaussMechk̄⊥(·; h(0),h(1), τ) is DP. We then de-

fine a post processing function on GaussMechk̄⊥. First,
we sort in descending order the elements up un-
til we get label ⊥ and then we eliminate the rest.
Next, we drop all the dummy labels {>i} and their
noisy counts. We know from Lemma 6.2 that sort-
ing up to ⊥ and dropping the dummy labels is
equivalent to never considering the dummy elements
in the first place. Note that this post process-
ing function on GaussMechk̄⊥(b; h(0),h(1), τ) is equiv-

alent to our main algorithm UnkGaussk̄ on good
outcomes. Because post-processing cannot increase
the privacy loss parameters, we can use Lemma 6.1
with A(b; h(0),h(1)) as this post-processing function of

GaussMechk̄⊥(b; h(0),h(1), τ).

7 RESTRICTED `0-SENSITIVITY
AND UNKNOWN DOMAIN

We turn back to the continual observation setting
where a user can contribute at most ∆0 many items
at any round, but the domain of items is unknown.
When the domain is not given in advance, it is im-
possible for an item that no one contributed to in the
stream to actually be returned. However, it is impor-
tant to point out that the mere existence of a par-
ticular item shows that someone in the dataset must
have contributed such an item. We will then impose
a threshold so that the probability that we display an
item with a single count is very small. We emphasize
that even if the domain were known in advance, it still
might be desirable to consider this setting, since the
domain might be incredibly large making KnownBase

computationally expensive.

Algorithm 3 UnkBase ; Return a running histogram

Input: ω1:T = ω1, · · · , ωT , base r, noise scale τ , δ.
Output: Noisy histograms ĥ1:T .
for t ∈ [T ] do
Dt = ∅,Z = ∅,
Let Ut be the set of items in ω1:t

for u ∈ Ut do
Let It(r) be the cells (j, `) in the r-nary tree
used in the representation of t with base r
for each cell (j, `) ∈ It(r) do

if (u, j, `) /∈ Z then
Let Zuj,` ∼ N

(
0, Lrτ

2
)
,

Z ← Z ∪ {(u, j, `)}
ĥut = hut +

∑
(j,`)∈It(r) Z

u
j,`

if ĥut > mδ from (4) then
Dt ← Dt ∪ {u}

Return ({(ĥut , u) : u ∈ Dt} : t ∈ [T ]).

We present the main algorithm of this section in Al-

gorithm 3.2 We can summarize UnkBase as simply
taking the items, denoted as Ut, that have appeared
in the stream up to time t, form their current his-
togram h (ω1:t;Ut), add noise in the way one would in
KnownBase, but only show items if their noisy count is
above the following threshold,

mδ := τLr
√
r − 1Φ−1 (1− δ/T ) + 1. (4)

Our analysis of UnkBase can be thought of as a general-
ization of the stability based histograms studied in ear-
lier work (Korolova et al., 2009; Bun et al., 2016; Vad-
han, 2017), where only elements with positive counts
exist in the histogram. Directly applying the stabil-
ity based histogram approach would result in another
variant of the MetaAlgo, as the histogram in each cell
in the partial sum table would have counts below a cer-
tain threshold removed. We opted to using UnkGauss

in the presentation of the MetaAlgo because it is more
general than the original stability based histogram ap-
proaches, due to it only needing access to the top-k̄
counts with positive counts, as opposed to all positive
counts.

The novelty of our approach is then in extending the
stability based histogram approach to the case where
we only have access to positive counts up to and in-
cluding round t ∈ [T ], rather than in all sub-streams.
Lemma 6.1 allows us to consider a DP algorithm with
access to a given pair of neighboring datasets x, x′

and only consider outcomes that can occur with both
neighbors, i.e. good outcomes. Hence, we can then
consider the two partial sum tables that suffices to
compute the running counts for either x or x′. The
problem between the two partial sum tables is that
there are table cells with elements present for x but
not for x′. To address this issue, we introduce zero
count elements to each cell, so that each cell has the
same number of elements that get noise added to it.
Note that the labels of the zero counts need to be made
common across the two partial sum tables, which we
can do because we are constructing a DP algorithm
that knows x and x′. We can then analyze the privacy
of this resulting partial sum table using composition
of Gaussian mechanisms. The last part in our analysis
is to bound the probability of all bad outcomes, which
in this case is when any of the elements that had zero
count in x′ yet positive count in x appear in any his-
togram in any t ∈ [T ], which we can do by applying a
threshold that is determined by the tail bound of the
sum of at most Lr Gaussians, which itself is Gaussian
(another reason to use Gaussian noise!).

2The sets It(r) can be built using the same idea as in
BaseMech, all one needs is the r-nary representation of t.
For clarity of exposition we do not build the sets in the
pseudocode of UnkBase.
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We will provide an outline of our analysis, which is de-
tailed in the supplementary file. Note that UnkBase, at
a high level, is an algorithm that adds Gaussian noise
to all items with positive count for each partial his-
togram table cell in the BaseMech subroutine. Hence,
each partial histogram table cell will consist of a noisy
histogram of all items that actually appeared in the
corresponding subsequence of ω1:T . There can be at
most Lr = blogr(T )c+ 1 many cells of the partial his-
togram table that have histograms that can differ. Re-
call that each cell may have differing amounts of items
with positive counts, so we will pad each histogram
with dummy labels {>i} so that each cell has the same

cardinality of terms. As we did for UnkGaussk̄, we will
instead analyze a slight variant of UnkBase, which we
call UnkBased̄>, that pads the set of items in a cell with
dummy items {>i} that we add noise to in the partial
histogram table, so that each cell has the same cardi-
nality d̄ of items, where d̄ is an upper bound on the
full domain size d and is only needed in the analysis.
Similar to Lemma 6.2, we show in the supplementary
file that simply dropping these dummy items later is
equivalent to having never considered them.

To make sure that on neighboring streams we have
the same labels for the histogram in each cell, we will
consider a similar routine to GaussMechk̄⊥ from the
previous section, where we denote items in the his-
togram of each cell as either having common labels
(labels that can occur in both neighboring streams),
bad labels (labels that can only occur in one neighbor-
ing stream), and dummy labels (those with zero count
in both streams). We refer to this mechanism with

common labels as GaussMechd̄, which has the follow-
ing guarantee.

We then have the following privacy guarantee of
GaussMechd̄.

Lemma 7.1. For any two neighboring histograms h(0)

and h(1) with `0-sensitivity ∆0 and `∞-sensitivity 1,
the procedure GaussMechd̄(·; h(0),h(1), τ) is ∆0

2τ2 -zCDP.

Proof. Follows the same analysis as in Lemmas 6.3
and 6.4

We now show that we can connect GaussMechd̄ with
our UnkBased̄> algorithm on good outcomes, which
brings us a step closer to being able to use Lemma 6.1.

Lemma 7.2. For neighbors ω
(0)
1:T and ω

(1)
1:T and out-

comes GUnk that can occur in both UnkBased̄>(ω
(b)
1:T ; τ)

for b ∈ {0, 1}, there exists an A(·;ω(0)
1:T , ω

(1)
1:T ) that is

∆0

2τ2 -zCDP and for any outcome set S ⊆ GUnk we have

Pr[UnkBased̄>(ω(b); τ) ∈ S] = Pr[A(b; h(0),h(1)) ∈ S].

We are then left showing that outcomes that can only

occur in one of the neighboring streams occurs with
negligible probability, which we show via bounding
the tails of multiple Gaussians with high probability,
which is why we use the threshold in (4).

Lemma 7.3. Fix neighbors ω
(0)
1:T and ω

(1)
1:T with

`0-sensitivity ∆0 and define B(b)
Unk to be the set

of outcomes that can occur in UnkBased̄>(ω
(b)
1:T ; τ ; δ)

but not in UnkBased̄>(ω
(1−b)
1:T ; τ, δ). Then we have

Pr[UnkBased̄>(ω
(b)
1:T ; τ, δ) ∈ B(b)

Unk] ≤ ∆0δ.

We can now state our privacy result, which follows
from the privacy of UnkBased̄> and recalling that

UnkBase is a post-processing function of UnkBased̄>.

Theorem 6. UnkBase(·; τ, δ) is (ε( ∆0

2τ2 , δ
′),∆0δ + δ′)-

DP for any δ′ > 0 with ε(·, ·) given in (1).

We also show in the supplementary file that with high
probability, UnkBase does not hide items if their counts
are above mδ + cτ for some constant c > 0. Addition-
ally, for those items u ∈ U that the algorithm releases,
we provide bounds on the difference between their true
count hut and their noisy count ĥut by noticing that ĥut
is the original count hut plus truncated Gaussian noise.

8 CONCLUSION

We have revisited the problem of continually releas-
ing differentially private histograms in the model in-
troduced by Dwork et al. (2010a) and Chan et al.
(2011). We considered event level privacy, where
events in a stream can consist of multiple ele-
ments. We then considered the various DP algo-
rithms for the restricted/unrestricted `0-sensitivity
with known/unknown domain settings. These various
settings of releasing privatized histograms was orig-
inally introduced in Durfee and Rogers (2019) and
Rogers et al. (2020), but not for continual release. We
showed that we can use these existing DP algorithms
for continual observation, but it required running the
DP algorithms on various subsequences of the event
streams, which might be prohibitively expensive in
run time for many applications. We then presented
more practical DP algorithms that take the aggre-
gated counts at each round to return a noisy histogram
continually for the unrestricted `0-sensitivity with un-
known domain setting along with the unrestricted `0-
sensitivity with known domain setting. There are mul-
tiple open research directions here, such as provid-
ing a utility analysis for SparseGumb. Furthermore,
are there algorithms for the restricted `0-sensitivity
and unknown domain for the practical setting where
only the top-k̄, rather than all elements with positive
counts, as in Durfee and Rogers (2019)?
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Supplementary Material:
Differentially Private Histograms under Continual Observation:

Streaming Selection into the Unknown

A Algorithms from Table 1

Algorithm 4 KnownGauss; Gaussian mechanism over known domain U with `0 sensitivity ∆0

Input: Histogram h = {(hu, u) : u ∈ U}, along with noise scale τ .
Output: Noisy result.
Return {(N

(
hu, τ

2
)
, u) : u ∈ U}

Theorem 7 (Bun and Steinke (2016)). Assume that ||h−h′||∞ ≤ 1 and ||h−h′||0 ≤ ∆0 for any neighbors h,h′.

Then, the algorithm KnownGauss(·; τ) is ∆0

2τ2 -zCDP and hence
(

∆0

2τ2 + 1
τ

√
2∆0 ln(1/δ′), δ′

)
-DP for any δ′ > 0.

Algorithm 5 KnownGumbk; Exponential Mechanism over known domain U
Input: Histogram h = {(hu, u) : u ∈ U}, number of outcomes k, and noise scale τ .
Output: Ordered set of k indices and counts.
Set S = ∅
for u ∈ U do

Set vu = hu + Gumbel(τ/2)
Update S ← S ∪ {(vu, u)}

Sort S where vu1 ≥ · · · ≥ vu|U|
Return

{
(N
(
hu1

, τ2
)
, u1), ...., (N

(
huk , τ

2
)
, uk)

}
Theorem 8 (Cesar and Rogers (2020)). Assume that ||h − h′||∞ ≤ 1 and ||h − h′||0 is unrestricted for any

neighbors h,h′. Then, KnownGumbk(·; τ) is k
τ2 -zCDP and hence

(
k
τ2 + 2

τ

√
k ln(1/δ′), δ′

)
-DP for any δ′ > 0.

Algorithm 6 UnkGumbk,k̄; Unknown domain mechanism with access to k̄ + 1 ≥ k elements

Input: Histogram h; outcomes k, cut off at k̄ + 1, and noise scale τ .
Output: Ordered set of indices and counts.
Sort h(1) ≥ h(2) ≥ · · · ≥ h(k̄+1), with respective labels i(1), · · · , i(k̄+1).
Set h⊥ = h(k̄+1) + 1 + τ ln(1/δ), with label ⊥.
Set v⊥ = h⊥ + Gumbel(τ/2), with label ⊥.
Set S = ∅
for j ≤ k̄ do

if h(j) > h(k̄+1) then
Add S ← S ∪ {(v(j) = h(j) + Gumbel(τ/2), i(j))}.

Sort S by its counts.
Let v1, ...., vj , v⊥ be the descending list of counts up until v⊥, with respective labels u1, · · · , uj .
if j < k then

Return {(N
(
hu1

, τ2
)
, u1), ..., (N

(
huj , τ

2
)
, uj),⊥}

else
Return {(N

(
hu1

, τ2
)
, u1), ..., (N

(
huk , τ

2
)
, uk)}

Theorem 9 (Durfee and Rogers (2019)). Assume ||h − h′||∞ ≤ 1 for any neighbors h,h′. For any δ > 0,

UnkGumbk,k̄(·; τ, δ) is
(
k
τ2 + 2

τ

√
k ln (1/δ′), k̄δ + δ′

)
-DP.
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B Concentrated Differential Privacy

The analysis of our algorithms will typically use a variant of DP called zero-mean Concentrated DP (zCDP)
from Bun and Steinke (2016), which provides tighter composition bounds than traditional DP analysis.

This variant of DP is based on the Rényi divergence of order α > 1 between two distributions P and Q over the
same domain, denoted as Dα(P ||Q) where

Dα(P ||Q) :=
1

α− 1
logEz∼P

[(
P (z)

Q(z)

)α−1
]
.

Definition B.1 (Zero-mean Concentrated Differential Privacy). A randomized algorithm M : X → Y is δ-
approximately ρ-zCDP if for any neighbors x, x′ ∈ X , there exists events E and E′, such that Pr[E],Pr[E′] ≥ 1−δ
and for every α > 1 we have the following bound in terms of the Rényi divergence Dα(·||·) of order α

Dα(M(x)|E ||M(x′)|E′) ≤ αρ, and

Dα(M(x′)|E′ ||M(x)|E) ≤ αρ.

where M(x)|E is the distribution of M(x) conditioned on event E and similarly for M(x′)|E′ . If δ = 0, then we
say M is ρ-zCDP.

A useful property of zCDP is that composing multiple zCDP mechanisms results in another zCDP mechanism
where the privacy parameters add up.

Lemma B.1 (Bun and Steinke (2016)). Let M1 : X → Y be δ1-approximate ρ1-zCDP and M2 : X ×Y → Y ′ be
δ2-approximate ρ2-zCDP in its first argument, i.e. M2(·, y) is δ2-approximate ρ2-zCDP for all y ∈ Y. Then the
mechanism M : X → Y ′ where M(·) = M2(·,M1(·)) is (δ1 + δ2)-approximate (ρ1 + ρ2)-zCDP.

C Missing Pseudocode for MetaAlgo in Section 4

Algorithm 7 MetaAlgo; Return a running histogram in various settings from Table 1

Input: Stream ω1:T = ω1, · · · , ωT , where ωt ⊆ U , and use Lr from (2).

Output: Noisy histograms ĥ1:T = ĥ1, · · · , ĥT with labels for each count at each round.
if Domain U is known then

if `0-Sensitivity ∆0 then
for Each cell j, ` of the partial histogram table do
{(p̂uj,`, u)} = KnownGauss({(puj,`, u) : u ∈ U};

√
Lrτ)

else
for Each cell j, ` of the partial histogram table do
{(p̂uj,`, u)} = KnownGumbk({(puj,`, u) : u ∈ U};

√
Lrτ)

else
if `0-Sensitivity ∆y0 then

for Each cell j, ` of the partial histogram table do
Let Uj,` be the set of items in the portion of ω used in pj,`
{(p̂uj,`, u)} = UnkGaussk̄({(puj,`, u) : u ∈ Uj,`};

√
Lrτ, δ/Lr)

else
for Each cell j, ` of the partial histogram table do

Let Uj,` be the set of items in the portion of ω used in pj,`
{(p̂uj,`, u)} = UnkGumbk,k̄({(puj,`, u) : u ∈ Uj,`};

√
Lrτ, δ/Lr)

Return counts and labels at each round t ∈ [T ] using the corresponding noisy partial histograms {(p̂uj,`, u)}.

D Omitted Portions of Section 5

We present the pseudocode for SparseGumbs,k in Algorithm 8 and the missing analysus from the main version.
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Algorithm 8 SparseGumbs,k; Continually return top-k

Input: ω1:T with s, top-k returned, {ηt}Tt=1, and τ .

Output: Noisy histograms ĥ1:T for top-k items.
Let hut be the count for item u from h(ω1:t;U).
Let τ1 =

√
sτ and τ2 =

√
s+ 1τ .

{i1, · · · , ik} = KnownGumbk(h(ω1:1;U); τ2). . Select top-k
Let σu1:T be the binary stream for item u ∈ {i1, · · · , ik}.
for i ∈ {i1, · · · , ik} do

Get the current counts: ĥi1:T = BaseMech(σi1:T ; τ2) . Return running counts of top-k

Set D1 = {i1, · · · , ik} and sample Z ∼ Lap(2τ1).
for t ∈ {2. · · · , T} do

CONT = True.
if s = 0 then

CONT = False
while CONT do

Set i∗ = argmini∈{i1,··· ,ik}{ĥ
i
t}

Set threshold m̂t = ĥi
∗

t + ηt + Z . Set threshold as in Sparse Vector
for u ∈ U \ {i1, · · · , ik} do

if hut + Lap(4τ1) > m̂t then . Check if there is a new element in the top-k.
{i1, · · · , ik} = KnownGumbk(h(ω1:t); τ2). . Select top-k
for i ∈ {i1, · · · , ik} do

Set ĥi1:T = BaseMech(σi1:T ; τ2) . Return running counts of the new top-k

s← s− 1. . Reduce by one the number of switches
CONT = False
Redraw Z ∼ Lap(2τ1)
break

Dt = {i1, · · · , ik}
Return

({
(ĥut , u) : u ∈ Dt

}
: t ∈ [T ]

)

Proof of Theorem 4. We rely on the privacy analysis of multiple subroutines. We know that each call, of the
(s + 1) calls, to the routine KnownGumbk(·,

√
s+ 1τ), without releasing counts, is k

2(s+1)τ2 -zCDP. Further, there

can be at most (s+ 1) · k many different instances of BaseMech, each of which is 1
2(s+1)τ2 -zCDP. Lastly, we use

the Sparse Vector technique to determine which rounds we should find a new top-k in. Note that we use different
thresholds at each round t, but we do not update the noise on the threshold unless we update the top-k. We
then use the general version of Sparse Vector from Lyu et al. (2017) to conclude that each time we select a round
to run KnownGumbk, it is 2√

sτ
-DP and hence 2

sτ2 -zCDP. We then apply composition of zCDP mechanisms to get

the result.

We will conduct experiments to see how the number of switches s and {ηt}Tt=1 impact the accuracy of the current
round’s selected item and the true maximum count. We will also need to set the additional threshold amounts
ηt for each round t ∈ [T ]. At each switch, we will use the Exponential Mechanism to return the privatized max
item. If the item that is currently selected before a switch has a count that is significantly smaller than the
maximum item, then we will want the Exponential Mechanism to select a different item. As a rule of thumb, we
then consider setting ηt based on the utility of the Exponential Mechanism, which selects an item whose count
is close to the maximum count with high probability.

Lemma D.1 (McSherry and Talwar (2007)). Let Iτ be the index selected from the Exponential Mechanism
KnownGumb1({hu, u : u ∈ U}; τ), without its count, and let i∗ be the argmax of {hu : u ∈ U}. Then for β > 0, we
have

Pr[hIτ > hi∗ −O (τ ln (|U|/β))] ≥ 1− β
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Figure 2: We compare SparseGumbs,1 with KnownBase and MetaAlgo with unrestricted `0-sensitivity, denoted as
‘metaKnownGumbel’ in the plot.

We factor in the error from the Laplace noise that is added to each true count of the non-selected items, which
at a given round will all be within O(

√
sτ ln(d)) of the true count with high probability, as well as the error from

the current selected count, which is used in the threshold and will be within O(
√
r − 1Lrτ) of its true count with

high probability. Putting these errors together with the error incurred from the Exponential Mechanism given
in Lemma D.1, we then consider setting ηt ≡ η where

η = τ
√
s ·O

(√
r − 1Lr + ln(d)

)
.

To generate a stream of data, we sample an item from a distribution following Zipf’s Law (Zipf, 1935), as it
models many data sources that occur in nature well, given in the left plot of Figure 2, with d = 100 items. The
right plot in Figure 2 shows the error between the count of the true max item with the noisy count of the selected
top-1 item SparseGumbs,1 at each round t ∈ [1000] with various s and η ≡ ηt. We compare this algorithm with
both the KnownBase algorithm, where we use ∆0 = d, since we are assuming unrestricted `0-sensitivity, and we
also compare the results with MetaAlgo in the same setting. In our experiments, we will equalize the privacy
level in all algorithms. Hence, we will use τ ← τ

√
d in KnownBase, τ ← τ

√
2 in MetaAlgo, and τ ← τ

√
6

in SparseGumbs,1, so that each will be 1
2τ2 -zCDP. As expected MetaAlgo outperforms the other algorithms,

but recall that at each round t it needs the full stream ω1:t, which may be impractical in some situations (see
Section 1). Instead, SparseGumb only requires the current aggregate histogram. It is interesting to notice the
behavior of SparseGumb with respect to s, with very few switches (s = 1) the algorithm runs out of switches
before the maximum element is learned and thus the error seems to increase linearly. If we allow SparseGumb

more switches, it does not run out of switches very quickly, unfortunately the magnitude of the noise scales with√
s thus hurting accuracy. The right number of switches is a parameter that the practitioner needs to tune to

balance the amount of noise incurred and the number of times the distribution is expected to change. The plots
show the average error at each t ∈ [1000] over 1000 independent trials.

E Omitted Portions of Section 6

We present the pseudocode for UnkGaussk̄ for the one shot restricted `0-sensitivity and unknown domain setting
and missing analysis from the main version.
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Algorithm 9 UnkGaussk̄; ∆0-Restricted Sensitivity Gaussian Mechanism with top-(k̄ + 1)

Input: Histogram h = {(hu, u) : u ∈ U}, cut off at k̄, along with parameters τ, δ.
Output: Noisy histogram with labels {ij} and noisy counts {vij}.
Let hi(1)

≥ hi(2)
≥ · · · ≥ hi(k̄)

≥ hi(k̄+1)
≥ · · · ≥ hi(d)

, with corresponding labels i(j) ∈ U for j ∈ [d]

Set v⊥ = hi(k̄+1)
+ 1 +

√
2τΦ−1(1− δ) + N

(
0, τ2

)
. Set (data-dependent) noisy threshold

Set discovered set D = ∅
for u ∈ U such that u ∈ {i(j) : j ∈ [k̄]} and hu > 0 do . Add noise to each element in top-k̄

Set vu = N
(
hu, τ

2
)

with label u.
D ← D ∪ {u}

Sort {vu : u ∈ D} ∪ v⊥
Let vi(1)

, ...., vi(`) be the counts in descending order until v⊥, with relative labels i(1), i(2), · · · , i(`).
Return {(vi(1)

, i(1)), ..., (vi(`) , i(`))} . Return elements above the noisy threshold

Proof of Lemma 6.1. Fix an outcome set S, we then have

Pr[M(h(b)) ∈ S] = Pr[M(h(b)) ∈ S ∩ GM ] + Pr[M(h(b)) ∈ S ∩ BbM ]

≤ Pr[M(h(b)) ∈ S ∩ GM ] + δ

= Pr[A(b; h(0),h(1)) ∈ S ∩ GM ] + δ

≤ eε Pr[A(1− b; h(0),h(1)) ∈ S ∩ GM ] + δ′ + δ

= eε Pr[M(h(1−b)) ∈ S ∩ GM ] + δ′ + δ

= eε Pr[M(h(1−b)) ∈ S] + δ′ + δ

Proof of Lemma 6.2. We need to show that adding independent noise to k̄ counts, some of which have {>i}
labels and then dropping these terms is equivalent to having never considered those elements.

Let f(·) be the density function for distribution P, fM ′(·) be the density of M ′, and fM̂ ′ be the density of M̂ ′.
We fix an outcome of counts (z1, z2, · · · , zk) and denote the set of indices that are not in this outcome to be I
after dropping counts of {>i}. The density for mechanism M̂ ′ is then

fM̂ ′(z1, · · · , zk) =

k∏
i=1

f(zi − hi)
∫ min{zi:i∈[k]}

−∞
f (z⊥ − h⊥)

∏
`∈I

(∫ z⊥

−∞
f(z` − h`)dz`

)
dz⊥

=

k∏
i=1

f(zi − hi)
∫ min{zi:i∈[k]}

−∞
f (z⊥ − h⊥)

∏
`∈I

(∫ z⊥

−∞
f(z` − h`)dz`

)
dz⊥

·
k̄−p−1∏
j=1

∫
R
f(zj)dzj

= fM ′(z1, · · · , zk).

Proof of Lemma 6.3. Without loss of generality, we assume that h(0) has larger counts than h(1). If i ∈ Dk̄>(h(0))\
Dk̄>(h(1)) then we know that h

(0)
i ≥ h

(0)

(k̄)
but h

(1)
i ≤ h

(1)

(k̄)
. We also know that h

(0)
i ≤ h

(1)
i +1. Putting this together,

we have
h

(0)

(k̄)
≤ h(0)

i ≤ h
(1)
i + 1 ≤ h(1)

(k̄)
+ 1.

Similarly, for j ∈ Dk̄>(h(1)) \ Dk̄>(h(0)) we have h
(0)
j ≤ h

(0)

(k̄)
and h

(1)
j ≥ h

(1)

(k̄)
. Further, h

(1)
j ≤ h

(0)
j , which gives us

h
(1)

(k̄)
≤ h(1)

j ≤ h
(0)
j ≤ h

(0)

(k̄)
.
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Algorithm 10 GaussMechk̄⊥; Gaussian Mechanism over Limited Domain

Input: Bit b ∈ {0, 1}, neighboring histograms h(0) and h(1), cut off k̄, and parameter τ .
Output: Histogram v with labels in Dk̄>(h(0)) ∩ Dk̄>(h(1)) and {B` : ` ∈ [|Dk̄>(h(b)) \ Dk̄>(h(1−b))|]}
We relabel the indices in both h(0) and h(1) to form the following histogram v(b)

for i ∈ Dk̄>(h(0)) ∩ Dk̄>(h(1)) do

v(b) ← v(b) ∪ {(h(b)
i , i)}, where h

(b)
>j = 0. . Keep common labels

Initialize ` = 1
for j ∈ Dk̄>(h(b)) \ Dk̄>(h(1−b)) do . Create “bad” labels for uncommon elements

v(b) ← v(b) ∪ {(h(b)
j , B`)}.

` = `+ 1

v(b) ← v(b) ∪ {(h(b)

(k̄+1)
+ 1 +

√
2τΦ−1(1− δ),⊥)}

Add N
(
0, τ2

)
to each count in v(b) to form the noisy histogram v̂ . Apply Gaussian Mechanism

Return v̂

Combining the two, we have

h
(1)

(k̄)
≤ h(1)

j ≤ h
(0)
i ≤ h

(1)

(k̄)
+ 1 =⇒ h

(0)
i − h

(1)
j ≤ 1.

Lastly, we have h
(1)

(k̄+1)
≤ h

(0)

(k̄+1)
. Now assume that h

(0)

(k̄+1)
> h

(1)

(k̄+1)
+ 1. This can only occur if the (k̄ + 1)-th

ranked element in h(0) is not the same as the (k̄ + 1)-th ranked element in h(1), otherwise their count would

differ by at most 1. Hence, there must be some element i with count h
(1)
i ≤ h

(1)

(k̄+1)
, but h

(0)
i ≥ h

(0)

(k̄+1)
, since that

would change the label for the (k̄ + 1)-th ranked element between h(1) and h(0). However, h
(0)
i ≤ h

(1)
i + 1 and

thus
h

(0)

(k̄+1)
≤ h(0)

i ≤ h
(1)
i + 1 ≤ h(1)

(k̄+1)
+ 1.

Proof of Lemma 6.4. Let ` be the number of bins that differ between h(0) and h(1) on labels in Dk̄>(h(0)) ∩
Dk̄>(h(1)). Without loss of generality, we assume that h(0) has larger counts than h(1). We know by definition
that ` ≤ ∆0. We now show that

|Dk̄>(h(b)) \ Dk̄>(h(1−b))| ≤ ∆0 − `.
It suffices to only consider |Dk̄>(h(0)) \ Dk̄>(h(1))| since Dk̄>(h(0)) \ Dk̄>(h(1)) has the same cardinality. Note that

for any i ∈ Dk̄>(h(0)) \ Dk̄>(h(1)), that implies h
(0)
i > h

(1)
i , and we know only ∆0 − ` such additional indices can

exist. If h
(0)
i = h

(1)
i , then the position of index i cannot have moved up the ordering from h(1) to h(0) because

we assumed h(0) had larger counts. Therefore, if i /∈ Dk̄>(h(1)) and h
(0)
i = h

(1)
i we must also have i /∈ Dk̄>(h(0)).

Hence, |Dk̄>(h(0)) \ Dk̄>(h(1))| ≤ ∆0 − `

In order to prove Lemma 6.6, we will need to define a mechanism that takes an input domain of indices, as well
as a histogram.

Definition E.1. [Sorted Gaussian Mechanism over Limited Domain] We define the sorted Gaussian mechanism

over limited domain to be GaussMaxk̄ that takes as input a histogram along with a domain set of indices D and
returns an ordered list of elements until ⊥’s count, that is

GaussMaxk̄(h,D) = {(vi(1)
, i(1)), ..., (vi(1)

, i(j)), (v⊥,⊥)}

where (vi(1)
, ..., vi(j) , v⊥) is the sorted list until v⊥ of vi = N

(
h(i), τ

2
)

and v⊥ = N
(
h⊥, τ

2
)
, for each i ∈ D and

h⊥ := h(k̄+1) + 1 +
√

2τΦ−1(1− δ) (5)

Note that GaussMaxk̄(h,Dk̄(h)) and UnkGaussk̄(h) are equal in distribution. We will use the following result to
prove Lemma 6.6.
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Lemma E.1. Given an histogram h and some domain D that can include dummy {>i}. For any i ∈ D such
that hi ≤ h(k̄+1) + 1, then

Pr[i ∈ GaussMaxk̄(h,D)] ≤ δ.

Proof. For simplicity, we will set T = τ
√

2Φ−1(1− δ), which implies h⊥ = h(k̄+1) + 1 +T and plug back in at the
end of the analysis. By construction of our mechanism, we know that the noisy estimate of hi must be greater
than the noisy estimate of our threshold h⊥ = h(k̄+1) + 1 + T to be a possible output, which implies

Pr[i ∈ GaussMaxk̄(h,D)] ≤ Pr[hi + N
(
0, τ2

)
> h⊥ + N

(
0, τ2

)
].

By assumption, hi ≤ h(k̄+1) + 1, and by the fact that the sum of two independent Gaussians Z1, Z2 ∼ N
(
0, τ2

)
is also Gaussian, i.e. Z1 + Z2 ∼ N

(
0, 2τ2

)
,

Pr[i ∈ GaussMaxk̄(h,D)] ≤ Pr[N
(
0, 2τ2

)
> T ] = 1− Φ

(
T√
2τ

)
.

Plugging in T =
√

2σΦ−1(1− δ) gives the result.

We can now prove Lemma 6.6.

Proof of Lemma 6.6. This will follow from a simple union bound on each i ∈ Dk̄>(h(0)) \ Dk̄>(h(1)) where we

consider each subset of B(0)
Gauss such that each outcome contains i, or more formally we define B(0)

Gauss(i) := {o ∈
B(0)
Gauss : i ∈ o} This then implies that

Pr[GaussMaxk̄(h(0),Dk̄>(h)) ∈ B(0)
Gauss] ≤

∑
i∈Dk̄(h(0))\Dk̄(h(1))

Pr[GaussMaxk̄(h,Dk̄>(h)) ∈ B(0)
Gauss(i)]

because each outcome o ∈ B(0)
Gauss must contain some i ∈ Dk̄>(h(0)) \ Dk̄>(h(1)) by construction. Furthermore, by

construction we also have

Pr[GaussMaxk̄(h(0),Dk̄(h(0))) ∈ B(0)
Gauss(i)] = Pr[i ∈ GaussMaxk̄(h(0),Dk̄(h(0)))]

Our claim then immediately follows from Lemma E.1 and the fact that the size of Dk̄(h(0)) \Dk̄(h(1)) is at most
∆0 by Lemma 6.4.

We can now prove Theorem 5.

Proof of Theorem 5. We will use Lemma 6.1 to prove this result. From Lemma 6.6, we have the probability of
bad outcomes being negligible. We now need to define a mechanism A(b; h(0),h(1)) that matches UnkGaussk̄

on good outcomes and is DP. Lemma 6.5 shows that GaussMechk̄⊥(·; h(0),h(1)) is DP. We then define a post

processing function on GaussMechk̄⊥. First, we sort in descending order the elements up until we hit ⊥ and then
we eliminate the rest. Next, we drop all the dummy labels {>i} and their noisy counts. We know from Lemma 6.2
that sorting up to ⊥ and dropping the dummy labels is equivalent to never considering the dummy elements in
the first place. Note that this post processing function on GaussMechk̄⊥(b; h(0),h(1)) is equivalent to our main

algorithm UnkGaussk̄ for good outcomes. Because post-processing cannot increase the privacy loss parameters,
we can use Lemma 6.1 with A(b; h(0),h(1)) as this post-processing function of GaussMechk̄⊥(b; h(0),h(1)).
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Figure 3: Visualizing the construction of v(b) in GaussMechk̄⊥(b; h(0),h(1)). Since labels 3, 5 are present in h(0)

but not h(1) they get relabeled to B1, B2 respectively in v(0). Similarly, since the labels 6,⊥1 are present in h(1)

but not in h(0) they get relabeled to B1, B2 in v(1). The additional amount added to ⊥ in orange denotes the
added amount to the count h⊥.

F Omitted Portions of Section 7

We point out that Algorithm 3 discovers a new set of items Dt at each round t ∈ [T ], essentially wiping away the
set of items that have already appeared at previous rounds. However, we still ensure the same privacy level if
the algorithm remembers previous items that were discovered but may not have noisy count above the threshold
at a later round. This would avoid the strange behavior of some items having a count in some rounds and then
disappearing in other rounds, however one would need to remember all the items that were previously discovered
at each round.

F.1 Privacy Analysis

We now present the full analysis. As we did for UnkGaussk̄, we will instead analyze a slight variant of UnkBase,
which we call UnkBased̄>, see Algorithm 11. UnkBased̄> pads the set of items with dummy items {>i} that we
add noise to in each cell of the partial sum table, so that each cell has the same cardinality d̄ of items, which is
some upper bound on the dimension of the set of items.

Similar to Lemma 6.2, we will show that simply dropping these dummy items later is equivalent to having never
considered them.

Lemma F.1. Let h ∈ Np be a histogram with labels {i1, · · · , ip}. Let M(h) be the following for d̄ ≥ p and

Zj
i.i.d.∼ Pj and ĥj = hj + Zj,

{(ĥ1, i1), · · · , (ĥp, ip), (Zp+1,>1), · · · , (Zd̄,>d̄−p)}.

Let M ′(h) be the mechanism that drops all items with counts lower than some threshold m and drops any item
with label in {>i}. Now let M̂(h) be the same as M(h) except it does not include the {>i} items. Then M ′(h)
is equal in distribution to M̂ ′(h).

Proof. We need to show that adding independent noise to d̄ counts, of which some have {>i} labels and then
dropping these terms is equivalent to having never considered those items.
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Algorithm 11 UnkBased̄>; Return a running histogram

Input: Same as UnkBase and an upper bound d̄.
Output: Noisy histograms ĥ1:T .
Use threshold m from (4).
for cell (j, `) in partial histogram table do

. Create the noisy partial histogram table, pad if necessary
Define Uj,` as the set of items in the corresponding substream of ω1:T and let dj,` = |Uj,`|.
Include dummy items >j,` = {>1

j,`, · · · >
d̄−dj,`
j,` }, let nj,` = |>j,`|.

Form the partial histogram pj,` = (puj,` : u ∈ Uj,` ∪ >j,`) for this cell.

Add independent noise to each count in this cell to get p̂j,` = (puj,` + N
(
0, Lrτ

2
)

: u ∈ Uj,` ∪ >j,`).
We then have histogram with labels p̂j,` = {(p̂uj,`, u) : u ∈ Uj,` ∪ >j,`}

for t ∈ [T ] do
Dt = ∅
Let It(r) be set of cells (j, `) that are used in the representation of t with base r.
Let Ut be the union of items present in each cell used for the count at time t
Let >t be the union of dummy items present in each cell.
for each (j, `) cell in It(r) do

. Relabel dummy items in each cell with items that have newly appeared in the stream
for u ∈ Ut \ Uj,` do

Replace the dummy label with largest index nj,` to u, i.e. (p̂uj,`, u)← (p̂
>
nj,`
j,`

j,` ,>nj,`j,` ).

Update Uj,` ← Uj,` ∪ {u}, >j,` ← >j,` \ {>
nj,`
j,` }, and nj,` ← nj,` − 1.

for u ∈ Ut ∪ >t do . Aggregate histograms from each cell It(r)
ĥut =

∑
(j,`)∈It(r) p̂

u
j,`

if ĥut > mδ then . Only add elements above the threshold
Dt ← Dt ∪ {u}

Return ({(ĥut , u) : u ∈ Dt} : t ∈ [T ]).

Let f(·) be the density function for distribution P, fM ′(·) be the density of M̂ , and fM̂ ′ be the density of M̂ ′.
We fix an outcome of counts (z1, z2, · · · , zk) with k ≤ p and denote the set of indices that are not in this outcome
to be I after dropping counts of {>i}. We then have the density for mechanism M̂ ′ as

fM̂ ′(z1, · · · , zk) =

k∏
i=1

fi(zi − hi)
∫ m

∞
· · ·
∫ m

∞

∏
`∈I

f`(z` − h`)dz`

=

k∏
i=1

fi(zi − hi)
∫ m

∞
· · ·
∫ m

∞

∏
`∈I

f`(z` − h`)dz` ·
k̄∏

j=p+1

∫
R
f(zj)dzj

= fM ′(z1, · · · , zk).

Algorithm 12 is a variant of the Gaussian Mechanism that we use when given two neighboring histograms. Note
its similarity with Algorithm 10. The algorithm GaussMechd̄ takes a parameter d̄ which is an upper bound on
the number of distinct bins of the histograms, this ensures that each cell has access to a full histogram. We will
assume that we have access to the full histogram, including the items with 0 counts, rather than just having the
top-(k̄ + 1) as it was assumed in GaussMechk̄⊥.

Proof of Lemma 7.2. In UnkBased̄>(h(b); τ), we are essentially applying the Gaussian mechanism to a histogram

in each cell of the partial histogram table. Consider a cell (i, j) that differs between streams ω
(0)
1:T and ω

(1)
1:T ,

of which there can be as many as Lr cells. We apply GaussMechd̄(b; h(0),h(1), Lrτ) to this cell’s histogram of
counts. Doing this across all cells that can actually change between the two neighboring streams, we can apply
composition and Lemma 7.1 to get that releasing the full partial sum table is ∆0

2τ2 -zCDP.
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Algorithm 12 GaussMechd̄; Gaussian Mechanism over Full Domain

Input: Bit b ∈ {0, 1}, neighboring histograms h(0) and h(1), upper bound d̄, and parameter τ .
Output: Histogram v̂ with labels in Dd̄>(h(0)) ∩ Dd̄>(h(1)) and {B` : ` ∈ [|Dd̄>(h(b)) \ Dd̄>(h(1−b))|]}
Let v(b) = ∅
We relabel the labels in both h(0) and h(1) to form the following histogram v(b)

for i(j) ∈ Dd̄>(h(0)) ∩ Dd̄>(h(1)) do . Add common labels

v(b) ← v(b) ∪ {(h(b)
i(j)
, i(j))}, where h

(b)
>j = 0.

Initialize set of labels that have a non-dummy label and have a different label in the two datasets

B =
{{
Dd̄>(h(1)) \ Dd̄>(h(0))

}
∪
{
Dd̄>(h(0)) \ Dd̄>(h(1))

}}
\ {>i : i ∈ [d̄]}

for j ∈ Dd̄>(h(b)) \ Dd̄>(h(1−b)) do . Add uncommon labels

if h
(b)
j ≥ h

(1−b)
j then

v(b) ← v(b) ∪ {(h(b)
j , j)}.

else
Select a label from B, call it a
v(b) ← v(b) ∪ {(0, a)}.
B ← B \ {a}

Add N
(
0, τ2

)
to each count in v(b) to form the noisy histogram v̂ . Gaussian Mechanism

Return v̂

We then apply a post-processing function that adds up the corresponding cells of the table to get the aggregate
count for each time t ∈ [T ] and removes any item that has count lower than m. Because we are only considering
good outcomes, this will ensure that any count with a bad label {Bi} is not in the result, hence bad labels have
noisy counts less than m. Note that these bad labels are the only terms that could have had different labels than

the counts returned in UnkBased̄>(ω
(b)
1:T ; τ). Hence, the resulting mechanism is equivalent to UnkBased̄>(ω

(b)
1:T ; τ)

for outcomes in GUnk.

We next need to figure out the right threshold m to set that will ensure that bad outcomes occur with negligible
probability. The only way an item u that occurred once in a stream ω1:T but not in another neighboring stream
ω′1:T can be returned is if there is a noisy count ĥut > m for some t ∈ [T ] and item u that was present in ω but
not in ω′ or vice versa. Since the counts are computed as a function of the partial histogram table p̂, we need
to make sure that all the noisy counts in this table for items that are not common in ω and ω′ cannot add up to
something larger than m.

Proof of Lemma 7.3. We first consider the probability that an item from B(b)
Unk can be returned at a given time t,

which must mean that there is a dummy label >it for one stream and a real label a for the other stream at time
t. Let’s consider the first time t that the labels do not align in the neighboring streams. The only way this could
happen is if this were the first time a appeared in the stream, since all prior items in both streams are the same.
Hence, the true count of a at time t will be 1 in one stream and 0 in the other. The additional noise must have
caused its count to appear above the threshold m. We then compute the probability that a count can appear
above threshold m. This threshold then needs to be set so that all future times will also not have noisy count
on a above the threshold until someone else has item a in the stream. Further, there can be at most ∆0 many
items like a, implying that all items that a user contributes at a round t are all the first time they appeared in
the stream.

There are multiple ways to do this. One is to bound the probability that all of the independent Gaussians that
are used to compute the count for item a are below m/ ((r − 1)Lr), hence any sum of at most (r − 1)Lr terms
is below m. Another way, is to bound the probability that any sum of these independent Gaussians is below m,
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and take a union bound over all T rounds. We opt for the latter approach.

Pr[UnkBased̄>(ω
(b)
1:T ; τ, δ) ∈ B(b)

Unk] = Pr[∃a ∈ B(b)
Unk s.t. label a ∈ UnkBased̄>(ω

(b)
1:T ; τ, δ)]

≤ Pr
{Zui,j}

i.i.d.∼ N(0,Lrτ2)

 max
t∈[T ],u∈B(b)

Unk

1 +
∑

(j,`)∈It(b)

Zui,j

 > mδ


≤ ∆0T · Pr

[
N
(
0, (r − 1)L2

rτ
2
)
> mδ − 1

]
= ∆0T ·

(
1− Φ

(
mδ − 1

Lrτ
√
r − 1

))
.

The last inequality follows from a union bound. Setting mδ as in (4) gives the bound of ∆0δ.

Proof of Theorem 6. We first show that UnkBased̄> is DP. This follows by applying Lemma 6.1 with Lemmas 7.2
and 7.3. Now we use Lemma F.1 to show that at any round t, dropping the dummy labels >t is equivalent
to never adding noise to them. However, we may use the noise allocated for a dummy item in some cells at
later rounds. In particular, we replace the dummy label when a new item appears at a later point in UnkBased̄>.
Whether this noise was drawn earlier for that cell or at the time that it is actually used, both give the same
distribution. Hence, the post-processing function of dropping dummy labels at each round of UnkBased̄>(ω1:T ; τ, δ)
is equivalent to running UnkBase(ω1:T ; τ, δ).

F.2 Utility Analysis

We then turn to analyzing the utility of UnkBase. First we consider the probability that a particular item will
appear in the result at time t.

Lemma F.2. Let Dt be the discovered set at round t in UnkBase(ω1:T ; τ, δ). Let hut =
∑t
`=1 1 {u ∈ ω`} be the

true count for item u in the stream up to round t and assume that it is larger than the threshold hut = mδ + c · τ
for some c > 0. We can then bound the probability that u is part of the discovered set at time t,

Pr[u ∈ Dt] ≥ Φ

(
c√

r − 1Lr

)
.

Proof. We will write Ir(t) as the set of indices in the partial histogram table that gets used to compute the
counts at time t. Recall that we will add noise N

(
0, |Ir(t)|Lrτ2

)
to the true count hut = mδ + c · τ at time t. We

then need to ensure that the noisy count will be above the threshold mδ given in (4). Hence, we have

Pr[u ∈ Dt] = Pr[N
(
hut , |Ir(t)|Lrτ2

)
> mδ] = 1− Φ

(
−c√
|Ir(t)|Lr

)

= Φ

(
c√

|Ir(t)|Lr

)
≥ Φ

(
c√

r − 1Lr

)

Additionally, for those items u ∈ U that the algorithm releases, we provide bounds on the difference between
their true count hut and their noisy count ĥut by noticing that ĥut is the original count hut plus Gaussian noise
truncated at threshold mδ.

Lemma F.3. Given a stream ω1:T and an item u ∈ Dt that is part of the discovered set from (ĥut , u) ∈
UnkBase(ω1:T ; τ, δ) at time t, we can then bound the error on its true count hut = mδ + c · τ at time t for
0 < c < η with high probability,

Pr[|hut − ĥut | ≥ ητ | u ∈ Dt]

≤
1− Φ

(
η√

(r−1)Lr

)
Φ

(
c√

(r−1)Lr

) .
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Proof. Note that ĥut is the original count hut plus Gaussian noise truncated at the threshold mδ. More specifically,
let Ir(t) be the set of indices in the partial histogram table that get used to compute the counts at time t. We

then have ĥut is distributed as a truncated (at mδ) Gaussian with mean hut and variance |Ir(t)|Lrτ2. Using the
fact that |Ir(t)| ≤ (r − 1)Lr we have

Pr[|hut − ĥut | ≥ ητ | u ∈ Dt] = Pr
Z∼N(hut ,Ir(t)Lrτ2)

[|Z − hut | ≥ ητ | Z > mδ]

≤ Pr[Z < hut − ητ | Z > mδ] + Pr[Z > hut + ητ | Z > mδ]

=

2

(
1− Φ

(
η√
Ir(t)Lr

))
− Φ

(
−c√
Ir(t)Lr

)
1− Φ

(
−c√
Ir(t)Lr

)

=

1− 2Φ

(
η√
Ir(t)Lr

)
+ Φ

(
c√
Ir(t)Lr

)
Φ

(
c√
Ir(t)Lr

)

≤
1− Φ

(
η√
Ir(t)Lr

)
Φ

(
c√
Ir(t)Lr

)

≤
1− Φ

(
η√

r−1Lr

)
Φ
(

c√
r−1Lr

)
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