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Abstract

A popular assumption for out-of-distribution
generalization is that the training data com-
prises sub-datasets, each drawn from a dis-
tinct distribution; the goal is then to “in-
terpolate” these distributions and “extrapo-
late” beyond them—this objective is broadly
known as domain generalization. A com-
mon belief is that ERM can interpolate but
not extrapolate and that the latter task is
considerably more difficult, but these claims
are vague and lack formal justification. In
this work, we recast generalization over sub-
groups as an online game between a player
minimizing risk and an adversary present-
ing new test distributions. Under an exist-
ing notion of inter- and extrapolation based
on reweighting of sub-group likelihoods, we
rigorously demonstrate that extrapolation is
computationally much harder than interpo-
lation, though their statistical complexity is
not significantly different. Furthermore, we
show that ERM—possibly with added struc-
tured noise—is provably minimax-optimal for
both tasks. Our framework presents a new
avenue for the formal analysis of domain gen-
eralization algorithms which may be of inde-
pendent interest.

1 INTRODUCTION

Modern machine learning algorithms excel when the
training and test distributions match but often fail
under even moderate distribution shift (Beery et al.,

Proceedings of the 25th International Conference on Artifi-
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Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

2018); learning a predictor which generalizes to distri-
butions which differ from the training data is therefore
an important task. This objective, broadly referred to
as out-of-distribution (OOD) generalization, was clas-
sically explored in a setting where there is a single
“source” training distribution and a different “target”
test distribution. Achieving good performance in this
setting is impossible in general, so researchers have
formalized several possible frameworks to study. One
common choice is to make specific assumptions about
covariate or label shift (Widmer & Kubat, 1996; Bickel
et al., 2009; Lipton et al., 2018); another approach is
Distributionally Robust Optimization (DRO), where
the test distribution is assumed to lie in some uncer-
tainty set around the training distribution (Bagnell,
2005; Rahimian & Mehrotra, 2019).

There has been considerable recent interest in moving
beyond a single source distribution, instead assuming
that the set of training data is comprised of a collec-
tion of “environments” (Blanchard et al., 2011; Muan-
det et al., 2013; Peters et al., 2016) or “groups” (Hu
et al., 2018; Duchi et al., 2019; Sagawa et al., 2020),
each representing a distinct distribution,1 where the
group identity of each sample may be known. Such
a setting is referred to as domain generalization. The
hope is that by cleverly training on such a collection
of groups, one can derive a robust predictor which will
better transfer to unseen test data. Previous literature
has focused exclusively on worst-case domain general-
ization, where the test environment is chosen to be
the worst choice among a constrained set of possible
test environments. It is useful to cast such a task as
solving a one-shot min-max game, where the learner
selects the predictor and then an adversary selects the
test environment. A key specification for this game is
how future test distributions depend on the training
domains (i.e., the action space for the adversary).

The most immediate choice for the set of possible

1Throughout this work, we use the terms “domain”,
“distribution”, and “environment” interchangeably.
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test environments is simply the set of training envi-
ronments. More broadly, researchers have considered
how to perform well when the adversary is allowed
to present test distributions which “interpolate” the
training distributions or “extrapolate” beyond them,
but it is unclear what is the ideal formalization of such
interpolations and extrapolations. A popular choice
for modeling interpolation is to allow any convex com-
bination of the training environments—this is referred
to as group/sub-population shift, and the resulting ob-
jective is known as Group Distributionally Robust Op-
timization (DRO). Duchi et al. (2019); Sagawa et al.
(2020) give efficient algorithms for solving the Group
DRO objective, but a key point is that the result-
ing min-max objective is exactly equivalent to when
the adversary is limited to playing only the training
environments. For modeling extrapolation, Krueger
et al. (2020) consider “extrapolating” the training like-
lihoods (we make this formal in Section 2), but in this
game the adversary’s choice will still always be a ver-
tex of the playable region. Thus, solving the one-shot
min-max game under likelihood reweighting is always
equivalent to simply minimizing worst-case risk on a
discrete set.

In addition to this, formal analyses of these games are
sparse. A common belief is that Empirical Risk Min-
imization (ERM) excels at interpolation but not ex-
trapolation; it is also generally held as folklore that
extrapolation is a much harder task, which is why
generalization is so difficult—but these claims are un-
derstood intuitively, rather than mathematically. Fur-
ther, Sagawa et al. (2020) find that when using modern
neural networks in the interpolation regime, explicitly
solving the Group DRO objective does not yield bet-
ter solutions than simple ERM with strong regulariza-
tion. Thus the relative optimality of ERM over other
domain generalization algorithms is still not fully un-
derstood. In light of these points, we begin by consid-
ering the question: Is there an alternative to the
single-round min-max game which might allow
for a more in-depth analysis of the statistical
and algorithmic properties of the task of do-
main generalization?

One final additional caveat with this line of research
is its emphasis on worst-case optimality over all pos-
sible test environments, which is often unnecessarily
conservative. This is exemplified by empirical eval-
uations in the OOD literature: these works train a
predictor on the source data and then evaluate it on
a single test set which is chosen adversarially with re-
spect to the predictor. Such a protocol often misses
the mark for realistically comparing the expected per-
formance of different algorithms. For example, Gulra-
jani & Lopez-Paz (2021) point out that many recent

works deliberately evaluate on a single train/test en-
vironment split with an unreasonably difficult distri-
bution shift. When averaging performance over mul-
tiple environment splits, they find that no algorithm
outperforms ERM. This adversarial analysis can in-
deed be appropriate for quantifying how an algorithm
will perform in the worst possible case (particularly in
safety-critical applications), but this frequently does
not reflect a predictor’s quality in the real world: when
the test environments are not chosen adversarially, a
reasonable learning algorithm should be able to do sig-
nificantly better. Thus the crucial distinction is that
existing frameworks are minimax because they
demand good performance of an algorithm even
in the worst case, not because we actually ex-
pect the test environments to be chosen adver-
sarially.2 This suggests there is room for a more nu-
anced measure of OOD generalization, one which ad-
equately captures the purpose of such algorithms—to
achieve consistently good performance on all possible
test distributions—and allows for a formal comparison
of their performances.

In this work, we aim to address the two main gaps
identified above: formalizing the difference, if any (sta-
tistical and computational), between ERM and other
OOD algorithms in both interpolation and extrapo-
lation group shift settings; and doing so in a frame-
work that allows us to analyze a predictor’s perfor-
mance on potentially non-adversarial (e.g., stochastic)
future test environments. To do this, we take inspi-
ration from the literature of online convex optimiza-
tion (Hazan, 2016) and ask what can be achieved in
a game where the learner is allowed to repeatedly re-
fine their predictor upon observing new environments.
Our analysis therefore captures an algorithm’s ability
to learn and adapt from multiple training distributions
to suffer less under distribution shift and consequently
perform better, on average, on future test sets. Our
multi-round game supplements existing work on do-
main generalization, providing new insights into the
quantifiable effects of observing different environments
as a function of both their number and their geomet-
ric diversity. Further, this new perspective allows for
a theoretical analysis of the computational and sta-
tistical complexity of interpolation versus extrapola-
tion, formalizing and verifying the answers to several
outstanding questions which until now have only been
stated intuitively.

Concretely, we make the following contributions:

• We recast domain generalization as a repeated on-
line game between an adversary presenting test

2This is a subtle point which we discuss in greater detail
in Section 3.1.
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distributions and a player minimizing cumulative
regret. This framework enables meaningful analy-
sis beyond the single-round minimax setting, and
we expect it can serve as a new approach to the
formal study of the efficacy of robust OOD gen-
eralization algorithms.

• Under an existing notion of inter- and extrapola-
tion, we tightly characterize their respective com-
plexities. Specifically, we prove that i) extrapo-
lation is indeed exponentially more difficult than
interpolation in a computational sense, but ii) the
statistical complexity of extrapolation is not sig-
nificantly higher (Θ(

√
T ) minimax regret as op-

posed to Θ(log T )).

• For both inter- and extrapolation, we show that
ERM—possibly with added structured noise—is
provably minimax-optimal with respect to regret,
as a function of the number of environments ob-
served. For minimizing regret over any time hori-
zon, it is impossible to improve over ERM without
additional assumptions. This result supplements
recent works which support the same idea theo-
retically (Rosenfeld et al., 2021) and empirically
(Gulrajani & Lopez-Paz, 2021) for the single-
round setting.

2 THE SINGLE-ROUND DOMAIN
GENERALIZATION GAME

The key assumption of domain generalization is that
the training set comprises a set of distinct domains
E = {ei}Ei=1, each of which indexes a probability dis-
tribution pe, and that the test environment will relate
to these domains in some pre-specified way. Let us de-
note the set of such possible test distributions by Etest.
It’s common to use a minimax formulation, wherein
the learner’s goal is to minimize the worst-case error
over the possible test distributions Etest. For a set of
predictors F and loss `, our goal is thus to solve:

min
f∈F

max
e∈Etest

Ee[`(f)].

In an adversarial framework, Etest is the “playable re-
gion” of the adversary, similar to the uncertainty set in
traditional DRO. A critical ingredient of the game as
noted earlier is how this set of test distributions Etest

depends on the training domains E . It is typically
presented as belonging to one of two distinct settings:
interpolation and extrapolation. Intuitively, the inter-
polation setting should consist of environments which
do not vary “beyond” the observed training environ-
ments, while the extrapolation setting should allow for
such variation to some degree. However, these terms
do not have a single agreed-upon meaning.

Formally modeling interpolation. Given a collec-
tion of environments, there are many possible ways to
consider interpolating them. In this work, we limit
our analysis to the notion of likelihood reweighting
which has been used previously in several works (Duchi
et al., 2019; Albuquerque et al., 2020; Sagawa et al.,
2020).3 We model the interpolation of a set of domains
as all convex combinations (i.e., mixtures) of their like-
lihoods. Formally, an interpolation of the domains in
E is any distribution which is written

pλ :=
∑
e∈E

λep
e, (1)

where λ ∈ ∆E is a vector of convex coefficients (∆E is
the (E−1)-simplex). This is a fairly natural definition,
as the space of interpolations is defined as the convex
hull of the environments E in distribution-space. We
will denote this convex hull Conv(E).

Observe that this definition is mathematically equiva-
lent to the set of environments which can be generated
via group shift, and solving the above min-max ob-
jective is precisely Group DRO. However, this notion
of single-round interpolation, while perhaps intuitive,
does not actually induce a more meaningful playable
region for the adversary. This is because for any pre-
dictor, the optimal choice for the adversary will be
whichever training environment produces the highest
risk; that is, the adversary will always play a vertex of
the simplex. Thus, these two games are equivalent:

Proposition 1 (Equivalence of interpolation and the
discrete one-shot game).

min
f∈F

max
e∈Conv(E)

Ee[`(f)] = min
f∈F

max
e∈E

Ee[`(f)].

We note that in some prior work on Group DRO, learn-
ing models that minimize worst-case sub-population
risk is indeed the goal—that is, they only care about
test domains that match one of the source domains.
In the broader domain generalization literature, how-
ever, it does not seem that this form of interpolation
provides any additional constraint on OOD learning
without additional regularization (Hu et al., 2018).

Generalizing to extrapolation. It is not immedi-
ately obvious how to extend this concept to include
extrapolation. Krueger et al. (2020) suggest allowing
for combinations in which the coefficients are still re-
stricted to sum to 1, but may be slightly negative,
where the minimum coefficient is given as a hyperpa-
rameter α:

∑
e∈E λe = 1, λe ≥ −α ∀e ∈ E . We refer to

3As another possibility, we could directly interpolate
between two samples, but this is unlikely to be meaningful
for highly complex data such as images. If we were to pose
a generative model, it would instead be natural to consider
interpolations of the generative parameters.
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such combinations as “bounded affine” combinations,
and the objective they induce is equivalent to a fixed
linear combination of the average loss plus the worst-
case loss. It is immediate that the adversary’s optimal
choice is still on a vertex, so this game also reduces to
minimizing over a discrete set:

Proposition 2 (Equivalence of constraint set for ex-
trapolation and the discrete one-shot game).

min
f∈F

max
e∈Extrα(E)

Ee[`(f)] =

min
f∈F

max
e∈E

[
(1 + Eα)Ee[`(f)]− α

∑
e′∈E

Ee′ [`(f)]

]
,

where Extrα(·) is all α-bounded affine combinations.

Thus we find that for a single round, the precise mean-
ing of these objectives is unclear: the adversary is
still choosing from a discrete set, and this model does
not seem to capture the intuition that extrapolation
should be fundamentally “harder” than interpolation.
This shortcoming motivates our modified approach
based on long-term regret, which we introduce shortly.

For extrapolating likelihoods, note that the resulting
function is not guaranteed to be a probability distri-
bution, as it could result in negative measure—one
can instead frame it as reweighting of the environment
risks (thus in Proposition 2 above, E[·] refers to gen-
eral Lebesgue integration over a signed measure). We
study this reweighting of risks in Section 4.2, and we
find that generalizing well over all such combinations
is NP-hard. This provable difficulty in extrapolating
validates our proposed sequential game, but it also in-
dicates that additional assumptions may be necessary
for modeling domain generalization. This raises in-
teresting questions about what is the correct or most
useful model of “extrapolation”, which we do not ad-
dress here.

3 THE SEQUENTIAL DOMAIN
GENERALIZATION GAME

We consider recasting the task of domain generaliza-
tion as a continuous game of online learning in which
the player is presented with sequential test domains
and must refine their predictor at each round. We’re
therefore interested in the player’s ability to learn con-
tinuously and improve in each round. We would ex-
pect that any good learning algorithm will suffer less
per distribution as we observe more of them—that is,
the per-round regret should decrease over time. Specif-
ically, we’d like to prove a rate at which our regret
goes down as a function of the number of distributions
we’ve observed. Our game allows for an analysis of
the average loss (over time) of a learning algorithm

Algorithm 1 : Domain Generalization Game
(likelihood reweighting)

Input: Convex parameter space B, distributions
{pe}e∈E over X × Y, strongly convex loss ` : B ×
(X × Y)→ R, playable region ∆.
for t = 1 . . . T do

1. Player chooses parameters β̂t ∈ B.
2. Adversary chooses coefficients λt ∈ ∆.
3. Define ft(β) := E(x,y)∼pλt [`(β, (x, y))] =∑
e∈E λt,eE(x,y)∼pe [`(β, (x, y))].

end for
Player suffers regret

RT =

T∑
t=1

ft(β̂t)−min
β∈B

T∑
t=1

ft(β).

across all possible test sequences—in order to bound
this performance, we consider the worst such sequence.
In Section 3.1 we expound upon this idea, comparing
in detail our game to existing single-round minimax
settings and discussing the benefits it affords.

We now describe the game which will allow a formal
analysis of the efficacy of various domain generaliza-
tion strategies. The full game can be found in the
box titled Algorithm 1. Note we describe a specific
instance where the adversary is limited to group mix-
tures as described in Section 2; the general game
allows for any formally specified action space
for the adversary and we expect this will enable fu-
ture analyses involving rich classes of distribution shift
threat models such as f -divergence or H-divergence
balls (Bagnell, 2005; Ben-David et al., 2007).

Game Setup. Before the game begins, we define
a family of predictors parameterized by β lying in a
convex set B. For some observation space X and label
space Y, nature provides a fixed loss function ` : B ×
(X × Y) → R, strongly convex in the first argument,
as well as a set of E environments E = {ei}Ei=1, each of
which indexes a distribution pe over X×Y. We assume
that B is large enough such that for any λ ∈ ∆E ,
the parameter which minimizes risk on pλ lies in B.
We further assume that for all β ∈ B and e ∈ E ,
the expected loss of β under pe is finite. The game
proceeds as follows:

On round t, the player chooses parameters β̂t ∈ B.
Next, the adversary chooses a set of coefficients λt :=
{λt,e}e∈E , which defines the distribution pλt as the
weighted combination of the likelihoods of environ-
ments in E with coefficients λt, as in Equation 1.
For now, we assume that every choice of λ by the
adversary is a set of convex coefficients—that is, an
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interpolation—which ensures that pλt is a valid prob-
ability distribution; we will relax this restriction in
Section 4.2. At the end of the round, the player suf-
fers loss ft(β̂t) = Rλt(β̂t), defined as the risk of the

predictor parameterized by β̂t on the adversary’s cho-
sen distribution:

Rλt(β) := E(x,y)∼pλt [`(β, (x, y))]

(we write fe = Re for the analogous risk on distribu-
tion pe). For clarity, when using the above notation
we will drop the subscript t when it is not necessary.

It’s important to note that in this game the player does
not begin “training” until the first round; the initial
environments E serve only to define the playable region
for the adversary. Thus to recover the existing notion
of single-round domain generalization, where the es-
timator has already seen the source environments E
and next faces an unseen test environment, the online
game would actually begin with the adversary playing
each of the environment distributions in E once. As in
standard online learning, our goal is to minimize regret
with respect to the best fixed predictor in hindsight af-
ter T rounds. That is, we hope to minimize

T∑
t=1

ft(β̂t)−min
β∈B

T∑
i=1

ft(β). (2)

Observe that this notion of regret generalizes previ-
ous work on single-round domain generalization with
T = 1. By allowing T →∞, we have a different mea-
sure of success: each time we are presented with a new
environment, we update our predictor in the hopes of
improving our average performance. Crucially, this
modification allows us to ask questions about the rate
at which our regret decreases as a function of the num-
ber of environments observed. It also better reflects
the idea that our algorithm’s performance should not
be evaluated in a vacuum: we aim to perform well rela-
tive to how we could have performed over all timesteps
with a single predictor.

3.1 The Benefits of Online Regret vs.
Single-Round Loss

Our focus on regret in the online setting as opposed to
loss in a single round is important; it will be instructive
to carefully consider the benefits to such an analysis.

Significance of regret with respect to a fixed
baseline. The second term in Equation 2 is crucial;
the comparison to the best fixed parameter prevents
the adversary from forcing constant regret at each
round and reflects the idea that we hope to eventu-
ally perform favorably compared to a single predictor
which does reasonably well on all environments. With-
out this baseline, the player’s objective would be to

simply minimize the sum of the risks on all environ-
ments:

∑T
t=1 ft(β̂t). In the adversarial setting,4 the

game therefore reduces to repeated, independent in-
stances of the single-round version; clearly, the best we
can do to minimize worst-case loss each single round
is to play the minimax-optimal parameters β∗ :=
arg minβ∈B maxλ∈∆E

Rλ(β). In response, the adver-

sary would always choose λ∗ := arg maxλ∈∆E
Rλ(β∗).

This game is uninteresting beyond the first round and
does not adequately capture an algorithm’s perfor-
mance in a real-world setting where the environments
are not chosen adversarially. As mentioned in the in-
troduction, the key observation here is that the single-
round minimax framework is used to guarantee good
performance even in the worst-case scenario, but we
do not actually expect future test environments to be
chosen in this way.

As a simple example, if we were to repeatedly play
β∗ and repeatedly face the test distribution p∗, we
should consider it more likely that this is representa-
tive of future test environments (i.e., we will continue
to encounter p∗) than that Nature is actively trying
to give us the largest possible loss. Consequently we
should switch strategies and play arg minβ∈BRp

∗
(β),

which will have better performance if the pattern con-
tinues. Thus, existing frameworks overemphasize min-
imax performance in individual rounds—even though
in reality, distribution shift is rarely adversarial—while
ignoring possible improvements over time via adapta-
tion to the changing environments. In contrast, our
longitudinal analysis allows for an algorithm to occa-
sionally suffer preventable loss in any given turn, so
long as the per-turn regret is guaranteed to decrease
over time.

One particular setting where the benefits of this new
framework are readily apparent is under gradual dis-
tribution shift. The single-round minimax formulation
is intended for safety-critical applications where even
a tiny mistake is fatal; however, when this is not the
case, such an approach is far too conservative, and
regret-based analyses provide a much clearer picture of
expected performance. Our framework is thus not in-
tended to supplant the single-round setting, but rather
to supplement it with a new, more realistic method of
formal analysis of domain generalization algorithms.

Implications of sublinear regret. For any se-
quence of environments, there will be some parameter
β̃ which would have achieved the least possible cumu-
lative loss. Sublinear regret implies that as T → ∞
we will eventually recover the per-round loss of β̃,

4By this we mean the setting where the next environ-
ment is always the one which maximizes risk for the pa-
rameter chosen by the player.
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but without committing beforehand and with no prior
knowledge of the test environment sequence. Thus in
the limit we are guaranteeing the lowest possible aver-
age loss against a fixed sequence of environments—at
the same time, our analysis is minimax so as to guar-
antee our regret bound holds even against the worst
such sequence.

Further, sublinear regret is a very powerful guaran-
tee when the environments are stochastic, as might
be expected in any real-world setting. For any prior
over environment distributions π(pe), it is easy to see
that sublinear regret implies convergence to the per-
formance of the parameter which minimizes loss over
the marginal distribution:

min
β∈B

∫
P
π(pe) Epe [`(β, (x, y))] dpe,

where P is the set of all distributions over X × Y.
This is because as T → ∞, the π-weighted average
of the sum of losses will converge to the loss on the
marginal distribution—the baseline will then be what-
ever parameter minimizes this loss. Observe that this
is strictly stronger than the guarantee of ERM, which
ensures the same result only in the limit: sublinear re-
gret implies that for every T , our regret with respect
to the best predictor so far is bounded as o(T ). Thus
if by chance the distributions we’ve seen are not rep-
resentative of the prior π (an oft-stated motivation for
OOD generalization), we are still ensuring convergence
to the loss of the optimal fixed predictor in hindsight,
whatever it may be. In particular, if the sequence of
environments is so unfavorable that the optimal pre-
dictor in hindsight is an invariant predictor (Peters
et al., 2016; Arjovsky et al., 2019; Rosenfeld et al.,
2021), sublinear regret guarantees that our algorithm’s
loss converges to this invariant predictor’s loss.

We emphasize again that while the above example con-
siders a stochastic adversary, we do not in general
assume a prior over environments. Instead, we
perform a minimax analysis to guard against the worst
possible sequence of test distributions. We are measur-
ing average regret with respect to time.

4 THEORETICAL RESULTS

Before presenting our main theoretical results, we be-
gin with a lemma which greatly simplifies the analysis
by recharacterizing the adversary’s playable region.

Lemma 1. Recall Re(β) is defined as the risk of β
on the distribution pe. For all λ ∈ ∆E, it holds that
Rλ(β) =

∑
e∈E λeRe(β).

This reframing allows us to generalize our analysis
to extrapolation without worrying that the resulting

measure is not a probability distribution. Lemma 1
implies that when the adversary chooses convex coeffi-
cients λt, they are equivalently choosing a loss function
ft which is a combination of {fe}Ee=1, the individual en-
vironments’ risks. Each choice of λt uniquely defines
the resulting loss function ft; moving forward we will
drop this explicit dependency in our notation.

4.1 Convex Combinations

Following Abernethy et al. (2008), we evaluate the per-
formance of an algorithm by defining the value of the
game after T timesteps as the player’s regret under
optimal play by both player and adversary:

VT := min
β̂1∈B

max
λ1∈∆E

. . .

min
β̂T∈B

max
λT∈∆E

(
T∑
t=1

ft(β̂t)−min
β∈B

T∑
t=1

ft(β)

)
.

For fixed T , this allows us to formalize minimax
bounds on the regret. In the traditional literature, the
adversary is allowed to play losses ft from a much more
general class, such as all strongly convex functions. In
this setting, the value of the game in any given round

t is known to be exactly Vt =
∑t
s=1

G2
s

2sσmin
, where Gs

is the Lipshitz constant of fs at the parameter chosen
by the player and σmin is the minimum curvature of
f .5 This means the minimax-optimal rate for regret is
Θ(log t) (Hazan et al., 2007; Bartlett et al., 2007).

In contrast to traditional online learning, where the
adversary is free to choose its loss from a large non-
parametric class such as all strongly convex functions,
our interpolation game severely restricts the adversary,
allowing only convex combinations of the risks of the E
distributions. We might expect that such a restriction,
especially when known to the player, would allow for a
faster convergence to zero regret, even if the strategy
which attains it is intractable. Our first result demon-
strates that this is not the case.

Theorem 1. Suppose σmax ≥ σmin > 0 such that ∀e ∈
E , σminI � ∇2fe � σmaxI. Define g as the minimum
gradient norm that is guaranteed to be forceable by the
adversary: g := minβ∈B maxλ∈∆E

‖∇f(β)‖2. Then

for all t ∈ N it holds that Vt >
g2σmin

16σ2
max

log t.

Proof Sketch. The general idea of the proof is to lower
bound the regret on round t by the optimal regret on
round t−1 plus some additional loss suffered on round
t. This loss depends on the distance from the chosen
parameter on round t to the regret minimizer for round
t−1, as well as the adversary’s choice on round t, and it

5We’ve omitted some details; see Abernethy et al.
(2008) for the full result.
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can be bounded as Ω(1/t). By unrolling the recursion
we derive an overall lower bound of order

∑t
i=1

1
i >

log t. The full proof can be found in Appendix A.

Theorem 1 provides insight into how the statistical
complexity of generalizing to domain interpolations
depends on the geometry of the source domains. Ob-
serve that the minimum forceable gradient norm g
encodes a sort of “radius” of the convex hull of loss
gradients—it is easy to see that if a ball of radius r
can be embedded in Conv({∇fe(β)}Ee=1) then g > r.
Thus, the restriction of the adversary to the convex
hull of distributions entails a restriction on the geom-
etry of the convex hull of the corresponding loss gra-
dients, which subsequently determines the regret our
player can be forced to suffer. The bound does not di-
rectly depend on the number of training environments
E; rather it scales quadratically with the size of this
region, which appropriately captures the intuition that
a smaller regret should be achievable for a collection of
distributions whose optimal parameters are very sim-
ilar to one another.

With respect to the asymptotic rate of regret, this
theorem provides a somewhat surprising conclusion.
Even with full knowledge of the adversary’s limited
selection, Theorem 1 shows that no algorithm can do
asymptotically better than if we were playing against
the more powerful adversary playing any strongly con-
vex function. Even more interesting, this rate can
be achieved with a very simple algorithm known as
Follow-The-Leader (FTL), which just plays the min-
imizer of the sum of all previously seen functions
(Hazan et al., 2007). In our game, this means play-
ing the predictor which minimizes risk over all envi-
ronments seen so far—after observing t environments,
FTL would therefore play

βFTL = arg min
β

t∑
s=1

fs(β).

Observe that this strategy is precisely ERM! In other
words, ERM is provably minimax-optimal for interpo-
lation. As the adversary’s playable region is a strict
subset of all strongly convex functions, it is immedi-
ate that the regret suffered by playing ERM is upper
bounded as

∑t
s=1G

2
s/2sσmin = O(log t). While The-

orem 1 applies to the multi-round game, it has use-
ful implications for the single-round setting. A sim-
ple corollary provides a tight bound on the attainable
regret as a function of the number of environments
seen. To our knowledge, this is the first such bound
for single-round domain generalization.

Corollary 1. Suppose we’ve seen E environments.
Then under the same setting as Theorem 1, the addi-

tional regret suffered due to one more round is Ω
(

1
E

)
.

This lower bound is attained by ERM.

4.2 Bounded Affine Combinations

One could argue that allowing the adversary only con-
vex combinations of domains is perhaps too good to
hope for. Indeed, as we’ve seen, ERM is optimal for
such a setting, but it has been widely observed that
ERM fails under minor distribution shift. We might
expect that future environments would fall outside of
this hull—if combinations within the hull represent a
formal notion of “interpolating” the training distribu-
tions, then it seems our goal instead should be to “ex-
trapolate” beyond them.

As discussed in Section 2, Krueger et al. (2020) con-
sider allowing the adversary to play bounded affine
combinations of the environments; while they pro-
vide no formal results for their proposed algorithm,
this conceptualization of extrapolation seems a natu-
ral extension. Clearly, this game is no easier for the
player—in fact, we will demonstrate that it is signif-
icantly harder. For general Lipschitz functions, it is
known that against the worst-case sequence, no deter-
ministic strategy can guarantee sublinear regret, and
attaining sublinear regret with a randomized strategy
is NP-hard. Further, there is a regret lower bound of
Ω(
√
T ) which was recently shown to be achievable with

Follow-The-Perturbed-Leader (FTPL), assuming ac-
cess to an optimization oracle for approximately min-
imizing a non-convex function (Suggala & Netrapalli,
2020). As in the previous subsection, we extend these
results to the task of domain generalization—that is,
we demonstrate that despite the (seemingly restric-
tive) requirement that the adversary play bounded
affine combinations of strongly convex losses that are
fully known to the player, the game remains equally
hard. These results are also surprising, as an adversary
that can play arbitrary Lipschitz functions is signifi-
cantly more powerful than the adversary in our game.

Theorem 2. No algorithm can guarantee sublinear
regret against bounded affine combinations of a finite
set of strongly convex losses.

Proof sketch. We construct two losses, one of order x2

and the other x4. Taking advantage of the adversary
acting after the player, we define their behavior de-
pending on whether the player’s choice falls inside or
outside the unit ball—where the first loss or second
loss dominates, respectively. By then carefully ana-
lyzing the optimal choice in hindsight, we show Ω(T )
regret is unavoidable.

Thus we find that just as in the general non-convex
case, a weaker adversary is necessary. In the follow-
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ing we consider a relaxed version with an “oblivious”
adversary: this adversary is forced to select the entire
sequence of loss functions at the beginning of the game
(our lower bounds hold despite this relaxation). We
might hope that against such a restricted adversary,
the computational requirements of achieving sublinear
regret would be lessened—perhaps there would be no
need for an optimization oracle. However, Theorem 3
proves otherwise:

Theorem 3. Against an oblivious adversary playing
bounded affine combinations, achieving sublinear regret
is NP-hard.

Proof sketch. We prove this via a reduction from the
problem of identifying the maximum size of a stable
set of a graph—known to be unapproximable in poly-
time unless NP = P (H̊astad, 1999). Our key in-
sight is that the largest stable set size can be rewrit-
ten as the minimum of a bounded affine combination of
strongly convex losses. Given a subroutine achieving
sublinear regret, we give an algorithm which finds a 2-
approximation in a polynomial number of rounds.

Computationally, our game of extrapolation is just as
difficult as achieving sublinear regret on arbitrary Lip-
schitz functions. These results present, for the first
time, proof of an exponential computational complex-
ity gap between interpolation and extrapolation in the
domain generalization setting, formally verifying exist-
ing intuition.

We now turn our attention to the statistical complex-
ity of regret minimization under bounded affine com-
binations. Recall that for the case of convex combi-
nations (i.e. interpolations), Theorem 1 shows a min-
imax lower bound of Ω(log t) which can be achieved
with standard ERM. Before we consider the bounded
affine setting (i.e. extrapolations), we again note that
for an adversary playing arbitrary Lipschitz functions,
Suggala & Netrapalli (2020) demonstrate that with ac-
cess to a non-convex optimization oracle FTPL can
achieve the minimax lower bound of Ω(

√
T ). The

FTPL strategy is to play the parameter which min-
imizes the sum of the observed environments plus a
noise term—specifically, FTPL takes the sum of ex-
isting risks, samples a random linear function of the
parameters, and solves for the parameters which mini-
mize this “perturbed” sum. In our game, then, FTPL
is just a noisy variant of ERM. Computational limita-
tions notwithstanding, the natural next question is if
playing against an oblivious adversary is enough of a
relaxation that we can surpass this lower bound. That
is, can we outperform ERM in this setting at all? Our
final result answers this question in the negative:

Theorem 4. Against an oblivious adversary playing
bounded affine combinations, the achievable regret is
lower bounded as Ω(

√
T ).

Proof sketch. We reduce minimizing regret with ex-
pert advice to an instance of our online game—this
is done by constructing a specific set of loss functions
and defining the playable region as all convex combi-
nations of the experts’ predictions. This implies that
the known regret lower bound of Ω(

√
T ) for the for-

mer game (Cesa-Bianchi & Lugosi, 2006) also applies
to the latter.

This theorem implies two crucial points: firstly, that
ERM remains minimax optimal for this model of ex-
trapolation; and secondly, that proper regularization
is essential for good OOD generalization. This pro-
vides theoretical justification for the empirical findings
of Sagawa et al. (2020) and complements existing re-
sults on the value of explicit regularization for group
shift (Hu et al., 2018). Additionally, we find that even
though there is an exponential computational com-
plexity gap between the two tasks, the statistical gap
is not too large—Θ(log T ) versus Θ(

√
T ) regret.

5 RELATED WORK

Many works provide formal guarantees for OOD gen-
eralization by assuming invariances in the causal struc-
ture of the data: a set of interventions is assumed to
result in separate fixed environments (Peters et al.,
2016; Heinze-Deml et al., 2018; Heinze-Deml & Mein-
shausen, 2020; Christiansen et al., 2020) or distribu-
tion shift over time (Tian & Pearl, 2001; Didelez et al.,
2006), and the test distribution will likewise represent
such an intervention.

Works which eschew a direct causal formalization often
still depend upon the intuition of “invariance” within
the context of causality. The IRM objective (Arjovsky
et al., 2019) was designed for such a setting assum-
ing the target variables’ causal mechanisms remain in-
variant, but it lacked serious theoretical justification;
Krueger et al. (2020) likewise suggest an algorithm
for extrapolation but similarly fail to provide any for-
mal guarantees. Rosenfeld et al. (2021) subsequently
showed that, while these and other similar objectives
may work under strong conditions in the linear setting,
the same cannot be said for more complex data.

Albuquerque et al. (2020) theoretically analyze extrap-
olation beyond the convex hull of domain likelihoods
and give generalization bound via H-divergences. Un-
fortunately, this bound scales linearly with both the
maximum discrepancy between pairs of training dis-
tributions and between the test distribution and train-
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ing environment hull. Some works give risk bounds
for kernel methods applied to domain generalization
(Blanchard et al., 2011; Muandet et al., 2013; Desh-
mukh et al., 2019), but their setting is fundamentally
different in that they assume a prior over domains—in
this setting, it is unsurprising that “ERM plus regular-
ization” should perform optimally. In contrast, until
this work it was unclear if ERM is a reasonable choice
for minimax domain generalization, and whether ex-
trapolation is fundamentally harder than interpola-
tion. Perhaps most related to this paper is the em-
pirical work of Gulrajani & Lopez-Paz (2021), who
show that despite claimed recent advances in deep do-
main generalization, no methods consistently outper-
form carefully-tuned ERM across a variety of bench-
marks. We view our work as complementary to theirs,
providing direct theoretical support for their empirical
findings. This suggests that more nuanced models of
“extrapolation” are necessary to show if and when it is
possible to achieve a better statistical rate than ERM
in the minimax setting.

This work relates the nascent study of domain gener-
alization theory to prior work on online and lifelong
learning (Thrun, 1998; Mitchell et al., 2015; Hazan,
2016), for which there already exist provable regret
bounds and efficiency guarantees (Balcan et al., 2015;
Alquier et al., 2017). The main difference is that those
works—which are for more general online learning—
present new algorithms and give upper bounds, while
this work focuses on OOD generalization and proves
lower bounds which match rates already known to be
achievable for more general classes of losses (Hazan
et al., 2007; Abernethy et al., 2008; Suggala & Ne-
trapalli, 2020), implying that existing algorithms are
already optimal.

6 CONCLUSION AND FUTURE
DIRECTIONS

This work presents the first formal results demonstrat-
ing an exponential computational gap between inter-
polation and extrapolation in domain generalization,
a claim which has until now only been given vague
intuitive justification. Perhaps more importantly,
we’ve shown that ERM remains statistically minimax-
optimal for both tasks—given the observed failure of
ERM in practice, this suggests that there is quite
a bit more subtlety to distribution shift in the real
world. Taken together, our results present strong evi-
dence that the “likelihood reweighting” model of dis-
tribution shift, while perhaps appropriate for specific
settings involving sub-populations, might not be ap-
propriate for the more general study of extrapolation
to new domains. It could instead be beneficial to re-

consider existing notions of inter- and extrapolation—
particularly those involving linearity or generic likeli-
hood reweighting—in the context of online learning,
where the notions of regret and stochastic adversaries
allow for more a nuanced study of statistical and algo-
rithmic complexity.

We see two important directions for further research.
First, the proposed domain generalization game serves
as a standalone framework for the theoretical analysis
of learning algorithms. As discussed in Section 3.1,
considering regret in the online setting provides a more
informative signal of an algorithm’s expected perfor-
mance. We hope that this new perspective will better
enable future work to provide formal OOD generaliza-
tion guarantees for their proposed methods. We note
that this work considers only strongly convex func-
tions, but using the same techniques one could extend
the analysis to more general classes such as all convex
losses; this setting might eliminate the statistical com-
plexity gap and could lead to additional insight into
the differences between inter- and extrapolation.

Second, there still remains significant flexibility in how
we define “interpolation” and “extrapolation” with re-
spect to training environments; we consider one spe-
cific notion in this work, and we show that ERM
remains optimal—implying that alternative formula-
tions may be preferable. However, it seems likely that
different restrictions on the adversary could allow for
stronger generalization guarantees. Furthermore, our
analysis reveals that the geometry of the environmen-
tal loss functions is a critical element for generaliza-
tion. This suggests additional improvements can be
achieved with careful representation learning.
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Supplementary Material:
An Online Learning Approach to

Interpolation and Extrapolation in Domain Generalization

A Proof of Theorem 1

Theorem 1. Suppose σmax ≥ σmin > 0 such that ∀e ∈ E , σminI � ∇2fe � σmaxI. Define g as the minimum
gradient norm that is guaranteed to be forceable by the adversary: g := minβ∈B maxλ∈∆E

‖∇f(β)‖2. Then for

all t ∈ N it holds that Vt >
g2σmin

16σ2
max

log t.

Proof. Define Ft(z) =
∑t
s=1 fs(z); since each f is convex, this sum is convex as well. Let β∗t−1 be the minimizer

of Ft−1 (by Lemma 2, this will lie in B), and let z ∈ B be arbitrary. Finally, note that ∇2Ft � tσmaxI. Then
we have the following Taylor expansion:

Ft(z) = Ft−1(z) + ft(z)

= Ft−1(β∗t−1 + (z − β∗t−1)) + ft(z)

≤ Ft−1(β∗t−1) +∇Ft−1(β∗t−1)T (z − β∗t−1) +
(t− 1)σmax

2
‖z − β∗t−1‖22 + ft(z)

= Ft−1(β∗t−1) +
(t− 1)σmax

2
‖z − β∗t−1‖22 + ft(z),

where we have used the fact that ∇Ft−1(β∗t−1) = 0 by definition. Thus,

t∑
s=1

fs(β̂s)− Ft(z) ≥

(
t−1∑
s=1

fs(β̂s)− Ft−1(β∗t−1)

)
+ (ft(β̂t)− ft(z)−

(t− 1)σmax

2
‖z − β∗t−1‖22). (3)

Then we can write

Vt = min
β̂1∈B

max
λ1

. . . min
β̂t∈B

max
λt,z∈B

(
t∑

s=1

ft(β̂t)− Ft(z)

)

≥ min
β̂1∈B

max
λ1

. . . min
β̂t−1∈B

max
λt−1

[(t−1∑
s=1

fs(β̂s)− Ft−1(β∗t−1)

)

+ min
β̂t∈B

max
λt,z∈B

(
ft(β̂t)− ft(z)−

(t− 1)σmax

2
‖z − β∗t−1‖22

)]
.

Thus, by lower bounding the second term, we can unroll the recursion and lower bound the total regret. In
particular, showing a bound of Ω( 1

t ) will result in an overall regret lower bound of Ω(log T ), which would imply
that ERM achieves minimax-optimal rates for OOD generalization (this is also how we prove Corollary 1).

We proceed by lower bounding the inner optimization term. We consider two possibilities for the choice of

β̂t. Suppose ‖β̂t − β∗t−1‖22 ≥
g2

8tσ2
max

. Then by choosing z = β∗t−1 the inner term can be lower bounded by

minβ̂t∈B maxλt

(
ft(β̂t)− ft(β∗t−1)

)
. Taylor expanding ft around β∗t−1 gives

ft(β̂t)− ft(β∗t−1) ≥ ∇ft(β∗t−1)T (β̂t − β∗t−1) +
σmin

2
‖β̂t − β∗t−1‖22.
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By Lemma 3, the adversary can always play λt such that ∇ft(β∗t−1) = 0. So plugging this in we get

min
β̂t∈B

max
λt

(
ft(β̂t)− ft(β∗t−1)

)
≥ σmin

2
‖β̂t − β∗t−1‖22

≥ g2σmin

16tσ2
max

.

Now consider the case where ‖β̂t−β∗t−1‖22 <
g2

8tσ2
max

. Suppose the adversary plays any λt such that ‖∇ft(β̂t)‖2 ≥ g
(by definition, such a choice is always possible). Here we again split on cases, considering the possible values of

∇ft(β∗t−1)T (β̂t − β∗t−1):

Case 1: ∇ft(β∗t−1)T (β̂t − β∗t−1) ≥ g2σmin

16tσ2
max

Following the same steps as previously, we find the lower bound

ft(β̂t)− ft(β∗t−1) ≥ ∇ft(β∗t−1)T (β̂t − β∗t−1) +
σmin

2
‖β̂t − β∗t−1‖22

≥ ∇ft(β∗t−1)T (β̂t − β∗t−1)

≥ g2σmin

16tσ2
max

.

Case 2: ∇ft(β∗t−1)T (β̂t − β∗t−1) < g2σmin

16tσ2
max

In this case the lower bound follows directly from Lemma 4.

Thus the lower bound is shown in all cases; it follows that

Vt ≥ min
β̂1∈B

max
λ1

. . . min
β̂t−1∈B

max
λt−1

[(
t−1∑
s=1

fs(β̂s)− Ft−1(β∗t−1)

)
+

g2σmin

16tσ2
max

]

= min
β̂1∈B

max
λ1

. . . min
β̂t−1∈B

max
λt−1

[
t−1∑
s=1

fs(β̂s)− Ft−1(β∗t−1)

]
+

g2σmin

16tσ2
max

= Vt−1 +
g2σmin

16tσ2
max

.

Expanding the recursion finishes the proof.

B Proof of Remaining Theorems

Theorem 2. No algorithm can guarantee sublinear regret against bounded affine combinations of a finite set of
strongly convex losses.

Proof. We’ll show that for any algorithm, there exists a sequence of loss functions chosen in response by the
adversary for which the regret is bounded as Ω(T ). Assume the adversary can use coefficients greater than −α.
Define

fe1(β) = β2, fe2(β) = β4 +
1

2α
β2.

On round t, our player will choose to play β ∈ R. We now describe our construction of the tth loss in the
sequence: If |β| < 1, then we choose ft = (1 + α)fe1 − αfe2 , and if |β| ≥ 1, we choose ft = fe1 . In the first case,
the player suffers loss ft(β) ≥ 0, and in the second case, the player suffers loss ≥ 1. Suppose the player plays
the first option a times and the second option b times, for a total of a+ b = T rounds, and suffers ≥ b loss.

Consider the possible best actions in hindsight. If a ≤ T
2 , then β∗ = 0 suffers 0 loss, meaning the player’s regret

is at least b = T − a ≥ T
2 . If, on the other hand, a > T

2 , then note that for any choice β the loss suffered is

−aαβ4 + (a/2 + aα+ b)β2 ≤ aα(β2 − β4) + (a+ b)β2 =
(
aα(1− β2) + T

)
β2.
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Choosing β∗ =
√

1 + 3
α results in regret ≥ T

2 . In either case, the player suffers Ω(T ) regret.

For completeness’s sake, we also include a proof of the existence of a regression task and a set of environments
which could give rise to such a set of loss functions.

Suppose we are regressing labels y ∈ R on observations z ∈ R2 with squared loss. We’ll define our classifier with
a parameter β such that given an observation (z1, z2) we predict β2z1 + βz2.

The first environment will assign all its probability mass to a single example (z1, z2, y) = (0, 1, 0). Thus, if we
choose a parameter β, in this environment we will suffer risk E[(βz2

1 + βz2 − y)2] = β2. This produces the first
environment loss fe1(β) = β2.

We define the second environment as having two possible samples: one is (z1, z2, y) = (0,
√

2α+1
2α , 0) and the other

is (z1, z2, y) = (
√

2α+1
2α , 0, 0). Thus, the first sample induces loss 2α+1

2α β2, and the second induces loss 2α+1
2α β4.

Now for the probabilities: we assign probability 1
2α+1 to the first point and 2α

2α+1 to the second point. Clearly

these sum to 1, and taking the expectation over losses we see that the overall risk is β4 + 1
2αβ

2, as desired.

Theorem 3. Against an oblivious adversary playing bounded affine combinations, achieving sublinear regret is
NP-hard.

Proof. Consider the problem of identifying the maximum size of a stable set of a graph on |V | vertices; such
a problem is not approximable in polynomial time to within a factor |V |(1/2−ε) for any ε > 0 unless NP = P
(H̊astad, 1999; De Klerk, 2008). We will demonstrate that solving this problem up to a constant factor reduces to
achieving sublinear regret on an online strongly convex game with bounded affine coefficients. Let −α represent
the minimum negative coefficient allowed for the adversary. Given the graph G on |V | > 1 vertices, denote by A
its adjacency matrix. Then the maximum stable set size γ(G) can be written 1

γ(G) = minβ∈∆|V | β
T (I + A)β by

a result of Motzkin & Straus (1965). We define a game where the adversary has two functions:

fe1(β) =
1

1 + α
βT (|V |I +A)β, fe2(β) =

|V | − 1

α
‖β‖22.

Note that fe1 is strongly convex because (|V | − 1)I +A is diagonally dominant and therefore PSD. Each round,
the player plays some β ∈ ∆|V |, and the (oblivious) adversary chooses the loss

(1 + α)fe1 − αfe2 = βT (|V |I +A)β − (|V | − 1)‖β‖22 = βT (I +A)β.

Define LT as the loss suffered by the player after T rounds. Clearly, the optimal choice would be to play β such
that βT (I + A)β = 1

γ(G) each round, implying that T
γ(G) ≤ LT and also that regret can be written LT − T

γ(G) .

Suppose there exists a polynomial-time strategy with regret growing sublinearly with T . Then by definition,
there exists a constant T0 ∈ poly(|V |) such that on all rounds T > T0, the player’s regret is upper bounded as

LT −
T

γ(G)
≤ 1

|V |
T ≤ T

γ(G)
=⇒ LT ≤

2T

γ(G)
.

Putting these inequalities together, we get 1
γ(G) ≤

LT
T ≤

2
γ(G) , which implies 1

2γ(G) ≤ T
LT
≤ γ(G). Recall that

this holds for all T > T0, so our polynomial-time algorithm has attained a 2-approximation to the maximum
stable set size.

Theorem 4. Against an oblivious adversary playing bounded affine combinations, the achievable regret is lower
bounded as Ω(

√
T ).

Proof. For a fixed, convex loss ` and convex parameter space Θ, predicting with expert advice is known to have
an information-theoretic minimax regret lower bound of Ω(

√
T ) (Cesa-Bianchi & Lugosi, 2006, Theorem 3.7).

We will give a reduction which demonstrates that the same lower bound holds for bounded affine combinations
of strongly convex losses.
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Assume a fixed convex loss ` : Θ×Θ 7→ R over convex Θ and fix the adversary’s coefficient lower bound as −α.
Suppose on round t, we are presented with E experts’ predictions, which we imagine as an E-dimensional vector
θ̃t whose ith entry is the prediction of the ith expert. Define the following functions over elements δ ∈ ∆E :

fe1(δ, θ∗) =
1

1 + α

[
`(δT θ̃t, θ

∗) + ‖δ‖22
]
, fe2(δ, θ∗) =

1

α
‖δ‖22.

Note that both these functions are both strongly convex in δ. Consider what happens if the adversary plays
(1 + α)fe1 − αfe2 = `. Suppose for the sake of contradiction there exists an algorithm which achieves o(

√
T )

regret with respect to δ∗, defined as the best fixed δ ∈ ∆E in hindsight:

δ∗ := arg min
δ∈∆E

T∑
t=1

`(δT θ̃t, θ
∗).

As this represents a convex combination of the experts’ predictions, it is clear that the loss suffered by δ∗ will
be less than or equal to the loss suffered by the best expert. This implies that by taking this algorithm’s choice
δ̂t each round and playing δ̂Tt θ̃t, we will achieve o(

√
T ) regret with respect to the best expert, defying the known

lower bound. It follows that the lower bound of Ω(
√
T ) holds even for bounded affine combinations of strongly

convex functions.

C Lemmas

Lemma 1. Recall Re(β) is defined as the risk of β on the distribution pe. For all λ ∈ ∆E, it holds that
Rλ(β) =

∑
e∈E λeRe(β).

Proof. Using Fubini’s theorem, we have

Rλ(β) =

∫
X×Y

[∑
e∈E

λep
e(x, y)

]
`(β, (x, y)) d(x, y)

=
∑
e∈E

λe

∫
X×Y

pe(x, y)`(β, (x, y)) d(x, y)

=
∑
e∈E

λeRe(β).

Lemma 2. For any Ft =
∑t
s=1 ft, there exist convex coefficients λ̂ such that

Ft = t
∑
e∈E

λ̂efe.

Proof. Every loss function ft can be written as a convex combination of the original environment losses:

ft =
∑
e∈E

λt,efe.

So, write

Ft =

t∑
s=1

ft =

t∑
s=1

∑
e∈E

λt,efe =
∑
e∈E

(
t∑

s=1

λt,e

)
fe.

Clearly,
∑
e∈E

(∑t
s=1 λt,e

)
= t. So, defining λ̂e := 1

t

(∑t
s=1 λt,e

)
gives the desired result.

Lemma 3. For any solution β∗t−1 which minimizes the sum of previously seen losses Ft−1, there exists a convex
combination of losses ft playable by the adversary for which ∇ft(β∗t−1) = 0.
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Proof. By Lemma 2, we can write Ft−1 = (t − 1)
∑
e∈E λ̂efe for some convex coefficients λ̂. Define ft =∑

e∈E λ̂efe = 1
t−1Ft−1. Since β∗t−1 minimizes Ft−1 it follows that

∇ft(β∗t−1) =
1

t− 1
∇Ft−1(β∗t−1) = 0.

Lemma 4. Let β̂t, λt be such that ‖β̂t − β∗t−1‖22 <
g2

8tσ2
max

and ‖∇ft(β̂t)‖2 ≥ g. Define z := β∗t−1 − c∇ft(β̂t),

where c := 1/2tσmax. If ∇ft(β∗t−1)T (β̂t − β∗t−1) < g2σmin

16tσ2
max

, then

ft(β̂t)− ft(z)−
(t− 1)σmax

2
‖z − β∗t−1‖22 ≥

g2σmin

16tσ2
max

.

Proof. Expanding ft around β̂t,

ft(β̂t)− ft(z) ≥ −∇ft(β̂t)T (z − β̂t)−
σmax

2
‖z − β̂t‖22,

which gives

ft(β̂t)− ft(z)−
(t− 1)σmax

2
‖z − β∗t−1‖22

≥ ∇ft(β̂t)T (β̂t − z)−
σmax

2

(
‖z − β̂t‖22 + (t− 1)‖z − β∗t−1‖22

)
= ∇ft(β̂t)T (β̂t − β∗t−1 + c∇ft(β̂t))−

σmax

2

(
‖β∗t−1 − β̂t − c∇ft(β̂t)‖22 + (t− 1)‖c∇ft(β̂t)‖22

)
. (4)

By the triangle inequality,

‖β∗t−1 − β̂t − c∇ft(β̂t)‖2 ≤ ‖β∗t−1 − β̂t‖2 + c‖∇ft(β̂t)‖2,

and therefore

1

2
‖β∗t−1 − β̂t − c∇ft(β̂t)‖22 ≤ ‖β∗t−1 − β̂t‖22 + c2‖∇ft(β̂t)‖22.

Continuing with the lower bound in Equation 4,

≥ ∇ft(β̂t)T (β̂t − β∗t−1) + c‖∇ft(β̂t)‖22 − σmax

(
‖β∗t−1 − β̂t‖22 + c2‖∇ft(β̂t)‖22

)
− (t− 1)σmaxc

2

2
‖∇ft(β̂t)‖22

≥ ∇ft(β̂t)T (β̂t − β∗t−1) +

(
c− 1

8tσmax
− (t+ 1)c2σmax

2

)
‖∇ft(β̂t)‖22,

where we’ve used the upper bound on ‖β∗t−1 − β̂t‖22 and simplified. Recalling that c = 1
2tσmax

and noting that
t+1
t2 ≤

2
t ,

= ∇ft(β̂t)T (β̂t − β∗t−1) +

(
1

2tσmax
− 1

8tσmax
− (t+ 1)

8t2σmax

)
‖∇ft(β̂t)‖22

≥ ∇ft(β̂t)T (β̂t − β∗t−1) +
‖∇ft(β̂t)‖22

8tσmax

≥ ∇ft(β̂t)T (β̂t − β∗t−1) +
g2

8tσmax
.

By strong convexity,

(∇ft(β∗t−1)−∇ft(β̂t))T (β∗t−1 − β̂t) ≥ σmin‖β∗t−1 − β̂t‖22,
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and therefore

∇ft(β̂t)T (β̂t − β∗t−1) ≥ σmin‖β∗t−1 − β̂t‖22 −∇ft(β∗t−1)T (β̂t − β∗t−1)

> − g2σmin

16tσ2
max

,

where the second inequality is due to the assumption in the Lemma statement. Plugging this in above gives

∇ft(β̂t)T (β̂t − β∗t−1) +
g2

8tσmax
> − g2σmin

16tσ2
max

+
g2

8tσmax

≥ g2σmin

8tσ2
max

− g2σmin

16tσ2
max

=
g2σmin

16tσ2
max

,

completing the proof.
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