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Abstract

Topological sorting1 is an important tech-
nique in numerous practical applications,
such as information retrieval, recommender
systems, optimization, etc. In this paper,
we introduce a problem of generalized topo-
logical sorting with maximization of choice,
that is, of choosing a subset of items of a
predefined size that contains the maximum
number of equally preferable options (items)
with respect to a dominance relation. We for-
mulate this problem in a very abstract form
and prove that sorting by k-Pareto optimality
yields a valid solution. Next, we show that
the proposed theory can be useful in prac-
tice. We apply it during the selection step
of genetic optimization and demonstrate that
the resulting algorithm outperforms existing
state-of-the-art approaches such as NSGA-II
and NSGA-III. We also demonstrate that the
provided general formulation allows discover-
ing interesting relationships and applying the
developed theory to different applications.

1 INTRODUCTION

In the modern era of information overload, the task of
choosing a subset of the most useful items is extremely
important. Various tools were developed with the aim
to assist a user with this task, for example, text search
engines [Croft et al., 2010] and recommender systems

1Topological sorting [E.Knuth, 1997] here means the
process of sorting a set of items with respect to a pref-
erence or dominance relation. We use the terms preference
and dominance interchangeably.
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[Resnick and Varian, 1997]. In most of the cases, such
systems suggest to the user a small set of elements2.
Thereby, if the number of equally preferable options
is large, a heuristic is used to discard a fraction of
them. However, in some applications the user might
be willing to analyze all equally preferable options with
the aim to choose the best one. This can happen, for
example, in the case of choosing a habitation.

A similar problem of choosing a subset of most prefer-
able elements also arises as an important step when
solving various practical tasks. A straightforward ex-
ample would be the selection step in genetic optimiza-
tion algorithms [Mitchell, 1998]. At this step, a subset
of the current population is chosen to advance to the
next generation. Having the chosen subset made up of
elements with large fitness values guides the evolution
process in the desired direction. At the same time,
selecting a subset with the largest variety of genes en-
sures variability of characteristics and allows faster ex-
ploration of the search space.

These examples bring us to the problem of generalized3

topological sorting with choice maximisation which we
also refer to as maximum choice problem. This prob-
lem aims to choose a subset of a predefined maximum
size, consisting of most preferable items and contain-
ing the largest number of equally preferred elements4.
To the best of our knowledge, this problems has not
yet been studied in the literature. In this text, we
propose a theoretical solution to the maximum choice
problem and demonstrate how both the problem and
its solution can be applied in practice.

The contributions of this work are the following:

1. We formulate the maximum choice problem in a
broad sense for arbitrary elements, preference re-

2We use the terms item and element interchangeably.
3Later we show that the formulated problem is a gen-

eralization of topological sorting. In the case of a partial
order relation, standard topological sorting is considered.

4If items are equally preferable, then we say that they
offer choice for the user or the system.
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lations R, and measures µ indicating the set sizes,
see Section 2.

2. We propose a solution based on the concept of k-
Pareto optimality, whose definition relies on the
relation R, see Section 3.

3. We further investigate the proposed solution from
the theoretical point of view and discover inter-
esting characteristics, such as the relationship be-
tween k-Pareto optimal elements and the arc of
hyperbola, see Section 4.

4. Finally, we demonstrate the applicability of our
approach to real-world problems by considering
genetic optimization, see Section 5.

2 SORTING WITH CHOICE
MAXIMIZATION

To formally define the problem of maximization of
choice, we introduce several definitions in Sections 2.1
and 2.2. The resulting formalization is abstract and
quite general. However, this generality allows discover-
ing novel connections and applying the developed the-
ory to numerous practical problems. We also illustrate
the defined concepts with an example in Section 2.3.

2.1 Definitions

We consider a set X with a binary relation R. Intu-
itively xRy means that x is preferable to y. The case
xRy and not yRx means that x is strictly preferable
to y. This situation is denoted by xR∗y. We also
consider a positive and σ-finite measure µ [Halmos,
2013] defined on X. Thus, we have a measure space
(X,Σ, µ), where Σ is a set of subsets of X, and µ in-
tuitively indicates the size of these subsets. To ensure
measurability, throughout this text the characteristic
function 1R of the relation R is assumed to be suf-
ficiently regular5. The measure µ can be defined in
different ways. Important examples are the counting
measure and probability measure P . Depending on the
definition of µ, it can indicate the following character-
istics of the elements in X: how many?, how likely?,
how important?, or what volume?

To illustrate these definitions, we consider the follow-
ing example. Let X be a set of possible habitations
of which the user has to choose the best according to
his preferences encoded by the relation R. In such a
situation, the relation R can be multidimensional. Let
us assume, for simplicity, that an optimal habitation
for the user is close to a given location, for example,
his workplace (relation Rl), is situated in a district

51R is equal to 1 if xRy and is equal to 0 otherwise.

with a smaller population size (relation Rp), and is
close to a river (relation Rr). Thus, the user’s pref-
erences can be represented by the preorder relation
R = Rl&Rp&Rr. In our example, all available habi-
tations from X can be mapped onto points in a 3-
dimensional space of Proximity to the location × Pop-
ulation × River. The fact that R is a preorder rela-
tion means that some elements of X can be compara-
ble, while others not. For example, the habitation x
with coordinates (50, 100, T rue) is strictly preferable
to y with coordinates (60, 100, T rue), that is xR∗y.
At the same time, the habitation z with coordinates
(40, 100, False) is incomparable with x. Indeed, z is
better with respect to Rl, it is situated closer to the
required location, but x is better with respect to Rr,
as the latter is situated near a river.

Having the task to find a subset of X that is ‘best’
according to R, a rational solution can be formulated
with the following recursive expression: if an element
x is selected, then all elements that are strictly prefer-
able to x should be also selected. In our example, this
translates into the task of finding a subset of habita-
tions SR that might be suitable for the user. Naturally,
if y ∈ SR, then x ∈ SR as the latter corresponds better
to the preferences of the user defined by the relation
R. We formalize this rationality condition by defining
selections as follows.

Definition 1. A selection S is a subset of X such
that x ∈ S and yR∗x implies y ∈ S. The set of all
selections in Σ is denoted by S

If R is a partial order relation, then the selections are
the down-sets [Davey and Priestley, 2002]. A selection
of size n is obtained by taking the n best items accord-
ing to a linear extension of R. The number of linear
extensions of a relationship is often very large.

2.2 The Maximum Choice Problem

As discussed in Section 1, in practical applications
when selecting a subset of X one might want not only
to respect the above rationality constraint, but also to
maximize the number of incomparable pairs. The lat-
ter condition is equivalent to the maximization of the
diversity of the selected subset, or the maximization of
the provided choice. In our example with habitations,
if both x and z are presented to the user, then he can
choose an appropriate habitation by himself6.

In terms of our notations, this will be translated into
the condition of selecting as many pairs x, y such that
neither x is strictly preferable to y (¬xR∗y) nor y is
strictly preferable to x (¬yR∗x). This means that

6We consider the case when addition preferences cannot
be encoded and the user has to make the final choice.
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there is freedom of choice between x and y (xRy =
yRx). This motivates the following quantitative defi-
nition of choice for measurable subsets of X.

Definition 2. Choice offered by a set A is the number
cho(A) = (µ × µ)({(x, y) ∈ A2|xRy = yRx}), where
(µ× µ) is the product measure [Halmos, 2013].

The choice offered by a measurable set A essentially
measures how many pairs of items offering choice can
be extracted from A. Additionally, if one wants to
restrict the size of the selected subset, in our example,
to present to the user a small set of suitable habitations
with µ(SR) ≤ m, then this leads us to the definition
of the maximum choice problem:

Maximum Choice Problem. For a given m find
all selections T such that cho(T ) = max

S∈S,µ(S)≤m
cho(S).

Any such T is said to offer maximum choice for m.

The main ingredient of our solution to the maximum
choice problem is the following concept.

Definition 3. k-Pareto optimality7 of an element x ∈
X is the measure of the subset of X containing all el-
ements strictly preferable to x: po(x) = µ({y|yR∗x}).

If µ is the probability measure, the k-Pareto optimality
of an element x, po(x), is the likelihood an element
drawn at random from X is strictly preferable to x.
In Section 3, we demonstrate that the following sets
yield a solutions for the maximum choice problem.

Definition 4. The at least k-Pareto optimal elements
Tk form the measurable set defined as follows:
Tk = {x ∈ X|po(x) ≤ k}.

If R∗ is transitive, then for any k, Tk is a selection.

2.3 Example

In this subsection, we discuss an illustrative example
to demonstrate the concepts defined in Sections 2.1
and 2.2. Let us consider a finite subset X of R2, the
counting measure µ, and the relation R⌞ defined as
follows: (x1, x2)R⌞(y1, y2) iff x1 ≤ y1 and x2 ≤ y2, see
Fig. 18. In economics, x is Pareto optimal if there is
no y in X such that yR∗

⌞x. In our language, this means
that po(x) = 0. Thus, k-Pareto optimality indicates
how much an element is away from being Pareto opti-
mal.

Let X be comprised of six points presented in Fig. 2.
As we are considering the counting measure, µ(X) = 6.
Points A, B, and C are not dominated by any other

7The value of k is directly used only in Def. 4. However,
we keep it for consistency of the developed theory.

8See Appendix A for examples with other measures and
relations.
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For a given point x
and an arbitrary y′

situated in the shaded
area, x and y′ are in-
comparable and thus
offer choice.
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Figure 1: Illustration of the relation R⌞.
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Figure 2: Computation of Pareto-optimality. Example
of a finite subset of R2, the counting measure, and R⌞.

point. This means that po(A) = µ({y|yR∗A}) = 0 and
po(B) = po(C) = po(A) = 0. Point E is dominated
by a single point C, that is po(E) = µ({C}) = 1.
Finally, points F and D are dominated by two other
points each, resulting in po(F ) = µ({C,E}) = 2 and
po(D) = µ({A,B}) = 2.

Sorting the set X by k-Pareto optimality of
its elements will produce the following result:
({A,B,C}, {E}, {D,F}). This sorting is different
from sorting by Pareto fronts. The latter approach
is widely used in practice and is the basis of all Pareto
dominance-based genetic optimization algorithms [Li
et al., 2015]. Sorting by Pareto fronts is done in the
following way. First, the first Pareto front, which is
the set of non-dominated points, is identified. Next,
the points from this front are removed from the con-
sideration and the process is repeated until all points
are assigned to a front. Sorting the points from
Fig. 2 by Pareto fronts will produce the following re-
sult: ({A,B,C}, {D,E}, {F}). Note, that the pointD
moved from the 3d equivalence class when sorting by
k-Pareto optimality to the 2d when sorting by Pareto
fronts. Let us consider the two selections of size 4:
SE = {A,B,C,E} and SD = {A,B,C,D}. Sorting
by Pareto fronts does not distinguish between these
two selections as both E and D belong to the same
equivalence class. At the same time, sorting by k-
Pareto optimality has a larger preference towards SE .
Also, the latter selection contains more incomparable
pairs of elements and thus offers more choice. Indeed,
D is incomparable with only one point C, but E is
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incomparable with two points: A and B9.

For the counting measure and a discrete space, sort-
ing by k-Pareto optimality is identical to sorting by
dominance rank [Liefooghe et al., 2009]. This sorting
procedure was studied in genetic optimization [Reyes-
Fernández-de Bulnes et al., 2019]. However, to the
best of our knowledge, it was never considered beyond
this setting. Also, its relation to the maximum choice
problem is novel.

3 MAXIMUM CHOICE THEOREM

The main result of this text states that at least k-
Pareto optimal elements (Tk) are the largest measur-
able selections offering maximum choice for their re-
spective measures. In Section 3.1, we state and prove
the maximum choice theorem, and in Section 3.2 we
discuss further solutions.

3.1 Theorem and Proof

Theorem 1 (Maximum Choice Theorem). A set of
at least k-Pareto optimal elements Tk offers maximum
choice for µ(Tk) if it is a selection and if µ(Tk) < +∞.
Moreover, Tk is the largest selection offering maximum
choice for µ(Tk) in the sense that it contains any other
selection offering maximum choice for µ(Tk).

The second part of the above theorem precisely means
that if a selection A offers maximum choice for µ(Tk) <
+∞, then A ⊆ Tk almost-everywhere. The above the-
orem does not state that the at least k-Pareto optimal
elements are the only largest selections offering maxi-
mum choice. Later, we give an example of a fundamen-
tally different selection offering maximum choice for a
value of m where there is no such k that µ(Tk) = m.

We prove the above theorem in several steps. First,
we show that for selections the computation of choice
can be simplified. It only requires to compute a simple
integral instead of a double integral.

Integral Formula. If S is a measurable selection and
µ(S) < +∞, then

cho(S) =

∫
S

(µ(S)− 2 po(x))dµ(x). (1)

Proof. The fact that set S is a selection means that
∀y ∈ S : {x ∈ S|xR∗y} = {x ∈ X|xR∗y}. That is, any
element x from X strictly preferable to any element y
in S, also belong to S (x ∈ S). Using the definition of

9The difference between sorting by k-Pareto optimality
and Pareto fronts is further discussed in Appendix B.

choice from Def. 2 and µ(S) < +∞, we obtain

cho(S) = µ(S)2 − 2(µ× µ)({(x, y) ∈ S2|xR∗y})
= µ(S)2 − 2(µ× µ)({(x, y) ∈ S ×X|yR∗x}).

Fubini’s theorem [Halmos, 2013] indicates that

(µ×µ)({(x, y) ∈ S ×X|yR∗x} =

=

∫
S

(∫
X

1R∗d(µ(y))

)
dµ(x) =

∫
S

po(x)dµ(x),

where 1R∗ is the characteristic function of R∗10.

Finally, the integral formula results from the fact that
µ(S)2 − 2

∫
S
po(x)dµ(x) =

∫
S
(µ(S) − 2 po(x))dµ(x).

Let’s now consider the function c defined on Σ for any
A of finite measure by

c(A) =

∫
A

(µ(A)− 2 po(x))dµ(x).

The integral formula defined in Eq. (1) means that for
any selection S, we have c(S) = cho(S). The second
step of our proof of Theorem 1 is to show that Tk

is the largest measurable set that maximizes c for its
respective measure. We prove the following lemma.

Lemma 1. For any k such as µ(Tk) < +∞ we have

c(Tk) = max
A∈Σ,µ(A)≤µ(Tk)

c(A).

Moreover, if µ(A) ≤ µ(Tk) and c(A) = c(Tk), then
A ⊆ Tk almost-everywhere.

The context of this lemma is very similar to the knap-
sack problem [Martello, 1990]. In this problem, one
needs to find a subset A of a finite set of items
{x1, ..., xn} maximizing the total value Σxi∈Av(xi) un-
der the constraint that the total weight Σxi∈Aw(xi) of
A does not exceed a predefined maximum weight w∗.
In Lemma 1, the total value is c(A), the ratio of an ele-
ment’s value to its weight becomes µ(A)−2 po(x), and
the weight constraint is expressed as µ(A) ≤ µ(Tk).
The solutions given by the lemma correspond to those
yielded for the knapsack problem by George Dantzig’s
greedy approximation algorithm [Dantzig, 1957]. This
algorithm consists of ordering elements by decreasing
value-to-weight ratio and then taking the N first el-
ements. N is chosen in such a way, that taking one
more element would cause excessive weight. The pro-
cess of proving Lemma 1 is similar to proving that
George Dantzig’s solutions are optimal for their re-
spective weights.

101R∗ is defined on X2 in a similar way to 1R: it is equal
to 1 if xR∗y and is equal to 0 otherwise.
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Proof of Lemma 1. Let’s consider Tk such that
µ(Tk) < +∞. To prove c(Tk) is the maximum, we
need to show for any A ∈ Σ, that c(A) ≤ c(Tk) if
µ(A) ≤ µ(Tk). As A = (A ∩ Tk) ∪ (A \ Tk) and
Tk = (A ∩ Tk) ∪ (Tk \ A), requiring c(A) ≤ c(Tk) is
equivalent to requiring∫
A\Tk

(µ(A)−2 po(x))dµ(x) ≤
∫

Tk\A

(µ(Tk)−2 po(x))dµ(x).

(2)
By definition of Tk, we have that po(x) > k for x ∈
A \ Tk, while po(x) ≤ k for x ∈ Tk \A. Therefore,∫
A\Tk

(µ(A)− 2 po(x))dµ(x) ≤ µ(A \ Tk)(µ(A)− 2k),

(3)

and∫
Tk\A

(µ(Tk)− 2 po(x))dµ(x) ≥ µ(Tk \A)(µ(Tk)− 2k).

(4)

The constraint µ(A) ≤ µ(Tk) means that µ(A \ Tk) ≤
µ(Tk \A). Thus, we have

µ(A \ Tk)(µ(A)− 2k) ≤ µ(Tk \A)(µ(Tk)− 2k). (5)

Finally, combining Eq. (5) with Eq. (3) and Eq. (4)
guarantees the inequality in Eq. (2) under the con-
straint µ(A) ≤ µ(Tk).

Let us now consider A ∈ Σ such that µ(A) ≤ µ(Tk)
and c(A) = c(Tk). We now proceed to show that
A ⊆ Tk almost everywhere. If c(A) = c(Tk), the in-
equality in Eq. (2) must be an equality. Under the
assumption µ(A) ≤ µ(Tk), we again have the inequal-
ities in Eq. (3), Eq. (4) and Eq. (5), which must be
equalities if Eq. (2) is an equality. However, because
po(x) > k for x ∈ A \Tk, the inequality in Eq. (3) can
only become an equality if µ(A \ Tk) = 0.

Now everything is in place to prove the theorem.

Proof of Theorem 1. Let us first prove that the at
least k-Pareto optimal elements Tk offer maximum
choice. Lemma 1 says that on Σ the set Tk maximises
c for its respective measure. We assumed Tk is a selec-
tion. At the same time, for any selection c = cho. It
means that Tk offers maximum choice for its respective
measure. Moreover, from Lemma 1 and from S ⊆ Σ
directly results that if a selection A offers maximum
choice for µ(Tk), then A ⊆ Tk almost everywhere.

Uniqueness and transitivity. The theorem does
not guarantee uniqueness. For example, in the case of

the relation ≤ on R and the Lebesgue measure, selec-
tions are all left-unbounded intervals and the choice of
any selection is 0. However, if for any selection

A ⊂ Tk & µ(A) < µ(Tk) =⇒ cho(A) < cho(Tk), (6)

then Tk is a unique maximum. This is a direct conse-
quence from the fact that Tk contains any other selec-
tion offering maximum choice for µ(Tk) < +∞.

The theorem requires the set Tk only to be a selec-
tion. If R is transitive, then Tk is always a selection.
The set Tk already fulfills the requirement of being
selection if R∗ satisfies the weakened transitivity con-
dition xR∗y =⇒ po(x) ≤ po(y). This is the case for
Lebesgue area measure and the non-transitive relation
R⌞′ defined on the unit square by (x1, x2)R⌞′(y1, y2)
iff y1

2 ≤ x1 ≤ y1 and y2

2 ≤ x2 ≤ y2.

3.2 Further Solutions

Further similar solutions. It is possible to prove
that Theorem 1 also holds for T ∗

k defined with a strict
inequality (<) as follows, see Def. 4 for comparison.

T ∗
k = {x ∈ X|po(x) < k}.

In this case, the proof of the fact that T ∗
k is the largest

in Lemma 1 requires analysis of inequality (4) instead
of inequality (3). However, the proof of the fact that
any selection T such that T ∗

k ⊆ T ⊆ Tk offers max-
imum choice for µ(T ) becomes a bit more technical.
Moreover, it is possible to prove that T is the largest
selection of this kind. Precisely, for any other selec-
tion S offering maximum choice for µ(T ), one must
have that S ⊆ T ′ for some T ′ such that µ(T ′) = µ(T )
and T ∗

k ⊆ T ′ ⊆ Tk.

Completeness. In the case condition from Eq. (6)
holds, and if for any selection S there is a k and
there are selections T such that T ∗

k ⊆ T ⊆ Tk and
µ(T ) = µ(S), then those selections T are the only se-
lections offering maximum choice. Therefore, we have
a complete list of selections offering maximum choice.
This is the case for the typical example of the rela-
tion R⌞ defined in Section 2.3 and the Lebesgue area
measure defined on the unit square [0, 1]2. This case
is further studied Section 4.

The above ideas also apply to any finite set on which
we have a partial order relation and discrete non-zero
weights. Topological sorting by increasing values of po
and then taking the first N elements yields a set offer-
ing maximum choice. If there are several ties, that is if
Tk\T ∗

k contains several elements, then finding all sets T
of the allowed maximum measure such as T ∗

k ⊂ T ⊂ Tk

means solving the generally NP-complete subset-sum
problem. If, however, the weights are constant, any
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• (1, 1) • (1, 1)

• (1, 0)•(4, 0)
S

Figure 3: S is a selection that offers maximum choice
but cannot be constructed from Tk. Point are encoded
with their measure and k-Pareto optimality: (µ,po).

set offering maximum choice can be obtained using
the above sorting procedure; with ties being ordered
in an arbitrary way.

Existence of solutions of a different nature.
For discrete measures with non-constant weights the
above construction might not yield all selections offer-
ing maximum choice. A relative example is given in
Fig. 3, where partial order relation is represented by
its Hasse diagram [Davey and Priestley, 2002]. The
set S is not of the form T ∗

k ∪ A with A ⊆ Tk \ T ∗
k .

Nevertheless, it offers maximum choice for m = 3.

4 THEORETICAL EXPLORATIONS

The developed theory is very general as there are no
restrictions on X and µ, and R only needs to ful-
fill a weakened transitivity condition. This makes it
applicable to both discrete and continuous examples.
In this section, we further investigate the theoretical
properties of sorting by k-Pareto optimality. We focus
on the relation R⌞ defined on R2. This is done to gain
an intuitive understanding in this familiar setting from
the point of view of geometry and probability theory.
The theoretical analysis presented in this section will
be extended in future work to less familiar settings,
for example, the subgraph relation defined on a set of
graphs.

This section is structured as follows. First, we demon-
strate the link between k-Pareto-optimality and the
concept of diversity in Section 4.1. Next, in Sec-
tion 4.2, we analyze the continuous case and show how
the developed theory can provide a surprising charac-
terization of the arc of a hyperbola. In Section 4.3,
we continue with the case of continuous random vec-
tors and compare our sorting method with other well-
known ways of topologically sorting R2. Finally, in
Section 4.4, we discuss how the analysis of continuous
probabilistic examples can be used in practice.

4.1 Diversity

Choice turned out to be a natural concept when de-
veloping the above theory and proving Theorem 1. In
practical applications, however, it can be more insight-

x

y

x1x2 = 1
5

(0, 0)

(1, 1)

x1

x
2

(a) x and y offer choice.

xy

Tmax
2
5

(0, 0)

(1, 1)

x1

x
2

(b) y is preferable to x.

Figure 4: Characterization of hyperbola.

ful to consider the following concept.

Definition 5. For any measurable set A, the diversity
of A is the ratio

div(A) =
cho(A)

µ(A)2
.

Thus, div(A) is the likelihood there is choice between
two elements chosen at random from A.

In Theorem 1, we cannot simply replace choice with
diversity. However, by considering only selections of a
fixed measure, we obtain the following straightforward
corollary of Theorem 1.

Corollary 1. For any set of at least k-Pareto optimal
elements Tk that is a selection with µ(Tk) < +∞, we
have

div(Tk) = max
S∈S,µ(S)=µ(Tk)

div(S).

Moreover, Tk is the unique such maximum. Pre-
cisely, if S is a selection such that µ(S) = µ(Tk), and
div(S) = div(Tk), then S = Tk almost everywhere.

4.2 Characterisation of the Hyperbola

Let us consider X to be the unit square [0, 1] × [0, 1]
on which we have the Lebesgue area measure and
the relation R⌞. For any point x = (x1, x2) in X,
the k-Pareto optimality of x is the area of the rect-
angle ((0, 0), (x1, 0), x, (0, x2)). Thus, po(x) = x1x2

and the at least k-Pareto optimal elements are situ-
ated below the hyperbola x1x2 = k. Selections are
sets situated below any decreasing curve, for exam-
ple, the hyperbola x1x2 = 1

5 and the curve defined by
max(x1, x2) = 2

5 , see Fig. 4. Having choice between
x with coordinates (x1, x2) and y with coordinates
(y1, y2) means the rectangles ((0, 0), (x1, 0), x, (0, x2))
and ((0, 0), (y1, 0), y, (0, y2)) are not nested, as de-
picted in Fig. 4a. Combining this fact with Corollary 1
yields the following surprising characterization of the
hyperbola.
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Characterization of Hyperbolas. Out of all de-
scending functions f from [0, 1] to [0, 1] delimiting

an area
∫ 1

0
f(x)dx = c, the arc of hyperbola is

the one offering the highest likelihood the rectangles
((0, 0), (x1, 0), x, (0, x2)) and ((0, 0), (y1, 0), y, (0, y2))
are not nested for two points x and y being drawn in-
dependently and at random from the delimited area.

4.3 Choice and Aggregation of Ranks

Let’s consider a continuous random vector (X1, X2).
According to the standard notation, values taken by
(X1, X2) will be written in lower case, for example
(x1, x1) or (y1, y2). Let us again consider R⌞ giving
precedence to smaller values of X1 and X2.

Continuity means P (po((x1, x2)) = po((y1, y2))) = 0.
Thus, the function po can be considered to be a linear
extension of R⌞. On the other hand, in the case of
independence between X1 and X2 the diversity of the
whole probability space is 1

2 . This means, that only in
half of the cases R⌞ can directly tell which of the two
randomly chosen elements is preferable.

In Appendix B.2, we show that k-Pareto optimal-
ity, choice, diversity and selections offering maximum
choice only depend on the copula of (X1, X2), which
describes the dependence structure between X1 and
X2, see Proposition 2. Moreover, po((x1, x2)) is the
joint cumulative probability distribution function of
the random vector (X1, X2). In probability theory
the uniform distribution on the unit square from Sec-
tion 4.2 is the copula of any two continuous indepen-
dent random variables. Then, x1 and x2 represent
the ranks of two independent characteristics, and sort-
ing by k-Pareto optimality means sorting by increasing
value of the product x1x2.

Assuming X1 and X2 are independent, and using the
change of variable formula from Proposition 1 (Ap-
pendix B.1), we show in Proposition 3 (Appendix B.2)
that for at-least k-Pareto optimal elements Tk

P (Tk) = k − k ln(k),

cho(Tk) = (k − k ln(k))2 − k2
(
1

2
− ln k

)
.

This implies that limk→0 div(Tk) = 1. It means that
diversity slowly tends to the maximum possible value
of 1 as k tends to zero. This fact becomes even more
surprising when comparing to other methods of ag-
gregating ranks that yield linear extensions of R⌞, for
example, minimum rank, maximum rank and mean
rank. Let us look at the corresponding selections

Tmin a = {(x1, x2) ∈ [0, 1]2|min(x1, x2) ≤ a},
Tmax a = {(x1, x2) ∈ [0, 1]2|max(x1, x2) ≤ a}.
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Figure 5: Selections of the best 40% according to dif-
ferent sorting criteria.
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Figure 6: Fraction of the best elements and diversity.

Here, lima→0 div(Tmin a) =
3
4 , and div(Tmax a) =

1
2 . To

further illustrate this observation, let us consider se-
lections of a fixed measure m, which represent the best
m∗100% of elements, defined with different sorting cri-
teria: minimum min(x1, x2), maximum max(x1, x2),
average x1+x2

2 , and Pareto optimality x1x2
11. As we

can see in Fig. 5, min(x1, x2) delimits selections con-
taining too many large values, that is, extremes are
overvalued. On the other hand, all other sorting cri-
teria except po undervalue extremes and include too
many elements situated around the diagonal x1 = x2.

Finally, in Fig. 6 we demonstrate how diversity of the
selections defined above depends on the fraction of se-
lected elements m12. We can see that diversity is the
largest when sorting by k-Pareto optimality. This is a
direct consequence of Corollary 1.

4.4 Limiting Behaviour and Probabilistic
Framework

The continuous probabilistic examples considered in
Sections 4.2 and 4.3 might seem unpractical and inter-
esting only from the theoretical point of view. How-

11Here, po is functionally related to geometric mean.
12In the considered case, for any selection S, cho(S) =

dx1dx2(S)
2 −

∫
S
po(x)dx1dx2.
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ever, such a case may arise if we have a very large pop-
ulation that can be approximated by a continuous dis-
tribution. Then, in real-world applications, one may
use the best adapted parametric and non-parametric
statistical methods to estimate k-Pareto optimality.
This is the idea behind the approximation algorithm
presented in Section 5.1 and the computationally effi-
cient approximation formula in Eq. (7).

Moreover, measure theoretic concepts can be used to
formulate and prove convergence of k-Pareto optimal-
ity, choice and selections as the population becomes
larger and its distribution converges to a continuous
distribution. On the other hand, topological sorting
by Pareto fronts demonstrates unstable behaviour, as
shown in Appendix B.3: it is more sensitive to the
precise way points are placed on the plane. In the last
example of this section, we also show how the selec-
tions obtained via sorting by Pareto fronts can diverge
even when the selections obtained via sorting by k-
Pareto optimality converge to the arcs of hyperbola
obtained in Section 4.2.

5 PRACTICAL EXPLORATIONS

In this section, we discuss computational complex-
ity of sorting by k-Pareto optimality, see Section 5.1,
and demonstrate how the proposed theory can be
used to improve the performance of genetic optimiza-
tion algorithms, see Section 5.2. Further, in Ap-
pendix C, we discuss other potential applications, such
as statistical tests (Appendix C.2), recommender sys-
tems (Appendix C.3), constrained genetic optimiza-
tion (Appendix C.4), exploratory database queries
(Appendix C.5), and scheduling (Appendix C.6).

5.1 Computation Complexity

A common solution for ranking n elements of a set
X according to a partial order relation R is to rank
the elements according to their average ranking with
respect to all linear extensions of R. However, the to-
tal number of linear extensions exponentially increases
with n, and the resulting algorithms are complex and
slow [de Loof, 2010, p. 48]. For example, random
sampling of linear extensions has an expected running
time of O(n3 log n) [Huber, 2006]. Below we show that
sorting by k-Pareto optimality offers an efficient alter-
native.

The basic algorithm for the k-Pareto optimality based
sorting is straightforward. In the case of an arbitrary
relation R, po(x) is computed by summing up the mea-
sures of the items that are strictly preferable to x. This
requires one pass through the whole set X for every
element x ∈ X with computation complexity O(n2).

The complexity of sorting X by increasing values of po
is O(n log n). Therefore, the total complexity is O(n2).

The case of composite relations defined on the proba-
bility space allows constructing even faster sorting pro-
cedures. We illustrate this idea for R = Rl&Rp&Rr

from our housings example. We define the compo-
nent relations as follows: for i ∈ {l, r, p}, aRib iff
Xi(a) ≤ Xi(b), where the real valued random variable
Xl represents proximity to the location, Xp represents
population size, and Xr(x) is 0 when x is close to a
river and 1 otherwise. For independent Xi, we have:

po(x) = P ({y|yR∗x}),
= P ({y|yRx})− P ({y|yRx andxRy}),

=
∏

i∈{1,...,m}

P (Xi ≤ xi)−
∏

i∈{1,...,m}

P (Xi = xi). (7)

The cumulative probability distributions Fi(x) =
P (Xi ≤ x) can be approximated by the respective em-
pirical cumulative probability distributions F̂i(x). The
computation complexity of estimating F̂i is O(n log n).
This needs to be done for every component relation Ri,
resulting in the total complexity of O(n log n).

5.2 Application to Genetic Optimization

In Section 1, we hypothesized that sorting with choice
maximization can be beneficial for genetic optimiza-
tion. Indeed, this strategy results in the maximiza-
tion of the population diversity and allows exploring
the search space more efficiently. Additionally, Pareto
dominance-based many-objective13 genetic optimiza-
tion algorithms are known to suffer from the lack of
selection pressure [Palakonda et al., 2018]. When the
number of objectives increases, the number of incom-
parable solutions grows exponentially. However, as
shown in Section 4.3, sorting random independent vec-
tors by their Pareto optimality can be considered as
a linear extension of the defined preference relation.
The fact that P (po(x) = po(y)) = 0 means that such
sorting rarely produces ties and for any two solutions
either x is preferable to y or vice versa. In the rest
of this subsection, we demonstrate that the proposed
approach indeed improves the performance of genetic
algorithms in the case of independent objectives.

To evaluate the proposed sorting procedure, we use it
in NSGA-II instead of Pareto dominance-based sort-
ing. We experiment with two measures µ: count-
ing and probability measures. This gives us two ver-
sions of genetic algorithms referred to as PO-count and
PO-prob respectively. In PO-count, the solutions are
sorted according to the number of other dominating
solutions. As discussed in Section 2.3, in this case,

13Concerns problems with 4 and more objectives.
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sorting by k-Pareto optimality is identical to sorting by
dominance rank. Thereby, these results are not novel,
but we present them for comparison purposes. In PO-
prob, the number of dominating solutions is replaced
with the probability of being dominated. We consider
a given generation as a small sample of a much larger
population having the same marginal probability dis-
tributions. We assume there is no a-priori knowledge
on how objectives are correlated and, thus, assume
them to be independent. The probability of being
dominated in this much larger population is estimated
as explained in Section 5.1. These algorithms, PO-
count and PO-prob, are compared with implementa-
tions of the state-of-the-art algorithms NSGA-II and
NSGA-III [Deb and Jain, 2013] from deap python li-
brary14. The presented experiments as well as various
plots from this paper can be reproduced using the code
from the related GitHub repository15.

For the experimental evaluation, we use the 0/1 knap-
sack problem with independent objectives as defined
in [Zitzler and Thiele, 1999]. The number of knap-
sacks (objectives) is varied within the following set
nk ∈ {2− 8, 10, 15, 25} and the number of items is set
to 250. We adopt random selection with replacement
and uniform crossover with mutation probability 0.01.
We set the population size to 250 and the number of
generations to 500. All results are the average among
30 independent runs.

Below we analyze the performance of different algo-
rithms in terms of the classical hypervolume metric
[Shang et al., 2020] with the origin of coordinates as
a reference point. In our setup, this metric is to be
maximized. We choose NSGA-II as the baseline, and
present the relative changes in the hypervolume indi-
cator for the rest of the algorithms in Fig. 7 (increase:
positive number, decrease: negative number). We no-
tice that despite having been developed for the many-
objective optimization, NSGA-III almost always re-
sults in lower values of hypervolume, even for a large
number of knapsacks. This confirms a similar obser-
vation from [Ishibuchi et al., 2016], and supports our
choice of NSGA-II as a baseline for implementation
and comparison instead of NSGA-III. Further, we see
that the value of relative increase for PO-count is al-
ways very close to 0. It means that PO-count yields a
population covering the same hypervolume as NSGA-
II. Contrarily, PO-prob improves the hypervolume, as
compared to NSGA-II. This difference is visible for
small nk (+4% for nk = 2) and is especially promi-
nent for large nk (+60% for nk = 25). For nk between
5 and 7, PO-prob results in lower values of hypervol-
ume than NSGA-II. However, the relative decrease in

14https://deap.readthedocs.io/en/master/
15https://github.com/marharyta-aleksandrova/kPO
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Figure 7: Increase in hypervolume compared to
NSGA-II.

these cases does not exceed −1.63%. Also, within this
range, PO-count performs slightly better than other
algorithms. These results demonstrate that the pro-
posed approach improves the performance of genetic
algorithms, especially in the case of many-objective op-
timization. Additional experimental results presented
in Appendix C.1 also support this statement. Our re-
sults also suggest that the choice of the measure µ has
a large impact on the performance. The latter rela-
tionship will be studied in future work.

6 CONCLUSION

In this paper, we formulate the problem of generalized
topological sorting with choice maximization, which, to
the best of our knowledge, was not considered in the
literature before. We also prove that the at least k-
Pareto optimal sets provide unique solutions. Further
theoretical analysis of this problem leads us to an in-
teresting relationship between the diversity of random
points and the arc of hyperbola. Additionally, we pro-
pose a computationally efficient algorithm for calcula-
tion of k-Pareto optimality for probability measures.
Finally, we demonstrate a successful application of the
developed theory. We show that sorting by k-Pareto
optimality can drastically improve the performance of
many-objective genetic optimization algorithms. In
our experiments, the proposed solution based on the
probability measure allows increasing the value of hy-
pervolume by up to 60% for 25 objectives. This result
can be considered as a potential solution to the prob-
lem of searchability deterioration in Pareto-dominance
optimization.

We also believe that the proposed general framework
can be used in different applications. In future work,
we plan to study the applicability of k-Pareto optimal-
ity for constrained optimization, scheduling problems,
recommender systems, and the development of statis-
tical indicators. Maximization of choice might be also
useful when studying causality and fairness.

https://deap.readthedocs.io/en/master/
https://github.com/marharyta-aleksandrova/kPO
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Supplementary Materials

A FURTHER EXAMPLES FOR SIMPLE RELATIONS AND MEASURES

In the first two supplementary examples, we consider a situation typical in economics or multi-objective opti-
mization. Later, we show how the proposed concepts apply to arbitrary transitive relations.

A.1 Continuous Measures

Let us again consider R⌞ as defined in Section 2.3. The relation R⌞ models preference for small values of x1

and x2. However, instead of assuming X to be a finite subset of R2, we now study the unit square [0, 1]× [0, 1]
with three continuous measures: the Lebesgue area measure dx1dx2, as well as 2x2dx1dx2 and 4x1x2dx1dx2. In
each case, the total measure of the unit square equals to one. The Lebesgue area measure represents elements
with two uniformly distributed characteristics x1 and x2; 2x2dx1dx2 represents rarefaction of items having small
values of x2, whereas 4x1x2dx1dx2 represents rarefaction of items having small values of both x1 and x2.

For each of the three above cases we show in Fig. 8a the set of at least k-Pareto optimal elements of measure
0.1, which corresponds to selecting the 10 best percent. All three sets demonstrate the qualitative behaviours
expected from sets delimited by indifference curves when the corresponding rarefaction occurs. Indeed, the curve
corresponding to the uniform distribution and the Lebesgue area measure dx1dx2 is symmetric. Also, in this
case, po(x1, x1) = x1x2, and the sets of at least k-Pareto optimal elements are the sets situated below arcs of
hyperbola defined by the equation x1x2 = k, see Section 4.2 for more details. Applying rarefaction with respect
to x2 prioritises smaller values of this characteristic. This is represented by shifting upwards the right part of
the hyperbola arc, see the curve for 2x2dx1dx2. Indeed, in this case, the small values of x2 are observed less
often. This results in selecting additional elements with large values of x1 but relatively small values of x2 to
compensate for this rarefaction. Finally, rarefaction with respect to both x1 and x2 results in the fact that
the small values of both characteristics are observed less often. Thus, elements with larger values of x1 and
x2 should be selected to generate a selection of the required measure. It results in the shift of the hyperbola
upwards following the direction of the main diagonal, see the curve for 4x1x2dx1dx2.
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(a) At least k-Pareto optimal elements of measure 0.1 for
the relation R⌞ and three measures: the Lebesgue area
measure dx1dx2, rarefaction of x2 defined by 2x2dx1dx2,
and rarefaction of x1 and x2 defined by 4x1x2dx1dx2.
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Figure 8: Examples at least k-Pareto optimal elements with two continuously distributed characteristics x1, x2.
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A.2 Cone-based Relations

Let us again consider the unit square, the Lebesgue measure, and a positive constant a. However, this time the
preference relation is defined as follows: yRax iff y2 ≤ x2 and x2 − y2 ≥ a(y1 − x1). The above relation Ra is
an example of a cone-based relation illustrated in Fig. 9. This relation has the intuitive meaning of giving up
(x1, x2) for getting (y1, y2) if the improvement (diminution) in the second characteristic is at least a times the
trade-off (increase) in the first characteristic. In this case, selections are sets delimited by descending curves
x2 = f(x1) such that − 1

a ≤ df
dx1

≤ 0.

h

ah

x

yR∗
ax

xR∗
ay

(0, 0)

x2

x1

Figure 9: An illustration of a cone-based relation Ra.

Let us now consider the sets of at least k-Pareto optimal elements of measure 0.25 for the three values of a:
a = 1

10 , a = 1
2 , and a = 2, see Fig. 8b. Larger values of a represent higher maximum accepted trade-offs. This

is represented by the gradual degeneration of the hyperbola into a straight horizontal line when a increases. As
shown in the figure, the three sets demonstrate plausible behavior. In the situation discussed in Appendix A.1,
the relation R⌞ corresponds to the extreme case of the relation Ra with a = 0.

A.3 Transitive Relations

In general, it is possible to show that if R∗ is transitive, then for any k, the set Tk is a selection. In particular,
if R is a partial order relation, µ is strictly positive, and X is countable, we obtain a linear extension of R when
sorting X by increasing values of po and sorting ties in any order. Selections are represented by downsets. The
latter are obtained when topologically sorting X and taking the first n elements, for any n. If µ is the counting
measure, then po(x) is simply the number of elements that can be reached by following downwards the edges of
the corresponding Hasse diagram. An example of such a relation represented by its Hasse diagram is depicted
in Fig. 10.

i 6

g 4f 3 h 2

d 2 e 1

a 0 b 0 c 0

T2

Figure 10: An illustration of simple partial order relation. The values of po are shown by numbers, and the set
of at least 2-Pareto optimal elements T2 is delimited by a curve.
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B FURTHER THEORETICAL EXPLORATION

B.1 Efficient Computation of Choice

In general, computation of choice may be simplified by performing the change of variable y = po(x) in Eq. (1).

Proposition 1. For any selection of at least k-Pareto optimal elements Tk such that µ(Tk) < +∞

cho(Tk) = µ(Tk)
2 − 2

∫
[0,k]

xd(po ∗µ)(x), (8)

where po ∗µ is the image measure defined by (po ∗µ)([a, b]) = µ(po−1([a, b])).

B.2 Independence on Marginal Distribution

We study a probability space (Ω,Σ, P ). We consider two random variables X1 and X2, as well as the partial
order relation RΩ⌞ defined on Ω as follows:

ωxRΩ⌞ωy iff X1(ωx) ≤ X1(ωy) and X2(ωx) ≤ X2(ωy).

Let us consider X to be continuous. Sklar’s theorem [Sklar, 1959,Durante et al., 2013] states that the cumulative
distribution function F (x1, x2) can be represented as C(F1(x1), F2(x2)) for a copula C. Marginas of X1 and X2

are fully described by the marginal cumulative probability distributions F1 and F2, whereas the copula describes
the dependence structure between X1 and X2. The copula can be considered as a joint cumulative distribution
function having two uniform marginal distributions on [0, 1]. Below we show that the introduced concepts do
not depend on the marginal distribution of X1 and X2.

Proposition 2. For a continuous random vector (X1, X2) and the relation RΩ⌞, k-Pareto optimality, choice,
diversity and selections offering maximum choice only depend on the copula C of X1, X2.

Proof. Let us consider the mapping

G : Ω → [0, 1]2,
ωx 7→ (F1(x1), F2(x2)).

We consider RΩ⌞ and P defined on Ω. At the same time, on [0, 1]2 we consider R⌞ defined by (x1, x2)R⌞(y1, y2) iff
x1 ≤ x2 and y1 ≤ y2, as well as the image measure G∗P defined on [0, 1]2 by (G∗P )(A) = P (G−1)(A). The map
G preserves probabilities in the sense that for any measurable A in Ω we have (G∗P )(G(A)) = P (A). Moreover,
G preserves the relations in the sense that xRΩ⌞y iff G(x)R⌞G(y). Selections are preserved in the sense that
if S is a selection for RΩ⌞, then G(S) is a selection for R⌞. Ignoring negligible subsets, this mapping between
selections is one-to-one. Therefore, G also preserves selections, k-Pareto optimality, choice, and diversity.

The proposition finally results from the fact that G ∗ P only depends on the copula. This is a consequence of
the fact that for any (a1, a2) ∈ [0, 1]2, we have (G ∗ P )([0, a1] × [0, a2]) = C(a1, a2). This equality is a result of
the following statements: 1) continuity which guarantees that a1 and a2 can be written as F1(x1) and F2(x2) for
some appropriate x1 and x2; 2) the definition of image measure; 3) the fact that G = (F1, F2) ◦ (X1, X2); and 4)
the equality F (x1, x2) = C(F1(x1), F2(x2)).

Proposition 3. If X1 and X2 are two continuous independent random variables, then for the relation RΩ⌞

P (Tk) = k − k ln(k), cho(Tk) = (k − k ln(k))2 − k2
(
1

2
− ln k

)
.

Proof. Let us consider the map G. The image measure G ∗ P induced by G on [0, 1]2 is the Lesbegue area
measure. Independently of P , we have G(Tk) = {(x1, x2) ∈ [0, 1]2|x1x2 ≤ k}. Integration for Eq. (8) yields

P (po−1(]−∞, x])) = P (Tx) =

∫
(x1,x2)∈[0,1]2

(G(Tx)) = x− x ln(x).
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Therefore, po ∗P = − ln(x)dx and Eq. (8) results in

cho(Tk) = cho(G(Tk)) = (k − k ln(k))2 − 2

∫ k

0

x(−ln(x))dx = (k − k ln(k))2 − k2 (1/2− ln k) .

B.3 Sorting by k-Pareto Optimality versus Sorting by Pareto Fronts

To further illustrate the difference between sorting by Pareto fronts and k-Pareto optimality, we demonstrate
the results of sorting the elements of a 2-dimensional grid for the relation R⌞ and counting measure in Fig. 11.
The numbers on the plots represent the equivalence class (front) to which a point was assigned by the relative
sorting procedure. As we can see, sorting by Pareto fronts splits the points by straight lines, see Fig. 11a. At
the same time, sorting by po results in splitting by hyperbola-like curves, see Fig. 11b. We can also notice, that
extreme solutions16 are valued more when sorting by po. Indeed, most of the non-extreme solutions are pushed
to further equivalence classes, as compared to sorting by Pareto fronts. This characteristic of po-based sorting is
also clearly visible in Fig. 12. Here we present selections of µ = 0.2 for the same relation and the set X composed
of a large number of points placed on a regular grid within the shaded area.

(a) Sorting by Pareto fronts. (b) Sorting by po.

Figure 11: Sorting points of a grid. The equivalence classes (fronts) are represented by numbers.

However, sorting by Pareto front does not always result in selections delimited by straight lines. Analysing the
results of sorting for uniformly distributed points, we observe that both sorting methods result in hyperbola-like
selections, see Fig. 13. This means that sorting by Pareto fronts is more sensitive to the topological structure of
the analyzed space, while sorting by po preserves its characteristics.

We will now consider one more example. For any positive integer n and any αn in {0, 1} one may consider the
following deformation of a regular grid of n2 points placed on the unit square:

An = {( i
n
,
j

n
) +

αn

2n2
(j, i), i and j integers and 0 ≤ i, j < n}.

On each of the of n2 points one may place a weight of 1/n2. As n increases, for any αn, the above distribu-
tions converge to the uniform distribution on the unit square. The selections obtained via sorting by k-Pareto

16Extreme solution here means that a solution is very good according to one criteria and is bad according to another.
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Figure 12: Selections of µ = 0.2 for the set X composed of points in the shaded area.
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(a) Sorting by Pareto fronts. The total number of equiva-
lence classes (fronts) is 39.
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(b) Sorting by po. The total number of equivalence classes
(fronts) is 259.

Figure 13: Sorting 500 uniformly distributed points. Points in black belong to the first 10 equivalence classes
(fronts). Note, that the total number of equivalence classes is larger for po-based sorting. The latter approach
results in fewer ties.

optimality according to R⌞ converge to the arcs of hyperbola obtained in Section 4.2. Choice converges as well.
Formally, the distribution representing the points of An as well as the weights is

∑
x∈An

δx/n, where δx is the

Dirac measure for the point x17 and convergence means weak convergence [Billingsley, 1999, p. 7]. However,
if α = −1, then Pareto front sorting is the same as sorting according to the min function, whereas for α = 1
it is the same as sorting according to the max function, see Fig. 14. Therefore, taking αn = −1 if n is even,
and αn = 1 if n is odd makes the selections obtained via Pareto front sorting diverge when n tends to infinity,
n → ∞.

17δx is defined for a given x ∈ X and any (measurable) set A ⊆ X by δx(A) = 1 if x ∈ A and δx(A) = 0 if x /∈ A.
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0 1
0

1

(a) If αn = −1, the selections are delimited by curves of
equation min(x1, x2) = c

0 1
0

1

(b) If αn = 1, the selections are delimited by curves of
equation max(x1, x2) = c

Figure 14: Selections of measure 0.64 (containing 64 points) obtained via sorting by Pareto fronts for deformations
of a regular grid presented with the sets An, n = 10.

C FURTHER PRACTICAL EXPLORATION

C.1 Additional Results for Genetic Optimization

In Section 5.2, we evaluate the performance of the genetic algorithms using the hypervolume indicator. In this
section, we further analyze the behavior of both the state-of-the-art and the proposed algorithms with respect
to other metrics. In particular, we study the fraction of solutions dominated by the solution of alternative
algorithms and analyze the time complexity of the sorting procedure.

We calculate the percentage of dominated solutions as follows. For a given pair of algorithms algorithm1 and
algorithm2, we calculate how many solutions of algorithm2 (dominated algorithm) are dominated by solutions of
algorithm1 (dominating algorithm). After that, we average the obtained results among all dominating algorithms
to get an average fraction of dominated solutions, denoted by θ. Naturally, lower values of θ indicate better
performance. We present the corresponding results in Fig. 15. We notice the following tendencies. NSGA-II and
PO-count behave very similarly. For nk = 2, the value of θ for these algorithms is around 20%. After that, it
starts increasing and reaches its peak of approximately 45% for nk = 7. Finally, it gradually decreases to 24% for
nk = 25. NSGA-III starts at a similar level and reaches its peak of approximately 30% for nk = 5. After that, it
decreases below 10% for nk = 7 and stays relatively close to 0 for the larger numbers of knapsacks. These results
demonstrate the superiority of NSGA-III over NSGA-II in the case of many-objective optimization. PO-prob
starts at around 16%. However, for nk = 4 the value of θ it already almost 0 and does not go up for larger
numbers of knapsacks. This shows that the solutions produced by this algorithm are rarely dominated. Thereby,
PO-prob is an effective approach for many-objective optimization problems.
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Figure 15: Average percentage of solutions dominated by other algorithms, θ.
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Figure 16: Sorting duration as a function of population size for 10 knapsacks, nk = 10.

In Fig. 16, we demonstrate the dependence of sorting time on the population size for values of pop size ranging
from 50 to 500. The reported values are the averages over 100 independent executions of one iteration of the
corresponding genetic algorithm. From the figure, we can see that PO-prob requires much less time than all
other algorithm. The results for NSGA-II and PO-count tend to be very close, as in other experiments. This
observation also has a theoretical explanation. Indeed, choosing the next generation for NSGA-II and NSGA-III
has time complexity of O(N2M) and max{O(N2M), O(N2logM−2N)} respectively where M stands for number
of objectives and N is the population size, see [Deb et al., 2002,Deb and Jain, 2013]. At the same time, sorting in
PO-prob comes down to independent sorting procedures with respect to every objective. The time complexity of
this procedure is O(NMlog(N)). These results are in line with the theoretical analysis presented in Section 5.1
and prove the computational efficiency of the approximate ranking calculation procedure used in PO-prob.

The maximum choice theorem (Theorem 1) has an intuitive interpretation in the context of genetic algorithms.
Assume that the selection step is required to pick a selection of a given maximum size for breeding offspring,
and both parents are chosen independently and at random form this selection. Then selections obtained via
k-Pareto optimality-based sorting yield most offspring with parents offering choice. Choice here means that
every parent is strictly superior to the other with respect to at least one objective, or both have the same values
for all objectives.

C.2 Kendall’s τ Rank Correlation Coefficient and Statistical Tests

Let us again consider the case of 2 continuous random variables introduced in Section 4.3. Let us assume that
X2 = f(X1) for some increasing function f . For almost all (x, y), either xRy or yRx holds. Thus div(Ω) = 0.
Moreover, diversity only depends on the copula which encodes the dependency structure between X1 and X2,
see Appendix B.2 and Section 4.1. Therefore, a value of div(Ω) close to zero indicates X1 and X2 are strongly
correlated via an increasing function. It leads to the idea that Kendall’s τ rank correlation coefficient [Kendall,
1955] and diversity are strongly related concepts.

Let us consider a sample of n points X = {(xi1, xi2)i∈{1,2,...,n}}. Duplicates almost never occur and the order in
which points are drawn has no importance. Therefore, X should be treated like a set. We consider the counting
measure # and the relation R⌞ define on X. Diversity and choice of X are denoted by div# and cho#.

Kendall’s τ correlation coefficient is defined as follows

τ =
#con−#dis

n0
,

where # con is the number of concordant pairs (pairs that do not offer choice in our terminology), #dis is the
number of discordant pairs (pairs that do offer choice), and n0 is the total number of pairs. As duplicates are
discarded and the pairs are not ordered, n0 = n(n− 1)/2.

From the above remarks, we have cho# = 2#dis+n and #con+#dis = n0. Combining these equalities, we
obtain the following relation

τ =
n2 + n− 2 cho#

n2 − n
.
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Dividing the numerator and the denominator by n2 and then neglecting 1
n , we obtains that approximately

τ ≈ 1− 2 div# .

This result means that the theory developed in this paper can be used for constructing non-parametric statistical
tests generalizing Kendall’s τ rank correlation coefficient and can be used for testing partial correlation. Below,
we illustrate this property by building an indicator for distinguishing between wealthy and non-wealthy states.

A group of states might be considered wealthy if the following two conditions hold.

1. In the group there is no positive correlation between per capita income and the indicator representing
education and health.

2. If a state belongs to a group of wealthy states, then all states having higher per capita income and better
value of education and health indicator, must also belong to that group.

Now, we define the set of all wealthy states as the largest group of states that are wealthy. If Kendall’s τ is used
to compute correlation, and correlation is considered to be positive if div# < 1

2 , then the elements of the above
set can be easily identified.

Indeed, Corollary 1 says that the set of wealthy states must be a set of at-least k-Pareto optimal states for the
relation higher income and better education and health indicator. For the year 201518, we took Gross National
Income (GNI) per capita at purchasing power parity (PPP) as the income indicator, and the square root of the
education and life expectancy as the education and health indicator19. The scatter plot in Fig. 17 shows the
resulting division of states into wealthy and non-wealthy. We can observe that the wealthy states are defined as
the states with GNI ≥ 20 000$. This seems perfectly plausible.
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Figure 17: Separation between wealthy and non-wealthy states based on div#.

C.3 Application to Recommender Systems

Let us again consider the housing example introduced in Section 2.1. If we aim to provide to the user a full
set of possible alternative houses that might fit his preferences, then, according to Theorem 1, sorting available
habitations by the increasing value of po is the best strategy. As it was discussed in Section 5.1, in the case
of independent components of the underlying composite relations, the computation of po can be simplified by
using tools from probability theory. Apart from computational efficience, estimating po in this way has several
additional advantages.

18Data source: United Nations Development Programme - Human Development Reports http://hdr.undp.org/en/data.
19As suggested by the human development index, see http://hdr.undp.org/sites/default/files/hdr2020 technical notes.

pdf.

http://hdr.undp.org/en/data
http://hdr.undp.org/sites/default/files/hdr2020_technical_notes.pdf
http://hdr.undp.org/sites/default/files/hdr2020_technical_notes.pdf
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• Such sorting results in fewer ties and a meaningful score. Indeed, sorting items x by increasing values of
po(x), is the same as sorting by decreasing values of − log(po(x)). The self-information − log(Fi(x)) [Jones,
1979], which is additive, indicates how much a characteristic i is valued. In this case, there is no need to
introduce any arbitrary coefficients as it is done when sorting by a weighted mean of the characteristics xi.

• If the condition of independence holds, then rarer characteristics get valued more. This makes sense from
the economic point of view and is intuitively necessary for maximizing choice.

• If beyond the relation R, there is complete uncertainty about the user’s complex needs, tastes and desires,
then offering him a selection of maximum choice maximizes the likelihood he finds an appropriate item.

C.4 Constrained Multi-Objective Genetic Algorithms

C.4.1 Problem Definition

A Multiobjective Constrained Optimization Problem (CMOP) is a mathematical problem that is defined as
follows [Kumara et al., 2020]:

Minimize
f1(x), f2(x), . . . , fM (x)

subject to

gi(x) ≤ 0, i ∈ {1, 2, ..., ng},
hj = 0, j ∈ {ng + 1, ng + 2, ..., ng + nh},
Lk ≤ xk ≤ Uk, h ∈ {1, . . . , D},

where

• fi represents the i-th objective function,

• M is the total number of conflicting objective functions,

• x = (x1, x2, . . . , xD) is a solution vector of length D,

• Lk and Uk are the lower and upper bounds of the search space at the k-th dimension.

Numerically, we consider a constraint hj to be verified iff hj ∈ [−ϵ, ϵ]. A solution is feasible iff all ng + nh
constraints gi and hj are verified.

C.4.2 Problem Re-Definition with Preorder Relations

In a more general setting, we can represent a constraint gi ≤ 0 by the preorder relation Rgi defined as follows:

xRgiy iff

{
gi(x) ≤ 0 or

gi(x) ≤ gi(y).
(9)

And a constraint hj ∈ [aj , bj ] can be represented by the preorder relation Rhj
defined as follows:

xRhj
y iff


hj(x) ∈ [aj , bj ] or

hj(y) ≤ hj(x) ≤ aj or

bj ≤ hj(x) ≤ hj(y).

(10)

Then, the combination of the constraints gi ≤ 0, i ∈ {1, 2, ..., ng} and hj = 0, j ∈ {ng + 1, ng + 2, ..., ng + nh}
can be represented by the preorder relation Rc defined as follows.

xRcy iff xRg1y and . . . and xRgng
y and xRhng+1

y and . . . and xRhng+nh
y.
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The objective consisting in minimizing fi is represented by the preodrer relation Rfi :

xRfiy iff fi(x) ≤ fi(y).

Minimization of all M objectives f1, . . . , fM is represented by the preorder relation Rf defined as follows

xRfy iff xRf1y and . . . and xRfM y.

Thus, the above CMOP can be represented by the lexicographic preorder relation

xRcfy iff xR∗
cy or (xR=

c y and xRfy),

where xR∗
cy means “xRcy and not yRcx”, and xR=

c y means “xRcy and yRcx”. For the given Rcf , constrained
Pareto optimal solutions [Kumara et al., 2020] are solutions that are not Pareto dominated by any other solution.

C.4.3 Solution

To solve the problem defined above, we can use the standard Adaptive Differential Evolution Algorithm jDE
[Noman et al., 2011] with k-Pareto optimality for Rcf as a fitness function. For any point x, k-Pareto optimality
of x is the likelihood a point drawn at random from the population strictly Pareto dominates x for Rcf . Smaller
values of po mean better fitness. Under the independence assumption of objectives and constraints, we can easily
compute k-Pareto optimality po(x). When saying P ({y|yR=

cfx}) = 0, we assume the considered objectives and
constraints are not constant on too large sets. Without this simplification, the computation becomes longer, see
the derivation below.

po(x) = P ({y|yR∗
cfx}),

= P ({y|yRcfx} − P ({y|yR=
cfx}),

= P ({y|yRcfx} − 0,

= P ({y|yR∗
cx} ∪ {y|yR=

c x and yRfx}),
= P ({y|yR∗

cx}) + P ({y|yR=
c x and yRfx}).

Thus, if x satisfies all constraints, which means xR=
c (0, . . . , 0, ang+1, . . . , ang+nh), then

po(x) = P ({y|yR=
c x and yRfx}),

= P ({y|yR=
c (0, . . . , 0, ang+1, . . . , ang+nh)})P ({y|yRfx}).

Now, let Fi(z) = P ({y|fi(y) ≤ z}) be the cumulative probability distribution of fi. Then,

P ({y|yRfx}) = P

 ⋂
i∈{1,...,M}

{y|fi(y) ≤ fi(x)}

 ,

=
∏

i∈{1,...,M}

P (y|fi(y) ≤ fi(x)).

=
∏

i∈{1,...,M}

Fi(fi(x)).

Otherwise, if at least one constraint is not satisfied by x, then P ({y|yR=
c x}) = 0 and

po(x) = P ({y|yR∗
cx})

= P ({y|yRcx})

=
∏

i∈{1,...,ng}

Gi(g(x))
∏

j∈{ng+1,...,ng+nh}

P (y|yRhj
x).
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Any cumulative probability distribution defined above, Fi for fi and Gi for gi, can be estimated via its empirical
cumulative probability distribution. Note, for a population {x1, . . . , xk, . . . , xps} of size ps, and for any real

valued function f , the empirical cumulative probability distribution F̂ of f is defined as follows:

F̂ (z) =
#({xk|f(xk) ≤ z})

ps
.

In a similar way, P (y|yRhj
x) can be estimated by Ĥj

∗
(hj(x)), where Ĥj

∗
(z) is defined as

Ĥj

∗
(z) =


#({xk|z≤hj(xk)≤bj}

ps if z < aj ,

#({xk|aj≤hj(xk)≤bj ]}
ps if aj ≤ z ≤ bj ,

#({xk|aj≤hj(xk)≤z}
ps if z > bj .

(11)

The computation of every F̂i can be performed as follows:

• sort the values f(xk) in increasing order, and store them in an array;

• create two new arrays;

• loop over the sorted values f(xk); each time a new distinct value f(xk) is encountered:

– append the previously encountered f(xk) to the first array,

– append to the second array the loop counter, which is equal to the value of the empirical cumulative
probability distribution F̂i of the previously encountered value f(xk).

Thus, retrieving F̂i(x) can be performed via a binary lookup with run time O(log ps). Computation of Ĥj

∗
can

be performed in the same way. In this case, all three cases of the definition in Eq. (11) are treated separately.
Moreover, we have the estimation

P ({y|yR=
c (0, . . . , 0, ang+1, . . . , ang+nh)}) =

∏
i∈{1,...,ng}

Ĝi(0)
∏

j∈{ng+1,...,ng+nh}

Ĥj

∗
(aj).

Finally, it is possible to show that the total run time of the k-Pareto optimality based sorting is O((ng + nh+
M)ps log ps).

C.5 Exploratory Database Queries

Simple database queries q, objectives, and constraints in optimization problems often consist in requiring a
continuous attribute to be in a given interval, or a discrete attribute to be equal to a given value. Conceptually,
those queries are boolean functions. Complex queries are often conjunctions of the form r = q1 ∧ q2 ∧ · · · ∧ qn.

In our formalism, these simple queries translate into simple pre-order relations of the form xRy. Requiring an
element to be in an interval can be represented by xRqy iff x is in the desired interval, or x is not situated further
from the interval than y20. Requiring an attribute to be equal to a given value translates into the relation xRq′y
if for x the attribute takes the required value21. Complex queries then translate into the composite relations of
the form Rr = Rq1 ∧Rq2 ∧ · · · ∧Rqn . The simple sub-relations Rq2 are pre-order relations, and, therefore, Rr is
also a pre-order relation and is transitive. However, these relations are not partial order relations, as reflexivity
does not necessarily hold. A ”topological” sorting according to our partial order relation Rr can be viewed as a
valid fuzzy relaxation of the strict functional query. There are many possible fuzzy relaxations and the problem
is to find one that is suitable for a given application. The k-Pareto optimality is one of such fuzzy extensions
of the query. It is 0 if all criteria are satisfied, and higher values of k-Pareto optimality indicate worse results.
The maximum choice theorem applies here, and the user is offered the maximum choice. This is of particular

20Hence, the strict version of this relation is defined as follows: xR∗
qy iff x is in the desired interval and y is not, or if x

is situated closer to the desired interval.
21The strict version of this relation is defined as xR∗

q′y if for x the attribute takes the required value but not for y.
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interest for exploratory queries, such as job search, especially, if there are no items in the database that satisfy
all the criteria. Direct brute-force search for selections offering maximum choice is unfeasible as there are too
many selections to consider.

Moreover, in the above formalism, one can treat classical optimization objectives in the same way. Maximizing
an attribute x can be represented by the relation xRy iff x ≥ y, and the minimization can be represented by the
relation ≤. In the above framework, negation can be represented via the relation R−1 defined by xR−1y iff yRx.

C.6 Scheduling Algorithms

In the case of scheduling algorithms, xRy can be given the meaning ‘x depends on y’. Then, selections represent
sets of tasks that remain to be processed. Having a large choice means having much freedom to parallelize tasks
or having flexibility in case the rescheduling is required.
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