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Abstract
We introduce the Correlated Preference Ban-
dits problem with random utility based choice
models (RUMs), where the goal is to iden-
tify the best item from a given pool of n
items through online subsetwise preference
feedback. We investigate whether models with
a simple correlation structure, e.g. low rank,
can result in faster learning rates. While we
show that the problem can be impossible to
solve for the general ‘low rank’ choice models,
faster learning rates can be attained assuming
more structured item correlations. In partic-
ular, we introduce a new class of Block-Rank
based RUM model, where the best item is
shown to be (ϵ, δ)-PAC learnable with only
O(rϵ−2 log(n/δ)) samples. This improves on
the standard sample complexity bound of
Õ(nϵ−2 log(1/δ)) known for the usual learn-
ing algorithms which might not exploit the
item-correlations (r ≪ n). We complement
the above sample complexity with a matching
lower bound (up to logarithmic factors), jus-
tifying the tightness of our analysis. Further,
we extend the results to a more general ‘noisy
Block-Rank’ model, which ensures robustness
of our techniques. Overall, our results justify
the advantage of playing subsetwise queries
over pairwise preferences (k = 2), we show
the latter provably fails to exploit correlation.

1 Introduction
We give an algorithm for sequentially PAC learning
the best item from a finite pool of n items, where at
each decision round t, a subset of k items can be tested,
and preference feedback of the winning item can be
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observed. Given a fixed ϵ, δ ∈ [0, 1], the objective of
the algorithm is to find, with high probability 1− δ, an
‘ϵ-best’ item, with minimum possible query complexity.

The problem has been studied extensively in recent
works in the setting of pairwise preferences (i.e. k = 2)
(Szörényi et al., 2015; Falahatgar et al., 2017; Busa-
Fekete and Hüllermeier, 2014), while some works also
extend the setting to general subsetwise queries (Ren
et al., 2018; Saha and Gopalan, 2019; Chen et al., 2018)
for specific choice of random utility model (RUM) based
subset choice model (e.g. MNL or Plackett-Luce model
Agrawal et al. (2016)). While at a first glance, one
might expect the sample complexity of an optimal
learner to depend on the sizes of the subsets queried
(i.e., k)—precisely, with increasing subset size k, one
may expect to achieve faster learning rates, as with
larger k, the learner also gets to observe a preference
feedback on more items per time step.

However, surprisingly, it is known that in general,
the fundamental performance limit of the problem is
not improvable based on the subset size k. For e.g.,
Saha and Gopalan (2018); Ren et al. (2018) formally
shows a worst-case sample complexity lower bound of
O( n

ϵ2 log 1
δ ) for any k ∈ [n] which has no dependence

on k. These results are of course discouraging, since
they imply there is no advantage in observing general
subsetwise feedback over pairwise preferences (k = 2).
Why should one even build systems for general k-subset
size queries when a pairwise query serves as good?

Our first step towards answering the above is the follow-
ing crucial observation: the subset size obliviousness
of the earlier results is rooted in the fact that here
aforementioned results assume a no-correlations among
the item rewards structure. But this in turn implies
that the winning probability of a certain item in a
k-subset solely depends on its own underlying value,
and is independent of the context (rest of items present
alongside), which is often unjustified in practice. In
almost every real-world scenario, the items in the de-
cision space are often correlated with interdependent
utilities or losses; e.g. in movie recommendation, if a
group of users dislikes a movie from the horror genre,
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it is likely they will dislike a thriller movie as well,
similarly in restaurant recommendation, if a person
shows preference for ‘tiramisu’, one may expect the
similar desert items are also going to be in the top
of their preference list etc. Thus depending on the
nature of correlations, correlations may help in faster
information aggregation where the learner can hope to
gather side information about related items without
explicitly learning the underlying scores (rewards) of
each item separately.

Assuming ‘independent rewards’ however defeats the
purpose of subsetwise games. This is since despite
having the provision of playing a larger set of items
(and hence observing feedback on a larger item set
per round), due to the ‘independence’ assumption, the
preference outcome of one item does not reveal any in-
formation of the rest as their scores remains unaffected
by each other’s presence. We thus focus our attention
to studying the interplay between learning rate and
reward correlations in preference bandits: Here the pref-
erence information of one item can reveal additional
partial preferential information of the items present
alongside and hence, one can hope that selecting larger
subsets in such settings should lead to faster learning
rates (smaller sample complexity).

As mentioned above, to the best of our knowledge,
none of the earlier work address this perspective in
the setting of preference bandits, arguably due to the
ease of analyzing their proposed algorithms under the
‘independent (uncorrelated)’ assumption, e.g., Saha and
Gopalan (2019); Khetan and Oh (2016); Chen et al.
(2018) exploit the Independence of Irrelevant Attributes
(IIA) property of the Plackett Luce (PL) preference
model in their sample complexity analysis. In fact, it
is unclear how to incorporate ‘correlation structures’
into subsetwise preference models.

The main objective of our work is to formulate and
understand how playing a subsetwise game can improve
the sample complexity of the best arm identification
problem for correlated items (without the learner having
prior knowledge of the underlying correlation structure).
Our contributions are:

(1) We introduce the problem of Correlated Preference
Bandits under random utility based preference models
(RUMs)*, which generalizes the Independent-RUM-
Choice-Model model by incorporating item correlations
in terms of Low-Rank-Choice-Models LR-RUM(n, k, r)
(see Sec. 2 and 3).

*It is worth noting that correlated noise in discrete
choice models has been studied in statistics and economics
(e.g., Train (2009)), however it is not known how to exploit
the correlation structure to achieve faster learning rates
through preference based active learning, which remains
the goal of this work.

(2). Our first finding shows that for any general Low-
Rank-Choice-Model LR-RUM(n, k, r), the best-arm iden-
tification problem can be impossible to solve for (see
Lem. 1, Sec. 4).

(3). We then introduce a new class of Block-Rank
based RUM model which uses a more combinatorially
interpretable notion of rank. We show that in the
setting of RUMs with block rank at most r, namely
BR-RUM(n, k, r) the best item is (ϵ, δ)-PAC learnable
in just O(rϵ−2 log(n/δ)) samples when k > 2 (Thm.
2, Sec. 5.1). This improves over the known sample
complexity bound of Õ(nϵ−2 log(1/δ)) of the case where
the arms are independent when r ≪ n.

(4). We complement our upper bound with a matching
lower bound (up to logarithmic factors), justifying the
tightness of our analysis (Thm. 5, Sec 5.2).

(5). We also show a lower bound of Ω(nϵ−2 log(1/δ))
(Thm. 6, Sec. 5) when the learner is forced to play
just pairwise queries (k = 2), which indicates how
playing larger subset sizes allows the learner to exploit
the underlying correlation structure achieving faster
learning rates. In contrast, however, a pairwise query
model (k = 2) fails to exploit the underlying correlation
structure as shown in Thm. 5.

(6). Finally we extend our analysis to a general η-
‘noisy-Block-Rank’ based RUM choice model justify-
ing robustness of proposed method which shows its
O(rϵ−2 log(n/δ)) sample complexity performance re-
mains unaffected under some ‘tolerable η-noise’ in the
correlation structure even if the underlying correlation
matrix becomes full rank, i.e. r = n (Sec. 6).

This work is mostly theoretical in nature and in partic-
ular has no societal impact.

Related Works. For the classical multiarmed bandits
setting, there is extensive literature on PAC-arm identi-
fication problem (Even-Dar et al., 2006; Audibert and
Bubeck, 2010; Kalyanakrishnan et al., 2012; Karnin
et al., 2013; Jamieson et al., 2014), where the learner
gets to see a noisy draw of absolute reward feedback of
an arm upon playing a single arm per round. On the
contrary, learning to identify the best item(s) with only
relative preference information (ordinal as opposed to
cardinal feedback) has seen steady progress since the
introduction of the dueling bandit framework (Zoghi
et al., 2013) with pairs of items (size-2 subsets) that
can be played, and subsequent work on generalization
to broader models both in terms of distributional pa-
rameters (Yue and Joachims, 2009; Gajane et al., 2015;
Ailon et al., 2014; Zoghi et al., 2015) as well as combina-
torial subset-wise plays (Mohajer et al., 2017; González
et al., 2017; Saha and Gopalan, 2018; Sui et al., 2017).

There have been a few works in the MAB literature
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to exploit the advantages of item correlations, which
assume the knowledge of the correlation structure (in
terms of side information or online feedback-graphs).
Mannor and Shamir (2011); Kocak et al. (2014, 2016);
Alon et al. (2015, 2017) study the MAB problem as-
suming a relation graph over the nodes, however their
setting also requires revealing rewards of the neigh-
boring set of the pulled arm, which reduces this to a
semi-bandit (side information) setting. On the con-
trary, our setting is based on a pure bandit feedback
model that reveals only a noisy reward of the selected
arm. Hanawal et al. (2015) also consider a stochastic
sequential learning problems on graphs but here the
learner gets to observe the average reward of a group
of graph nodes rather than a single one. Simchowitz
et al. (2016) studies the top k item determination prob-
lem of multiarmed bandits for correlated arm rewards
(where the underlying correlation structure can be ar-
bitrary) and show that in the worst case the learner
could be forced to consider all Ω

((
n
k

))
subsets. Singh

et al. (2020); Gupta et al. (2019) studies the MAB
regret minimization problem under correlated arms,
modeling the reward dependencies in terms of clusters
or some known correlation structures. To the best of
our knowledge there have been no previous attempts
towards understanding how item correlations affect the
sample complexity of the winner determination prob-
lem in preference bandits, specifically in settings where
the learner has no prior knowledge of the underlying
correlation, which is the primary focus of the current
work. We believe that this is a new direction which
can be explored along multiple fronts.

2 Preliminaries

Notations. We denote by [n] the set {1, 2, ..., n}.

2.1 Low Rank Subset Choice Models
(accounting Item Correlations)

Before introducing our Low-Rank-Choice-Model, we
recall the definition of the standard (independent) dis-
crete random utility based choice models (RUMs) Azari
et al. (2012); Chen et al. (2018) used in the prefer-
ence bandits literature, which however do not take into
account the item correlations.

Discrete Random Utility based Choice Model
(RUMs). RUMs are a widely-studied class of discrete
choice models; they assume a (non-random) ground-
truth utility score µi ∈ R for each alternative i ∈ [n],
and assign a distribution Di(·|µi) for scoring item i,
where E[Di | µi] = µi. To model a winning alternative
given any set S ⊆ [n], one first draws a random utility
score Xi ∼ Di(·|µi) for each alternative in S, and
selects an item with the highest random score. More

formally, the probability that an item i ∈ S emerges
as the winner in set S is given by:

Pr(i|S) = Pr(Xi > Xj ∀j ∈ S \ {i}), (1)

where ties are broken uniformly over all elements in set
S. It is generally assumed that for each item i ∈ [n],
its random utility score Xi is of the form Xi = µi +
ζi, where all the ζi ∼ D are ‘noise’ random variables
drawn independently from a probability distribution D.
For the purposes of analysis, it is generally assumed
without loss of generality*, that µ1 > µi ∀i ∈ [n] \ {1}
for ease of exposition*. Formally, we define the best-
item to be one with the highest score parameter: i∗ ∈
argmax

i∈[n]
µi = {1}, under the assumptions above. We

will denote the model as Independent-RUM-Choice-
Model (I-RUM(n, k)) for the rest of the paper.

Popular examples of I-RUM(n, k). A widely used
RUM is the Multinomial-Logit (MNL) or Plackett-Luce
model (PL), where the Di’s are taken to be independent
Gumbel(0, 1) distributions with location parameters
0 and scale parameter 1 (Azari et al., 2012), which
results in score distributions Pr(Xi ∈ [x, x + dx]) =
e−(x−µi)e−e−(x−µi)

dx, ∀i ∈ [n]. Similarly, other differ-
ent families of discrete choice models can be considered
for different choices of the underlying iid noise model
ζi ∼ D, e.g. Exponential, Uniform, Gaussian, Weibull
etc Saha and Gopalan (2020).

Limitations of existing results for I-RUM(n, k).
The (ϵ, δ)-PAC best-arm identification problem under
this model has already been studied in the literature. In
particular, Saha and Gopalan (2018, 2020) show a fun-
damental sample complexity lower bound of Ω( n

ϵ2 ln 1
δ )

for this, given fixed ϵ, δ ∈ (0, 1). A disappointing take-
away from these results are that the bounds are subset
size independent, which triggers the natural question:
Why should one play subsets of larger sizes if it does
not lead to a faster learning rate? One can simply get
away with the problem of identifying the ϵ-best item
by just playing pairwise preference games (k = 2) in
that case.

Main questions: Can we exploit reward correla-
tions in Preference Bandits (with k-subsetwise
pulls) without the knowledge of the underlying
correlation structure? Naturally the first question
is if we incorporate utility correlations in (X1, . . . Xn)
does that lead to faster learning rate? Further, what
is the right measure of correlation in a choice model?
Remark 1 (Why MAB setup can not exploit reward
correlations). Note in the setting of standard MAB, the

*Under the assumption that the learner’s decision rule
does not contain any bias towards a specific item index

*The extension to the case where several items have the
same highest parameter value is easily accomplished.
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item correlations do not play any role in improving the
learning rate beyond Ω( n

ϵ2 ln 1
δ ) Even-Dar et al. (2006).

This is due to the inherent limitation of models which
restrict the learner to query feedback of just single arms
at every round – this means irrespective of the correla-
tion model Σ, the learner would never have a way to
distinguish if two arms are fully correlated or exactly
identical from single arm pulls.

Our proposed preference-choice models (to cap-
ture correlations). Towards this we study the
following natural generalization of I-RUM(n, k): Define
the utility score vector X as a multivariate random
variable of the form: X = µ+ζ, where ζ ∼ D is a multi-
variate noise drawn from a joint distribution D (instead
of sampling the n utility scores X = (X1, . . . , Xn) inde-
pendently), such that it has mean zero and correlation
structure quantified by the n× n-matrix of correlation
coefficients Σ := Corr(ζ). Again, the choice probability
P (i|S) of any arm i ∈ S in any subset S ⊆ [n], can still
be defined same as that suggested in Eqn. (1). We refer
to this model as Correlated-RUM-based-Choice-Models.
For example, assume D = N (0, Σ)—a multivariate zero
mean Gaussian noise with some fixed (but unknown)
covariance matrix Σ. In particular when Σ is not the
identity matrix, this recovers a ‘correlated Gaussian
based choice model’.

Low-Rank-Choice-Model (LR-RUM(n, k, r)). A
first step towards understanding the effect of item
correlations on learning rate is to determine a suit-
able ‘measure of correlation’ among the utility scores
X1, . . . , Xn in terms of some properties of the underly-
ing correlation matrix Σ. Formally Σ is a n×n matrix
such that Σ(i, j) := Corr(ζi, ζj) where Corr(·, ·) is used
to denote the correlation coefficient*. A natural quan-
tity to express the complexity of item correlations is the
rank of the underlying correlation matrix. E.g. PCA
(Bishop (2006)) or Matroids (Oxley (2006)) which has
varied applications in many real systems including im-
age, graph networks or information retrieval. Motivated
by these, we define the Low-Rank-Choice-Model, which
models the item dependencies through rank of the cor-
relation matrix Σ. Precisely we assume Rank(Σ) = r
for some r ∈ [n]. Clearly the setting r = n expresses
independent discrete RUM based choice model as a
special case. We will henceforth denote this model by
‘r-Low-Rank-Choice-Model’ or LR-RUM(n, k, r).

r-Block-Rank. An interesting special case of low-
rank choice model is one where the item correlations
results in an r-clustering (referred to as ‘blocks’ hence-
forth) of the set of items. In particular, we say that

*We point that since correlation is translation invariant,
we have Corr(ζi, ζj) = Corr(Xi, Xj) for every i, j ∈ [n], and
hence it suffices to work with the correlation matrix defined
on the ζ-variables.

a r-Block-Rank instance has block-rank r if there ex-
ists a partitioning on the set of items [n] into blocks
B1 ⊎ B2 ⊎ · · · ⊎ Br such that the following properties
hold:

(i) Inter-block Identity: For any block Bi and any pair
of items a, b ∈ Bi, we have ζa = ζb.

(ii) Cross-block Independence: For any subset of items
S ⊆ [n] such that |S ∩ Bi| ≤ 1 for every i ∈ [r],
the set of variables (ζi)i∈S is jointly independent.

Note that in this setting, the correlation matrix admits
a block diagonal structure i.e.,

Σ(a, b) =
{

1, ∀a, b ∈ Bi, i ∈ [r],
0, ∀a ∈ Bi, b ∈ Bj , i, j ∈ [r], i ̸= j.

Again for brevity, we shall refer to this model as
BR-RUM(n, k, r) in the rest of the paper.

(Noisy) (r, η̃, η)-Block-Rank. The (r, η̃, η)-Block-
Rank model generalizes r-Block-Rank by allowing intra-
block variables to be almost correlated and inter-block
variables to be nearly independent (for some η̃, η ∈
(0, 1]). Formally, in (r, η̃, η)-Block-Rank instance, the
set of items [n] admits a partitioning into blocks B1 ⊎
· · · ⊎ Br such that the following properties hold.

(i) Cross-block Approximate Independence: For any
subset of items S ⊆ [n] such that |S ∩Bi| ≤ 1 and
any non-trivial partitioning S = S1 ⊎ S2 we have
I(ζS1 ; ζS2) ≤ η̃ where ζS1 := (ζi)i∈S1 denotes the
set of variables in S1 and I(·, ·) denotes the mutual
information (MI) between two (sets of) variables.

(ii) Inter-block Approximate Identity: For any block
Bi and any pair of items a, b ∈ Bi we have
Corr(ζi, ζj) ≥ 1− η.

Note that instantiating η̃, η = 0, we recover the r-Block-
Rank setting as a special case. For Gaussian noise, one
can express both items (i) and (ii) above in terms of
correlation, since it is folklore that a pair of Gaussians
can be uncorrelated if and only if they are independent.

3 Problem Setting
We consider the Probably Approximately Correct (PAC)
version of the best-arm identification problem through
subset-wise comparisons. Formally, the learner is given
a finite set [n] of n > 2 items or ‘arms’ along with
a playable subset of size k ≤ n. At each round t =
1, 2, . . ., the learner selects a subset St ⊆ [n] of size at
most k distinct items, and receives (stochastic) feedback
of the ‘winning item’ drawn according to Pr(· | St) (see
Eqn. (1)) depending on (a) the chosen subset St, and
(b) a LR-RUM(n, k, r) choice model with parameters
µ = (µ1, µ2, . . . , µn) a priori unknown to the learner.
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3.1 Correctness and Sample Complexity:
(ϵ, δ)-PAC arm identification in LR-RUM

For a Low-Rank-Choice-Model LR-RUM(n, k, r) in-
stance with n ≥ k arms, an arm i ∈ [n] is said to
be ϵ-optimal if µi > µ1 − ϵ. A sequential learning algo-
rithm that depends on feedback from an appropriate
subset-wise feedback model is said to be (ϵ, δ)-PAC,
for given constants 0 < ϵ ≤ 1

2 , 0 < δ ≤ 1, if the fol-
lowing properties hold when it is run on any instance
LR-RUM(n, k, r): (a) it stops and outputs an arm I ∈ [n]
after a finite number of decision rounds (subset plays)
with probability 1, and (b) the probability that its
output I is an ϵ-optimal arm in LR-RUM(n, k, r) is at
least 1− δ, i.e, Pr(I is ϵ-optimal) ≥ 1− δ. By sample
complexity of the algorithm, we mean the expected time
(number of decision rounds) taken by the algorithm to
stop when run on the instance LR-RUM(n, k, r).

4 Impossibility Result: General
Low-Rank-Choice-Model

In this section we show that allowing for arbitrary cor-
relations can make the ϵ-optimal winner determination
problem ill defined in the following sense: one can con-
struct instances where there are subsets for which the
item with the largest win probability is not the same
as the item with the largest score. In particular, such
instances can be simply constructed in a way such that
the covariance matrix is just 2-dimensional. We state
the observation formally in the following lemma.
Lemma 1. Consider an instance of LR-RUM(n, k, r)
with n = k, and r = 2. Then for any even k ≥ 4 and
0 < ϵ ≤ ϵ(k), there exist scores µ1 > µ2 + ϵ ≥ · · · ≥
µk with underlying correlation matrix Σ ∈ Rk×k s.t.
argmaxi∈[k] Pr (i|[k]) ≠ 1; i.e. Item-1, despite of being
the only ϵ-optimal item, would not have the maximum
winning probability when played in a subset.

Clearly, the above kind of instances are a structural
barrier (as opposed to an information theoretic one) to
the winner determination problem, since if the instance
itself is the subset equipped with the distribution from
the above lemma, the observations will be guided by the
win probabilities, which do not favor the true winner.

Proof Sketch of Lem. 1. Consider the following
generic way of constructing a family of correlated
Gaussians using unit vectors v1, . . . , vk. (i). Sample
a random Gaussian vector g ∼ N (0, I2×2). (ii). For
every i ∈ [k], set gi = ⟨vi, g⟩.

We use the above geometric interpretation to define
the correlation structure of the Gaussians. For every
i ∈ [k], we set vi := u(αi), where u(α) is the unit
vector (cos α, sin α). We define the corresponding αi’s

as follows. We set α1 = 0, αk = π and for every
i ∈ {2, . . . , k − 1}, we set αi = (−1)i mod 2 · π/4.

Finally, we assign the score vector µ = (µ1, . . . , µk)
as follows. We set µ1 = µ + ϵ and µj = µ for every
j ∈ [k] \ {1}. Note that in the above construction of
(g1, . . . , gk), the correlation matrix Σ is exactly V⊤V
where V := [v1, . . . , vk]. Since vi are 2-dimensional
unit vectors, we have rank(Σ) ≤ 2. Furthermore, arm
1 is the only ϵ/2-best arm in the setting.

Analysis. We first observe that when ϵ = 0 (i.e., all
items are assigned score µ), the win probability of an
item i when [k] is played is exactly the angular measure
of arc consisting of the points on the unit circle closest
to vector vi. In that case, one can easily verify that

Pr
µ′=(µ,...,µ)

(1|[k]) = 1/8 and Prµ′=(µ,...,µ) (k|[k]) = 3/8

Furthermore, even when ϵ is non-zero but small
enough as a function of k, using a first order ap-
proximation argument, for the actual score vector
µ = (µ + ϵ, µ, . . . , µ), we have the following win
probability bounds: Prµ=(µ+ϵ,...,µ) (1|[k]) ≤ 1/8 +
o(1), Prµ=(µ+ϵ,...,µ) (k|[k]) ≥ 3/8− o(1)

Figure 1: Winning Sectors corresponding to the arms

In summary, we have µ1 > µk + ϵ/2 but Pr(1|[k]) <
Pr(k|[k]), which establishes the guarantees claimed. We
include the full proof in Appendix B.

5 r-Block-Rank Choice Model

The impossibility result for the general Block-Rank case
(Sec. 4) motivates us to understand if a faster learning
rate can be achieved through imposing more structured
item correlations. In particular, in this section, we use
a more combinatorial notion of measure of simplicity
(namely, block rank) to explore r-Block-Rank instances
(see Sec. 2 for description). In particular, our contribu-
tions include an O(rϵ−2 log(n/δ))-sample complexity al-
gorithm for PAC learning for BR-RUM(n, k, r) instances
when the learning algorithms is allowed to play subsets
of sizes at least 3, and complement it with matching
sample complexity lower bound for the same setting.
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In addition, we show a Ω(nϵ−2 log(1/δ))-sample com-
plexity lower bound for these instance when the learner
is restricted to play just pairwise duels.

5.1 Algorithm: Sample Complexity Bound

We first design an algorithm for this setup based on the
following key intuition. For any instance with block
rank r, the information theoretic bottleneck here is the
winner determination problem among the best item
from each of the r-blocks. However, the challenge here
is the obvious one, the identities of these items are
not known upfront, and as such, any off-the-shelf algo-
rithm for the (ϵ, δ)-PAC learning problem which does
not exploit the underlying correlation structure, would
essentially end up solving the winner determination
problem on n-arms leading to a sample complexity of
O(n/ϵ2 log 1/δ).

Main ideas: We circumvent these issues by:

(1) Fast Pre-processing step (with number of arm pulls
independent of ϵ) which reduces the effective pool of
candidate items to a subset of size at most r: The
pre-processing step is based on the following principle.
Given any non “strictly optimal”* item i within a block,
we can always find another item i′ in the same block
whose win probability is at least as large as that of i
on any subset S which simultaneously contains i and i′.
On the other hand, since 1 is the unique winner, it’s
win probability is never dominated by that of another
item. This observation is the core guiding principle
for our design of the pre-processing step which plays
all possible triples and eliminates items based on their
worst case win probability estimates. In particular,
with high probability it returns a set of at most r-arms,
say S, each of which belongs to a distinct block, and
one of which is the optimal arm. Since they come from
the r distinct blocks, they are independent.

(2) Now to obtain an ϵ-best item, we sim-
ply run the Sequential-Pairwise-Battle algorithm*

of Saha and Gopalan (2020) (precisely Seq-
PB(S, min(k, r), ϵ, δ/2, c(D)), which is known to be a
provably optimal (ϵ, δ)-PAC for any I-RUM(n, k) given
any underlying noise model distribution D (c(D) be-
ing a constant depending on the ‘minimum-Best-Item-
Advantage-Ratio’ (ϵ-BAR) of D, see Defn. 7). Note
that our algorithm is adaptive and does not require
prior knowledge of the block-rank r. The pseudocode
is given as Algorithm 1.
The following theorem formally states the guarantee of
the above algorithm.

*i.e., an item whose score is not strictly larger than those
of every other item in the same block.

*See Appendix A for an informal self-contained descrip-
tion of the algorithm.

Algorithm 1 Block-Rank Preference Bandits
(BlockRank-PB)

1: Input:
2: Set of items: [n]. Error bias: ϵ > 0, Confidence

parameter: δ > 0.
3: Noise model (D) (or equivalently c(D), a noise

model dependent constant)
4: Initialize:
5: t← O

(
log 4n3

δ

)
and set Flag(i)← 0 for every

i ∈ [n].
6: for T ∈

([n]
3
)

do
7: Play the triple T for t-times. For i ∈ T , let

NT (i) be the number of times i-wins.
8: For every item i ∈ T such that NT (i) ≤ 0.26t,

mark Flag(i)← 1.
9: end for

10: Construct set S := {i ∈ [n]|Flag(i) = 0}.
11: Find: î ← Seq-PB(S, min(k, |S|), ϵ, δ/2, c(D))

(Alg. 1, Saha and Gopalan (2020)).
12: Output î: The winner returned by Seq-PB.

Theorem 2 (Alg. 1: Correctness and Sample Complex-
ity for BR-RUM(n, k, r)). Consider any BR-RUM(n, k, r)
Block-Rank choice model with noise distribution D,
k > 2. Then, Alg. 1 is (ϵ, δ)-PAC with sample complex-
ity max

{
O(n3 log(n/δ)), O( r

cϵ2 ln r
δ )
}

, where c := c(D)
is a constant depending on D.
Remark 2 (Improved Sample Complexity). Note
that above implies improved sample complexity of
O(rϵ−2 log(r/δ)) which is much smaller than the usual
bound of O(nϵ−2 log(r/δ)), when r ≪ n. This is due
to the fact that in general, block rank is a more precise
notion of the effective number of arms to be considered
for the winner determination problem.
Remark 3 (Parameter regime for improved Sam-
ple Complexity). The above algorithm exhibits im-
proved sample complexity O(rϵ−2 log(n/δ)) for all ϵ ∈
(0, (r/n3)1/2]; this improves on the O(nϵ−2 log(n/δ))
of Saha and Gopalan (2020) for the I-RUM(n, k) model.
In particular, we don’t need n to be constant for the
overall sample complexity to be O(rϵ−2 log(rδ)) i.e., it
is actually the trade-off between r/n and ϵ that deter-
mines the regime of parameters under which Algorithm
1 exhibits improved convergence rates.
Remark 4. In particular, Saha and Gopalan
(2020) show that c(D) is a constant for several popular
choices of noise distributions such as Uniform, Gumbel,
Gaussian, Gamma, Weibull (see). Consequently, our
algorithm Block-Rank Preference Bandits gives a
O( r

ϵ2 log(n/δ))-sample complexity guarantee for all
such distributions as shown in the Thm. 2.

Proof Sketch of Thm. 2. Justifying Correctness. It
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is based on the following idea that when items are
played in triples, there exists a separation in worst
case win-probabilities (when played in triples) between
non-strictly optimal items and the best item.

Claim 1. For any triple T = (1, i, j), we have
Pr(1|T ) ≥ 1/3.

Claim 2. For any triple T = (1, i, j), such that i, j are
from the same block, if µi ≥ µj, then Pr (j|T ) ≤ 1/4.

The first two claims taken together imply: (a) every
item j whose score µj is not uniquely largest in its block
participates in a triple where it wins with probability
at most 1/4 and (b) in every triple the best item 1
wins with probability at least 1/3. Since our choice of
number of trials t is large enough, we know that the em-
pirical estimates are close enough approximates of the
true win probabilities; points (a) and (b) also hold for
the empirical win-probability estimates {NT (i)/t}i,T .
This observations are stitched together in the follow-
ing lemma which gives useful characterization of items
which are flagged inside the for loop.

Lemma 3. With probability at least 1− δ/2, the fol-
lowing holds. For any item j ∈ [n], if there exists an
item i from the same block for which µi ≥ µj, we have
Flag(j) = 1. Furthermore, Flag(1) = 0.

In particular, with high probability, every item j satis-
fying the premise of (b) gets flagged, whereas item 1
never gets flagged. And whenever this high probability
event holds, the resulting set S must consist of at most
r-arms, which are all independent and 1 ∈ S.

Lemma 4 (Pre-processing Step Guarantee). With
probability at least 1− δ/2, the set S satisfies the fol-
lowing conditions. For every i ∈ [r], |S ∩ Bi| ≤ 1.
Additionally 1 ∈ S.

Now assume that the subset S satisfies the guarantees
of the above lemma. Since the items in S come from
distinct blocks, the corresponding arms are independent
and the subset-wise feedback on subsets of S follow the
independent RUM model. Hence running Algorithm
1 from Saha and Gopalan (2020) will return an ϵ-best
arm in O(rϵ−2 log(r/δ))-samples.

Justifying the Sample complexity. In the for loop
(Lines 6-9), each triple T ∈

(
n
3
)

is played t times.
Therefore, then total number of arm pulls in the for
loop is bounded by O(n3t) ≤ O(n3 log(n/δ)) which is
a constant independent of ϵ. Therefore, step corre-
sponding to Line 11 incurs a sample complexity cost of
O(rϵ−2 log(r/δ)). Since the latter term dominates as
ϵ→ 0, this establishes the desired sample complexity.
The complete proof is given in Appendix C.

Remark 5. We consider playing subsets of various
sizes, because without this relaxation, the winner deter-
mination problem can again become ill defined in the
correlated setting (see Lem. 17).

5.2 r-Block-Rank: Lower Bound

Our lower bound analysis is based on the following in-
tuition: Given an instance I with r-Block-Rank, where
[n] = ⊎i∈[r]Bi is the partitioning of arms into block
structure. Consider the set S constructed by adding
the arm with the highest score from each block Bi.
Now the key insight is that any algorithm which solves
the ϵ-best arm identification problem on I must also
solve the ϵ-best arm identification problem on the set of
independent arms S. This observation can be used to
embed instances of IND-RUM(r, k, µ) into instances of
BR-RUM(n, k, r, µ′), thus forcing the worst case sample
complexity of the latter to be lower bounded by that
of the former, which is known to be Ω(rϵ−2 log(1/δ)).

Figure 2: Reduction (Pseudocode in Appendix D.1)
Theorem 5 (Performance limit for Ordered Block-
-Rank). Given ϵ ∈ (0, 1], δ ∈ (0, 1], r, k ∈ [n], for
any (ϵ, δ)-PAC algorithm A for the (ϵ, δ)-PAC arm
identification in LR-RUM, there exists an instance of
BR-RUM(n, k, r), say ν, where the expected sample com-
plexity of A on ν is at least Ω

(
rϵ−2 log 1/δ

)
.

Proof sketch of Thm. 5. The proof of Theorem 5 uses
a reduction from the problem of (ϵ, δ)-PAC learning in
an IND-RUM(r, k, µ) instance to an (ϵ, δ)-PAC learning
problem in a BR-RUM(n, k, r, µ′) instance. Formally,
the reduction proceeds as follows. Given an algo-
rithm AC−RUM which (ϵ, δ)-PAC learns best items
from BR-RUM(n, k, r, µ′) instances, we can construct
an algorithm AI−RUM which does the same for the
independent setting with r-arms. In particular, the
algorithm embeds the best item learning problem on
r-arms over a unknown score profile µ inside best item
learning problem on n-arms with correlations, and then
uses AC−RUM to solve the large problem. This is done
using a simple idea: the outer algorithm AC−RUM adds
n−r dummy items to the set with score µi = −∞ with
appropriate correlation structure. This ensures that:
(i) The ϵ-best item set in [r] is also the ϵ-best item set
in the larger set [n]. (ii) The algorithm AI−RUM can
simulate the subsetwise preference feedback required
by AC−RUM on [n] using its own preference feedback
on subsets of [r] (Fig. 2).
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Overall, if AC−RUM is an (ϵ, δ)-PAC algorithm
for BR-RUM(n, k, r, µ′), then so is AI−RUM for
IND-RUM(r, k, µ). Therefore the sample complexity of
AC−RUM is bounded by that of AI−RUM , which we
prove to be Ω(rϵ−2 log(1/δ))–this is done by extending
previous known lower bounds for fixed subset sizes to
the setting of variable-sized subsetwise plays (Thm. 15,
Appendix D.5). The proof is given in Appendix D.

On the other hand, our next result shows that, there
is no advantage in querying pairwise-feedback (k = 2)
even for any r ≥ 2 (note r = 1 is a trivial case), as
stated formally in the following theorem.

Theorem 6 (Pairwise Preferences: Sample Complex-
ity Lower Bound for Low-Rank-Choice-Model). Given
ϵ ∈ (0, 1/4], δ ∈ (0, 1], and general r ∈ [n] (r > 1),
for any (ϵ, δ)-PAC algorithm A for (ϵ, δ)-PAC arm
identification in LR-RUM problem, ∃ an instance of
BR-RUM(n, 2, r, µ), where the expected sample complex-
ity of A is at least Ω

(
n
ϵ2 log 1

δ

)
– independent of r.

Remark 6 (Separation in the sample complexity for
k = 2 vs k = 3). Intuitively, triples can be used to
determine whether a subset involves the winner much
faster: Consider the instance with 2 blocks, where the
first block is a singleton with score µ + ϵ and the second
block consists of (n− 1).identical arms, each with score
µ. Then for every distinct choice of i, j ∈ [n] we have
Pr(i|{i, j}) = 1

2 + O(ϵ) if i = 1 and Pr(i|{i, j}) = 1
2

if i ≠ 1 i.e, the duels involving the winner behave
near identically to duels not involving it and it would
take Ωδ(ϵ−2)-queries* to distinguish between the two
cases. On the other hand, consider a triple T := (i, j, k)
such i < j < k. Then the win probabilities for the
the arms playing T are (1/2, 1/4, 1/4) if i = 1, and
(1/3, 1/3, 1/3) otherwise, and it would take only Oδ(1)-
queries to distinguish between the two, which is signifi-
cantly smaller than that of the dueling feedback setting.

6 (r, η̃, η)-Block-Rank: Algorithm and
Analysis for the general Block-Rank
Choice Model under Noise

Interestingly, our findings show that even for the noisy
settings, Algorithm 1 is a correct (ϵ, δ)-PAC algorithm
when the correlation matrix nearly has a 0-1-block
diagonal structure (Thm. 13). Formally, our main
results are stated as Thm. 10 and 12 which gives the
precise dependence on noise-vs-the suboptimality gap
and its trade-off with learning rate.

*Here we use Ωδ(·) and Oδ(·) notations to suppress
multiplicative factors that depend only on δ.

6.1 At most η̃-MI: Analysis for
nearly-independent I-RUM(n, k) model

In this section we discuss the setting of noisy-block rank
model such that items across the blocks are at most
“η̃-identical” (precisely at most η̃-mutual information):

η̃-I-RUM(n, k): This is a generalization of I-RUM(n, k)
model where the noise distributions Di’s are no longer
independent, but can have at most η̃-mutual informa-
tion, i.e. Corr(ζi, ζj) ≤ η̃, for any pair of distinct arms
i, j ∈ [n] (for any η̃ ∈ [0, 1)). Clearly, setting η̃ = 0, we
recover the original I-RUM(n, k) models, as studied in
Saha and Gopalan (2018, 2020); Soufiani et al. (2014).

The main result of this subsection is to show that under
‘low noise’ (η̃), our algorithm BlockRank-PB (Alg. 1)
still finds an ϵ-best item with O(rϵ−2 log(n/δ)) sample-
complexity. Specifically, the important aspect we note
is while the guarantees of Seq-PB sub-routine of Alg.
1 rely on the independence structure across blocks,
it can be shown to yield correct results even under
η̃-I-RUM(n, k)(Thm. 10) model under a separation of
scores assumption (see Thm. 10). Before stating Thm.
10, we find it useful to introduce some definitions:
Definition 7 (Best-Item-Advantage-Ratio). Given any
I-RUM(n, k) model, and subset S ⊆ [n], the advantage
ratio of the best item of set S, i∗

S := argmaxi∈S µi,
over any other item j ∈ S \ {i∗

S} is defined as
Best-Item-Advantage-Ratio(j, S):

BAR⊗ℓ∈[n]Dℓ
(I)(j, S) = Pr(i∗

S |S)
Pr(j|S) .

(Explicit use of the subscript ⊗ℓ∈[n]Dℓ(I) represents
the underlying I-RUM(n, k) model.)
Corollary 8. It is easy to note that by definition,
BAR(j, S) > 1

kP r(j|S) for any subset S of size k, since
the win probability of the best item i∗

S in S is at least
1
k .
Definition 9 (Minimum Best-Item-Advantage-Ratio).
The ϵ-Best-Item-Advantage-Ratio, (ϵ-BAR), is defined
to be the minimum (worst case) Best-Item-Advantage-
Ratio an ϵ-best item gets against an non-ϵ best item
(j) globally, irrespective of which set it appears inside.
More precisely, let [n]ϵ := {i ∈ [n] | µi > µ1 − ϵ}
denotes the set of all ϵ-best items in [n], then for any
I-RUM(n, k) model I, we define its ϵ-BAR(I) to be:

ϵ-BAR⊗ℓ∈[n]Dℓ
(I) =

min
S∈{S|S∩[n]ϵ ̸=∅},j∈S\[n]ϵ

BAR⊗ℓ∈[n]Dℓ
(I)(j, S). (2)

Note ϵ-BAR is a measure of worst-case quality separa-
tion of an ϵ-best item over a non ϵ-best item (in terms
of item-preferences), which is the key complexity factor
in the sample complexity analysis of Seq-PB subroutine
used in Alg. 1 as stated below:
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Theorem 10 (Correctness and Sample Complexity
of Seq-PB on η̃-I-RUM(n, k)). Consider any subsetwise
preference model I-RUM(n, k) I on the underlying noise
distribution D, such that ϵ-BAR(I) ≥ 1 + 4cϵ

1−2c for
some D-dependent constant c = c(D) > 0. Then Seq-
PB(n, k, ϵ, δ, c) is an (ϵ, δ)-PAC algorithm on any in-
stance ν of η̃-I-RUM(n, k) model with sample complexity
O( n

c2ϵ2 log k
δ ), for any η̃ < [0, c2ϵ2

322k4

)
. Here ν being an

instance of the I-RUM(n, k) model corresponding to the
noise distribution D.
Proof sketch of Thm. 10. The proof depends on the
following main lemma which ensures if the ϵ-BAR of
any I-RUM(n, k) based preference model is bounded
away by a certain threshold, then the ϵ-BAR of the cor-
responding η̃-I-RUM(n, k) model will also be bounded
away by nearly a same threshold for ‘small’ η̃.

Lemma 11 (Lower bound for the advantage ratio
η̃-I-RUM(n, k) model). Consider I-RUM(n, k) model of
Thm. 10. Then for any η̃-I-RUM(n, k) based subsetwise
preference model, say I ′, we have

ϵ-BARD(I ′) ≥ 1 + 2cϵ

1− 2c
.

Given the above lemma, the rest of the argument fol-
lows same as Thm. 4 of Saha and Gopalan (2020) as
it pivots on the main assumptions on ϵ-BAR(I) as
achieved in Lem. 11. The complete proof of Lem. 11
and Thm. 10 is given in Appendix F.1.

6.2 At least (1− η)-Correlation:
Nearly-identical intra-block noise

In this subsection we discuss the setting of noisy intra
block items when items inside the block are almost
identical, with at least (1− η)-correlation. Our main
finding here is to show that the pre-processing step of
BlockRank-PB (Alg. 1), which exploits the intra-block
item-correlations, is robust under ‘mild-noise’ η or more
precisely when they are at least (1− η)-correlated.
Theorem 12. Let η ∈

[
0, min{ 1

192 , minj ̸=1 ∆4
1j/16}

]*.
Then with probability at least 1−δ/2, the pre-processing
step (Lines 6-10) constructs a set S of size at most
r such that (i) 1 ∈ S and (ii) |S ∩ Ba| ≤ 1 for every
a ∈ [r]. Furthermore, the number of samples queried
in the pre-processing step is at most O(n3 log n/δ).

We defer the proof of the above to Appendix F.2.
Remark 7. Thm. 12 says that we need η to precisely
depend on the suboptimality gaps, ∆1j, of the items
residing in the block of the best item-1. Note if ϵ <
minj∈[n]\{1} ∆1,j, then this immediately implies η <

*Here ∆1j := µ1 − µj denotes the suboptimality gap
between items j and 1

ϵ4/16 is sufficient enough for Thm. 12 to hold good.
But if ϵ > minj∈[n]\{1} ∆1,j, then we explicitly need
η ≤ minj ̸=1 ∆4

1j/16 in order to be left with only r items
at the end of the pre-processing step of Alg. 1.

6.3 Performance of BlockRank-PB (Alg. 1)
for (r, η̃, η)-Block-Rank model

Combining Thm. 10 and 12, the main result follows:
Theorem 13. Consider any (r, η̃, η)-Block-Rank sub-
set choice model BR-RUM(n, k, r) with noise distribution
D, such that η̃ < [0, c2ϵ2

322k4

)
and η1/4 ≤ min

(
ϵ, µ1 −

maxi∈[n]\{1} µi

)
/2. Then Alg. 1 is (ϵ, δ)-PAC item

with sample complexity O( r
cϵ2 log n

δ ), c = c(D) being a
noise distribution dependent constant.

Proof. The result immediately follows combining the
claims for the correctness and sample complexity of
the pre-processing step (Lem. 12), and the subsequent
analysis of running the Seq-PB blackbox (Thm. 10),
for the noisy-Block-Rank setup.

7 Conclusion and Future Work
In this work we explore the role of correlations struc-
ture in the ϵ-best item learning problem in preference
bandits which is motivated from the search of faster
learning rates with subsetwise preferences compared to
the dueling feedback (pairwise preference). Our result
shows that playing sets of larger size (i.e, ≥ 3) can allow
learners to exploit the underlying correlation structure
better in comparison to playing sets of size 2. We also
show that our results holds even when the correlation
structure has low block rank in an approximate sense.

Future Works. This work opens a suite of interesting
directions for future investigation to study the influence
of item correlations in preference bandits, specially due
to the absence of works along this line. In particular,
note that the preprocessing step of our algorithm incurs
a Õ(n3)-sample complexity which is prohibitive with n
large. This naturally motivates the question of design-
ing faster pre-processing routines and to understand
sample complexity lower bounds for the same. From
a broader perspective, additional directions could be
to explicitly model item features/attributes to induce
correlation along item utilities, study other classes of
low rank structures, or even define a general notion
of item correlations directly in terms of the preference
relations. Another interesting problem would be to
understand the role of graphical feedback or side infor-
mation Wu et al. (2015) in learning from preferences.
Finally, it would be interesting to explore analogous
notions of correlation in settings with infinite arms.
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Supplementary for Exploiting Correlation to Achieve Faster Learning
Rates in Low-Rank Preference Bandits

A The Seq-PB Algorithm Saha and Gopalan (2020)

The Seq-PB Algorithm from Saha and Gopalan (2020) is an (ϵ, δ)-PAC algorithm for the best arm determination
problem under the I-RUM(n, k) choice model. Informally, the algorithm proceeds as follows: at every iteration ℓ,
the algorithm maintains a set of arms Sℓ ⊆ [n] which acts as the candidate set for the best arms. Then at any
iteration ℓ, the algorithm considers a partition Gℓ,1 ⊎ Gℓ,2 ⊎ · · · ⊎ Gℓ,⌈|Sℓ|/k⌉ of Sℓ into k-sized sets and plays each
subset tℓ = O(k/ϵ2

ℓ log(n/δℓ)) times (where ϵℓ, δℓ are geometrically decreasing as functions of ℓ). Now given the
feedback from the above subsetwise queries, the algorithm then proceeds to construct the next set of candidate
winners Sℓ+1 ⊆ Sℓ by retaining one item iℓ,j from each group Gℓ,j – in particular, the item iℓ,j is the item with
the largest win count among the tℓ-independent plays of the subset Gℓ,j .

Overall, the sequence of parameters (ϵℓ, δℓ) are set in a way such that they satisfy
∑

ℓ ϵℓ ≤ ϵ,
∑

ℓ δℓ ≤ δ and in
addition, the algorithm maintains the following iterative invariant: at any iteration ℓ, the set Sℓ retains at least
one

∑
j≤ℓ ϵj-best arm with probability at least 1− δℓ. Furthermore, since at any iteration, the algorithm carries

over only 1/k-fraction of items for the next iteration, in t∗ := O(logk n)-steps, the algorithm would converge to a
singleton set St∗ which is guaranteed to have an ϵ-best arm with probability at least 1− δ. We refer interested
readers to Saha and Gopalan (2020) for more details on the Seq-PB algorithm.

B Proof of Lemma 1

Lemma 1. Consider an instance of LR-RUM(n, k, r) with n = k, and r = 2. Then for any even k ≥ 4 and
0 < ϵ ≤ ϵ(k), there exist scores µ1 > µ2 + ϵ ≥ · · · ≥ µk with underlying correlation matrix Σ ∈ Rk×k s.t.
argmaxi∈[k] Pr (i|[k]) ≠ 1; i.e. Item-1, despite of being the only ϵ-optimal item, would not have the maximum
winning probability when played in a subset.

Proof. Let ϵ ∈ (0, 1) be a small constant to be fixed later. Define the score vectors µ = (µ, . . . , µ) and
µϵ = (µ + ϵ, µ, · · · , µ). Furthermore, we define the correlation matrix Σ in terms of its Cholesky decomposition
Σ := VV⊤ where V = (v1, . . . , vk)⊤ ∈ Rk×2. Since the diagonal entries of Σ are ones, the corresponding vi’s are
unit vectors, and therefore, we can write vi = u(αi), where u(α) is the unit vector (cos α, sin α). We define the
corresponding αi’s as follows.

αi =


0 if i = 1,

π if i = k,

π/4 if i /∈ {0, k}, i is even
−π/4 if i /∈ {0, k}, i is odd

To begin with, we shall first analyze the win probabilities with respect to the uniform score vector µ = (µ, . . . , µ).
In that case, it easy to verify that

Pr
µ

(i|[k]) = Pr
g∼N(0,I2×2)

(
argmax

i∈[k]
⟨g, vi⟩ = i

)
= Pr

α∼[0,2π]

(
argmax

i∈[k]
⟨u(α), vi⟩ = i

)
(3)

Here the first equality holds since all the scores are identical, and the second equality holds since the (i) the event
inside the probability expression is scale invariant and (ii) the Gaussian measure is “rotation invariant”. The RHS
of the above equation implies that the win probabilities are determined using the angular measure of the sectors
Si := {α|⟨u(α), vi⟩ > ⟨u(α), vj⟩∀ j ̸= i}. Using this observation, the win probabilities are easily computed – we
summarize them below.

Pr
µ

(i|[k]) =


1
8 if i = 1,
3
8 if i = k,

1
8(k−2) otherwise.

(4)
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Now, define the function f : [0, 1]→ [0, 1] corresponding to the mapping

f(ϵ) def= Pr
g

(
argmax

i∈[k]
⟨g, vi⟩+ µϵ

i = k

)
− Pr

g

(
argmax

i∈[k]
⟨g, vi⟩+ µϵ

i = 1
)

,

i.e, in words, the above measures the difference in the win probabilities of arms k and 1 when the subset is played
with score vector µϵ. In particular, note that by definition, f(0) is the difference between the win probabilities of
arms k and 1 with respect to the score vector µ0 = µ, which is 1/4 from (4). Furthermore, since f is a continuous
function of ϵ, there exists a choices of ϵ0 (possibly depending on parameters µ and k) such for every ϵ ≤ ϵ0 we
have f(ϵ) ≥ f(0)− 1/8 ≥ 1/8. Therefore, using the definition of f , for every such small enough choice of ϵ we get
that

Pr
g

(
argmax

i
⟨g, vi⟩+ µϵ

i = k

)
− Pr

g

(
argmax

i
⟨g, vi⟩+ µϵ

i = 1
)

= f(ϵ) ≥ 1
8 ,

which implies that the win probability of arm k is larger than that of arm 1 by 1/8 when the subset [k] is played.
Since arm is the unique ϵ/2-best arm with respect to the perturbed score vector µϵ, this establishes the desired
claim.

C Proofs for Section 5.1

C.1 Proof of Theorem 2

Theorem 2 (Alg. 1: Correctness and Sample Complexity for BR-RUM(n, k, r)). Consider any BR-RUM(n, k, r)
Block-Rank choice model with noise distribution D, k > 2. Then, Alg. 1 is (ϵ, δ)-PAC with sample complexity
max

{
O(n3 log(n/δ)), O( r

cϵ2 ln r
δ )
}

, where c := c(D) is a constant depending on D.

Proof. The key observation used in the proof of the theorem is the following lemma which gives high probability
guarantees on the structure of the set S.

Lemma 4 (Pre-processing Step Guarantee). With probability at least 1− δ/2, the set S satisfies the following
conditions. For every i ∈ [r], |S ∩ Bi| ≤ 1. Additionally 1 ∈ S.

We defer the proof of Lem. 4 for now, and use it to complete the proof of Theorem 2. Suppose the guarantees of
the above lemma hold for S. Then, since |S ∩ Bi| ≤ 1 for every i ∈ [r], the corresponding arms are independent.
Therefore, instantiating Theorem 1 of Saha and Gopalan (2020) with S, ϵ, δ/2, we get that with probability at
least 1− δ/2, the Algorithm 1 from Saha and Gopalan (2020) returns a ϵ-best arm of S with probability at least
1− δ/2 (see Theorem 4 Saha and Gopalan (2020)). Furthermore, since 1 ∈ S, any ϵ-best arm of S would also be
an ϵ-best arm in [n].

Therefore combining this with the guarantee of Lemma 4, we get that with probability at least 1− δ, Algorithm 1
returns an ϵ-best arm. All that remains is bound the sample complexity. The for loop involves O(n2 log(nr/δ))-
pulls. From Theorem 4 of Saha and Gopalan (2020) we know that the winner determination step requires
O(rϵ−2 log(r/δ))-pulls. Since the second term dominates as ϵ→ 0, we get that the overall sample complexity is
bounded by O(rϵ−2 log(r/δ)).

C.2 Technical Lemmas for Thm. 2

C.2.1 Proof of Lemma 4

Lemma 4 (Pre-processing Step Guarantee). With probability at least 1− δ/2, the set S satisfies the following
conditions. For every i ∈ [r], |S ∩ Bi| ≤ 1. Additionally 1 ∈ S.

Proof. The proof of Lemma 4 is established using a couple of straightforward claims which we state and prove
below.

Claim 1. For any triple T = (1, i, j), we have Pr(1|T ) ≥ 1/3.
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Proof of Claim 1. Recall that Xa := µa + ζa are the variables corresponding to the reward for arms a = 1, i, j. If
i, j ∈ B1, both inequalities follow trivially. Now we consider three cases.

Case (i): Suppose i ∈ B1, j /∈ B1 (the other case can be argued identically). Then Pr(i|T ) = 0 and Pr(1|T ) ≥
Pr(j|T ) (since µ1 > µi, µj) and hence Pr(1|T ) ≥ 1/2.

Case (ii): Suppose i, j /∈ B1 and i, j belong to distinct blocks. Then, 1, i, j are independent, and since µ1 ≥ µi, µj

it follows that Pr(1|T ) ≥ Pr(i|T ), Pr(j|T ) and hence Pr(1|T ) ≥ 1/3.

Case (iii) Suppose i, j /∈ B1 and i, j belong to the same block. Without loss of generality, assume µi ≥ µj . Since
ζi = ζj , then this implies that Xi ≥ Xj with probability 1. Hence, Therefore,

Pr(1|T ) = Pr
X1,Xi

(X1 > Xi) ≥ Pr
ζ1,ζj

(ζ1 > ζj) ≥ 1
2

where the last step follows due to ζ1 and ζj being identical and independent random variables.

Claim 2. For any triple T = (1, i, j), such that i, j are from the same block, if µi ≥ µj, then Pr (j|T ) ≤ 1/4.

Proof of Claim 2. Note that the setting of the claim is identical to that of case(iii) from the proof of Claim 1, and
therefore, we have Pr({i, j}|T ) ≤ 1/2. Furthermore, since Xi ≥ Xj with probability 1, we have Pr(i|T ) ≥ Pr(j|T ).
Hence,

1
2 ≥ Pr ({i, j}|T ) = Pr (i|T ) + Pr (j|T ) ≥ 2 Pr (j|T ) ,

which on rearranging gives us the claim.

Using the above, we establish the following lemma which gives w.h.p. characterization of the set of items marked
during the for loop.

Lemma 3. With probability at least 1− δ/2, the following holds. For any item j ∈ [n], if there exists an item i
from the same block for which µi ≥ µj, we have Flag(j) = 1. Furthermore, Flag(1) = 0.

We defer the proof of the above lemma to Section C.2.2 and use the conclusions and finish the proof of the
current lemma by assuming the conclusions of Lemma 3. First consider any block Bi with i ∈ [r]. If there exists
a unique item ji ∈ argmaxj′∈Bi

µj′ with the largest score, then using Lemma 3, for every j′ ∈ Bi \ {j} we have
Flag(j′) = 1, and Flag(ji) = 0. On the other hand, if more than one item have the largest bias in Bi, then for
every j ∈ Bi we have Flag(j) = 1. In other words, for every Bi, we must have at most one element of ji ∈ Bi

for which Flag(j) = 0. Finally, since the optimal arm i.e, arm 1 has bias strictly larger than every other arm,
including the arms of B1 \ {1}, by the above argument we must have Flag(1) = 0.

C.2.2 Proof of Lem. 3

Lemma 3. With probability at least 1− δ/2, the following holds. For any item j ∈ [n], if there exists an item i
from the same block for which µi ≥ µj, we have Flag(j) = 1. Furthermore, Flag(1) = 0.

Proof. For arguing the first part, fix items j, j′ ∈ [n] such that µj ≥ µj′ and they belong to the same block.
Now consider the triple T := (1, j, j′). From Claim 2 it follows that Pr(j′|T ) ≤ 1/4 and hence using Hoeffding’s
inequality we get

Pr
(

Flag(j′) = 0
)
≤ Pr

(
NT (j′) > 0.26t

)
≤ Pr

(
NT (j′)−ENT (j′) > t/100

)
≤ exp(−104t2/2) ≤ δ/4n2 (5)

where the last inequality holds due to our choice of t := 2 × 104 log(4n2/δ). On the other hand, consider any
T such that 1 ∈ T . Then from Claim 1 we know that Pr(1|T ) ≥ 1/3 and therefore, again using Hoeffding’s
inequality we get that

Pr
(

NT (1) ≤ 0.26t
)
≤ Pr

(
NT (1)−ENT (i) < −t/100

)
≤ exp(−(10)4t2/2) ≤ δ/4n2 (6)

Therefore, taking a union bound over at most (n− 1) events corresponding to (5) and
(

n
2
)

events corresponding
to (6), we have that with probability at least 1− (n + n2)(δ/4n2) ≥ 1− δ/2, the conclusions of the lemma hold
simultaneously.
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D Proofs for Section 5.2

D.1 Pseudocode: Reducing I-RUM(r, k) into instances of BR-RUM(n, k, r)

Algorithm 2 Algorithm AI−RUM

1: Input:
2: Set of items: [n], Subset size: 2 ≤ k ≤ n.
3: Error bias: ϵ > 0, Confidence parameter: δ > 0.
4: Initialize:
5: Run AC−RUM by simulating the lifted distribution described in (7) as follows.
6: for Iterations t = 1, 2, . . . do
7: Let St be the subset queried by AC−RUM in iteration t.
8: if St ∩ [r] ̸= ∅ then
9: Play subset St ∩ [r] and feed the corresponding winner to AC−RUM .

10: else
11: Feed a uniformly random element it ∼ St to AC−RUM.
12: end if
13: If AC−RUM returns a item, break.
14: end for
15: Output: Item returned by AC−RUM.

D.2 Proof of Theorem 5

Theorem 5 (Performance limit for Ordered Block-Rank). Given ϵ ∈ (0, 1], δ ∈ (0, 1], r, k ∈ [n], for any (ϵ, δ)-PAC
algorithm A for the (ϵ, δ)-PAC arm identification in LR-RUM, there exists an instance of BR-RUM(n, k, r), say ν,
where the expected sample complexity of A on ν is at least Ω

(
rϵ−2 log 1/δ

)
.

Proof. The proof of the lower bound proceeds via a reduction from the problem of (ϵ, δ)-PAC learning the best item
in I-RUM(r, k) instance a (ϵ, δ)-PAC learning problem in a BR-RUM(n, k, r) instance. Formally let I := (µ,D)-be a
I-RUM(r, k) instance. Then we construct a BR-RUM(n, k, r)-instance I ′ := (D, µ′, Σ) as follows.

µ′
i =

{
µi if i ∈ [r],
−∞ otherwise.

Σ :=
[

Idr−1 0(r−1)×(n−r+1)
0(n−r+1)×(r−1) 1(n−r+1)×(n−r+1)

]
(7)

In the above, we use 0a×b denote the all zeros matrix with a-rows and b-columns, and similarly, 1a×b. Note that Σ
as constructed above has block rank r and hence I ′ is indeed a BR-RUM(n, k, r) instance. Now given an (ϵ, δ)-PAC
Algorithm AC−RUM for BR-RUM(n, k, r)-instances, we construct an algorithm AI−RUM as shown in Alg. 2.

Correctness of Reduction. Towards establishing the correctness of the reduction, as a first step, we claim that
for any iteration t, Algorithm 2 correctly simulates the feedback model corresponding to instance I ′. Formally,
this is equivalent to showing that

Pr
(

Alg 2 sends i from St

)
= Pr

µ′,Σ
(i|St), ∀ i ∈ St,

where St ⊆ [n] is the subset of size at most k played by the inner algorithm AC−RUM in iteration t. We argue
this by considering two cases. If St ∩ [r] = ∅, then for any i ∈ St,

Pr
(

Alg 2 sends i from St

)
= 1
|St|

= Pr
µ′,Σ

(i|St), (8)

where the first equality holds since the algorithm returns a uniformly random element in St and the second
inequality holds since all the items in St have identical scores. On the other hand, suppose S̃t := St ∩ [r] ̸= ∅.
Then for any i ∈ S̃t, we have

Pr
(

Alg 2 sends i from St

)
= Pr

(
i = argmax

i′∈St∩[r]
Xi′

)
= Pr

(
i = argmax

i′∈St

Xi′

)
= Pr

µ′,Σ
(i|St), (9)
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where the first equality is due to Line 9 of Algorithm 2, the second equality uses the fact that for any i′ ∈ St \ S̃t

we have µ′
i′ = −∞ and hence Xi′ < Xj for every j ∈ S̃t almost surely. Finally, the last equality follows using the

definition of Pr(·|St). The same identity (as (9)) also holds for every j ∈ St \ S̃t using identical arguments i.e., (9)
holds for every i ∈ St.

The above arguments taken together imply that for every iteration t, the feedback received by Algorithm AC−RUM

matches the feedback model of the instance I ′ . Therefore, using the (ϵ, δ)-PAC guarantee of AC−RUM on
BR-RUM(n, k, r), it follows that Algorithm 2 returns a ϵ-best item with respect to score vector µ′ with probability
at least 1 − δ. Finally, note that since µ′

j = −∞ for every j ∈ [n] \ [r], the set of ϵ-best arms with respect to
score vector µ′ is identical to the set of ϵ-best arms on score vector µ and hence, Algorithm 2 actually returns an
ϵ-best arm with respect to score vector µ i.e., it is (ϵ, δ)-PAC on instance I-RUM(r, k). Finally, since Theorem 15
implies that the sample complexity of any (ϵ, δ)-algorithm for I-RUM instances on r arms (with any k ≥ 2) is
Ω(rϵ−2 log(1/δ)), it follows that Algorithm 2 must have sample complexity at least Ω(rϵ−2 log(1/δ)).

D.3 Proof of Theorem 6

Theorem 6 (Pairwise Preferences: Sample Complexity Lower Bound for Low-Rank-Choice-Model). Given
ϵ ∈ (0, 1/4], δ ∈ (0, 1], and general r ∈ [n] (r > 1), for any (ϵ, δ)-PAC algorithm A for (ϵ, δ)-PAC arm
identification in LR-RUM problem, ∃ an instance of BR-RUM(n, 2, r, µ), where the expected sample complexity of
A is at least Ω

(
n
ϵ2 log 1

δ

)
– independent of r.

Proof. Same as the proof of Thm. 15, the arguments is based on the change of measure based lemma stated as
Lem. 16. We constructed the following specific instances for our purpose and assume D to be the N (0, 1) noise
for this case. Also since the learner is supposed to play subsets of size only k = 2, we denote the action (arm) set
in this case by A := {{i, j} ⊆ [n] | i < j} (note that, for the purpose of deriving the lower bound we can safely
exclude repeated arm-pairs (i, i) from S as playing such a duel reveals no preference information, for the same
reason the KL divergences for such sets are also going to be 0 while we would be using Lem. 16).

Let ν1 be the true distribution associated with the bandit arms, given by the utility parameters:

True Instance (ν1) : µ1
j = µ,∀j ∈ [n] \ {1}, and µ1

1 = µ + ϵ,

for some µ ∈ R+, ϵ > 0. Now for every suboptimal item a ∈ [n] \ {1}, consider the modified instances νa such
that:

Instance–a (νa) : µa
j = µ,∀j ∈ [n] \ {a, 1}, µa

1 = µ, and µa
a = µ + ϵ.

For problem instance νa, a ∈ [n] \ {1}, the probability distribution associated with arm S ∈ A is given by

νa
S ∼ Categorical(p1, p2, . . . , pk), where pi = Pr(i|S), ∀i ∈ [k], ∀S ∈ A,

where Pr(i|S) is as defined in Section 2. Note that the only ϵ-optimal arm for Instance-a is arm a. Further, we
assume a size r Block-Rank structure over [n] arms in every instance νa, a ∈ [n], such that for νa set Ba

1 = {a},
and the rest of the (r− 1) blocks are equally divided in the arms [n] \ {a}, such that each of the remaining blocks
B2, . . . ,Br gets exactly n−1

r−1 arms (rounded to nearest interests such that
∑r

i=2 |Bi| = n− 1).

Now applying Lemma 16, for some event E ∈ Fτ we get,

∑
{S∈A:a∈S}

Eν1 [NS(τA)]KL(ν1
S , νa

S) ≥ kl(Prν(E), P rν′(E)). (10)

The above result holds from the straightforward observation that for any arm S ∈ A, if {1, a} ∩ S = ∅, ν1
S is

same as νa
S , hence KL(ν1

S , νa
S) = 0, ∀S ∈ A, a /∈ S. For notational convenience, we will henceforth denote

Sa = {S ∈ A | {1, a} ∩ S ̸= ∅}.
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Now let us analyze the right-hand side of (10), for any pair (duel) S = (j, j′) ∈ Sa.

Case 1 (1 /∈ S, a ∈ S): For simplicity first consider the case 1 /∈ S. Note that: ν1
S(j) = ν1

S(j′) = 0.5.

On the other hand, for problem Instance-a, we have that: ν1
S(i) = 0.5 + α if i = a (where we use the result from

Lem. 14, here α = Φ(ϵ)), and ν1
S(i) = 0.5− α, otherwise.

Now using the following upper bound on KL(p1, p2) ≤
∑

z∈Z
p2

1(z)
p2(z) − 1, p1 and p2 be two probability mass

functions on the discrete random variable Z (Popescu et al., 2016) we get:

KL(ν1
S , νa

S) ≤ ( 1
22 ) 2

1 + 2α
+ ( 1

22 ) 2
1− 2α

− 1

= 2α

2

( 1
1− 2α

− 1
1 + 2α

)
= α

( 4α

1− 4α2

)
= 4α2(1− (2α)2)−1 ≤ 8α2,

where the last inequality follows for any ϵ ≤ 1
4 , noting that by definition α = Φ(ϵ) ≤ ϵ√

2π
.

Case 2 (1 ∈ S, a ∈ S): Note in this case S = {1, a}. Here we get: ν1
S(1) = 0.5 + α, ν1

S(a) = 0.5− α. And on the
other hand, for problem Instance-a, we have that: ν1

S(a) = 0.5 + α and ν1
S(1) = 0.5− α, otherwise.

Now using the following upper bound on KL(p1, p2) ≤
∑

z∈Z
p2

1(z)
p2(z) − 1, p1 and p2 be two probability mass

functions on the discrete random variable Z (Popescu et al., 2016) we get:

KL(ν1
S , νa

S) ≤ ( (1 + 2α)2

22 ) 2
1− 2α

+ ((1− 2α)2

22 ) 2
1 + 2α

− 1

= 1
2

( (1 + 2α)3 + (1− 2α)3

1− 4α2

)
− 1 = 2(1 + 12α2)

2(1− 4α2) − 1 = 16α2(1− (2α)2)−1 ≤ 32α2,

where again the last inequality follows for any ϵ ≤ 1
4 , and since α = Φ(ϵ) ≤ ϵ√

2π
.

Case 3 (1 ∈ S, a /∈ S): Finally in this case S = {1, i} for some i ≠ a. Here we get: ν1
S(i) = 0.5+α, ν1

S(a) = 0.5−α
and, for problem Instance-a: ν1

S(a) = ν1
S(i) = 0.5. Here again it it can be proved that KL(ν1

S , νa
S) ≤ 16α2.

Now note that the only ϵ-optimal arm for any Instance-a is arm a, for all a ∈ [n]. Now, consider E0 ∈ Fτ be an
event such that the algorithm A returns the element i = 1, and let us analyze the left-hand side of (10) for E = E0.
Clearly, A being an (ϵ, δ)-PAC algorithm, we have Prν1(E0) > 1− δ, and Prνa(E0) < δ, for any sub-optimal arm
a ∈ [n] \ {1}. Then we have

kl(Prν1(E0), P rνa(E0)) ≥ kl(1− δ, δ) ≥ ln 1
2.4δ

(11)

where the last inequality follows from Kaufmann et al. (2016) (Eqn. (3)).

Now applying (10) for each modified bandit Instance-νa, and summing over all suboptimal items a ∈ [n] \ {1}
we get,

n∑
a=2

∑
{S∈A|a∈S}

Eν1 [NS(τA)]KL(ν1
S , νa

S) ≥ (n− 1) ln 1
2.4δ

. (12)

Moreover, using above derived bounds in the KL terms of the form KL(ν1
S , νa

S), the term of the right-hand side
of (12) can be further upper bounded as

n∑
a=2

∑
{S∈A|{a,1}∩S ̸=}

Eν1 [NS(τA)]KL(ν1
S , νa

S) ≤
∑
S∈A

Eν1 [NS(τA)]2
(

32ϵ2
)

. (13)
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Finally noting that Eν1 [τA] =
∑

S∈A[NS(τA)], combining (13) and (12), we get

(64ϵ2)Eν1 [τA] =
∑
S∈A

Eν1 [NS(τA)](63ϵ2) ≥ (n− 1) ln 1
2.4δ

.

Thus above construction shows the existence of a problem instance ν = ν1, such that Eν1 [τA] = Ω( n
ϵ2 ln 1

2.4δ ),
which concludes the proof.

D.4 Technical Lemmas for Thm. 6

Lemma 14. Consider X1 = µ1 + ζ1 and X2 = µ2 + ζ2, where ζ1, ζ2
iid∼ N (0, 1). Then

Pr (X1 > X2) = 1
2 + Φ

(µ1 − µ2√
2

)
,

where Φ : R 7→ R is such that Φ(x) =
∫ x

0
1√
2π

e−y2/2dy, ∀x ∈ R.

Proof. Let ϕ(·) denotes the pdf of standard normal distribution N (0, 1), i.e for any x ∈ R, ϕ(x) = 1√
2π

e−x2/2.

Then by definition we can write

Pr(X1 > X2) = Pr (ζ2 − ζ1 < µ1 − µ2) = Pr
(

ζ2 − ζ1√
2

<
µ1 − µ2√

2

)
(a)=
∫ µ1−µ2√

2

−∞
ϕ(x)dx

=
∫ 0

−∞
ϕ(x)dx +

∫ µ1−µ2√
2

0
ϕ(x)dx = 0.5 + Φ

(µ1 − µ2√
2

)
where (a) follows noting that since ζ1 and ζ2 are independent standard normal random variables, ζ2−ζ1√

2 also
follows N (0, 1).

D.5 Sample Complexity Lower Bound For Independent RUM with variable-sized subsetwise
plays

Theorem 15 (Sample Complexity Lower Bound for Independent-RUM-Choice-Model). Given ϵ ∈ (0, 1/4],
δ ∈ (0, 1], r, k ∈ [n], for any (ϵ, δ)-PAC algorithm for (ϵ, δ)-PAC arm identification in LR-RUM problem, there
exists an instance of BR-RUM(n, k, n, µ), say ν (i.e. an Independent-RUM-Choice-Model instance with r = n),
where the expected sample complexity of A on ν is at least Ω

(
n
ϵ2 ln 1

2.4δ

)
.

Proof. Our result is similar to the spirit of Saha and Gopalan (2019), however their setup considers subsets of
fixed size k and we assumed the learner has the flexibility to play any subsets S ⊆ [n] of length |S| = 1, 2, . . . , k.
Due to this additional flexibility in the feedback model (compared to Saha and Gopalan (2019)), their lower
bound does not imply a fundamental performance limit for our case, and we need to derive the claim of 15
independently.

Before proving the above lower bound result we recall the main lemma from (Kaufmann et al., 2016) which is a
general result for proving information theoretic lower bound for bandit problems:

Consider a multi-armed bandit (MAB) problem with n arms or actions A = [n]. At round t, let At and Zt denote
the arm played and the observation (reward) received, respectively. Let Ft = σ(A1, Z1, . . . , At, Zt) be the sigma
algebra generated by the trajectory of a sequential bandit algorithm up to round t.

Lemma 16 (Lemma 1, (Kaufmann et al., 2016)). Let ν and ν′ be two bandit models (assignments of reward
distributions to arms), such that νi (resp. ν′

i) is the reward distribution of any arm i ∈ A under bandit model
ν (resp. ν′), and such that for all such arms i, νi and ν′

i are mutually absolutely continuous. Then for any
almost-surely finite stopping time τ with respect to (Ft)t,

n∑
i=1

Eν [Ni(τ)]KL(νi, ν′
i) ≥ sup

E∈Fτ

kl(Prν(E), P rν′(E)),



Suprovat Ghoshal∗, Aadirupa Saha∗

where kl(x, y) := x log(x
y ) + (1− x) log( 1−x

1−y ) is the binary relative entropy, Ni(τ) denotes the number of times
arm i is played in τ rounds, and Prν(E) and Prν′(E) denote the probability of any event E ∈ Fτ under bandit
models ν and ν′, respectively.

We now proceed to prove our lower bound result of Thm. 15.

In order to apply the change of measure based lemma (Lem. 16), we constructed the following specific instances
for our purpose and assume D to be the Gumbel(0, 1) noise. Also since the learner is supposed to play subsets of
size up to k, we denote the action (arm) set in this case by A := {S ⊆ [n] | |S| ∈ [k]}.

True Instance (ν1) : µ1
j = 1− ϵ,∀j ∈ [n] \ {1}, and µ1

1 = 1,

Note the only ϵ-optimal arm in the true instance is arm 1. Now for every sub-optimal item a ∈ [n] \ {1}, consider
the modified instances νa such that:

Instance–a (νa) : µa
j = 1− 2ϵ,∀j ∈ [n] \ {a, 1}, µa

1 = 1− ϵ, and µa
a = 1.

For any problem instance νa, a ∈ [n] \ {1}, the probability distribution associated with arm S ∈ A is given by

νa
S ∼ Categorical(p1, p2, . . . , pk), where pi = Pr(i|S), ∀i ∈ [k], ∀S ∈ A,

where Pr(i|S) is as defined in Section 2. Note that the only ϵ-optimal arm for Instance-a is arm a. Now applying
Lemma 16, for any event E ∈ Fτ we get,

∑
{S∈A:a∈S}

Eν1 [NS(τA)]KL(ν1
S , νa

S) ≥ kl(Prν(E), P rν′(E)). (14)

The above result holds from the straightforward observation that for any arm S ∈ A, |S| ∈ [k], with a /∈ S, ν1
S

is same as νa
S , hence KL(ν1

S , νa
S) = 0, ∀S ∈ A, a /∈ S. For notational convenience, we will henceforth denote

Sa = {S ∈ A : a ∈ S}.

Now let us analyze the right-hand side of (10), for any set S ∈ Sa.

Case-1: First let us consider S ∈ Sa such that 1 /∈ S. Note that in this case:

ν1
S(i) = 1

|S|
, for all i ∈ S

On the other hand, for problem Instance-a, we have that:

νa
S(i) =

{
e1

(|S|−1)e1−2ϵ+e1 when S(i) = a,
e1−2ϵ

(|S|−1)e1−2ϵ+e1 , otherwise.

Again using the upper bound on KL(p1, p2) ≤
∑

z∈Z
p2

1(z)
p2(z) − 1 for probability mass functions p1 and p2 (Popescu

et al., 2016) we get:

KL(ν1
S , νa

S) ≤ (|S| − 1)(|S| − 1)e1−2ϵ + e1

|S|2(e1−2ϵ) + (|S| − 1)e1−2ϵ + e1

|S|2e1 − 1

= (|S| − 1)
|S|2

(
eϵ − e−ϵ

)2
= (|S| − 1)

|S|2
e−2ϵ(eϵ − 1)2 ≤ 8ϵ2

|S|
for any ϵ ∈

[
0,

1
2

]
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Case-2: Now let us consider the remaining set in Sa such that S ∋ 1, a. Similar to the earlier case in this case
we get that:

νa
S(i) =

{
e1

(|S|−1)e1−ϵ+e1 when S(i) = 1,
e1−ϵ

(|S|−1)e1−ϵ+e1 , otherwise.

On the other hand, for problem Instance-a, we have that:

νa
S(i) =


e1−ϵ

(|S|−2)e1−2ϵ+e1−ϵ+e1 when S(i) = 1,
e1

(|S|−2)e1−2ϵ+e1−ϵ+e1 when S(i) = a,
e1−2ϵ

(|S|−2)e1−2ϵ+e1−ϵ+e1 , otherwise

Now using the previously mentioned upper bound on the KL divergence, followed by some elementary calculations
one can show that for any

[
0, 1

4
]
:

KL(ν1
S , νa

S) ≤ 8ϵ2

|S|

Thus combining the above two cases we can conclude that for any S ∈ Sa, KL(ν1
S , νa

S) ≤ 8ϵ2

|S| , and as argued
above for any S /∈ Sa, KL(ν1

S , νa
S) = 0.

Note that the only ϵ-optimal arm for any Instance-a is arm a, for all a ∈ [n]. Now, consider E0 ∈ Fτ be an event
such that the algorithm A returns the element i = 1, and let us analyze the left-hand side of (10) for E = E0.
Clearly, A being an (ϵ, δ)-PAC algorithm, we have Prν1(E0) > 1− δ, and Prνa(E0) < δ, for any sub-optimal arm
a ∈ [n] \ {1}. Then we have

kl(Prν1(E0), P rνa(E0)) ≥ kl(1− δ, δ) ≥ ln 1
2.4δ

(15)

where the last inequality follows from (Kaufmann et al., 2016) (Eqn. 3).

Now applying (14) for each modified bandit Instance-νa, and summing over all suboptimal items a ∈ [n] \ {1}
we get,

n∑
a=2

∑
{S∈A|a∈S}

Eν1 [NS(τA)]KL(ν1
S , νa

S) ≥ (n− 1) ln 1
2.4δ

. (16)

Using the upper bounds on KL(ν1
S , νa

S) as shown above, the right-hand side of (16) can be further upper bounded
as:

n∑
a=2

∑
{S∈A|a∈S}

Eν1 [NS(τA)]KL(ν1
S , νa

S) ≤
∑
S∈A

Eν1 [NS(τA)]
∑

{a∈S|a ̸=1}

8ϵ2

|S|

=
∑
S∈A

Eν1 [NS(τA)]|S| −
(
1(1 ∈ S)

)8ϵ2

|S|
≤
∑
S∈A

Eν1 [NS(τA)]8ϵ2. (17)

Finally noting that Eν1 [τA] =
∑

S∈A[NS(τA)], combining (16) and (17), we get

(8ϵ2)Eν1 [τA] =
∑
S∈A

Eν1 [NS(τA)](8ϵ2) ≥ (n− 1) ln 1
2.4δ

. (18)
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Thus rewriting Eqn. 18 we get Eν1 [τA] ≥ (n−1)
8ϵ2 ln 1

2.4δ . The above construction shows the existence of a problem
instance of Independent-RUM-Choice-Model with n items (BR-RUM(n, k, n, µ) model) where any (ϵ, δ)-PAC
algorithm requires at least Ω( n

ϵ2 ln 1
2.4δ ) samples.

E Infeasibility in Block-Rank Choice Models

Lemma 17 (Problem Infeasibility for Subsetwise-Queries). For the problem of (ϵ, δ)-PAC arm identification in
LR-RUM with the restriction of playable subsets of only fixed size k, it is possible to construct problem instances
of BR-RUM(n, k, r), such that ∃ i, j ∈ [n] such that µi > µj + ϵ but P (i|S) < P (j|S),∀S ⊆ [n] for some choice of
ϵ ∈ (0, 1).

Proof. Consider a problem instance Instance I: Consider a simple problem instance with any general n ≥ 10,
r = 3, k = n/2 ≥ 5, and for the purpose of this specific instances assume D is just Gumbel(0, 1) noise.

Let the block structure be B1 = {1}, B2 = {2} and B3 = {3, . . . , n}. And let µ1 = mu + cϵ, for any c→ 1+ is the
score of the best-item i∗ = 1. We set µ2 = µ, and µi = µ + ϵ, ∀i ∈ [n] \ [2]. So the items in the third block are
nearly as good as the best item 1 as c→ 1+.

However, any k-sized subset S such that S containing Item-2 should have at least (k−2) ≥ 3 items from B3 if 1 ∈ S

as well, or all (k−1) items from B3 along with Item-2. This implies P (i|S) =
{

O(1/3(k − 2)) when 1 ∈ S

O(1/2(k − 1)) when 1 /∈ S
, ∀i ∈

B3 ∩ S. In either case, clearly P (i|S) = O(1/k) for any i ∈ B3 ∩ S. Where as P (2|S) = O(1) only (precisely
P (2|S) ≈ 1

3 − ϵ when 1 ∈ S, and P (2|S) ≈ 1
2 − ϵ when 1 /∈ S). Noting k ≥ 3 can be arbitrarily large and also

ϵ ∈ (0, 1) can also be arbitrarily small, this proves the claim.

F Appendix for Section 6

F.1 Proof of Thm. 10

Notation. Define ∆ij := µi − µj , for any item pair (i, j) ∈ [n]× [n]. For simplicity, we denote η̃ = η.
Theorem 10 (Correctness and Sample Complexity of Seq-PB on η̃-I-RUM(n, k)). Consider any subsetwise
preference model I-RUM(n, k) I on the underlying noise distribution D, such that ϵ-BAR(I) ≥ 1 + 4cϵ

1−2c for some
D-dependent constant c = c(D) > 0. Then Seq-PB(n, k, ϵ, δ, c) is an (ϵ, δ)-PAC algorithm on any instance ν of
η̃-I-RUM(n, k) model with sample complexity O( n

c2ϵ2 log k
δ ), for any η̃ < [0, c2ϵ2

322k4

)
. Here ν being an instance of

the I-RUM(n, k) model corresponding to the noise distribution D.

Proof. The proof crucially depends on the following main lemma which ensures if the ϵ-BAR of any I-RUM(n, k)
based preference model is bounded away by a certain threshold, then the ϵ-BAR of the corresponding η̃-I-RUM(n, k)
model has to be bounded away by nearly the same threshold as long as η is not too large. The formal claim is as
stated below:

Lemma 11 (Lower bound for the advantage ratio η̃-I-RUM(n, k) model). Consider I-RUM(n, k) model of Thm.
10. Then for any η̃-I-RUM(n, k) based subsetwise preference model, say I ′, we have

ϵ-BARD(I ′) ≥ 1 + 2cϵ

1− 2c
.

Given the above lemma, the rest of the argument follows same as the proof steps shown for Thm. 4 of Saha and
Gopalan (2020) as it pivots on the main assumptions on ϵ-BAR(I) as achieved in Lem. 11. We summarize the
key steps for the completeness.

1. Given Lem. 11, following the same line of argument as shown in Lem. 9 of Saha and Gopalan (2020) we get that,
upon Rank-Breaking, the effective-pairwise probability pij|S := P rD(i|S)

P rD(ij|S) (PrD(ij|S) := PrD(i|S) + PrD(j|S)
denotes the probability of either item i or j being the winner of set S), of any ϵ-best item i ∈ [n]ϵ winning
over an non-ϵ best item j /∈ [n]ϵ is still bounded away from 1

2 by O(ϵ) margin. Precisely for any such
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(near-best,suboptimal) item pair (i, j), we have pij|S > 1
2 + c∆ij

2(1−2c) as long as ∆ij > ϵ
4 , irrespective of the

underlying set S.

2. Now given the fact that, for any S and any (near-best,suboptimal) item pair (i, j), we have pij|S > 1
2 + c∆ij

2(1−2c) ,
we can simply replicate the proof of Lem. 11 of Saha and Gopalan (2020) to argue that for any such subset S,
Seq-PB(n, k, ϵ, δ, c) (see description in Alg. 1 or Alg 1 of Saha and Gopalan (2020)) would retain a near best
item of S, say iS such that µis

> µi∗
S
− ϵℓ/c, after O( k

ϵ2
ℓ

log k
δℓ

) k-subsetwise queries (with high probability
(1− δℓ)) for any ϵℓ, δℓ ∈ (0, 1].

3. Finally, combining the above two claims and proceeding similar to the proof of Thm 4 Saha and Gopalan
(2020), the correctness and total sample complexity of Seq-PB(n, k, ϵ, δ, c) follows for any η̃-I-RUM(n, k)
model.

F.1.1 Proof of Lem. 11

Lemma 11 (Lower bound for the advantage ratio η̃-I-RUM(n, k) model). Consider I-RUM(n, k) model of Thm.
10. Then for any η̃-I-RUM(n, k) based subsetwise preference model, say I ′, we have

ϵ-BARD(I ′) ≥ 1 + 2cϵ

1− 2c
.

Proof. Following the definition of ϵ-BAR recall that explicitly:

ϵ-BARD(I) = min
S∈{S|S∩[n]ϵ ̸=∅},j∈S\[n]ϵ

PrD
(
{Xi∗

S
> max(XS

{−i∗
S

})}
)

PrD
(
{Xj > max(XS

{−j})}
) (19)

where for any i ∈ [n], S ⊆ [n], denote XS
{−i} = {∪i∈SXj} \ {Xi}, and suppose (S∗, j∗) is the minimizer set of the

right-hand side expression of ϵ-BAR above.

Now for any subset S, j, using the ‘Cross-block Approximate Independence’-property of η̃-Block-Rank model and
Lem. 20, we get:

PrD
(
{Xi∗

S
> max(XS

{−i∗
S

})}
)

PrD
(
{Xj > max(XS

{−j})}
) >

Pr⊗ℓ∈SDℓ

(
{Xi∗

S
> max(XS

{−i∗
S

})}
)
− k
√

η̃

P r⊗ℓ∈SDℓ

(
{Xj > max(XS

{−j})}
)

+ k
√

η̃
. (20)

Define γ as

γ :=
Pr⊗ℓ∈SDℓ

(
{Xi∗

S
> max(XS

{−i∗
S

})}
)

Pr⊗ℓ∈SDℓ

(
{Xj > max(XS

{−j})}
) (21)

For brevity, denote p = Pr⊗ℓ∈SDℓ

(
{Xj > max(XS

{−j})}
)
. From Cor. 8 we have γp ≥ 1/k. We consider two cases.

Case (i): Suppose γ ≥ 4. Then we proceed to bound (20) as

Pr⊗ℓ∈SDℓ

(
{Xi∗

S
> max(XS

{−i∗
S

})}
)
− k
√

η̃

P r⊗ℓ∈SDℓ

(
{Xj > max(XS

{−j})}
)

+ k
√

η̃

1= γp− k
√

η̃

p + k
√

η̃

=
(

γp− k
√

η̃

p + k
√

η̃
− 2
)

+ 2

= (γ − 2)p− 2k
√

η̃

p + k
√

η̃
+ 2

2
≥ γp/2− 2k

√
η̃

p + k
√

η̃
+ 2
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3
≥ 1/(2k)− 2k

√
η̃

p + k
√

η̃
+ 2

4
≥ 2 (22)

where step 1 follows from the definition of γ and p, step 2 follows from the assumption γ ≤ 4 for this case, step 3
uses γp ≥ 1/k and step 4 follows from η̃ ≤ 1/(16k4).

Case (ii): Suppose γ ≤ 4. Then using the definition of γ from (21) this implies,

Pr⊗ℓ∈SDℓ

(
{Xj > max(XS

{−j})}
)
≥ 1

4 · Pr⊗ℓ∈SDℓ

(
{Xi∗

S
> max(XS

{−i∗
S

})}
)
≥ 1

4k
≥ k

√
η̃ (23)

where the last inequality follows from our choice of η̃ ≤ 1
16k4 . Now recall (from Thm. 10), we are given that

ϵ-BAR⊗ℓ∈SDℓ
(I)− 1 > c̃ϵ, where c̃ := 4c

(1−2c) , which implies:

min
S′∈{S|S∩[n]ϵ ̸=∅},j′∈S\[n]ϵ

Pr⊗ℓ∈S′ Dℓ

(
{Xi∗

S′
> max(XS′

{−i∗
S′ })}

)
Pr⊗ℓ∈S′ Dℓ

(
{Xj′ > max(XS′

{−j′})}
) − 1 > c̃ϵ

Assume the minimum above is attained for the pair (S̃, j̃) Then continuing from (20) we get:

PrD
(
{Xi∗

S
> max(XS

{−i∗
S

})}
)

PrD
(
{Xj > max(XS

{−j})}
) − 1 >

Pr⊗ℓ∈SDℓ

(
{Xi∗

S
> max(XS

{−i∗
S

})}
)
− k
√

η̃

P r⊗ℓ∈SDℓ

(
{Xj > max(XS

{−j})}
)

+ k
√

η̃
− 1

>
Pr⊗ℓ∈SDℓ

(
{Xi∗

S
> max(XS

{−i∗
S

})}
)
− Pr⊗ℓ∈SDℓ

(
{Xj > max(XS

{−j})}
)
− 2k

√
η̃

P r⊗ℓ∈SDℓ

(
{Xj > max(XS

{−j})}
)

+ k
√

η̃

>
Pr⊗ℓ∈S̃Dℓ

(
{Xi∗

S̃
> max(X S̃

{−i∗
S̃

})}
)
− Pr⊗ℓ∈S̃Dℓ

(
{Xj̃ > max(X S̃

{−j̃})}
)
− 2k

√
η̃

P r⊗ℓ∈S̃Dℓ

(
{Xj̃ > max(X S̃

{−j̃})}
)

+ k
√

η̃

>
c̃ϵ

1 + k
√

η̃/Pr⊗ℓ∈S̃Dℓ

(
{Xj̃ > max(X{−j̃})}

) − 8k2√η̃ >
c̃ϵ

2 , (24)

where the second last inequality uses Pr⊗ℓ∈S̃Dℓ

(
{Xj̃ > max(X S̃

{−j̃})}
)
≥ 1/4k, the last inequality follows from

(23) and the fact that η ≤ c2ϵ2

322k4 .

Combining the two cases i.e, (22) and (24), for any subset S of size k we have

PrD
(
{Xi > max(XS

{−i})}
)

PrD
(
{Xj > max(XS

{−j})}
) ≥ min

{
1 + c̃ϵ

2 , 2
}

which completes the proof. Since the above holds for any subset of size k, it also holds for the minimizer in (19)
(S∗, j∗), and hence the claim follows.

F.2 Proof of Thm. 12

Theorem 12. Let η ∈
[
0, min{ 1

192 , minj ̸=1 ∆4
1j/16}

]*. Then with probability at least 1− δ/2, the pre-processing
step (Lines 6-10) constructs a set S of size at most r such that (i) 1 ∈ S and (ii) |S ∩ Ba| ≤ 1 for every a ∈ [r].
Furthermore, the number of samples queried in the pre-processing step is at most O(n3 log n/δ).

Proof. We first establish the first part of the lemma. To begin with, let F0 denote the set of triples T ∈
(

n
3
)

such
that 1 ∈ S and let F1 denote the set of triples of the form (1, i, j) such that i, j belong to the same block. For
any triple T , let m(T ) denote the arm in T with the minimum win probability with respect to triple T i.e.,

m(T ) := argmin
i∈T

Pr (i|T ) .

*Here ∆1j := µ1 − µj denotes the suboptimality gap between items j and 1
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Now for any triple T we observe that (a) if T ∈ F0, using Lemma 20 we have Pr(1|T ) ≥ 1/3− 4√η (b) if T ∈ F1
using Corollary 19 we have Pr(m(T )|T ) ≤ 1/4 + 4√η. Furthermore, we can show that the bounds (a) and (b)
also hold approximately even for the (empirical) win probability estimates. Towards that, define the event E as

E :=
{
∀ T ∈ F0 : NT (1) ≥ 0.32t

}
∧
{
∀ T ∈ F1 : NT (m(T )) ≤ 0.26t

}
Then using Hoeffding’s inequality and our choice of t = O(log(4n3/δ)) (from Line 5 of Algorithm 1) we can bound
the probability of the event E not occurring as:

Pr
({
∃ T ∈ F0 : NT (1) < 0.32t

}
∨
{
∃ T ∈ F1 : NT (m(T )) > 0.26t

})
≤
∑

T ∈F0

Pr (NT (1) < 0.32t) +
∑

T ∈F1

Pr (NT (m(T )) > 0.26t)

≤
∑

T ∈F0

Pr
(

NT (1)
t
− Pr(1|T ) < −0.01

)
+
∑

T ∈F1

Pr
(

NT (m(T ))
t

− Pr(m(T )|T ) > 0.01
)

≤ 2
(

n

3

)
δ

4n3 ≤
δ

2 .

The above implies that event E holds with probability at least 1− δ/2. We now argue that conditioned on E , the
subset S constructed in Line 10 of Alg. 1 satisfies the properties (i) and (ii) with probability 1. To see (i), observe
that since for every triple T ∈ F0 we have NT (1) ≥ 0.32t, we must have Flag(1) = 0 and hence 1 ∈ S. We now
argue property (ii) by contradiction. Suppose property (ii) is violated. Then there exists arms i, j such that
{i, j} ⊆ Ba ∩ S (for some a ∈ [r]). Now consider the triple T := (1, i, j) and without loss of generality, assume
that m(T ) = j. By construction, we have T ∈ F1, and hence, conditioning on the event E we have NT (j) ≤ 0.26t
which in turn implies that we must have Flag(j) = 1 at the end of the for loop, which contradicts the fact that
j ∈ S. Hence, conditioned on E we must have that S satisfies properties (i) and (ii).

Finally, observe that in lines 6-10, each triple T ∈
(

n
3
)
, is played t = O(log(n3/δ)) delta times, which implies that

the total number of samples queried here is O(n3 log(n/δ)).

F.3 Technical Lemmas for Appendix F.1 and F.2

Lemma 18. Given any triple T := (1, i, j), then we have Pr (1|T ) ≥ 1/3 − 4√η (recall Thm.. 13 assumes
µ1 > max{µi, µj}+ 2η1/4).

Proof. The proof consists of several cases depending on the block memberships of i, j.

Case (i). Suppose i, j ∈ B1. In this case we note that Corr(ζa, ζb) ≥ 1− η for any a, b ∈ {1, i, j}. We claim that
‘with high probability’ {

ζ1 > max(ζi − η1/4, ζj − η1/4)
}
⇒
{

X1 > max(Xi, Xj)
}

. (25)

To see this observe that if ζ1 ≥ ζi − η1/4 then,

Xi = µi + ζi

1
< µi + ζ1 + η1/4 2

≤ µ1 + ζ1 − η1/4 ≤ µ1 + ζ1 = X1,

where step 1 is using ζi < ζ1 + η1/4 and step 2 uses the fact that µ1 ≥ µi + 2η1/4. Using identical arguments we
can also show that X1 > Xj , which establishes (25). Therefore, using the contrapositive of (25) we get that

Pr
X1,Xi,Xj

(X1 ≤ max(Xi, Xj)) ≤ Pr
ζ1,ζi,ζj

(
ζ1 ≤ max

(
ζi − η1/4, ζj − η1/4

))
≤ Pr

ζ1,ζi

(
ζ1 < ζj − η1/4

)
+ Pr

ζ,ζj

(
ζ1 < ζj − η1/4

)
≤ 4√η.
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where in the last step we use Lemma 21 on both terms. Therefore, with probability at least 1− 4√η we have
X1 > max(Xi, Xj).

Case (ii) Suppose i ∈ B1 and j ∈ Ba for some a ̸= 1. Then as in the previous case, since Corr(ζ1, ζi) ≥ 1− η we
have Pr(X1 > Xi) ≥ 1− 2√η. Furthermore, since I(ζ1; ζj) ≤ η and µ1 ≥ µj , we have

Pr
X1,Xj

(X1 > Xj) ≥ Pr
ζ1,ζj

(ζ1 > ζj) ≥ 1
2 −
√

η,

where the last step follows using Lemma 20. Therefore, by union bound we have

Pr
X1,Xi,Xj

(X1 ≤ max (Xi, Xj)) ≤ Pr
X1,Xi

(X1 ≤ Xi) + Pr
X1,Xj

(X1 ≤ Xj) ≤ 1
2 +√η + 2√η ≤ 1

2 + 3√η.

Case (iii) Suppose i, j ∈ Ba for some a ̸= 1. Here we have I(ζ1; ζi), I(ζ1; ζj) ≤ η and Corr(ζi, ζj) ≥ 1 − η.
Without loss of generality, assume that µi ≥ µj . Since I(ζ1; ζi) ≤ η, using Lemma 20 we have

Pr
ζ1,ζi

(ζ1 ≥ ζi) ≥
1
2 −
√

η. (26)

Furthermore, since Corr(ζi, ζj) ≥ 1− η, using Lemma 21

Pr
ζi,ζj

(
ζj ≤ ζi + η1/4

)
≥ 1− 2√η. (27)

We claim that conditioned on the events from (26) and (27) we have X1 > max(Xi, Xj) with probability 1.
Indeed, using the event in (26) and µ1 > µi we have X1 = µ1 + ζ1 > µi + ζi = Xi. Furthermore,

Xj = µj + ζj

(27)
≤ µi + ζj + η1/4 ≤ µ1 + ζi

(26)
< µ1 + ζ1 = X1,

where the middle inequality again uses µ1 ≥ µj +2η1/4 in our setting. Therefore, combining the above observation
with the bounds from (26),(27) we get that

Pr
X1,Xi,Xj

(X1 > max(Xi, Xj)) ≥ Pr
ζ1,ζi,ζj

(
{ζ1 ≥ ζi} ∧ {ζj ≤ ζi + η1/4}

)
≥ 1

2 − 3√η.

Case (iv) Suppose i ∈ Ba and j ∈ Bb where a ̸= b and a, b ≠ 1 i.e., the arms 1, i, j belong to distinct blocks.
Then using Lemma 20 we have

Pr
ζ1,ζi,ζj

(ζ1 ≤ max(ζi, ζj)) ≥ 1
3 − 4√η.

Since µ1 ≥ µi, µj , we have

Pr
X1,Xi,Xj

(X1 ≥ max(Xi, Xj)) ≥ Pr
ζ1,ζi,ζj

(ζ1 ≤ max(ζi, ζj)) ≥ 1
3 − 4√η.

The above follows directly from Case (iii) of the above lemma.
Corollary 19. Given a triple T = (1, i, j) where i, j ∈ Ba, we have that Pr ({i, j}|T ) =
PrX1,Xi,Xj (max(Xi, Xj) > X1) ≤ 1

2 + 4√η (assuming µ1 > max{µi, µj}+ 2η1/4).

F.4 Technical Lemmas for almost independent probability distributions (at most η-mutual
information)

In this section, we establish win probability bounds for subsets consisting of arms from distinct blocks. Here we
use ∥ · ∥TV to denote the total variation distance between a pair of random variables. Recall that for any pair
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of random variables X, Y defined over a common probability space Ω, the total variation distance between the
distributions of X and Y , denoted by PX and PY , can be expressed as

∥PX − PY ∥TV = sup
S⊂Ω

∣∣∣Pr
X

(S)− Pr
Y

(S)
∣∣∣ . (28)

Furthermore, we will also use the fact that mutual information can be expressed as KL divergence between the
joint distribution and product measure i.e., I(X; Y ) = DKL(PXY ||PX ⊗ PY ). We begin by proving a simple well
known property of total variation distance of product measures.
Claim 3. For any pair of probability measures ν1, ν2 defined over a common probability space X , given another
measure ν3 (not necessarily defined over the same space), we have ∥ν1 ⊗ ν3 − ν2 ⊗ ν3∥TV ≤ ∥ν1 − ν2∥TV.

Proof. Let ν3 be defined over probability space X ′. Then, using the fact that ∥ · ∥TV is actually the ℓ1-distance
between the probability measures we have∥∥∥ν1 ⊗ ν3 − ν2 ⊗ ν3

∥∥∥ =
∫

x∈X

∫
x′∈X ′

∣∣∣(ν2 ⊗ ν3

)
(x, x′)−

(
ν1 ⊗ ν3

)
(x, x′)

∣∣∣ dxdx′

=
∫

x∈X

∫
x′∈X ′

|ν1(x)ν3(x′)− ν2(x)ν3(x′)| dxdx′

≤
∫

x∈X

∫
x′∈X ′

ν3(x′) |ν1(x)− ν2(x)| dxdx′

=
∫

x∈X
|ν1(x)− ν2(x)| dx

= ∥ν1 − ν2∥TV.

Next we prove the main lemma of this section which is useful in relating the win-probability profile of items in a
subset when they are played with almost independent noise, to that of the independent noise setting.
Lemma 20. Let (ζi)ß∈[k] be jointly distributed with measure ν. Furthermore, suppose for any pair of disjoint
subsets S1, S2 ⊂ [k] we have I(ζS1 ; ζS2) ≤ η. Then, for any i ∈ [k], we have

Pr
ν

(
ζi > max

j∈[k]\{i}
ζj

)
≥ Pr

⊗ℓ∈[j]νℓ

(
ζi > max

j∈[k]\{i}
ζj

)
− k
√

η.

where ⊗ℓ∈[k]νℓ is the product measure corresponding to the marginals ν1, . . . , νk.

Proof. We prove the lemma for i = 1. For any ℓ ∈ {2, . . . , k}, let νℓ,...,k denote the joint distribution on the set of
random variables (ζℓ, . . . , ζk). We begin by observing that we can bound∣∣∣∣Pr

ν

(
ζ1 > max

j∈[k]\{1}
ζj

)
− Pr

ν1⊗ν2,...,k

(
ζ1 > max

j∈[k]\{1}
ζj

)∣∣∣∣ (29)

1
≤ ∥ν − ν1 ⊗ ν2,...,k∥TV
2
≤
√

DKL (ν||ν1 ⊗ ν2,...,k) =
√

I(ζ1; ζ2,...,k) ≤ √η, (30)

where inequality 1 is using the definition of ∥ · ∥TV (see (28)) and step 2 is using Pinsker’s inequality. For brevity,
for every ℓ ∈ {2, .., k}, define ν≤ℓ := ν2 ⊗ · · · ⊗ νℓ−1 ⊗ νℓ,...,k where νℓ,...,k is the joint distribution on the variables
ζℓ, . . . , ζk. Now for a fixed x, using identical steps we observe that∣∣∣∣ Pr

ν2,...,k

(
max

j∈{2,...,k}
ζj ≤ x

)
− Pr

⊗2≤ℓ≤kνℓ

(
max

j∈{2,...,k}
ζj ≤ x

)∣∣∣∣
=
∣∣∣∣Pr
ν≤1

(
max

j∈{2,...,k}
ζj ≤ x

)
− Pr

ν≤k

(
max

j∈{2,...,k}
ζj ≤ x

)∣∣∣∣ (Definition of ν≤j)
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≤
∑

2≤ℓ≤k−1

∣∣∣∣ Pr
ν≤ℓ−1

(
max

j∈{2,...,k}
ζj ≤ x

)
− Pr

ν≤ℓ

(
max

j∈{2,...,k}
ζj ≤ x

)∣∣∣∣ (Telescoping Sum)

≤
∑

2≤ℓ≤k−1

∥∥∥ν≤ℓ−1 − ν≤ℓ

∥∥∥
TV

(Definition of ∥ · ∥TV)

=
∑

2≤ℓ≤k−1

∥∥∥∥∥∥
ℓ−2⊗

j

νj

⊗ νℓ−1,...,k −

ℓ−1⊗
j

νj

⊗ νℓ,...,k

∥∥∥∥∥∥
TV

(Definition of ν≤ℓ−1, ν≤ℓ)

≤
∑

2≤ℓ≤k−1

∥∥∥(νℓ−1,...,k

)
−
(

νℓ−1 ⊗ νℓ,...,k

)∥∥∥
TV

(Claim 3)

≤
∑

2≤ℓ≤k−1

√
DKL (νℓ−1,...,k||νℓ−1 ⊗ νℓ,...,k) (Pinsker’s Inequality)

=
∑

2≤ℓ≤k−1

√
I (ζℓ−1,...,ζk

; ζℓ−1 ⊗ ζℓ,...,k) (Defn. of I(·; ·))

≤ (k − 1)√η.

where in last step we use the bound I(ζS1 ; ζS2) ≤ η for any pair of disjoint subsets S1, S2 ⊂ [k] in our setting.
Using the above estimate, we have

Pr
ν1⊗ν2,...,k

(
ζ1 > max

j∈[k]\{1}
ζj

)
=
∫ ∞

−∞
fν1(ζ1) Pr

ν2...,k

(
ζ1 > max

j≥2
ζj

)
dζ1

≥
∫ ∞

−∞
fν1(ζ1) Pr

⊗ℓ≥2νℓ

(
ζ1 > max

j≥2
ζj < ζ1

)
dζ1 − (k − 1)√η

= Pr
⊗ℓ∈[k]νℓ

(
ζ1 ≥ max (ζ2, ζ3)

)
− (k − 1)√η.

Therefore, plugging in the above bound into (29) we get that

Pr
ν

(
ζ1 > max

j∈[k]\{1}
ζj

)
≥ Pr

ν1⊗ν2,...,k

(
ζ1 > max

j∈[k]\{1}
ζj

)
−√η

≥ Pr
⊗ℓ∈[k]νℓ

(
ζ1 > max

j∈[k]\{1}
ζj

)
− k
√

η.

F.5 Technical Lemmas for Almost Correlated Random Variables (at least (1− η)-correlation)

Lemma 21. Let X, Y be (1− η)-correlated identically distributed random variables with E[X] = E[Y ] = 0 and
E[X2] = E[Y 2] = 1. Then

Pr
(
|X − Y | ≥ η1/4

)
≤ 2√η

Proof. We begin by observing that due to the first and second moment constraints we have E[XY ] = Corr(X, Y ) =
1− η. Then we can bound the second moment of the random variable |X − Y | as

E
[
(X − Y )2] = E[X2] + E[Y 2]− 2E[XY ] ≤ 2− 2(1− η) ≤ 2η.

Hence using Markov’s inequality we get that

Pr (|X − Y | ≥ α) ≤ Pr
(
|X − Y |2 ≥ α2) ≤ E

[
|X − Y |2

]
α2 ≤ 2η

α2 .

Setting α = η1/4 in the above completes the proof.
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