
Parameter-Free Online Linear Optimization
with Side Information via Universal Coin Betting

J. Jon Ryu Alankrita Bhatt Young-Han Kim
UC San Diego UC San Diego UC San Diego/Gauss Labs Inc.

Abstract

A class of parameter-free online linear op-
timization algorithms is proposed that har-
nesses the structure of an adversarial se-
quence by adapting to some side informa-
tion. These algorithms combine the reduc-
tion technique of Orabona and Pál (2016)
for adapting coin betting algorithms for on-
line linear optimization with universal com-
pression techniques in information theory
for incorporating sequential side informa-
tion to coin betting. Concrete examples
are studied in which the side information
has a tree structure and consists of quan-
tized values of the previous symbols of the
adversarial sequence, including fixed-order
and variable-order Markov cases. By mod-
ifying the context-tree weighting technique
of Willems, Shtarkov, and Tjalkens (1995),
the proposed algorithm is further refined to
achieve the best performance over all adap-
tive algorithms with tree-structured side in-
formation of a given maximum order in a
computationally efficient manner.

1 INTRODUCTION

In this paper, we consider the problem of online linear
optimization (OLO) in a Hilbert space V with norm
∥ · ∥. In each round t = 1, 2, . . ., a learner picks an
action xt ∈ V , receives a vector gt ∈ V with ∥gt∥ ≤ 1,
and suffers loss ⟨gt,xt⟩. In this repeated game, the
goal of the learner is to keep her cumulative regret
small with respect to any competitor u for any ad-
versarial sequence gT := g1, . . . ,gT , where the cumu-
lative regret is defined as the difference between the

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

cumulative losses of the learner and u ∈ V , i.e.,

RegT (u) := Reg(u;gT ) :=

T∑

t=1

⟨gt,xt⟩ −
T∑

t=1

⟨gt,u⟩.

Albeit simple in nature, an OLO algorithm serves as
a versatile building block in machine learning algo-
rithms (Shalev-Shwartz, 2011); for example, it can be
used to solve online convex optimization.

While there exist standard algorithms such as on-
line gradient descent (OGD) that achieve optimal re-
gret of order RegT (u) = O(∥u∥

√
T ), these algorithms

typically require tuning parameters with unknowns
such as the norm ∥u∥ of a target competitor u. For
example, OGD with step size η = 1/

√
T achieves

RegT (u) = O((1 + ∥u∥2)
√
T ) for any u ∈ V , while

OGD with η = U/
√
T achieves RegT (u) = O(U

√
T )

for any u ∈ V such that ∥u∥ ≤ U ; see, e.g., (Shalev-
Shwartz, 2011). To avoid tuning parameters, several
parameter-free algorithms have been proposed in the
last decade, aiming to achieve cumulative regret of or-
der Õ(∥u∥

√
T ) for any u ∈ V without knowing ∥u∥

a priori (Orabona, 2013; McMahan and Abernethy,
2013; Orabona, 2014; McMahan and Orabona, 2014;
Orabona and Pál, 2016), where Õ(·) hides any polylog-
arithmic factor in the big O notation; the extra poly-
logarithimic factor is known to be necessary (Orabona,
2013; McMahan and Abernethy, 2013).

While these optimality guarantees on regret seem suf-
ficient, they may not be satisfactory in bounding the
incurred loss of the algorithm, due to the limited
power of the class of static competitors u as a bench-
mark. For example, consider the adversarial sequence
g,−g,g,−g, . . . for a fixed vector g ∈ B := {x ∈
V : ∥x∥ ≤ 1}. Despite the apparent structure (or pre-
dictability) in the sequence, the best achievable reward
of any static competitor u ∈ V is zero for any even T .
In general, the cumulative loss of a static competitor u
is
∑T

t=1⟨gt,u⟩ = ⟨∑T
t=1 gt,u⟩, and can be large if and

only if the norm ∥∑T
t=1 gt∥ is large, or equivalently,

when g1, . . . ,gT are well aligned. It is not only a the-
oretical issue, since, for example, when we consider a



practical scenario such as weather forecasting, the se-
quence (gt) may have such a temporal structure that
can be exploited in optimization, rather than being
completely adversarial.

One remedy for this issue is to consider a larger
class of competitors, which may adapt to the history
gt−1 := g1, . . . ,gt−1. Hereafter, we use xst to denote
the sequence xt, . . . , xs for t ≤ s and xt := xt1 by con-
vention. For instance, in the previous example, con-
sider a competitor which can play two different actions
u+1 and u−1 based on the quantization Q(gt−1) =
sgn(⟨f ,gt−1⟩) for some fixed f ∈ V ; for example, we
chose standard vectors ei for a Euclidean space V in
our experiments; see Section 4. Then the best loss
achieved by the competitor class on this sequence be-
comes −(T/2)∥g∥(∥u+1∥ + ∥u−1∥), which could be
much smaller than 0. We remark that, from the view
of binary prediction, this example can be thought of
a first-order Markov prediction, which takes only the
previous time step into consideration. Hence, it is nat-
ural to consider a k-th order extension of the previous
example, i.e., a competitor that adapts to the length-
k sequence Q(gt−1

t−k) := Q(gt−k) . . . Q(gt−1) ∈ {1, 1̄}k,
where we define 1̄ := −1.

<latexit sha1_base64="eKu2e0uV8HNJCuqiRdlXOsNPLrk=">AAAB9XicbVBNSwMxEJ2tX7V+VT16CRbBU9ktoh4LXjxWsB/QriWbzrah2eySZJWy9H948aCIV/+LN/+NabsHbX0wzOO9GTJ5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkSleSzvzSRBP6JDyUPOqLHSQy+gKvOmeeuXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/Nr56SM6sMSBgrW9KQufp7I6OR1pMosJMRNSO97M3E/7xuasJrP+MySQ1KtngoTAUxMZlFQAZcITNiYgllittbCRtRRZmxQZVsCN7yl1dJq1b1Lqu1u4tKvZbHUYQTOIVz8OAK6nALDWgCAwXP8ApvzpPz4rw7H4vRgpPvHMMfOJ8/daWScQ==</latexit>

1̄1̄

<latexit sha1_base64="PPbdqxY5JqmUFo26m4ts084NviI=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeCF48V7Ae0oUy2m3bpZpPuboQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUUdaksYhVJ0DNBJesabgRrJMohlEgWDsY38399hNTmsfy0UwT5kc4lDzkFI2VOl4vQJV5s3654lbdBcg68XJSgRyNfvmrN4hpGjFpqECtu56bGD9DZTgVbFbqpZolSMc4ZF1LJUZM+9ni3hm5sMqAhLGyJQ1ZqL8nMoy0nkaB7YzQjPSqNxf/87qpCW/9jMskNUzS5aIwFcTEZP48GXDFqBFTS5Aqbm8ldIQKqbERlWwI3urL66RVq3rX1drDVaVey+MowhmcwyV4cAN1uIcGNIGCgGd4hTdn4rw4787HsrXg5DOn8AfO5w+mGo+s</latexit>

11̄

∗1

Figure 1: T =
{∗1, 11̄, 1̄1̄}.

We can even further sophisticate
a competitor’s dependence struc-
ture by allowing it to adapt to
a tree structure (also known as a
variable-order Markov structure) of
the quantization sequence, which
is widely deployed structure in se-
quence prediction; see, e.g., (Be-
gleiter et al., 2004). For exam-
ple, for the depth-2 quantization se-
quence Q(gt−1

t−2), rather than adapt-
ing to the all four possible states, a competitor may
adapt to the suffix falls into a set of suffixes T =
{∗1, 11̄, 1̄1̄} of one fewer states; here, ∗ denotes that
any symbol from {1, 1̄} is possible in that position. As
depicted in Figure 1 for T, in general, a suffix set has a
one-to-one correspondence between a full binary tree,
and is thus often identified as a tree; see Section 3.3.2
for the formal definition and further justification of the
tree side information.

Since we do not know a priori which tree structure
is best to adapt to, we ultimately aim to design an
OLO algorithm that achieves the performance of the
best tree competitor of given maximum depth D ≥ 1.

Since there are O(22
D

) possible trees of depth at most
D, it becomes challenging even for a moderate size of
D. We remark that the problem of following the best
tree structure in hindsight, the tree problem in short,
is a classical problem which has been studied in mul-
tiple areas such as information theory (Willems et al.,

1995) and online learning (Freund et al., 1997), but an
application of this framework to the OLO problem has
not been considered in the literature.

To address this problem, we combine two technical
components from online learning and information the-
ory. Namely, we apply an information theoretic tech-
nique of following the best tree structure for universal
compression, called the context tree weighting (CTW)
algorithm invented by Willems et al. (1995), to gener-
alize a parameter-free OLO algorithm called the KT
OLO algorithm proposed by Orabona and Pál (2016),
which is designed based on universal coin betting.
Consequently, as the main result, we propose the CTW
OLO algorithm that efficiently solves the problem with
only O(D) updates per round achieving nearly mini-
max optimal regret; see Section 3.3.

We motivate the proposed approach by solving two
intermediate, abstract OLO problems, the one with
(single) side information (Section 3.1) and the other
with multiple side information (Section 3.2), and pro-
pose information theoretic OLO algorithms (i.e., prod-
uct KT and mixture KT) respectively, which might be
of independent interest. We remark, however, that it
is not hard to convert any parameter-free algorithm
to solve the abstract problems with same guarantees
and complexity of the proposed solutions, using exist-
ing meta techniques such as a black-box aggregation
scheme by Cutkosky (2019) with per-state extension of
a base OLO algorithm; hence, the contribution of the
intermediate solutions is rather purely of intellectual
merit.

In Section 4, we experimentally demonstrate the power
of the CTW OLO algorithm with real-world tempo-
ral datasets. We conclude with some remarks in Sec-
tion 5. All proofs and discussion with related work are
deferred to Appendix due to the space constraint.

Notation Given a tuple a = (a1, . . . , am), we use∑
a :=

∑m
i=1 ai to denote the sum of all entries in

a tuple a. For example, we write
∑
gt−1 to denote

the sum of g1, . . . , gt−1 by identifying gt−1 as a tu-
ple (g1, . . . , gt−1). For the empty tuple (), we de-
fine

∑
() := 0 by convention. We use |a| to denote

the number of entries of a tuple a. For a tuple of
vectors u1:S := (u1, . . . ,uS) ∈ V × · · · × V , we use
∥u∥1:S := (∥u1∥, . . . , ∥uS∥) ∈ RS

≥0 to denote the tuple
of norms of each entry.

2 PRELIMINARIES

We review the coin betting based OLO algorithm of
Orabona and Pál (2016). From this point, we will
describe all algorithms in the reward maximization
framework, which is philosophically consistent with



the goal of gambling, to avoid any confusion, but we
will keep using the conventional naming OGD even
though it is actually gradient ascent.1

2.1 Continuous Coin Betting and 1D OLO

Consider the following repeated gambling. Starting
with an initial wealth W0, at each round t, a player
picks a signed relative bet bt ∈ [−1, 1]. At the end of
the round, a real number gt ∈ [−1, 1] is revealed as an
outcome of the “continuous coin toss” and the player
gains the reward gtbtWt−1. This game leads to the
cumulative wealth

Wt(g
t) = W0

t∏

i=1

(1 + gibi).

When gt ∈ {±1}, this game boils down to the stan-
dard coin betting, where the player splits her wealth
into 1+bt

2 Wt−1 and 1−bt
2 Wt−1, and bets the amounts

on the binary outcomes +1 and −1, respectively. It
is well known that the standard coin betting game is
equivalent to the binary compression, or binary log-
loss prediction, which have been extensively studied
in information theory; see, e.g., (Cover and Thomas,
2006, Chapter 6).

Even when the outcomes gt are allowed to take con-
tinuous values, many interesting connections remain
to hold. For example, the Krichevsky and Trofimov
(1981)’s (KT) probability assignment, which is com-
petitive against i.i.d. Bernoulli models, can be trans-
lated into a betting strategy

bKT(gt−1) := bKTt (
∑
gt−1),

where bKTt (x) := x
t for x ∈ [−t + 1, t − 1]. As a natu-

ral continuous extension of the KT probability assign-
ment, we define the KT coin betting potential

ψKT(gt) := ψKT
t (

∑
gt) := 2tq̃KTt (

∑
gt),

where

q̃KTt (x) := B
( t+ x+ 1

2
,
t− x+ 1

2

)/
B
(1

2
,

1

2

)

for x ∈ [−t, t] and B(x, y) := Γ(x)Γ(y)/Γ(x + y) and
Γ(x) denote the Beta function and Gamma function,
respectively. We remark that the interpolation for
continuous values is naturally defined via the Gamma
functions. This simple KT betting scheme guarantees
that the cumulative wealth satisfies

WT (gT ) ≥W0ψ
KT(gT ) = W02T q̃KTT (

∑
gT ) (2.1)

1Note that one can translate a reward maximization
algorithm to an equivalent loss minimization algorithm by
feeding −gt instead of gt, and vice versa.

for any T ≥ 1 and g1, . . . , gT ∈ [−1, 1]; see the proof
of Theorem 2.1 in Appendix. It can be easily shown
that the wealth lower bound is near-optimal when
compared to the best static bettor bt = b for some
fixed b ∈ [−1, 1] in hindsight, the so-called Kelly bet-
ting (Kelly Jr., 1956). This follows as a simple conse-
quence of the fact that the KT probability assignment
is a near-optimal probability assignment for universal
compression of i.i.d. sequences. In this paper, going
forward the interpretation of the coin betting poten-
tial as probability assignment in the parlance of com-
pression will prove useful.

In their insightful work, Orabona and Pál (2016)
demonstrated that the universal continuous coin bet-
ting algorithm can be directly translated to an OLO
algorithm with a parameter-free guarantee. By defin-
ing an absolute betting wt := btWt−1, we can write the
cumulative wealth in an additive form

Wt(g
t) = W0 +

t∑

i=1

gtwt,

whence we interpret
∑t

i=1 giwi as the cumulative re-
ward in the 1D OLO with g1, . . . , gt ∈ [−1, 1]. Now, if
we define the KT coin betting OLO algorithm by the
action

wKT
t := wKT(gt−1) = bKT(gt−1)Wt−1(gt−1),

then the “universal” wealth lower bound (2.1) with
respect to any gT can be translated to establish a
“parameter-free” bound on the 1D regret

Reg(u; gT ) :=

T∑

t=1

gtu−
T∑

t=1

gtw
KT
t ,

against static competitors u ∈ R. Let (ψKT
T )⋆ : R →

R denote the Fenchel dual of the potential function
ψKT
T : R→ R, i.e.,

(ψKT
T )⋆(u) := sup

g∈R
(gu− ψKT

T (g)).

Theorem 2.1. For any g1, . . . , gT ∈ [−1, 1], the 1D
OLO algorithm wKT

t = bKT(gt−1)Wt−1 satisfies

sup
u∈R

{
Reg(u; gT )−W0(ψKT

T )⋆
( u

W0

)}
≤W0.

In particular, for any u ∈ R, we have

Reg(u; gT ) ≤
√
Tu2 ln(Tu2/(e

√
πW2

0) + 1) + W0.

2.2 Reduction of OLO over a Hilbert Space
to Continuous Coin Betting

This reduction can be extended for OLO over a Hilbert
space V with norm ∥·∥, where we wish to maximize the



cumulative reward
∑T

t=1⟨gt,xt⟩ for g1, . . . ,gT ∈ B :=
{x ∈ V : ∥x∥ ≤ 1}. Orabona and Pál (2016) proposed
the following OLO algorithm over Hilbert space based
on the continuous coin betting. For an initial wealth
W0 > 0, we define the cumulative wealth

WT (gT ) := W0 +

T∑

t=1

⟨gt,xt⟩

as the cumulative reward plus the initial wealth, anal-
ogously to the coin betting. If we define the vectorial
betting given gt−1 as

vKT(gt−1) := bKTt (∥∑gt−1∥)
∑

gt−1

∥∑gt−1∥ =
1

t

∑
gt−1

and define a potential function

ΨKT(gt) := ψKT
t (∥

∑
gt∥) = 2tq̃KTt (∥∑gt∥),

then the corresponding OLO algorithm ensures the
wealth lower bound Wt(g

t) ≥ W0ΨKT(gt), and thus
the corresponding regret upper bound in the same
spirit of Theorem 2.1.

Theorem 2.2 (Orabona and Pál, 2016, Theorem 3).
For any g1, . . . ,gT ∈ B, the OLO algorithm wKT

t =
vKT(gt−1)Wt−1 based on the coin betting satisfies
WT ≥W0ΨKT(gT ), and moreover

sup
u∈V

{
Reg(u;gT )−W0(ψKT

T )⋆
(∥u∥
W0

)}
≤W0.

In particular, for any u ∈ V , we have

Reg(u;gT ) ≤
√
T∥u∥2 ln(T∥u∥2/(e√πW2

0) + 1) +W0.

3 MAIN RESULTS

In what follows, we will illustrate how to incorporate
(multiple) sequential side information based on coin
betting algorithms in OLO over Hilbert space with
an analogous guarantee by extending the aforemen-
tioned algorithmic reduction and guarantee transla-
tion. In doing so, we will leverage the connection be-
tween coin betting and compression, and adopt uni-
versal compression techniques beyond the KT strat-
egy, namely per-state adaptation (Section 3.1), mix-
ture (Section 3.2), and context tree weighting tech-
niques (Section 3.3.2). For each case, we will first de-
fine a potential function and introduce a correspond-
ing vectorial betting which guarantees the cumulative
wealth to be at least the desired potential function.

3.1 OLO with Single Side Information via
Product Potential

We consider the scenario when a (discrete) side infor-
mation H = (ht ∈ [S])t≥1 is sequentially available for

some S ≥ 1. That is, at each round t, the side infor-
mation ht is revealed before the plays. As motivated
in the introduction, the canonical example is a causal
side information based on the history gt−1 such as a
quantization of gt−1

t−D for some D ≥ 1. Yet another
example is side information given by an oracle with
foresight such as ht = sgn(⟨gt, f⟩), i.e., the sign of the
correlation between a fixed vector f ∈ V and the in-
coming symbol gt, as a rough hint to the future.

We define an adaptive competitor with respect to the
side information H, denoted as u1:S [H] for an S-tuple
u1:S := (u1, . . . ,uS) ∈ V × · · · × V , to play uht

at
time t, and let C[H] := {u1:S [H] : u1:S ∈ V × · · · × V }
denote the collection of all such adaptive competitors.

We first observe that the cumulative loss incurred by
an adaptive competitor u1:S [H] ∈ C[H] can be decom-
posed with respect to the states defined by the side
information symbols, i.e.,

T∑

t=1

⟨gt,uht
⟩ =

S∑

s=1

〈 ∑

t∈[T ]:ht=s

gt,us

〉
.

Hence, a naive solution is to run independent OGD
algorithms for each subsequence gt(s;ht) := (gi : hi =
s, i ∈ [t]) sharing the same side information s ∈ [S];
it is straightforward to show that the per-state OGD
with optimal learning rates achieves the regret of or-
der O(

∑S
s=1 ∥us∥

√
Ts) with knowing the competitor

norms ∥u∥1:S . Like the per-state OGD algorithm, we
can also extend other parameter-free algorithms such
as DFEG (Orabona, 2013) and AdaNormal (McMa-
han and Orabona, 2014) to adapt to side information;
see Appendix B. This is what we call the per-state ex-
tension of an OLO algorithm.

Here, we propose a different type of parameter-free
per-state algorithm based on coin betting. To compete
against any adaptive competitor from C[H], we define
a product KT potential function

ΨKT(gt;ht) :=
∏

s∈[S]

ΨKT(gt(s;ht))

=
∏

s∈[S]

ψKT
ts (∥∑gt(s;ht)∥),

where ts := |gt(s;ht)| for each s ∈ [S]. Note that
ΨKT(gt;ht) is a function of the summations of the
subsequences (

∑
gt(1;ht), . . . ,

∑
gt(S;ht)). For each

time t, we then define the vectorial KT betting with
side information ht as the application of the vectorial
KT betting onto the subsequence corresponding to the
current side information symbol ht, i.e.,

vKT(gt−1;ht) := vKT(gt−1(ht;h
t−1)).



Unlike the other per-state extensions which play inde-
pendent actions for each state thus allowing straight-
forward analyses, the per-state KT actions

wKT
t (gt−1;ht) = vKT(gt−1;ht)Wt−1 (3.1)

depend on all previous history gt−1 due to the wealth
factor Wt−1. We can establish the following guarantee
with the same line of argument in the proof of Theo-
rem 2.1, by analyzing the Fenchel dual of ΨKT(gt;ht).
Recall that for a multivariate function Ψ: Rd → R, its
Fenchel dual Ψ⋆ : Rd → R is defined as

Ψ⋆(y) := sup
x∈Rd

(yTx−Ψ(x)).

Theorem 3.1. For any side information H = (ht ∈
[S])t≥1 and any g1, . . . ,gT ∈ B, let ϕKTT1:S

: RS → R be
the Fenchel dual of the function

(f1, . . . , fS) 7→
∏

s∈[S]

ψKT
Ts

(fs),

where Ts := |{t ∈ [T ] : ht = s}|. Then, the OLO al-
gorithm wKT

t (gt−1;ht) := vKT(gt−1;ht)Wt−1 satisfies
WT ≥W0ΨKT(gT ;hT ), and moreover

sup
u1:S

{
Reg(u1:S [H];gT )−W0ϕ

KT
T1:S

(∥u∥1:S
W0

)}
≤W0.

In particular, for any u1:S [H] ∈ C[H],

Reg(u1:S [H];gT ) = W0 + Õ

(√√√√
S∑

s=1

Ts∥us∥2
)
. (3.2)

Example 3.1. Recall the “easy” adversarial sequence
gT = (g,−g,g, . . . ,−g) for some g ∈ B previously
considered in the introduction. For a side infor-
mation ht = sgn(⟨gt, f⟩) with some f ∈ V , Theo-
rem 3.1 states that Reg((u+,u−);gT ) = Õ((∥u+∥ +
∥u−∥)

√
T ), matching the regret guarantee of the opti-

mally tuned per-state OGD up to logarithmic factors.
Overall, the regret guarantee against adaptive com-
petitors for the per-state KT method implies a much
larger overall reward than was achieved by an algo-
rithm competing against static competitors.

Remark 3.1 (Cost of noninformative side information).
Consider a scenario where competitors of the form
u1:S = (u, . . . ,u) with some vector u ∈ V perform
best; in this case, an algorithm without adapting to
side information may suffice for optimal regret guar-
antees. Even in such cases with noninformative side
information, the dominant factor in the regret remains
the same as the regret guarantee with respect to the
static competitor class, since

∑S
s=1 Ts∥us∥2 = T∥u∥2.

Remark 3.2 (Effect of large S). While side informa-
tion with larger S may provide more levels of gran-
ularity, too large S may degrade the performance of

the per-state algorithms. Intuitively, if S ≫ 1, it
is likely that we will see each state only few times,
which results in poor convergence for almost every
state. These are also captured in the regret guar-
antee; we note that the hidden logarithmic factor of
the regret bound (3.2) might incur a multiplicative
factor of at most O(

√
S). Similarly, in the opti-

mal regret attained by the per-state OGD, we have
O(
∑S

s=1 ∥us∥
√
Ts) ≤ O(maxs∈[S] ∥us∥

√
ST ).

3.2 OLO with Multiple Side Information via
Mixture of Product Potentials

Now suppose that multiple side information sequences

{H(m) = (h
(m)
t ∈ S(m))t≥1 : m ∈ [M ]} are sequen-

tially available; for example, each H(m) can be either
constructed based on a different quantizer Qm : V →
{1, 1̄} and/or based on the history gt−1

t−Dm
of differ-

ent lengths Dm ≥ 0, each of which aims to capture
a different structure of (gt). In this setting, we aim
to minimize the worst regret among all possible side
information, i.e.,

max
m∈[M ]

Reg(u1:S(m) [Hm];gT )

=

T∑

t=1

⟨gt,wt⟩ − min
m∈[M ]

T∑

t=1

⟨gt,u
(H)
hmt
⟩, (3.3)

which is equivalent to aiming to follow the best side
information in hindsight.

We first remark that Cutkosky (2019) recently pro-
posed a simple black-box meta algorithm that com-
bines multiple OLO algorithms achieving the best re-
gret guarantee, which can also be applied to solving
this multiple side information problem. For example,
for algorithms (Am)m∈[M ] each of which play an ac-

tion w
(m)
t , the meta algorithm A which we refer to the

addition plays wt =
∑M

m=1 w
(m)
t and guarantees the

regret

RegAT (u) ≤ ε+ min
m∈[M ]

RegAm

T (u),

provided that Am’s suffer at most constant regret ε
against u = 0; the same guarantee also hold for adap-
tive competitors.

Rather, we propose the following information theoretic
solution. For each side information sequence H(m), we
can apply the per-state KT algorithm from the previ-
ous section, which guarantees the wealth lower bound
W0ΨKT(gt; (h(m))t). To achieve the best among the
per-state KT algorithms, we consider the mixture po-
tential

Ψmix(gt;ht) =

M∑

m=1

wmΨKT(gt; (h(m))t)



for some w1, . . . , wM > 0 such that
∑M

m=1 wm = 1.

Here, ht := (h
(1)
t , . . . , h

(M)
t ) denotes the side informa-

tion vector revealed at time t. When there exists no
prior belief on how useful each side information is, one
can choose the uniform weight w1 = . . . = wM = 1/M
by default. Now, define the vectorial mixture betting
given gt−1 and ht as

vmix(gt−1;ht) :=
umix(gt−1;ht)

Ψmix(gt−1;ht−1)
, where

umix(gt−1;ht)

:=

M∑

m=1

wmΨKT(gt−1; (h(m))t−1)vKT(gt−1; (h(m))t),

and finally define the mixture OLO algorithm by the
action

wmix
t (gt−1;ht) := vmix(gt−1;ht)Wt−1. (3.4)

In the language of gambling, the mixture strategy bets
by distributing her wealth based on the weights wm’s
to strategies, each of which is tailored to a side in-
formation sequence, and thus can guarantee at least
wm times the cumulative wealth attained by the m-th
strategy following H(m) for any m ∈ [M ].

Theorem 3.2. For any side information
H(1), . . . ,H(M) and any g1, . . . ,gT ∈ B, the mixture
OLO algorithm (3.4) satisfies WT ≥W0Ψmix(gT ;hT ),
and moreover for any m ∈ [M ], we have

sup
u

1:S(m)

{
Reg(u1:S(m) [H(m)]);gT )

− wmW0ϕ
KT
T
1:S(m)

(∥u∥1:S(m)

wmW0

)}
≤ wmW0.

In other words, for any m and any u1:S(m) , we have

Reg(u1:S(m) [Hm];gT )

= wmW0 + Õ

(√√√√
(

ln
1

wm

) Sm∑

sm=1

T
(Hm)
sm ∥u(Hm)

sm ∥2
)
.

Remark 3.3 (Cost of mixture). A mixture strategy
adapts to any available side information with the cost
of replacing W0 with wmW0 in the regret guarantee
for each m ∈ [M ]. Since the dependence of regret
on W0 scales as O(

√
ln(1 + 1/W0) + W0) from Theo-

rem 3.1, a small wm may degrade the quality of the
regret guarantee by only a small multiplicative factor
O(
√

ln(1/wm)).

Remark 3.4 (Comparison to the addition technique).
While the mixture algorithm attains a similar guaran-
tee to the addition technique (Cutkosky, 2019), it is
only applicable to coin betting based algorithms and
requires a rather sophisticated aggregation step. Thus,

if there are only moderate number of side information
sequences, the addition of per-state parameter-free al-
gorithms suffices. The merit of mixture will become
clear in the next section in the tree side information
problem of combining O(22

D

) many components for
a depth parameter D ≥ 1, while a naive application
of the addition technique to the tree problem is not
feasible due to the number of side information; see
Section 5 for an alternative solution with the addition
technique.

3.3 OLO with Tree Side Information

In this section, we formally define and study a tree-
structured side information H, which was illustrated
in the introduction. We suppose that there exists
an auxiliary binary sequence Ω = (ωt ∈ {±1})t≥1,
which is revealed one-by-one at the end of each round;
hence, a learner has access to ωt−1 when deciding
an action at round t. In the motivating problem in
the introduction, such an auxiliary sequence was con-
structed as ωt := Q(gt) with a fixed binary quantizer
Q : V → {±1}.

3.3.1 Markov Side Information

Given Ω = (ωt)t≥1, the most natural form of side
information is the depth-D Markov side information
ht := ωt−1

t−D ∈ {±1}D, i.e., the last D bits of (ωt)t≥1—
note that it can be mapped into a perfect binary tree
of depth D with 2D possible states.

Example 3.2. As an illustrative application of the mix-
ture algorithm and a precursor to the tree side in-
formation problem, suppose that we wish to com-
pete with any Markov side information of depth ≤ D.
Then, there are D + 1 different side information, one
for each depth d = 0, . . . , D; for simplicity, assume
uniform weights wd = 1/(D + 1) for each depth d.
Then, Theorem 3.2 guarantees that the mixture OLO
algorithm (3.4) satisfies, for any depth d = 0, . . . , D,

Reg(u
(d)

1:2d
;gT )

=
W0

D + 1
+ Õ

(√√√√ln(D + 1)

2d∑

s=1

T
(d)
s ∥u(d)

s ∥2
)

for any competitor u
(d)

1:2d
∈ V 2d , where we identify 2d

possible states by 1, . . . , 2d and T
(d)
s is the number of

time steps with s as side information.

While a larger D can capture a longer dependence in
the sequence, however, the performance of a per-state
algorithm could significantly degrade due to the expo-
nential number of states as pointed out in Remark 3.2.



3.3.2 Tree-Structured Side Information

The limitation of Markov side information motivates
a general tree-structured side information (or tree side
information in short). Informally, we say that a se-
quence has a depth-D tree structure if the state at
time t depends on at most D of the previous occur-
rences, corresponding to a full binary tree of depth D;
see Figure 1. This degree of freedom allows to con-
sider different lengths of history for each state, leading
to the terminology variable-order Markov structure, as
opposed to the previous fixed-order Markov structure.
If an underlying structure is approximately captured
by a tree structure of depth D with the number of
leaves far fewer than 2D, the corresponding per-state
algorithm can enjoy a much lower regret guarantee.

We now formally define a tree side information. We
say that a string ω1−lω2−l . . . ω0 is a suffix of a string
ω′
1−l′ω

′
2−l′ . . . ω

′
0, if l ≤ l′ and ω−i = ω′

−i for all
i ∈ {0, . . . , l − 1}. Let λ denote the empty string. We
define a (binary) suffix set T as a set of binary strings
that satisfies the following two properties (Willems
et al., 1995): (1) Properness: no string in T is a suffix
of any other string in T; (2) Completeness: every semi-
infinite binary string . . . ht−2ht−1ht has a suffix from
T. Since there exists an one-to-one correspondence
between a binary suffix set and a full binary tree, we
also call T a suffix tree. Given D ≥ 0, let T≤D denote
the set of all suffix trees of depth at most D.

For a suffix tree T ∈ T≤D, we define a tree side in-
formation HT;Ω with respect to T and Ω = (ωt)t≥1 as
the matching suffix from the auxiliary sequence. We
can also identify ht, the tree side information defined
by T at time t, with a unique leaf node sTt ∈ T. For
example, if a suffix set T consists of all possible 2D

binary strings of length D ≥ 1, then it boils down to
the fixed-order Markov case ht = ωt−1

t−D.

For a single tree T, the goal is to keep the regret

Reg(u[T];gT ) :=

T∑

t=1

⟨gt,wt − uT
sTt
⟩

small for any competitor u[T] := (uT
s )s∈T. In the next

two subsections, we aim to follow the performance of
the best suffix tree of depth at most D, or equivalently,
to keep the worst regret maxT∈T≤D

RegA(u[T];gt)
small for any collection of competitors (u[T])T∈T≤D

.

Remark 3.5 (Matching Lower Bound). When the aux-
iliary sequence Ω is constructed from a binary quan-
tizer Q with the history gt−1 as mentioned earlier,
we can show an optimality of the per-state KT algo-
rithm in Section 3 for a single tree by establishing a
matching regret lower bound extending the technique
of Orabona (2019, Theorem 5.12); see Appendix C.2.3.

Below, we will use the tree potential with respect to T
and Ω defined as

ΨKT(gt;T,Ω) :=
∏

s∈T

ΨKT(gt(s; Ω)),

where we write s ∈ T for any leaf node s of the tree T
with a slight abuse of notation and we define

gt(s; Ω) := (gi : s is a suffix of ωi−1
i−D, 1 ≤ i ≤ t).

From now on, we will hide any dependence on Ω when-
ever the omission does not incur confusion.

3.3.3 Context Tree Weighting for OLO with
Tree Side Information

To compete against the best competitor adaptive to
any tree side information of depth ≤ D, a natural solu-
tion is to consider a mixture of all tree potentials; note,
however, that there are doubly-exponentially many

O(22
D

) possible suffix trees of depth ≤ D, and thus
it is not computationally feasible to compute such a
mixture naively. Instead, inspired by the context tree
weighting (CTW) probability assignment of Willems
et al. (1995), we analogously define the CTW potential
as ΨCTW(gt) := ΨCTW

λ (gt) with a recursive formula

ΨCTW
s (gt) (3.5)

:=

{
1
2ΨKT

s (gt) + 1
2ΨCTW

1̄s (gt)ΨCTW
1s (gt) if |s| < D

ΨKT
s (gt) if |s| = D

<latexit sha1_base64="i4yjty2xrCQTe46AftX1Iwj969w=">AAACGHicbVA9SwNBEN2LXzF+RS1tDoMQC+NdCrUM2FgqGBVyMext5uKS3b1jdy4SjvsNVjb+FRsRRWzt/CH2bhILvx4MPN6bYWZemAhu0PPencLU9MzsXHG+tLC4tLxSXl07M3GqGTRZLGJ9EVIDgitoIkcBF4kGKkMB52H/cOSfD0AbHqtTHCbQlrSneMQZRSt1yruBgmsWS0lVNwt6gzwLJMWrMMp6eV4KQkDa8avWuMxwx8+3O+WKV/PGcP8S/4tUGmtB9ePxJjjulN+CbsxSCQqZoMa0fC/BdkY1cibArkgNJJT1aQ9alioqwbSz8WO5u2WVrhvF2pZCd6x+n8ioNGYoQ9s5utr89kbif14rxeignXGVpAiKTRZFqXAxdkcpuV2ugaEYWkKZ5vZWl11RTRnaLEs2BP/3y3/JWb3m79XqJ36lUScTFMkG2SRV4pN90iBH5Jg0CSO35J48kWfnznlwXpzXSWvB+ZpZJz/gvH0CKc6kDA==</latexit>

�1(g
t�1)

<latexit sha1_base64="Ei+5qP59Y8y1SSPIWWulxSIKsok=">AAACIHicbVC7ThtBFJ2F8Ih5GVKmWcVCMgXWrgtIaYmGEqQYkLzGuju+a0bMzK5m7hJZo/0GvoCGT4GGAhQlXfIf6TO2KcLjSFc6Oudc3UdaSGEpin4Hc/MfFhaXlj/WVlbX1jfqm1snNi8Nxy7PZW7OUrAohcYuCZJ4VhgElUo8TS8PJv7pFRorcv2NxgX2FYy0yAQH8tKgvp9o/M5zpUAPXTK6qlyigC7SzI2qqpakSDBwSQrGxVXV9IFzR7txtTOoN6JWNEX4lsTPpNHZSpp/766To0H9VzLMealQE5dgbS+OCuo7MCS4RD+qtFgAv4QR9jzVoND23fTAKtz2yjDMcuNLUzhV/+9woKwdq9QnJ9vb195EfM/rlZR97Tuhi5JQ89mgrJQh5eHkW+FQGOQkx54AN8LvGvILMMDJ/7TmnxC/PvktOWm34r1W+zhudNpshmX2mX1hTRazfdZhh+yIdRlnN+yePbKn4DZ4CH4EP2fRueC55xN7geDPP0v7p90=</latexit>

�1̄(g
t�1)

<latexit sha1_base64="MnH+n4t5mLzbMn4MvNAFQTVI5Vg=">AAACIHicbVCxThtBEN0jkIAhiYGS5oQVyRSx7lwESks0lCDFgORzrLm9ObNid++0OweyVvcN+QIaPoU0KYIi0oX/oGdtUxDIk1Z6em9mZ+alpRSWouhvsPBmcentu+WVxura+w8fm+sbx7aoDMc+L2RhTlOwKIXGPgmSeFoaBJVKPEnP96f+yQUaKwr9lSYlDhWMtcgFB/LSqLmbaLzkhVKgM5eML2qXKKCzNHfjum4kKRKMXCL9hxnUbV/wzdHnuN4ZNVtRJ5ohfE3iJ9LqbSTth5vvyeGo+SfJCl4p1MQlWDuIo5KGDgwJLtGPqiyWwM9hjANPNSi0Qzc7sA4/eSUL88L4pymcqc87HChrJyr1ldPt7UtvKv7PG1SU7w2d0GVFqPl8UF7JkIpwmlaYCYOc5MQT4Eb4XUN+BgY4+UwbPoT45cmvyXG3E3/pdI/iVq/L5lhmW2ybtVnMdlmPHbBD1mecXbEf7Be7Da6Dn8Hv4G5euhA89WyyfxDcPwJQz6fg</latexit>

��(gt�1)

<latexit sha1_base64="SbC/PMS9UoxyawuTSVPtcfOIEs8=">AAACFnicbVDLSsNAFJ3UV62vWpdugkWoYEvShbosdOOygn1AU8tkMkmHzkzCzKRaQ77CjT/gR7hxoYhbceffOH0stPXAhcM593LvPW5EiVSW9W1kVlbX1jeym7mt7Z3dvfx+oSXDWCDcRCENRceFElPCcVMRRXEnEhgyl+K2O6xP/PYIC0lCfq3GEe4xGHDiEwSVlvr5ssPxLQoZg9xLnGCUJg6DauD6SZCmOUfGTIs3iSrback+6eeLVsWawlwm9pwUawWnfvp0f9fo578cL0Qxw1whCqXs2lakegkUiiCK9YJY4giiIQxwV1MOGZa9ZPpWah5rxTP9UOjiypyqvycSyKQcM1d3Tm6Wi95E/M/rxsq/6CWER7HCHM0W+TE1VWhOMjI9IjBSdKwJRILoW000gAIipZPM6RDsxZeXSatasc8q1Su7WKuCGbLgEByBErDBOaiBS9AATYDAA3gGr+DNeDRejHfjY9aaMeYzB+APjM8fvKiijg==</latexit>P
gt�1(1)

<latexit sha1_base64="8EaYmyNkHFu4T/2tfiIK2eCbrno=">AAACHHicbVDLSgMxFM3UV62vWpduBotQQctMBXVZ6MZlBfuATi2ZNNOGJpkhyVRrmA9x487vcONCETcuBP/G9LHQ1gMXDufcy733+BElUjnOt5VaWl5ZXUuvZzY2t7Z3sru5ugxjgXANhTQUTR9KTAnHNUUUxc1IYMh8ihv+oDL2G0MsJAn5tRpFuM1gj5OAIKiM1MmeehzfopAxyLva6w0T7TGo+n6ge0mS8WTMjHij1YmbFDwfCu0mR51s3ik6E9iLxJ2RfDnnVY6f7u+qneyn1w1RzDBXiEIpW64TqbaGQhFEsVkTSxxBNIA93DKUQ4ZlW0+eS+xDo3TtIBSmuLIn6u8JDZmUI+abzvHlct4bi/95rVgFF21NeBQrzNF0URBTW4X2OCm7SwRGio4MgUgQc6uN+lBApEyeGROCO//yIqmXiu5ZsXTl5sslMEUa7IMDUAAuOAdlcAmqoAYQeADP4BW8WY/Wi/VufUxbU9ZsZg/8gfX1A+YtpVM=</latexit>P
gt�1(1̄)

<latexit sha1_base64="NbsA/usDQqo3ec9f2uPU/mHLsfY=">AAACE3icbVC7TsMwFHXKq5RXKCNLRIWEEFRJB2Cs1IWxSPQhNaVyHKe1ajuR7RRKlH9g4RP4BRYGEGJlYeNvcNoO0HIkS0fn3Ht97/EiSqSy7W8jt7S8srqWXy9sbG5t75i7xaYMY4FwA4U0FG0PSkwJxw1FFMXtSGDIPIpb3rCW+a0RFpKE/FqNI9xlsM9JQBBUWuqZxy7HtyhkDHI/cfujNHEZVAMvSPppWnBlzLR4k6hTJ+2ZJbtsT2AtEmdGStWiWzt5ur+r98wv1w9RzDBXiEIpO44dqW4ChSKIYj09ljiCaAj7uKMphwzLbjK5KbUOteJbQSj048qaqL87EsikHDNPV2YLy3kvE//zOrEKLroJ4VGsMEfTj4KYWiq0soAsnwiMFB1rApEgelcLDaCASOkYCzoEZ/7kRdKslJ2zcuXKKVUrYIo82AcH4Ag44BxUwSWogwZA4AE8g1fwZjwaL8a78TEtzRmznj3wB8bnD1Qmoe4=</latexit>P
gt�1

<latexit sha1_base64="OzpIOioNxXAVtyVoMrmvoqg3FJg=">AAACF3icbVDLSgMxFM34rPU11qWbwSJU0DLpQl0WunFZwT6gU0smzbShSWZIMtU6zF+48QP8CTcuFHGrO//G9LHQ1gMXDufcy733+BGjSrvut7W0vLK6tp7ZyG5ube/s2nu5ugpjiUkNhyyUTR8pwqggNU01I81IEsR9Rhr+oDL2G0MiFQ3FtR5FpM1RT9CAYqSN1LGLniC3OOQciW7i9YZp4nGk+36Q9NI066mYG/Em0acwLUB43LHzbtGdwFkkcEby5ZxXOXm6v6t27C+vG+KYE6ExQ0q1oBvpdoKkppgRsyFWJEJ4gHqkZahAnKh2MvkrdY6M0nWCUJoS2pmovycSxJUacd90jo9W895Y/M9rxTq4aCdURLEmAk8XBTFzdOiMQ3K6VBKs2cgQhCU1tzq4jyTC2kSZNSHA+ZcXSb1UhGfF0hXMl0tgigw4AIegACA4B2VwCaqgBjB4AM/gFbxZj9aL9W59TFuXrNnMPvgD6/MHPdeiyQ==</latexit>P
gt�1(11)

<latexit sha1_base64="XU0o2gqWeBsIeaYm5qNj3Bc+dSM=">AAACHXicbVBNSwMxEM3W7/pV9ehlsQgVtGyKqMeCF48KthW6a8lmszWYZJckW61h/4gXT/4PLx4U8eBF/DemrQdtfTDweG+GmXlhyqjSnvflFKamZ2bn5heKi0vLK6ultfWmSjKJSQMnLJEXIVKEUUEammpGLlJJEA8ZaYXXxwO/1SNS0USc635KAo66gsYUI22lTmnfF+QGJ5wjERm/28uNz5G+CmPTzfOirzJuxUuj92Be8UMkDczhTqdU9qreEO4kgT+kXF/3j3cf725PO6UPP0pwxonQmCGl2tBLdWCQ1BQzYvdkiqQIX6MuaVsqECcqMMPvcnfbKpEbJ9KW0O5Q/T1hEFeqz0PbOThdjXsD8T+vnen4KDBUpJkmAo8WxRlzdeIOonIjKgnWrG8JwpLaW118hSTC2gZatCHA8ZcnSbNWhQfV2hks12tghHmwCbZABUBwCOrgBJyCBsDgHjyBF/DqPDjPzpvzPmotOD8zG+APnM9vafGljg==</latexit>P
gt�1(1̄1)

<latexit sha1_base64="WPveU0fQdox5o5+8i7dI9M0bF7w=">AAACHXicbVBNSwMxEM3W7/pV9ehlsQgVtGyKqMeCF48KthW6a8lmszWYZJckW61h/4gXT/4PLx4U8eBF/DemrQdtfTDweG+GmXlhyqjSnvflFKamZ2bn5heKi0vLK6ultfWmSjKJSQMnLJEXIVKEUUEammpGLlJJEA8ZaYXXxwO/1SNS0USc635KAo66gsYUI22lTmnfF+QGJ5wjERm/28uNz5G+CmPTzfOirzJuxUuj92BegX6IpIH5TqdU9qreEO4kgT+kXF/3j3cf725PO6UPP0pwxonQmCGl2tBLdWCQ1BQzYvdkiqQIX6MuaVsqECcqMMPvcnfbKpEbJ9KW0O5Q/T1hEFeqz0PbOThdjXsD8T+vnen4KDBUpJkmAo8WxRlzdeIOonIjKgnWrG8JwpLaW118hSTC2gZatCHA8ZcnSbNWhQfV2hks12tghHmwCbZABUBwCOrgBJyCBsDgHjyBF/DqPDjPzpvzPmotOD8zG+APnM9vaI6ljg==</latexit>P
gt�1(11̄)

<latexit sha1_base64="kW6cC/lgTz4lc4zPiIUO+Zdinnw=">AAACI3icbVDLTgIxFO3gC/GFuHQzkZhgomSGhRpXJGxcYiKPhEHSKR1oaDuTtoNiM//ihl9x40JD3LjwXyyPhYInaXpyzr259x4/okQqx/myUmvrG5tb6e3Mzu7e/kH2MFeXYSwQrqGQhqLpQ4kp4bimiKK4GQkMmU9xwx9Upn5jiIUkIb9Xowi3GexxEhAElZE62RuP40cUMgZ5V3u9YaI9BlXfD3QvSTKejJkRH7S6cJOC50Oh3WTxnXWyeafozGCvEndB8uWcVzkfPz9VO9mJ1w1RzDBXiEIpW64TqbaGQhFEsZkWSxxBNIA93DKUQ4ZlW89uTOxTo3TtIBTmcWXP1N8dGjIpR8w3ldMD5LI3Ff/zWrEKrtua8ChWmKP5oCCmtgrtaWB2lwiMFB0ZApEgZlcb9aGASJlYMyYEd/nkVVIvFd3LYunOzZdLYI40OAYnoABccAXK4BZUQQ0g8AJewTv4sMbWmzWxPuelKWvRcwT+wPr+AaQmqFM=</latexit>P
gt�1(1̄1̄)

Figure 2: A context tree
of depth 2.

for any binary string
s of length ≤ D and
ΨKT

s (gt) := ΨKT(gt(s)).
Conceptually, this recur-
sion can be performed
over the perfect suffix
tree of depth D, which
we denote by TD and
call the context tree of
depth D; see Figure 2 for
the context tree of depth
D = 2. Following the
same logic of Willems et al. (1995), one can easily show
that

ΨCTW(gt) =
∑

T∈T≤D

w(T)ΨKT(gt;T)

for w(T) = 2−ΓD(T), where ΓD(T) := 2|T| − 1− |{s ∈
T : |s| = D}| is a complexity measure of a full binary
tree T of depth ≤ D, |T| denotes the number of leaf
nodes of a full binary tree T, and T≤D denotes the set
of all suffix trees of depth ≤ D.

For a path ρ from the root to a leaf node of TD and
a full binary tree T, we let sT(ρ) denote the unique
leaf node of T that intersects with the path ρ. We also



define vKT(gt−1;T) := vKT(gt−1(sT(ωt−1
t−D))). Then,

based on the construction of the vectorial betting for a
mixture potential in Section 3.2, we define the vectorial
CTW betting

vCTW(gt−1) :=
uCTW(gt−1)

ΨCTW(gt−1)
, where (3.6)

uCTW(gt−1) :=
∑

T∈T≤D

w(T)ΨKT(gt−1;T)vKT(gt−1;T),

then we define the CTW OLO algorithm as the action

wCTW(gt−1) := vCTW(gt−1)Wt−1(gt−1). (3.7)

By Theorem 3.2, we readily have the regret guarantee
of the CTW OLO algorithm as follows:

Corollary 3.3. Let D ≥ 0 be fixed. For any
g1, . . . ,gT ∈ B, the CTW OLO algorithm (3.7) sat-
isfies WT ≥W0ΨCTW(gT ). Moreover, we have

Reg(u[T];gT )

= w(T)W0 + Õ

(√(
ln

1

w(T)

)∑

s∈T

TT
s ∥uT

s ∥2
)

for any tree T ∈ T≤D, where TT
s denotes the number

of occurrences of a side information symbol s ∈ T with
respect to the tree side information HT;Ω.

Hence, the CTW OLO algorithm (3.7) can tailor to
the best tree side information in hindsight. Now, the
remaining question is: can we efficiently compute the
vectorial CTW betting (3.6)? As a first attempt, the
summation over the trees T ∈ T≤D in (3.6) can be
naively computed via a similar recursive formula as
(3.5). We define

ρ(ωt−1
t−D) := {λ, ωt−1, . . . , ω

t−1
t−D}

and call the active nodes given the side information
suffix ωt−1

t−D.

Proposition 3.4. For each node s of TD, define

uCTW
s (gt−1) :=


1
2
ΨKT

s (gt−1)vKT
s (gt−1)

+ 1
2
uCTW
1̄s (gt−1)uCTW

1s (gt−1) if |s| < D,

ΨKT
s (gt−1)vKT

s (gt−1) if |s| = D,

vKT
s (gt−1) :=

{
vKT(gt−1(s)) if s ∈ ρ(ωt−1

t−D)

1 otherwise.
(3.8)

Then, the recursion is well-defined, and uCTW
λ (gt−1) =

uCTW(gt−1).

While the recursions (3.5) and (3.8) take O(2D) steps

for computing a mixture of O(22
D

) many tree poten-
tials, they are still not feasible as an online algorithm
even for a moderate D. In the next section, we show
that the per-round time complexity O(2D) can be sig-
nificantly improved to O(D) by exploiting the tree
structure further.

3.3.4 The Efficient CTW OLO Algorithm
with O(D) Steps Per Round

(1) Compute vCTW in O(D) steps The key idea
is that, given the suffix ωt−1

t−D, the vector betting

vCTW = uCTW/ΨCTW can be computed efficiently via
the recursive formulas (3.5) and (3.8), by only travers-
ing the active nodes ρ(ωt−1

t−D) = {λ, ωt−1, . . . , ω
t−1
t−D} in

the context tree TD. In order to do so, we define

βs(g
t−1) :=

ΨKT
s (gt−1)

ΨCTW
1̄s

(gt−1)ΨCTW
1s (gt−1)

(3.9)

for every internal node s of TD.

Proposition 3.5. Define

vCTW
sd

(gt−1)

:=





βsd
(gt−1)

βsd
(gt−1)+1v

KT
sd

(gt−1)

+ 1
βsd

(gt−1)+1v
CTW
sd+1

(gt−1) if d < D

vKT
sD (gt−1) if d = D

(3.10)

for sd = ωt−1
t−d ∈ TD, d = 0, . . . , D. Then,

vCTW(gt−1) = vCTW
λ (gt−1).

Hence, if we can store
∑

gt−1(s) and the value
βs(g

t−1) as defined in (3.9) for every node s of TD,
we can compute vCTW in O(D).

(2) Update βs in O(D) steps Upon receiving gt,
we need to update βsd(gt−1) as

βsd(g
t) = βsd(g

t−1)
ΨKT

sd (g
t)

ΨKT
sd (g

t−1)

ΨCTW
sd+1

(gt−1)

ΨCTW
sd+1

(gt)
(3.11)

for each sd = ωt−1
t−d ∈ TD. Here, the ratio

ΨCTW
sd

(gt)/ΨCTW
sd

(gt−1) can be also computed effi-

ciently while traversing the path ρ(ωt−1
t−D) from the leaf

node sD to the root s0 = λ, based on the following re-
cursion:

Proposition 3.6. For each node sd = ωt−1
t−d ∈ TD,

d = 0, . . . , D,

ΨCTW
sd

(gt)

ΨCTW
sd

(gt−1)

=





βsd
(gt−1)

βsd
(gt−1)+1

ΨKT
sd

(gt)

ΨKT
sd

(gt−1)

+ 1
βsd

(gt−1)+1

ΨCTW
sd+1

(gt)

ΨCTW
sd+1

(gt−1)
if d < D

ΨKT
sD

(gt)

ΨKT
sD

(gt−1)
if d = D

. (3.12)

Hence, updating βs’s can be also performed efficiently
in O(D) time. The space complexity of this algorithm
is O(DT ), since there can be at most D nodes acti-
vated for the first time at each round. The complete al-
gorithm is summarized in Algorithm D.3 in Appendix.



4 EXPERIMENTS

To validate the motivation of this work and demon-
strate the power of the proposed algorithms in on-
line convex optimization, we performed online lin-
ear regression with absolute loss following Orabona
and Pál (2016). We observed, however, that the
datasets considered therein do not contain any tem-
poral dependence and thus the proposed algorithms
did not prove useful (data not shown). Instead,
we chose two real-world temporal datasets (Beijing
PM2.5 (Liang et al., 2015) and Metro Interstate Traf-
fic Volume (Hogue, 2019)) from the UCI machine
learning repository (Dua and Graff, 2019). All de-
tails including data preprocessing can be found in Ap-
pendix E and the code that fully reproduce the re-
sults is available at https://github.com/jongharyu/
olo-with-side-information.

To construct auxiliary sequences, we used the canon-
ical binary quantizers Qei

, where ei denotes the i-th
standard vector. We first ran the per-state versions
of OGD, AdaNormal (McMahan and Orabona, 2014),
DFEG (Orabona, 2013), and KT with Markov side in-
formation of different depths and ran the CTW algo-
rithm for the maximum depth ranging 0, 1, 3 . . . , 11.
We optimally tuned the per-state OGD using only
a single rate for all states due to the prohibitively
large complexity of the optimal grid search; see Fig-
ures E.4(a) and E.5(a) in Appendix. While the per-
state KT consistently showed the best performance,
the performance degraded as we used too deep Markov
side information beyond some threshold for all algo-
rithms. In Figures E.4(b) and E.5(b) in Appendix,
CTW often achieved even better performance than the
best performance achieved by KT across the different
choices of quantizer, also being robust to the choice of
the maximum depth.

In practice, however, we do not know which dimen-
sion to quantize a priori. Hence, we showed the per-
formance of the combined CTW algorithms over all
d quantizers aggregated by either the mixture or the
addition—conceptually, the mixture of CTWs can be
viewed as a context forest weighting. As a benchmark,
we also ran the combined KT algorithms over all d
quantizers for each depth. In Figure 3, we summa-
rized the per-coordinate results by taking the best per-
formance over all quantizers; see the first five dashed
lines in the legend. While these are only hypothetical
which were not attained by an algorithm, surprisingly,
the combined CTW algorithms over different quantiz-
ers, either by the mixture or the addition of Cutkosky
(2019), achieved the hypothetically best performance
(plotted solid).

Figure 3: Summary of the experiments.

5 CONCLUDING REMARKS

Aiming to leverage a temporal structure in the se-
quence gn, we developed the CTW OLO algorithm
that can efficiently adapt to the best tree side infor-
mation in hindsight by combining a universal coin bet-
ting based OLO algorithm and universal compression
(or prediction) techniques from information theory.
Experimental results demonstrate that the proposed
framework can be effective in solving real-life online
convex optimization problems.

The key technical contribution of the paper is to con-
sider the product and mixture potentials, motivated
from information theory, and to adapt the CTW al-
gorithm of Willems et al. (2006) to online linear opti-
mization in Hilbert spaces. Main technical difficul-
ties lie in analyzing the product potential (Propo-
sition C.14) and properly invoking Rissanen’s lower
bound in Theorem C.7 to establish the optimality.

We remark that an anonymous reader of an earlier
version of this manuscript proposed a simpler alterna-
tive approach based on a meta algorithm that recasts
any parameter-free OLO algorithm for tree-structured
side information. The idea is to combine the specialist
framework of Freund et al. (1997) and apply the ad-
dition technique of Cutkosky (2019). Running a base
OLO algorithm at each node of a context tree as a
specialist, the meta algorithm adds up the outputs of
the specialists on the active path at each round and
updates them at the end of the round. This approach
achieves a similar regret guarantee of the CTW OLO
(Corllary 3.3) with the same complexity. A detailed
study is beyond the scope of this paper and thus left
as future work.

https://github.com/jongharyu/olo-with-side-information
https://github.com/jongharyu/olo-with-side-information


Acknowledgements

This work was supported in part by the National Sci-
ence Foundation under Grant CCF-1911238. The au-
thors appreciate insightful feedback from anonymous
reviewers to improve earlier versions of the manuscript.

References

Bauschke, H. H. and Combettes, P. L. (2011). Convex
analysis and monotone operator theory in Hilbert
spaces, volume 408. Springer.

Begleiter, R., El-Yaniv, R., and Yona, G. (2004). On
prediction using variable order Markov models. J.
Artif. Intell. Res., 22:385–421.

Bhaskara, A., Cutkosky, A., Kumar, R., and Purohit,
M. (2020a). Online learning with imperfect hints.
In Proc. Int. Conf. Mach. Learn., pages 822–831.
PMLR.

Bhaskara, A., Cutkosky, A., Kumar, R., and Purohit,
M. (2020b). Online linear optimization with many
hints. arXiv preprint arXiv:2010.03082.

Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction,
learning, and games. Cambridge University Press.

Chaudhuri, K., Freund, Y., and Hsu, D. (2009). A
parameter-free hedging algorithm. In Adv. Neural
Inf. Proc. Syst., volume 22. Curran Associates, Inc.

Chen, L., Luo, H., and Wei, C.-Y. (2021). Impossible
tuning made possible: A new expert algorithm and
its applications. arXiv preprint arXiv:2102.01046.

Chernov, A. and Vovk, V. (2010). Prediction with
advice of unknown number of experts. In Proc. Un-
certain. Artif. Intell.

Cover, T. M. and Thomas, J. A. (2006). Elements of
information theory. John Wiley & Sons.

Cutkosky, A. (2019). Combining online learning guar-
antees. In Conf. Learn. Theory, pages 895–913.
PMLR.

Cutkosky, A. and Boahen, K. (2017). Online learning
without prior information. In Conf. Learn. Theory,
pages 643–677. PMLR.

Dekel, O., Flajolet, A., Haghtalab, N., and Jaillet, P.
(2017). Online learning with a hint. In Adv. Neural
Inf. Proc. Syst., volume 30, pages 5299–5308. Cur-
ran Associates, Inc.

Dua, D. and Graff, C. (2019). UCI Machine Learning
Repository.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adap-
tive subgradient methods for online learning and
stochastic optimization. J. Mach. Learn. Res.,
12(7).

Foster, D. J., Rakhlin, A., and Sridharan, K. (2015).
Adaptive online learning. In Adv. Neural Inf. Proc.
Syst., volume 28, pages 3375–3383. Curran Asso-
ciates, Inc.

Freund, Y. and Schapire, R. E. (1997). A decision-
theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and
System Sciences, 55(1):119–139.

Freund, Y., Schapire, R. E., Singer, Y., and War-
muth, M. K. (1997). Using and combining predictors
that specialize. In Proc. Annu. ACM Symp. Theory
Comput., pages 334–343.

Hogue, J. (2019). Metro interstate traffic volume data
set.

Jiao, J., Permuter, H. H., Zhao, L., Kim, Y.-H.,
and Weissman, T. (2013). Universal estimation
of directed information. IEEE Trans. Inf. Theory,
59(10):6220–6242.

Jun, K.-S. and Orabona, F. (2019). Parameter-free on-
line convex optimization with sub-exponential noise.
In Conf. Learn. Theory, pages 1802–1823. PMLR.

Jun, K.-S., Orabona, F., Wright, S., and Willett, R.
(2017). Online learning for changing environments
using coin betting. Electron. J. Stat., 11(2):5282–
5310.

Kelly Jr., J. L. (1956). A new interpretation of infor-
mation rate. IRE Trans. Inf. Theory, 3(2):185–189.

Koolen, W. M. and Van Erven, T. (2015). Second-
order quantile methods for experts and combinato-
rial games. In Conf. Learn. Theory, pages 1155–
1175. PMLR.

Kozat, S. S., Singer, A. C., and Bean, A. J. (2008).
Universal portfolios via context trees. In Proc. IEEE
Int. Conf. Acoust. Speech. Signal Process., pages
2093–2096. IEEE.

Krichevsky, R. and Trofimov, V. (1981). The perfor-
mance of universal encoding. IEEE Trans. Inf. The-
ory, 27(2):199–207.

Kuzborskij, I. and Cesa-Bianchi, N. (2020). Locally-
adaptive nonparametric online learning. In Adv.
Neural Inf. Proc. Syst., volume 33.

Liang, X., Zou, T., Guo, B., Li, S., Zhang, H., Zhang,
S., Huang, H., and Chen, S. X. (2015). Assess-
ing Beijing’s PM2.5 pollution: Severity, weather im-
pact, APEC and winter heating. Proc. R. Soc. A,
471(2182):20150257.

Luo, H. and Schapire, R. E. (2015). Achieving all with
no parameters: AdaNormalHedge. In Conf. Learn.
Theory, pages 1286–1304. PMLR.

McMahan, H. B. and Abernethy, J. (2013). Minimax
optimal algorithms for unconstrained linear opti-



mization. In Adv. Neural Inf. Proc. Syst., volume 26.
Curran Associates, Inc.

McMahan, H. B. and Orabona, F. (2014). Uncon-
strained online linear learning in Hilbert spaces:
Minimax algorithms and normal approximations. In
Conf. Learn. Theory, pages 1020–1039. PMLR.

Messias, J. V. and Whiteson, S. (2018). Dynamic-
depth context tree weighting. In Adv. Neural Inf.
Proc. Syst., volume 31. Curran Associates, Inc.

Orabona, F. (2013). Dimension-free exponentiated
gradient. In Adv. Neural Inf. Proc. Syst., volume 26,
pages 1806–1814. Curran Associates, Inc.

Orabona, F. (2014). Simultaneous model selection
and optimization through parameter-free stochastic
learning. arXiv preprint arXiv:1406.3816.

Orabona, F. (2019). A modern introduction to online
learning. arXiv preprint arXiv:1912.13213.

Orabona, F. and Cutkosky, A. (2020). ICML
2020 tutorial on parameter-free online opti-
mization. Websites: https://parameterfree.

com/icml-tutorial/, https://icml.cc/

Conferences/2020/Schedule?showEvent=5753.

Orabona, F. and Pál, D. (2016). Coin betting and
parameter-free online learning. In Adv. Neural Inf.
Proc. Syst., volume 29. Curran Associates, Inc.

Orabona, F. and Tommasi, T. (2017). Training deep
networks without learning rates through coin bet-
ting. In Adv. Neural Inf. Proc. Syst., volume 30.
Curran Associates, Inc.

Rakhlin, A. and Sridharan, K. (2013). Online learning
with predictable sequences. In Conf. Learn. Theory,
pages 993–1019. PMLR.

Rissanen, J. (1984). Universal coding, information,
prediction, and estimation. IEEE Trans. Inf. The-
ory, 30(4):629–636.

Rissanen, J. J. (1996). Fisher information and stochas-
tic complexity. IEEE Trans. Inf. Theory, 42(1):40–
47.

Shalev-Shwartz, S. (2011). Online learning and online
convex optimization. Found. Trends Mach. Learn.,
4(2):107–194.

Van der Hoeven, D., van Erven, T., and Kot lowski,
W. (2018). The many faces of exponential weights
in online learning. In Conf. Learn. Theory, pages
2067–2092. PMLR.

Willems, F. M., Shtarkov, Y. M., and Tjalkens, T. J.
(1995). The context-tree weighting method: Basic
properties. IEEE Trans. Inf. Theory, 41(3):653–664.

Willems, F. M., Tjalkens, T. J., and Ignatenko, T.
(2006). Context-tree weighting and maximizing:

Processing betas. In Proc. UCSD Inf. Theory Appl.
Workshop.

Xie, Q. and Barron, A. R. (1997). Minimax redun-
dancy for the class of memoryless sources. IEEE
Trans. Inf. Theory, 43(2):646–657.

Zhang, L., Wang, G., Yi, J., and Yang, T. (2021).
A simple yet universal strategy for online convex
optimization. arXiv preprint arXiv:2105.03681.

Ziv, J. and Lempel, A. (1977). A universal algorithm
for sequential data compression. IEEE Trans. Inf.
Theory, 23(3):337–343.

https://parameterfree.com/icml-tutorial/
https://parameterfree.com/icml-tutorial/
https://icml.cc/Conferences/2020/Schedule?showEvent=5753
https://icml.cc/Conferences/2020/Schedule?showEvent=5753


Supplementary Material:
Parameter-Free Online Linear Optimization

with Side Information via Universal Coin Betting

A RELATED WORK

There have been several parameter-free methods proposed for OLO in Hilbert space (Orabona, 2013, 2014;
McMahan and Orabona, 2014; Orabona and Pál, 2016) as well as learning with expert advice (LEA) (Freund
and Schapire, 1997; Chaudhuri et al., 2009; Chernov and Vovk, 2010; Luo and Schapire, 2015; Foster et al.,
2015; Koolen and Van Erven, 2015; Orabona and Pál, 2016); see also (Orabona, 2019, Chapter 9) and the
references therein. A parallel line of work on parameter-free methods considers the case when the maximum
norm of gt (often referred to as the Lipschitz constant), which is assumed to be 1 throughout in this paper, is
unknown but the competitor norm ∥u∥ is known (Duchi et al., 2011; Cutkosky and Boahen, 2017). Recently,
Zhang et al. (2021); Chen et al. (2021) studied a similar setting in this paper, albeit establishing guarantees
only for bounded domains. We remark that AdaNormalHedge (Luo and Schapire, 2015) is a parameter-free
LEA algorithm which can compete with mixtures of forcasters with side information, in particular tree experts
via mixtures of sleeping experts; for example, Kuzborskij and Cesa-Bianchi (2020) used AdaNormalHedge with
tree experts for binary classification with absolute loss. For a comprehensive overview of these parameter-free
methods, see the tutorial (Orabona and Cutkosky, 2020).

The connection between OLO and gambling was shown by Orabona and Pál (2016), where they also described a
reduction for LEA. This idea was also applied to training deep neural networks (Orabona and Tommasi, 2017).
While the proposed algorithms in this paper are against stationary competitors, Jun et al. (2017) proposed a
coin betting based OLO algorithm against nonstationary competitors characterized by a sequence of vectors
u1, . . . ,uT such that have at most m change points. Van der Hoeven et al. (2018, Section 5 and particularly
Theorem 9) establishes a connection between the exponential weights (EW) algorithm and the coin-betting
scheme. Earlier on in the paper, in Section 2 the interpretation of compression as a special case of EW with
η = 1 is provided as well. Similarly, Jun and Orabona (2019) utilize such a connection as well. To the best of our
knowledge, however, we did not find a clear bridge constructed between compression and coin-betting methods
in either, even though a careful examination of the mathematical details may hint toward this connection.

Universal compression, which is a classical topic in information theory, aims to compress sequences with no (or
very little) statistical assumptions. In the last century, there have been several techniques proposed that can
compete against the best i.i.d. compressor (Krichevsky and Trofimov, 1981; Rissanen, 1984; Xie and Barron,
1997), finite state compressor (Ziv and Lempel, 1977) and tree compressor (Willems et al., 1995). The CTW
probability assignment invented by (Willems et al., 1995) has been one of the most successful and widely used
universal compression techniques. Beyond compression, this technique has been applied to estimation of directed
information (Jiao et al., 2013), universal portfolios (Kozat et al., 2008), and reinforcement learning (Messias and
Whiteson, 2018), to name a few. The efficient CTW OLO algorithm presented in Section 3.3.4 is in the spirit
of the processing betas algorithm proposed by Willems et al. (2006) for computing the predictive conditional
probability induced by the CTW probability assignment (Willems et al., 1995). Cesa-Bianchi and Lugosi (2006,
Section 5.3) also presented a CTW-based Hedge algorithm for LEA; see bibliographic remarks therein for other
applications of CTW to learning problems.

A related line of recent work on online learning with hints (Dekel et al., 2017; Bhaskara et al., 2020a,b) considers
a scenario where the learner receives a vector ht with ∥ht∥ = 1 such that ⟨ht,gt/∥gt∥⟩ ≥ α > 0 as a “hint”
to the future. However, our setting is not directly comparable, since we only consider a finite side information
and this line of work aims to establish small regret o(

√
T ) measured with respect to static competitors. We also

remark that Rakhlin and Sridharan (2013) studied the problem of OLO when gt is modelled as a “predictable”
sequence, in the sense that gt = M(gt−1) + nt with some adversarial noise nt with a (possibly randomized)
function M ; yet, they considered static competitors unlike this work.



B PER-STATE EXTENSIONS OF EXISTING ALGORITHMS

Here we present per-state versions of OGD and two existing parameter-free OLO algorithms: the dimension-
free exponentiated gradient algorithm (DFEG) (Orabona, 2013) and the adaptive normal algorithm (AdaNor-
mal) (McMahan and Orabona, 2014).

Following the original problem setting in (Orabona, 2013), we describe the per-state DFEG only for online linear
regression. Consider a loss function ℓ(ŷ, y), which is convex and L-Lipschitz in its first argument. At each round
t, a learner picks wt ∈ V . A nature then reveals (xt, yt) ∈ V ×R, and the learner suffers loss ℓt(wt) := ℓ(ŷt, yt),
where ŷt := ⟨wt,xt⟩. Note that the DFEG algorithm requires a norm of the instance ∥xt∥ to form an action wt.

Algorithm B.1 Per-state Dimension-free Exponentiated Gradient (Orabona, 2013) for online regression

1: procedure PerStateDFEG(L, δ, 0.882 ≤ a ≤ 1.109)

2: Initialize θ(s) ← 0 ∈ V,H(s) ← δ for each s ∈ [S]
3: for 1 ≤ t ≤ T do
4: Receive ht ∈ [S] and ∥xt∥
5: Update H(ht) ← H(ht) + L2 max{∥xt∥, ∥xt∥2}
6: Set αt ← a(H(ht))1/2, βt ← (H(ht))3/2

7: if ∥θ(ht)∥ = 0 then
8: Set wt ← 0
9: else

10: Set wt ← θ(ht)

βt∥θ(ht)∥ exp(∥θ(ht)∥
αt

)

11: end if
12: Receive (xt, yt) and incur loss ℓt(wt)

13: Update θ(ht) ← θ(ht) − ∂ℓt(⟨wt,xt⟩)xt

14: end for
15: end procedure

Algorithm B.2 Per-state AdaptiveNormal (McMahan and Orabona, 2014) for OLO with side information

1: procedure PerStateAdaNormal(L, a ≥ 3L2π
4 , ϵ)

2: Initialize θ(s) ← 0 ∈ V for each s ∈ [S]
3: for 1 ≤ t ≤ T do
4: Receive ht ∈ [S]

5: if ∥θ(ht)∥ = 0 then
6: Set wt ← 0
7: else
8: Set wt ← ϵ θ(ht)

∥θ(ht)∥
1

2L ln2(t+1)
{exp( (∥θ(ht)∥+L)2

2at )− exp( (∥θ(ht)∥−L)2

2at )}
9: end if

10: Receive gt and incur loss ⟨gt,wt⟩
11: Update θ(ht) ← θ(ht) − gt

12: end for
13: end procedure

We remark that these two algorithms are also guaranteed to incur essentially the same order of regret without
tuning learning rate. Also, while the per-state KT OLO algorithm serves as a base algorithm in the CTW OLO
algorithm, to be a fair comparison, the two algorithms can be also used as a base in the specialist framework
to solve the tree side information problem, as noted in Section 5. There are, however, two minor disadvantages
we can observe. First of all, the DFEG algorithm is tailored to the online linear regression problem, while the
per-state KT OLO and AdaptiveNormal algorithms can be applied to a general OLO problem. Second, while
the KT OLO has only one hyperparameter, the initial wealth W0, the above two per-state algorithms have two
hyperparameters (except the Lipschitz constant), which may need to be chosen or tuned in practice.



C DEFERRED TECHNICAL MATERIALS

C.1 Proofs for Section 2

C.1.1 Proof of Theorem 2.1

We note that all statements in Section 2 originally appeared in (Orabona and Pál, 2016). The proofs given here
are rephrased and simplified from (Orabona and Pál, 2016).

Before we prove Theorem 2.1, we state some key properties of the KT potential function ψKT.

Proposition C.1. For each t ≥ 1 and any g1, . . . , gt ∈ [−1, 1], the followings hold:

(a) (Coordinatewise convexity) g 7→ ψKT(gt−1g) is convex for g ∈ [−1, 1].

(b) (Consistency) ψKT(gt−1) = 1
2 (ψKT(gt−11) + ψKT(gt−11̄)).

(c) (The relation of signed betting and potential)

bKT(gt−1) =
ψKT(gt−11)− ψKT(gt−11̄)

ψKT(gt−11) + ψKT(gt−11̄)
=
ψKT(gt−11)− ψKT(gt−11̄)

ψKT(gt−1)
.

(d) For any x ∈ [0, t), x(ψKT
t )′′(x) ≥ (ψKT

t )′(x).

Proof. Recall q̃KTt (x) := B( t+x+1
2 , t−x+1

2 )/B( 1
2 ,

1
2 ) and ψKT(gt) := ψKT

t (
∑
gt) := 2tq̃KTt (

∑
gt). (a) and (d) follow

from the properties of the Gamma function Γ(·); for details, see (Orabona and Pál, 2016, Lemma 12) and the
proof therein. (b) and (c) can be easily verified by the definition of the KT potential ψKT.

We remark that the relation (b) can be understood as a continuous extension of the consistency of q̃KT as a
joint probability over a binary sequence gt ∈ {−1, 1}t. Further, in view of the relation (c), the signed bet bKT

is a continuous extension of the prequential probability q̃KT(·|gt−1) induced by the joint probability assignment
q̃KT(gt).

We now show the following single round bound.

Lemma C.2. For any t ≥ 1 and g1, . . . , gt ∈ [−1, 1], we have

(1 + gtb
KT
t (gt−1))ψKT(gt−1) ≥ ψKT(gt).

Proof. By the definition of coin betting potentials, we have

(1 + gtb
KT(gt−1))ψKT(gt−1)

(i)

≥ (1 + gtb
KT(gt−1))

1

2
(ψKT(gt−11) + ψKT(gt−11̄))

(ii)
=
(

1 + gt
ψKT(gt−11)− ψKT(gt−11̄)

ψKT(gt−11) + ψKT(gt−11̄)

)1

2
(ψKT(gt−11) + ψKT(gt−11̄))

=
1 + gt

2
ψKT(gt−11) +

1− gt
2

ψKT(gt−11̄)

(iii)

≥ ψKT(gt).

where (i), (ii), and (iii) follow from (b), (c), and (a) in Proposition C.1, respectively.

While the above lemma establishes the lower bound on the cumulative wealth, we then need the following
statement that connects regret and wealth via convex duality. We remark that this relation is the key statement
that motivates all coin betting based algorithms.

Proposition C.3 (McMahan and Orabona, 2014, (Orabona and Pál, 2016, Lemma 1)). Let Φ: V → R be a
convex function and let Φ⋆ : V → R ∪ {+∞} denote its Fenchel conjugate function. For any g1, . . . ,gT ∈ V ⋆

and any wt, . . . ,wT ∈ V , we have

sup
u∈V
{Reg(u;gT )− Φ(u)} = −

T∑

t=1

⟨gt,wt⟩+ Φ⋆
( T∑

t=1

gt

)
,



where Reg(u;gT ) :=
∑T

t=1⟨gt,u−wt⟩.

Proof. By definition of Fenchel dual, we have

sup
u∈V
{Reg(u;gT )− Φ(u)} = sup

u∈V

{ T∑

t=1

⟨gt,u−wt⟩ − Φ(u)
}

= −
T∑

t=1

⟨gt,wt⟩+ sup
u∈V

{〈 T∑

t=1

gt,u
〉
− Φ(u)

}

= −
T∑

t=1

⟨gt,wt⟩+ Φ⋆
( T∑

t=1

gt

)
.

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. We first show the wealth lower bound Wt ≥ W0ψ
KT(gt) stated in (2.1) by induction on

t. Suppose that Wt−1 ≥W0ψ
KT(gt−1). Then,

Wt = Wt−1 + gtwt

= (1 + bKT(gt−1)gt)Wt−1

(a)

≥ (1 + bKT(gt−1)gt)W0ψ
KT(gt−1)

(b)

≥W0ψ
KT(gt),

where (a) follows from the induction hypothesis and (b) follows from Lemma C.2.

The wealth lower bound can be converted into the desired regret bound by Proposition C.3. That is, we have

sup
u∈R
{Reg(u; gT )− ϕ(u)} = −

T∑

t=1

gtwt + W0ψ
KT(gT ) ≤W0,

where ϕ : R → R is a convex function such that its conjugate function ϕ⋆ : R → R ∪ {+∞} is equal to
W0ψ

KT
T (

∑
gt). Since x 7→ ψKT

T (x) is a convex, proper, closed function, one can check that ϕ(u) = W0(ψKT
T )⋆( u

W0
)

using Lemma C.10.

C.1.2 Proof of Theorem 2.2

As in 1D OLO case, we first show the following single round bound.

Lemma C.4. For any g1, . . . ,gt ∈ B, we have

(1 + ⟨gt,v
KT(gt−1)⟩)ΨKT(gt−1) ≥ ΨKT(gt).

Proof. Let ft−1 :=
∑

gt−1. Consider

(1+⟨gt,v
KT(gt−1)⟩)ΨKT(gt−1)−ΨKT(gt)

= ΨKT(gt−1) + ⟨gt,v
KT(gt−1)⟩ΨKT(gt−1)−ΨKT(gt)

= ψKT
t−1(∥ft−1∥) +

〈
gt, b

KT
t (∥ft−1∥)

ft−1

∥ft−1∥
〉
ψKT
t−1(∥ft−1∥)− ψKT

t (∥ft−1 + gt∥)

(a)

≥ ψKT
t−1(∥ft−1∥) + min

r∈{±1}
{r∥gt∥bKTt (∥ft−1∥)ψKT

t−1(∥ft−1∥)− ψKT
t (∥ft−1∥+ r∥gt∥)}

= min
r∈{±1}

{(1 + r∥gt∥bKTt (∥ft−1∥))ψKT
t−1(∥ft−1∥)− ψKT

t (∥ft−1∥+ r∥gt∥)}

≥ min
g∈[−1,1]

{(1 + gbKTt (∥ft−1∥))ψKT
t−1(∥ft−1∥)− ψKT

t (∥ft−1∥+ g)}



(b)

≥ 0.

Here, we apply Lemma C.8 since ψKT
t satisfies x(ψKT

t )′′(x) ≥ (ψKT
t )′(x) for all x ∈ [0, t), to have (a) by plugging

in u← gt, v← ft−1, c(∥u∥, ∥v∥)← bKTt (∥ft−1∥)
∥ft−1∥ ψKT

t−1(∥ft−1∥), and h(·)← ψKT
t (·). (b) follows from the single round

bound for 1D case established in Lemma C.2.

The proof of Theorem 2.2 now follows similarly to that of Theorem 2.1.

Proof of Theorem 2.2. We show Wt ≥ W0ΨKT(gt) by induction on t. For t = 0, it trivially holds. For t ≥ 1,
assume that Wt−1 ≥W0ΨKT(gt−1) holds. Then, we have

Wt = ⟨gt,w
KT
t ⟩+ Wt−1

= (1 + ⟨gt,v
KT(gt−1)⟩)Wt−1

(a)

≥ (1 + ⟨gt,v
KT(gt−1)⟩)W0ΨKT(gt−1)

(b)

≥W0ΨKT(gt).

Here, (a) follows from the induction hypothesis and (b) follows from the above lemma. The regret bound follows
by the same logic of the 1D case using Proposition C.3 with the additional application of Lemma C.9, which
implies that (ψKT

t )⋆(u) = (ψKT
t )⋆(∥u∥).

C.2 Proofs for Section 3

C.2.1 Proof of Theorem 3.1

The following statement generalizes Proposition C.3 for static competitors to adaptive competitors.

Proposition C.5. Let Φ: V × · · · × V → R be a convex function and let Φ⋆ : V × · · · × V → R ∪ {+∞}. For
any side information sequence H = (ht)t≥1, any g1, . . . ,gT ∈ V ⋆, and any wt, . . . ,wT ∈ V , we have

sup
u1:S∈V×···V

{Reg(u1:S [H];gT )− Φ(u1:S)} = −
T∑

t=1

⟨gt,wt⟩+ Φ⋆
( ∑

t∈[T ]:ht=1

gt, . . . ,
∑

t∈[T ]:ht=S

gt

)
,

where Reg(u1:S [H];gT ) :=
∑S

s=1

∑
t∈[T ]:ht=S⟨gt,us −wt⟩.

Proof. By definition of Fenchel dual, we have

sup
u1:S∈V×···V

{Reg(u1:S [H];gT )− Φ(u1:S)} = sup
u1:S∈V×···V

{ S∑

s=1

∑

t∈[T ]:ht=s

⟨gt,us −wt⟩ − Φ(u1:S)
}

= −
T∑

t=1

⟨gt,wt⟩+ sup
u1:S∈V×···V

{ S∑

s=1

〈 ∑

t∈[T ]:ht=s

gt,us

〉
− Φ(u1:S)

}

= −
T∑

t=1

⟨gt,wt⟩+ Φ⋆
( ∑

t∈[T ]:ht=1

gt, . . . ,
∑

t∈[T ]:ht=S

gt

)
.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Since the vectorial betting vKT(gt−1;ht) only affects the component potential
ΨKT(gt(ht;h

t−1)) by construction, the wealth lower bound readily follows from the same argument in the proof
of Theorem 2.2. Now, we observe that

ΨKT(gT ;hT ) = 2T
∏

s∈[S]

q̃KTTs
(∥∑gT (s;hT )∥),



where Ts := |{t ∈ [T ] : ht = s}|. Since q̃KTT (x) ≥ 1
2T e

√
π

1√
T
e

2x2

T for T ≥ 1 by (Orabona and Pál, 2016, Lemma 14),

we have

ΨKT(gT ;hT ) ≥
( 1

e
√
π

)S′
1√

T ′
1 · · ·T ′

S

exp
( S∑

s=1

2∥∑gT (s;hT )∥2
T ′
s

)
,

where S′ :=
∑S

s=1 1{Ts ≥ 1} and T ′
s := Ts ∨ 1. Applying Propositions C.5 and C.14 then establishes the regret

upper bound.

C.2.2 Proof of Theorem 3.2

We show Wt ≥ W0Ψmix(gt;ht) by induction on t. For t = 0, it trivially holds. For t ≥ 1, assume that
Wt−1 ≥W0Ψmix(gt−1;ht−1) holds. Then, we have

Wt = ⟨gt,w
mix
t (gt−1;ht)⟩+ Wt−1

= (1 + ⟨gt,v
mix(gt−1;ht)⟩)Wt−1

(a)

≥ (1 + ⟨gt,v
mix(gt−1;ht)⟩)W0Ψmix(gt−1;ht−1)

(b)

≥W0Ψmix(gt;ht).

Here, (a) follows from the induction hypothesis, and (b) follows from the construction of vmix(gt−1;ht). The
regret guarantee for m ∈ [M ] readily follows from the construction of the mixture potential, which guarantees
WT ≥ wmW0ΨKT(gT ; (h(m))T ).

C.2.3 Matching lower bounds for tree side information

We first require the following theorem from (Orabona, 2019).

Theorem C.6 (Orabona, 2019, Theorem 5.11). Suppose that an OLO algorithm satisfies that for each t ≥ 0

sup
gt∈Bt

Reg(0;gt) = − inf
gt∈Bt

t∑

i=1

⟨gi,wi⟩ ≤W
(t)
0 (C.1)

with some nondecreasing sequence (W
(t)
0 )t≥0. Then, for each T ≥ 1, there exists v1, . . . ,vT ∈ B such that

wt = vt

(
W

(T )
0 +

t−1∑

i=1

⟨gi,wi⟩
)

for all t ∈ [T ].

For a binary quantizer Q : B→ {±1}, let HT,Q denote the tree side information with respect to a tree T and an
auxiliary sequence Ω = (ωt)t≥1 with ωt = Q(gt).

Theorem C.7. Let V = Rd be the d-dimensional Euclidean space. Suppose that a binary quantizer Q : B →
{±1} satisfies Q(ej) = 1 and Q(−ej) = −1 for some j ∈ [d]. For T sufficiently large, for any causal OLO
algorithm that satisfies the condition (C.1) in Theorem C.6, for any binary suffix tree T, there exist a sequence
g1, . . . ,gT ∈ B and a competitor (u∗

s)s∈T[HT,Q] ∈M(HT,Q) such that

Reg((u∗
s)s∈T[HT,Q]);gT ) ≥

√√√√
∑

s∈T

Ts∥u∗
s∥22 ln

( (T/|T|)|T|

(W
(T )
0 )2

∑

s∈T

Ts∥u∗
s∥22 + 1

)
+ W

(T )
0 .

Proof. Without loss of generality, assume that the binary quantizer Q : B → {±1} satisfies Q(e1) = 1 and
Q(−e1) = −1. For a binary sequence cT ∈ {±1}T , we set gt = (ct, 0, . . . , 0) for ct ∈ {±1}, so that ⟨gt,wt⟩ = ctxt1.
Then, by Theorem C.6, we can write

xt1 = vt1

(
W

(T )
0 +

t−1∑

i=1

⟨gi,wi⟩
)

= vt1

(
W

(T )
0 +

t−1∑

i=1

cixi1

)



for some vt1 such that |vt1| ≤ 1. Hence, the OLO problem with any causal algorithms satisfying (C.1) with respect

to the 1D sequences gT can be equivalently viewed as the 1D coin betting with initial wealth W0 = W
(T )
0 .

Now, we state the celebrated Rissanen’s lower bound for universal compression in the form of the wealth upper
bound for the coin betting. Rissanen (1996) showed that for any probability assignment q(xT ) on a binary
sequence xT ∈ {0, 1}T , there exists a sequence x̃T ∈ {0, 1} such that

q(x̃T ) ≤ e−
|T|
2 ln T

|T| max
pT

pT(x̃T ),

where the maximum is over all possible tree sources pT with the underlying tree T. This can be translated into
the wealth upper bound for the standard coin betting with binary outcomes ct ∈ {±1} thanks to the equivalence
between the coin betting and universal compression: for any continuous coin betting algorithm which plays a
relative bet bt ∈ [−1, 1] at time t, there exists a binary sequence c̃T ∈ {±1}T such that

WT

W0
=

T∏

t=1

(1 + btc̃t) ≤
( |T|
T

) |T|
2
∏

s∈T

max
bs∈[−1,1]

∏

t∈[T ]:ht=s

(1 + bsc̃t)

(a)

≤
( |T|
T

) |T|
2
∏

s∈T

exp
( ln 2

T ′
s

( ∑

t∈[T ]:ht=s

c̃t

)2)
,

= f
(
(
∑
c̃T (s;HT,Q))s∈T

)
, (C.2)

where ht denotes the suffix of the sequence ct−1 with respect to T at time t, T ′
s := Ts∨1, Ts := |{t ∈ [T ] : ht = s}|,

f((xs)s∈T) :=
∏

s∈T hs(xs), and hs(xs) = βs exp(
x2
s

2αs
) with αs = 2Ts′

ln 2 , and βs =
√
|T|/T . Here, (a) follows by

Lemma C.15.

For the adversarial coin sequence (c̃t)t≥1 satisfying (C.2), define gt := (c̃t, 0, . . . , 0). Then, we have

W
(T )
0 +

T∑

t=1

⟨g̃t,wt⟩ = W
(T )
0 +

T∑

t=1

c̃txt1

≤W
(T )
0 f

(
(
∑
c̃T (s;HT,Q))s∈T

)

=
∑

s∈T

(∑
c̃T (s;HT,Q)

)
u∗s −W

(T )
0 f⋆

(( |u∗s|
W

(T )
0

)
s∈T

)

=

T∑

t=1

⟨gt,u
∗
ht
⟩ −W

(T )
0 f⋆

((∥u∗
s∥2

W
(T )
0

)
s∈T

)
,

where (u∗s)s∈T = W
(T )
0 ∇f((

∑
c̃T (s;HT,Q))s∈T) and u∗

s := (u∗s, 0, . . . , 0) for each s ∈ T. Rearranging the terms,
we have

Reg((u∗
s)s∈T[HT,Q]);gT ) =

T∑

t=1

⟨gt,u
∗
ht
⟩ −

T∑

t=1

⟨gt,wt⟩

≥W
(T )
0 + W

(T )
0 f⋆

((∥u∗
s∥2

W
(T )
0

)
s∈T

)
.

C.2.4 Proof of Proposition 3.4

We use a backward induction over the depth |s| to show that the recursion is well-defined. First, if |s| = D,
uCTW
s (gt−1) = ΨKT

s (gt−1)vKT
s (gt−1). By definition of vKT

s (gt−1), uCTW
s (gt−1) is a vector if s is the active node

at depth D, and a scalar otherwise. Now, for d ≤ D − 1, assume that uCTW
s′ (gt−1) is a scalar if s′ is an active

node and a vector otherwise for any |s′| = d+ 1 (induction hypothesis). Consider any node s of TD with |s| = d.
If s is an active node, then uCTW

1̄s (gt−1)uCTW
1s (gt−1) is a vector by the induction hypothesis, since exactly one of

1̄s and 1s is active. Hence, uCTW
s (gt−1) is a vector. If s is not an active node, then, uCTW

1̄s (gt−1)uCTW
1s (gt−1) is

a scalar by the induction hypothesis, since neither of 1̄s and 1s is active. Hence, uCTW
s (gt−1) is a scalar. This

completes the induction and thus the recursion is well-defined for all nodes s.

The claim uCTW
λ (gt−1) = uCTW(gt−1) can be checked by a similar induction argument.



C.2.5 Proof of Proposition 3.5

We claim that vCTW
s (gt−1) =

uCTW
s (gt−1)

ΨCTW
s (gt−1)

for any s = sd = ωt−1
t−d ∈ TD, d = 0, . . . , D. This trivially holds for the

leaf node sD = ωt−1
t−D. For the internal nodes sd with d < D, by plugging in the recursive formulas of uCTW(gt−1)

and ΨCTW(gt−1), we can write

uCTW(gt−1)

ΨCTW(gt−1)
=

βs(g
t−1)

βs(gt−1) + 1
vKT
s (gt−1) +

1

βs(gt−1) + 1

uCTW
1̄s (gt−1)

ΨCTW
1̄s

(gt−1)

uCTW
1s (gt−1)

ΨCTW
1s (gt−1)

.

It is now enough to show that
uCTW
s′ (gt−1)

ΨCTW
s′ (gt−1)

= 1 for s′ = ωt−1−|s|s.

This holds since uCTW
s = ΨCTW

s for any off-path node s /∈ ρ(ωt−1
t−D) by definition (3.8).

C.2.6 Proof of Proposition 3.6

Similar to the processing betas algorithm (Willems et al., 2006), we only need to show that

ΨCTW
ωt−1−|s|s

(gt)

ΨCTW
ωt−1−|s|s

(gt−1)
= 1 for s′ = ωt−1−|s|s for any s /∈ ρ(ωt−1

t−D).

Since the new symbol gt is added to a node s if and only if s ∈ ρ(ωt−1
t−D), if s /∈ ρ(ωt−1

t−D), then the CTW potential
on the node s will not be updated. This proves the claim.

C.3 Technical lemmas

Lemma C.8 (Orabona and Pál, 2016, Lemma 10). Let h : (−a, a)→ R be an even, twice differentiable function
that satisfies xh′′(x) ≥ h′(x) for all x ∈ [0, a). Let c : [0,∞) × [0,∞) → R be an arbitrary function. If u, v ∈ H
satisfy ∥u∥+ ∥v∥ < a, then

c(∥u∥, ∥v∥) · ⟨u, v⟩ − h(∥u+ v∥) ≥ min
r∈{±1}

{rc(∥u∥, ∥v∥)∥u∥∥v∥ − h(∥u∥+ r∥v∥)}.

Proof sketch. It is easy to check that the inequality holds if u = 0 or v = 0. Hence, we assume u, v ̸= 0. With
α := ⟨u, v⟩/(∥u∥∥v∥), we can write the left hand side of the desired inequality as

f(α) := c(∥u∥, ∥v∥)∥u∥∥v∥α− h(
√
∥u∥2 + ∥v∥2 + 2α∥u∥∥v∥).

Since the function h is assumed to be even, it is equivalent to showing that

inf
α∈[−1,1]

f(α) = min{f(+1), f(−1)}.

By using the condition xh′′(x) ≥ h′(x), one can easily show that f is concave by checking f ′′(α) ≤ 0, which
concludes the proof.

Lemma C.9 (Bauschke and Combettes, 2011, Example 13.7). Let ϕ : R→ (−∞,+∞] be even. Then (ϕ◦∥·∥)⋆ =
ϕ⋆ ◦ ∥ · ∥.
Lemma C.10 (Orabona, 2019, Lemma 5.8). Let f be a function and let f⋆ be its Fenchel conjugate. For a > 0
and b ∈ R, the Fenchel conjugate of g(x) = af(x) + b is g⋆(z) = af⋆(z/a)− b.
Lemma C.11 (Orabona, 2019, Theorem 5.8). For a convex, proper, closed function h : Rd → (−∞,+∞], we
have ⟨θ, x⟩ ≥ h(x) + h⋆(θ), where the equality is attained if and only if x ∈ ∂h⋆(θ).

Since f(x) ≥ h(x) for any x ∈ R implies f⋆(u) ≥ h⋆(u) for any u ∈ R, it is enough to find the conjugate dual of

a function h(x) = β exp( x2

2α ) for α, β > 0.

The Lambert function W : (−1/e,∞)→ [0,∞) is defined by the equation x = W (x)eW (x) for x ≥ 0.



Lemma C.12 (Orabona and Pál, 2016, Lemma 17). For x ≥ 0,

0.6321 ln(x+ 1) ≤W (x) ≤ ln(x+ 1).

Remark C.1. Here, 0.6321 . . . ≈ 1/b∗, where b∗ is the solution to the equation

eb

(e+ 1)b+ 1
=

b

(b+ 1) ln(b+ 1)
.

Proposition C.13 (Orabona and Pál, 2016, Lemma 18). For h(x) = β exp( x2

2α ) with α, β > 0,

h⋆(y) = y

√
αW

(αy2
β2

)
− β exp

(1

2
W
(αy2
β2

))
= y
√
α
(√

W
(αy2
β2

)
−
√

1

W (αy2

β2 )

)
.

In particular,

h⋆(y) ≤ y
√
α ln

(αy2
β2

+ 1
)
− β.

For a generalization with the product potential, we also have the following proposition.

Proposition C.14. Define fi(yi) = βi exp(
y2
i

2αi
) with αi, βi > 0 for each i ∈ S, and define f(y1, . . . , yS) =

f1(y1) · · · fS(yS). Then, we have

f⋆(y1, . . . , yS) =
√
α1y21 + . . .+ αSy2S

(√
W
(α1y21 + . . .+ αSy2S

β2
1 · · ·β2

S

)
− 1√

W
(

α1y2
1+...+αSy2

S

β2
1 ···β2

S

)
)
.

In particular,

f⋆(y1, . . . , yS) ≤
√

(α1y21 + . . .+ αSy2S) ln
(α1y21 + . . .+ αSy2S

β2
1 · · ·β2

S

+ 1
)
− β1 · · ·βS

Proof. For the sake of simplicity, we prove only for S = 2. The proof can be generalized to any S ≥ 2 with little
modification. To find

f⋆(y1, y2) = sup
x1,x2

(y1x1 + y2x2 − f1(x1)f2(x2)),

we consider the stationarity conditions

∂

∂xi
(y1x1 + y2x2 − f1(x1)f2(x2)) = 0

for i ∈ {1, 2}, which leads to {
y1 = f ′1(x1)f2(x2),

y2 = f1(x1)f ′2(x2).

Since f ′i(x) = x
αi
fi(x), we have {

y1 = x1

α1
f1(x1)f2(x2),

y2 = x2

α2
f1(x1)f2(x2).

Manipulating the equations, we have

(x21
α1

+
x22
α2

)
exp
(x21
α1

+
x22
α2

)
=
α1y

2
1 + α2y

2
2

β2
1β

2
2

,

which leads to
x21
α1

+
x22
α2

= W
(α1y

2
1 + α2y

2
2

β2
1β

2
2

)
.



Hence,

f(x∗1, x
∗
2) = β1β2 exp

(1

2
W
(α1y

2
1 + α2y

2
2

β2
1β

2
2

))
=

√√√√ α1y21 + α2y22

W (
α1y2

1+α2y2
2

β2
1β

2
2

)
.

Finally, we can compute

y1x
∗
1 + y2x

∗
2 =

α1y
2
1 + α2y

2
2

f(x∗1, x
∗
2)

=

√
(α1y21 + α2y22)W

(α1y21 + α2y22
β2
1β

2
2

)
,

whence

f⋆(y1, y2) = y1x
∗
1 + y2x

∗
2 − f(x∗1, x

∗
2)

=
√
α1y21 + α2y22

(√
W
(α1y21 + α2y22

β2
1β

2
2

)
− 1√

W (
α1y2

1+α2y2
2

β2
1β

2
2

)

)
.

Lemma C.15 (Orabona, 2019, Lemma 9.4). For any T ≥ 1 and any cT ∈ [−1, 1]T , we have

max
b∈[−1,1]

∏

t∈[T ]

(1 + bct) ≤ exp
( ln 2

T
(
∑
cT )2

)
.



D THE CTW OLO ALGORITHM

Algorithm D.3 CTW OLO algorithm

Parameters maximum depth D ≥ 1, auxiliary sequence Ω = (ωt)t≥1, initial wealth W0 > 0.

1: procedure CtwOlo(D,Ω,W0)
2: Initialize a context tree TD of depth D with Gs ← ϕ and βs ← 1 for each s ∈ TD
3: for each t = 1, 2, . . . do
4: Compute vCTW(gt−1) = vCTW

λ (gt−1) by computing, for s0, . . . , sD ∈ ρ(ωt−1
t−D),

vCTW
sd

(gt−1)←
{

βsd
(gt−1)

βsd
(gt−1)+1v

KT
sd

(gt−1) + 1
βsd

(gt−1)+1v
CTW
sd+1

(gt−1) if d < D

vKT
sD (gt−1) if d = D

(3.10)

5: Set wCTW
t (gt−1)← vCTW(gt−1)Wt−1

6: Receive gt and update the cumulative wealth Wt ←Wt−1 + ⟨gt,w
CTW
t (gt−1)⟩

7: Update Gs ← Gs + gt and update βs for sd = ωt−1
t−d, d = 0, . . . , D − 1, as

βsd(gt−1)← βsd(gt) = βsd(gt−1)
ΨKT

sd
(gt)

ΨKT
sd

(gt−1)

ΨCTW
sd+1

(gt−1)

ΨCTW
sd+1

(gt)
, (3.11)

where

ΨCTW
sd

(gt)

ΨCTW
sd

(gt−1)
=





βsd
(gt−1)

βsd
(gt−1)+1

ΨKT
sd

(gt)

ΨKT
sd

(gt−1)
+ 1

βsd
(gt−1)+1

ΨCTW
sd+1

(gt)

ΨCTW
sd+1

(gt−1)
if d < D

ΨKT
sD

(gt)

ΨKT
sD

(gt−1)
if d = D

(3.12)

for sd = ωt−1
t−d, d = 0, . . . , D

8: Receive ωt

9: end for
10: end procedure



E EXPERIMENT DETAILS AND ADDITIONAL FIGURES

Problem setting We applied the proposed OLO algorithms to solve the online linear regression problem as
described in Appendix B especially with absolute loss ℓt(wt) = |⟨wt,xt⟩− yt|, where wt denotes the action of an
OLO algorithm and xt denotes the feature vector. Hence, we linearized the convex loss and fed the subgradient
∂ℓt(wt) = sgn(⟨wt,xt⟩ − yt)xt to an OLO algorithm.

Data preprocessing For each dataset, we linearly interpolated any missing values. We discarded time stamps
as well as some categorical features such as cbwd of Beijing PM2.5 and weather description of Metro Inter
State Traffic Volume, and binarized the others, if possible, such as holiday, weather main, and snow 1h of
Metro Inter State Traffic Volume. We also applied a logarithmic mapping x 7→ ln(1 + x) for the features lws,
ls, lr of Beijing PM2.5 and applied another logarithmic mapping x 7→ lnx to the feature rain 1h, to make the
features more suitable for linear regression. We then normalized each feature x̃t so that ∥x̃t∥2 = 1 and added
all-one coordinates as the bias component with an additional scaling by 1/

√
2. After this preprocessing step,

we obtained 7-dimensional feature vectors for both datsets. See the attached Python code for the details in
Supplementary Material.

Computing resource All experiments were run on a single laptop with a CPU Intel(R) Core(TM) i7-9750H
CPU 2.60GHz with 12 (logical) cores and 16GB of RAM.

Figure E.4: Metro Inter State Traffic Volume dataset (Hogue, 2019). The y-axes represent cumulative losses.
(a) Performance of per-state OGD adaptive to Markov side information with various learning rate scales. (b)
Performance of parameter-free algorithms.

Figure E.5: Beijing PM2.5 dataset (Liang et al., 2015). See the caption of Figure E.4 for details.


	INTRODUCTION
	PRELIMINARIES
	Continuous Coin Betting and 1D OLO
	Reduction of OLO over a Hilbert Space to Continuous Coin Betting

	MAIN RESULTS
	OLO with Single Side Information via Product Potential
	OLO with Multiple Side Information via Mixture of Product Potentials
	OLO with Tree Side Information
	Markov Side Information
	Tree-Structured Side Information
	Context Tree Weighting for OLO with Tree Side Information
	The Efficient CTW OLO Algorithm with O(D) Steps Per Round


	EXPERIMENTS
	CONCLUDING REMARKS
	RELATED WORK
	PER-STATE EXTENSIONS OF EXISTING ALGORITHMS
	DEFERRED TECHNICAL MATERIALS
	Proofs for Section 2
	Proof of Theorem 2.1
	Proof of Theorem 2.2

	Proofs for Section 3
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Matching lower bounds for tree side information
	Proof of Proposition 3.4
	Proof of Proposition 3.5
	Proof of Proposition 3.6

	Technical lemmas

	THE CTW OLO ALGORITHM
	EXPERIMENT DETAILS AND ADDITIONAL FIGURES

