
On Combining Bags to Better Learn from Label Proportions

Rishi Saket Aravindan Raghuveer Balaraman Ravindran
Google Research
Bangalore, India

rishisaket@google.com

Google Research
Bangalore, India

araghuveer@google.com

Google Research
Bangalore, India

balaramanr@google.com

Abstract

In the framework of learning from label pro-
portions (LLP) the goal is to learn a good
instance-level label predictor from the ob-
served label proportions of bags of instances.
Most of the LLP algorithms either explicitly
or implicitly assume the nature of bag distri-
butions with respect to the actual labels and
instances, or cleverly adapt supervised learn-
ing techniques to suit LLP. In practical appli-
cations however, the scale and nature of data
could render such assumptions invalid and the
many of the algorithms impractical. In this
paper we address the hard problem of solving
LLP with provable error bounds while being
bag distribution agnostic and model agnostic.
We first propose the concept of generalized
bags, an extension of bags and then devise an
algorithm to combine bag distributions, if pos-
sible, into good generalized bag distributions.
We show that (w.h.p) any classifier optimiz-
ing the squared Euclidean label-proportion
loss on such a generalized bag distribution
is guaranteed to minimize the instance-level
loss as well. The predictive quality of our
method is experimentally evaluated and it
equals or betters the previous methods on
pseudo-synthetic and real-world datasets.

1 INTRODUCTION

In the learning from label proportions (LLP) problem
setup, we are given subsets or bags of training instances
along with only their observed class-label proportions.
The goal is to learn a classifier predicting the class-
labels of individual instances. Such a setting arises

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

in multiple practical scenarios: a) privacy sensitive
data in medical (Wojtusiak et al. (2011)) and anti-
fraud (Rueping (2010)) domains b) Instrumentation
Limitations in high energy physics (Dery et al. (2017))
c) High Human Annotation Cost in mass-spectrum
labeling (Chen et al. (2004)).

LLP algorithms are broadly based on either assuming a
generative model (e.g. Quadrianto et al. (2009); Patrini
et al. (2014)) or applying a classifier as the instance-
level predictor and optimizing for the model parameters
using suitable bag-level loss functions (e.g. Yu et al.
(2013); Musicant et al. (2007); Chen et al. (2009); Stolpe
and Morik (2011)). However, prior research does not
focus on two key aspects that are critical in practical
applications. First, in practical settings, bags are sel-
dom randomly sampled from single simple distributions
but rather the drawn from multiple distributions each
representing different phenomena of the environment
where the bags are generated. Second, prior work has
mostly focused on redesigning specific algorithms like
SVM, GANs for the LLP use case. While such ap-
proaches have significantly advanced the state of the
art for LLP, their usability is restricted to situations
where that particular modeling algorithm is applicable.

The distribution of the training bags (i.e., their sizes
and their constituent instances) is an important fac-
tor determining the instance level accuracy yielded by
many of the prior LLP algorithms. Obtaining theoreti-
cally tight error bounds without making any assump-
tions on bag distribution and the modeling approach
is a hard problem and has not been analyzed in-depth
in prior work. In this paper, we focus on both of the
above challenges - a) Distribution Agnostic: We
propose algorithms that are agnostic to the underlying
bag distributions that generated the bags. b) Model
Agnostic: Proposed techniques can work across any
models that minimize the simple `22-loss. Our approach
provides provable bounds on the instance level predic-
tion error, based on the solutions to certain convex
programs.

To show that real, large-scale web applications do ex-

On Combining Bags to Better Learn from Label Proportions

hibit significant variations in bag distributions we pick
the problem of product aggregators (PA). In product
aggregator services (for e.g., travelocity.com for flights
& hotels), there exist three primary actors : the user,
the merchant from who the user eventually buys the
product and the aggregator that provides a consistent
search interface across multiple merchants. The mer-
chant has the instance labels of which leads from the
aggregator resulted in a sale. A bag consists of all
users whose searched for the product from a merchant.
Due to privacy considerations only the percentage of
users in the bag that made a purchase (label propor-
tion) is made available to the aggregator. This directly
maps to a LLP setting to build a instance level pur-
chase prediction classifier. We describe below three bag
distribution characteristics for the above PA example.

1. Intra-bag Instance Correlation: The instances within
each bag can be strongly correlated with each other
via their features. This violates the class-conditioned
independence assumptions made by Quadrianto et al.
(2009). Also, certain subsets of instances have a char-
acteristic that bags either contain all/most of them
or none of them, which may lead to the predictor not
learning the underlying variance in the subset’s labels.
In the PA example on car aggregator website, all users
who are interested in the product “Volkswagen Golf
GTI 2021” are highly likely to be interested in other
compact family cars.

2. Instance Membership Long Tail: The probability
of instance membership to a bag is different across
instances. Therefore a subset of instances appear more
often in some bags than others. This violates the
disjointedness property (assumed for example in Yu
et al. (2013)), i.e., instances appear in exactly one
bag and thus have equal representation. In the PA
example for a travel aggregator, frequent travellers
often are present in multiple bags while the bulk of
casual travellers are present in only one bag.

3. Bag Size Long Tail: A small subset of bags inherently
have a large number of instances while there exists
a long tail of small bags. In the example of flight
aggregators, popular destinations will be considerably
larger sized bags than flights to rarer destinations. Due
to such a diversity of bag sizes, the effectiveness of
what can be learnt from each bag varies significantly.

To address the challenges listed above we make the
following contributions in this paper:

Generalized Bags and their efficient sampling:
We propose the concept of generalized bags, a novel
method to linearly combine bag distributions using real-
valued weights. Generalized bags provide the means to
control the distribution of the resulting aggregation of

instances even when the underlying bags exhibit the
less desirable characteristics mentioned in the previous
paragraphs. To the best of our knowledge, the tech-
nique of linearly combining bag distributions has not
been studied in LLP literature (Section 3).

We propose an algorithm to efficiently compute a weight
distribution (if one exists) derived from the properties
of the underlying bag distributions for sampling gen-
eralized bags, so that the generalized bag distribution
satisfies certain goodness properties. (Section 5)

Error Bounds for Generalized Bags: We prove
that when the goodness conditions of a generalized
bag distribution are satisfied, the bag-level error of
any model trained using the `22-loss function on the
generalized bag-level label proportions is a nearly tight
estimate of its per-instance error (Section 4).

Experimental Validation: We substantiate our
theoretical analysis through experiments on pseudo-
synthetic datasets that simulate realistic bag distri-
bution scenarios with around 104 instances. We also
perform evaluations on two real-world datasets of size
around 107 instances admitting natural bag distribu-
tions. In these experiments, our proposed method
equals or betters the performance of previous tech-
niques (Section 6).

2 PREVIOUS WORK

Over the last two decades, many specialized approaches
to LLP have been developed: de Freitas and Kück
(2005) and Hernández-González et al. (2013) proposed
MCMC trained probabilistic models, Musicant et al.
(2007) provided adaptations of standard supervised
learning approaches such as SVM, k-NN and neural
nets, and Chen et al. (2009); Stolpe and Morik (2011)
gave k-means based clustering methods. The work
of Quadrianto et al. (2009) assumed an exponential
generative model and provided an efficient algorithm
using only bag-level mean estimates. This approach
was adapted by Patrini et al. (2014) to more general
loss functions for linearized classifiers. A separate class
of methods applying SVM to LLP were proposed by
Rüping (2010) – using mean of the bags as representa-
tive instances – and by Yu et al. (2013) whose ∝-SVM
method estimated the actual labels and fit an SVM
by optimizing the bag and the instance level losses.
Subsequently, several deep neural net based techniques
have been studied by Kotzias et al. (2015), Bortsova
et al. (2018), Ardehaly and Culotta (2017), Liu et al.
(2019), Dulac-Arnold et al. (2019), and Shi et al. (2020).
Recently, Scott and Zhang (2020) proposed an algo-
rithm which pairs up bags and then trains a model in
the mutual contamination framework. However, from
the practical perspective (discussed in Sec. 1) the main

Rishi Saket, Aravindan Raghuveer, Balaraman Ravindran

drawbacks of the previous methods are:

Scalability and complexity, for e.g. the above mentioned
MCMC based methods, supervised learning adapta-
tions and the clustering methods by do not scale well
for large datasets. The ∝-SVM technique runs into
issues in loss optimization with ill-fitting data.

Distributional assumptions, such as as class conditioned
independence of bags (Quadrianto et al. (2009)), the
milder weak distinguishability of bags (Patrini et al.
(2014)), and specific types of bag and label proportion
distributions (Scott and Zhang (2020); Yu et al. (2014)).

Model specificity, for e.g. of the deep neural net based
techniques and assumption of powerful discriminators
(e.g. GANs in Liu et al. (2019)).

Multiple Instance Learning (MIL) Dietterich et al.
(1997) is another learning setting where an instance
level predictor is learned in aggregated bag level labels.
However the solutions are not broadly applicable across
the two settings since the label aggregation for the MIL
setting is logical instead of statistical as in the case of
the LLP.

In contrast to previous works ours is the first to con-
sider collections of bag distributions without any a
priori assumptions on how their feature-vectors or la-
bels are distributed, as would be prevalent in real-world
scenarios. In particular, frameworks in which bags are
generated conditioned on some class label proportions
γ (e.g. in Scott and Zhang (2020)) can be modeled
by appropriately grouping the bags into k collections –
with uniform distribution on each – giving k bag dis-
tributions. Any induced dependencies between these
bag distributions (due to conditioning on γ) can also
be handled as described in Section 5.4.

Further, our methods are not tied to any particular
classifier, which makes our techniques more broadly
applicable. Our method can be implemented as a mini-
batch training loop and can be made applicable to
real-world datasets (Sec. 5.2, 5.3) for which we provide
empirical evidence as well (Sec. 6.2, 6.3).

3 GENERALIZED BAGS

Bags can naturally be visualized as corresponding indi-
cator vectors in Rn where the instance set is indexed
by [n]. The idea behind generalized bags is to linearly
transform a collection of bag vectors into new ones
which satisfy certain uniformity conditions we define
later. We show that such transformations, if they exist,
can be used to solve the same LLP problem with tighter
bounds on instance level prediction errors.

We now define the formal notations used for the re-
mainder of the paper. Instances are N -dimensional

feature vectors with a label set [L]. Let (i) X be a
dataset (indexed by [n]) of feature-vectors {x(i) ∈
RN}ni=1, (ii) Y = {y(i) ∈ {0, 1}L}ni=1 be the one-
hot observed-label encodings, and (iii) Ŷ = {ŷ(i) ∈
RL+}ni=1 denote the model-predicted labels. A bag
B ⊆ [n] corresponds to a subset of feature-vectors
XB := ∪i∈Bx(i), with its observed and predicted label-
histograms yB :=

∑
i∈B y(i) and ŷB :=

∑
i∈B ŷ(i). A

generalized bag B̄ is a weighted sum of bags Bj repre-
sented as

∑
j≥1 wjBj , and analogously its observed and

predicted label-histograms are yB̄ =
∑
j≥1 wjyBj

and
ŷB̄ =

∑
j≥1 wjŷBj

. To aid our subsequent analysis it
will be useful to uniquely identify bags and generalized
bags with n-dimensional vectors. Given a bag B ⊆ [n],
let 1B ∈ {0, 1}n be its characteristic (indicator) vec-
tor. For a generalized bag B̄ =

∑
wjBj where Bj

are bags, its characteristic vector is ZB̄ :=
∑
wj1Bj

.
A bag distribution is a distribution over all possible
pairs of bags and their label histograms (B,yB). Simi-
larly, a generalized bag distribution is over all possible
generalized bags and their label histograms (B̄,yB̄)
defined over the space of instances. Analogous to the
above, bag distributions can be combined to form gen-
eralized bag distributions: given a collection of bag
distributions D1, . . . , Dk, and weights w1, . . . , wk, a
generalized bag distribution can be obtained by in-
dependently sampling (Bj ,yBj) ← Dj (j ∈ [k]) and

outputting (B̄,yB̄) =
(∑

j≥1 wjBj ,
∑
j≥1 wjyBj

)
.

We note that the results of this paper remain applicable
even if bags are taken to be multisets (see Sec. 5.4).
However, for ease of exposition we stick to bags being
sets.

4 LOSS BOUNDS

For an LLP dataset with observed and predicted la-
bels Y, Ŷ, the instance-wise squared Euclidean loss is
Lrse(X,Y, Ŷ) :=

∑n
i=1 ‖y(i) − ŷ(i)‖22. For a collection of

bags or generalized-bags B the generalized bag-level
loss is Lbse(X,Y, Ŷ,B) := (1/

√
|B|)

∑
B̄∈B ‖yB̄ − ŷB̄‖22.

(We scale by 1/
√
|B| for ease of notation).

The losses defined above can be conveniently rewritten
as follows. Let Y be a n× L matrix whose ith row is(
y(i)
)T

, and let Ŷ be similarly defined with
(
ŷ(i)
)T

as
the ith row. Then, Lrse(X,Y, Ŷ) = ‖Y − Ŷ‖2F where
‖.‖F is the matrix Frobenius norm. For a generalized-
bag collection B, define the matrix A := AB having
(ZB̄)

T (where ZB̄ is its characteristic vector defined in
Sec. 3) as its rows for each B̄ ∈ B and (for convenience)
normalized by 1/

√
|B|. Then,

Lbse(X,Y, Ŷ,B) = ‖AY −AŶ‖2F .

It is can be seen (ref. Lemma 4.1 below) that Lbse and

On Combining Bags to Better Learn from Label Proportions

Lrse are within a factor σ2 ∈ [σmin(A)2, σmax(A)2] of
each other. Here σmax(A) ≥ σmin(A) are the maximum
and minimum singular values of A. Formally:

σmin(A) := inf
x,‖x‖2=1

‖Ax‖2, σmax(A) = sup
x,‖x‖2=1

‖Ax‖2

The condition number of A, cond(A) is defined as the
ratio (if finite) σmax(A)/σmin(A). For A ∈ Rm×n and
U,V ∈ Rn×L, we have the following.

Lemma 4.1. σmin(A) ≤ ‖AU−AV‖F
‖U−V‖F ≤ σmax(A). In

particular, if ‖AU − AV‖F ≤ ε then ‖U − V‖F ≤
ε/σmin(A), and if ‖U−V‖F ≤ ε then ‖AU−AV‖F ≤
εσmax.

Proof. Letting U(l) and V(l) be the lth columns of U
and V respectively for l ∈ [L], we have

σmin(A)2 ≤min
l

‖A(U(l) −V(l))‖22
‖U(l) −V(l)‖22

≤ ‖AU−AV‖2F
‖U−V‖2F

≤ max
l

‖A(U(l) −V(l))‖22
‖U(l) −V(l)‖22

≤ σmax(A)2

Sampling Well-Conditioned Matrices. A distribution
over vectors Z ∈ Rn is isotropic if E

[
ZZT

]
= I. The

following result by Vershynin (2012b) shows that inde-
pendently sampling rows of A (and suitably normaliz-
ing) from an isotropic distribution of vectors Z leads
to σmax(A), σmin(A) ≈ 1 w.h.p when A is tall enough
depending on Z’s maximum norm.

Theorem 4.2. (Theorem 5.41 in Vershynin (2012b))
Let Ã be m×n matrix with rows independently sampled
from the isotropic distribution above satisfying ‖Z‖2 ≤√
d almost surely, for some number d. Then, there

is an absolute constant c such that A = (1/
√
m)Ã

satisfies,

1− t
√
d/m ≤ σmin(A) ≤ σmax(A) ≤ 1 + t

√
d/m,

with probability at least 1−2n·exp(−ct2), for any t ≥ 0.
In particular, choosing t =

√
(4 lnn+ ln 2)/c and m =

d(t/δ)2 for some δ > 0 we obtain that with probability
at least 1− n−3, σmin(A), σmax(A) ∈ [1− δ, 1 + δ].

If these bounds on singular values hold for A := AB,
then Lemma 4.1 implies that optimizing the generalized
bag-level loss optimizes the instance-level loss and vice-
versa, no matter what the actual instance labels are.

5 SAMPLING GENERALIZED
BAGS

Given multiple bag-distributions D1, . . . , Dk, we pro-
vide a method to efficiently sample a weight vector

w = (w1, . . . , wk) from a distribution (if it exists)
ensuring that the generalized bag

∑
i wiBi (where

B1, . . . , Bk are independent samples from D1, . . . , Dk

respectively) induces an isotropic distribution Z on
its characteristic vector (ref. Sec. 4). The algorithm
formulates the isotropic condition as linear equations
over the second moments of the desired distribution
with coefficients from the second-moment matrices of
D1, . . . , Dk. Solving the resultant semi-definite pro-
gram (SDP) and sampling using the obtained second-
moment matrix yields w. We minimize the trace of the
solution matrix which helps (as shown in Sec. 5.1) in
bounding the maximum norm of Z, thus limiting the
number of generalized-bags samples B for guaranteeing
(w.h.p) σmin(A), σmax(A) ∈ [1− δ, 1 + δ] for A := AB.

In the rest of this section (Bi ⊆ [n]) ← Di (1 ≤ i ≤
k) shall be independently sampled bags and define
Q(i) := E

[
1Bi

1T
Bi

]
. For a fixed w = (w1, . . . , wk),

define the random generalized bag B̄ :=
∑k
i=1 wiBi

with characteristic vector Z :=
∑k
i=1 wi1Bi ∈ Rn and

M(w) := E
[
ZZT | w

]
. The following shows how M(w)

is determined by quadratic forms over w with coeffi-
cients from entries of Q(i).

Lemma 5.1. For any two u, v ∈ [n], M(w)
u,v =

k∑
i=1

w2
iQ

(i)
u,v +

∑
1≤i,j≤k
i 6=j

wiwjQ
(i)
u,uQ

(j)
v,v.

Proof. Note that for any u, v ∈ [n], the (u, v)th coordi-
nate of E

[
1Bi

1T
Bi

]
is Q(i)

u,v. The same for E
[
1Bi

1T
Bj

]
(i 6= j) equals Pr [u ∈ Bi] Pr [v ∈ Bj] (since Bi, Bj are
independently sampled) which is Q

(i)
u,uQ

(j)
v,v by defini-

tion of Q(i),Q(j). This along with the expansion of
M(w) as

E

(k∑
i=1

wi1Bi

)(
k∑
i=1

wi1Bi

)T


= E

 k∑
i=1

w2
i 1Bi

1T
Bi

+
∑

1≤i,j≤k
i 6=j

wiwj1Bi
1T
Bj


=

k∑
i=1

w2
i E
[
1Bi

1T
Bi

]
+

∑
1≤i,j≤k
i 6=j

wiwj E
[
1Bi

1T
Bj

]
(1)

and matching the (u, v)th coordinates on the both sides
completes the proof.

If w is sampled from some Gw independently of Bi

Rishi Saket, Aravindan Raghuveer, Balaraman Ravindran

(i ∈ [k]), then letting M := EGw

[
M(w)

]

Mu,v =

k∑
i=1

E[w2
i]Q

(i)
u,v +

∑
1≤i,j≤k
i 6=j

E[wiwj]Q
(i)
u,uQ

(j)
v,v

=

k∑
i=1

Wi,iQ
(i)
u,v +

∑
1≤i,j≤k
i 6=j

Wi,jQ
(i)
u,uQ

(j)
v,v (2)

where W is the psd (positive semi-definite) matrix
EGw

[wwT]. Thus, if there exists Gw such that Z is
isotropic i.e., M = I then there is a psd W ∈ Rk×k
s.t. the constraint (4) in Fig. 2 is satisfied. Since the
constraints and the trace objective in Fig. 2 are linear
in the entries of psd W it is indeed an SDP which can
be solved in polynomial time using interior point or
ellipsoid methods. If SDP-I in Fig. 2 feasible, then
using the psd decomposition W =

∑k
r=1 a

(r)
(
a(r)

)T
and sampling

√
ka(r) (r ∈ [k]) uniformly as w gives us

the desired distribution. To minimize the norm of Z
we add the objective in SDP-I minimizing the trace
of W which – as we show below – yields approximate
bound on the norm of Z. Note that instead of sam-
pling using the psd decomposition one can also take
w to be mean-zero Gaussian vector sampled using the
covariance matrix W, a more convenient procedure in
practice. Algorithm 1 returns the desired distribution
(decomposition or Gaussian based), while Algorithm
2 uses the output of the former along with the bag
distributions to sample generalized bags. Both these
algorithms appear in Fig. 1.

5.1 Bounding the sample size |B|

We bound the norm of Z corresponding to a gener-
alized bag

∑k
i=1 wiBi using weights given by the de-

composition method in Alg. 1. First, observe that if
W =

∑k
r=1 a

(r)
(
a(r)

)T
then tr(W) =

∑k
r=1 ‖a(r)‖22.

Letting bij = 1{j∈Bi} (j ∈ [n]), the jth coordinate of Z

is
∑k
i=1 wibij which is at most

((∑k
i=1 bij

)∑k
i=1 w

2
i

) 1
2

using Cauchy-Schwartz and the fact that bij ∈ {0, 1}.
Thus, ‖Z‖2 ≤ ‖w‖2

√∑
i,j bij ≤ ‖w‖2

√
nk. Since

‖w‖2 ≤ maxr
√
k‖a(r)‖2 ≤

√
k · tr(W), we obtain

‖Z‖2 ≤ k
√
n · tr(W).

Applying Theorem 4.2, we can take the number of gener-
alized bags m to be sampled as O

(
(opt · k2n log n)/δ2

)
to obtain that with probability at least 1 − n−3,
σmin(A), σmax(A) ∈ [1 − δ, 1 + δ], where opt is the
value of the SDP solved in Alg. 1.

Algorithm 1 Find-wt-dist

Input:
{
Q(i) | i ∈ [k]

}
, option ∈ {decomp, gauss}

if SDP-I in Fig. 2 is infeasible then Return nil end if
Let W be an optimizer for SDP-I.

if option = decomp, Decompose W =
∑k

r=1 a
(r)
(
a(r)

)T
.

Return Gw uniform on
{√

ka(r) | 1 ≤ r ≤ n
}
. end if

if option = gauss then Return Gw as N(0,W) end if

Algorithm 2 Sample-gen-bag

Input: Ind. distns. Gw over Rk, bag distns. D1, . . . , Dk.

Independently sample (bag, histogram) pairs (Bi, σi)←
Di (1 ≤ i ≤ k).
Independently sample w = (w1, . . . , wk)← Gw.
Return (gen. bag, histogram) pair (B, σ) =(∑k

i=1 wiBi,
∑k

i=1 wiσi

)
.

Figure 1: Procedures For Sampling Generalized Bags.

min tr(W) s.t. W � 0, and ∀u, v ∈ [n], (3)
k∑
i=1

Wi,iQ
(i)
u,v+

∑
1≤i,j≤k
i 6=j

Wi,jQ
(i)
u,uQ

(j)
v,v

= 1{u=v}. (4)

Figure 2: Semi-definite Program SDP-I

5.2 Training Setup

Let M be the instance-level model sought to be trained
using the (training) bag distributions D1, . . . , Dk. The
training setup consists of the number of (mini-)batch
training steps Ntrain, mini-batch size Qtrain, and op-
timizer Ftrain. We apply Algorithms 1, 2 to sample
generalized bags. At each of the Ntrain training steps
the training algorithm:

1. constructs a (mini-)batch B̄ of Rtrain indepen-
dently sampled (generalized-bag, histogram) pairs
{(Br,yBr

)}Rr=1,
2. using labels predicted by M computes the predicted

label histograms ŷBr
(1 ≤ r ≤ R),

3. computes the mini-batch loss: Lbse(B̄) =(
1/
√
R
)∑R

r=1 ‖yBr − ŷBr‖2,
4. updates the model M← F

(
M, Lbse(B̄)

)
.

The average size of a generalized bag (in terms its un-
derlying instances) is at most

∑k
j=1 µj = kµ where µj

On Combining Bags to Better Learn from Label Proportions

is the average bag size from Dj , and µ = (
∑
j µj)/k.

In particular, the average size of a mini-batch of gen-
eralized bags is within a factor of k of the same for
bags. In practice (see Sec. 6.2), most of the bags
are much smaller than the total number of instances,
and those which are larger than a threshold can be
omitted from the training without much impact on
performance, thereby bounding the computational cost
of the training loop.

5.3 Real-world bag distributions

We have provided in this section an exposition, along
with provable performance bounds, of our generalized
bags based method for LLP. In real world scenarios
the bag distributions depend on the actual application
- for example each seller could be a source of bags in
the Product Aggregator (PA) scenario.

The only idealized assumption of our method is that
SDP-I (Figure 2) can be feasibly solved. However,
it may be infeasible/difficult to solve over the set of
instances in real-world data. Nevertheless, the com-
plexity of the problem can be reduced by heuristically
choosing a representative sample of instances (e.g. by
identifying clusters of instances together) and satisfy-
ing the constraints to a sufficient approximation. The
second-moment matrices Q(i) can be computed by sam-
pling around O(n log n) bags (where n is the number
of reduced instances), which provides good estimates
for well-behaved distributions (Vershynin (2012a)).

In case SDP-I remains infeasible, we can approximately
satisfy the constraints by adding a variable yuv ≥ 0
(one for each tuple (u, v) ∈ [n]× [n]) satisfying,

∣∣∣∣∣
k∑
i=1

Wi,iQ
(i)
u,v +

∑
1≤i,j≤k
i 6=j

Wi,jQ
(i)
u,uQ

(j)
v,v

−1{u=v}

∣∣∣∣∣ ≤ yuv (5)

and minimizing tr(W) + λ
∑
u yuu + λ′

∑
u,v |u 6=v yuv

for appropriate λ, λ′ ≥ 0.

We empirically show in Sections 6.2 and 6.3 that even
basic implementations of the above approximations –
in particular, using the values of a single categorical
feature as a proxy for instances to solve SDP-I – applied
to real-world datasets provides better performance than
previous baselines. An in-depth investigation of the
above mentioned clustering and SDP approximation
techniques is beyond the scope of this work.

5.4 Multiset bags and correlated bag
distributions

Our techniques presented in this section can be ex-
tended to the case of bags being multisets. In this
case, the characteristic vector 1B of a bag B has non-
negative integer entries (rather than only {0, 1}). Thus,
the diagonal of Q(i) is no longer µ(i) := E [1Bi

] where
Q(i) is E

[
1Bi

1T
Bi

]
as before, for the ith bag distribu-

tion (i ∈ [k]). Therefore, the (u, v)th coordinate of
E
[
1Bi1

T
Bj

]
(i 6= j) is µ(i)

u µ
(j)
v , and one can appropri-

ately modify (2) and (4).

The techniques can also be applied when the bags Bi
(i = 1, . . . , k) are sampled from a joint distribution over
k-tuples of bags. In this case, the explicit computations
of E

[
1Bi

1T
Bj

]
can be used in (2) and (4).

6 EXPERIMENTS

6.1 Pseudo-synthetic datasets

In Section 1, we motivated through examples three
dimensions of variations in bag distributions. i) Intra-
Bag Instance correlation ii) Instance Membership Long
Tail iii) Bag Size Long tail. In order to examine the
performance of our and other algorithms in these bag
distribution variations, we synthetically generate bags
from the following publicly available datasets from the
UCI repository (Dua and Graff (2017)) (also used by
Patrini et al. (2014)): Ionosphere Data Set ion and
Statlog Australian Credit Data Set (sta).

Dataset Creation. Table 1 lists the characteristics
of the different simulated bag distribution scenarios I
- VII. It is notable that our scenarios are much more
detailed than studied in the previous works. We now
describe the generative process for these scenarios. The
set of training instances are first partitioned into C clus-
ters (varying with the setup) using k-Means applied
to the feature vectors. For each of the bag distribution
characterstic in Section 1, we control generation as
follows:
Intra-Bag Instance Correlation: By selecting multiple
instances from the same cluster to form bags, with dif-
ferent bag distributions per cluster. (Seen in scenarios
II-VII)
Instance Membership Long Tail: By sampling different
proportions of bags from different clusters. (Seen in
scenarios III - V)
Bag Size: Controlled by having different fixed Bernoulli
sampled bags, and by varying the parameter of the
Bernoulli distribution sampled from one or more power-
law distributions. Scenarios II, III and V-VII use dif-
ferent fixed Bernoullis, and scenario IV uses power law
to sample the Bernoulli parameter.

Rishi Saket, Aravindan Raghuveer, Balaraman Ravindran

Scn. Description #Clust.
C

Distribution per Cluster # dist. # Bags/Clust.

I Small bags size. 1 Ber(0.1), 2 iid copies 2
125 per clust.

Total 250

II Large & small bags
intra-bag corr. 3 Ber(0.1) , Ber(0.9) 6

80 per clust.
Total 240

III Large & small bags, intra-bag
corr., unbal. inst. membership 3 Ber(0.1) , Ber(0.9) 6

30, 90, 150
Total 270

IV Powerlaw bags, intra-bag
corr., unbal. inst. membership 3

Ber(p) , p ∼ plaw(1.66)
2 iid copies 6

30, 90, 150
Total 270

V Bags Straddle Clusts.
Feasible SDP, intra-bag corr. 3

(Ber(0.2), Ber(0.2), Ber(0.2))
from (C1, C2, C3): Straddle Bags Distn.,

{Ber(0.2) from Ci}3i=1

4
60 per distn.

Total 240

VI Bags Straddle Clusts.
Infeasible SDP, intra-bag corr. 3

(Ber(0.4), Ber(0.8), Ber(0.8))
from (C1, C2, C3): Straddle Bags Distn.,

{Ber(0.2) from Ci}3i=1

4
60 per distn.

Total 240

VII Two Bag distns straddle Clusts.
Feasible SDP, intra-bag corr. 3

(Ber(0.2), Ber(0.2)) from (C1, C2),
(Ber(0.6), Ber(0.6)) from (C2, C3) : Straddle

Bags Distns., {Ber(0.2) from Ci}3i=1

4
60 per distn.

Total 240

Table 1: Bag Distributions Scenarios.

Table 2: AUC for Ionosphere (%). Instance level oracle (Logistic Reg.) has AUC of 91.87± 3.05.

MM LMM
(v(G,s))

AMM
(MM)

AMM
(LMM)

(v(G,s)))
LMMCM LIN

(KL-div, U)

LIN
(`22, S)

Our Method

I 84.41± 6.2 84.41± 5.4 89.91± 3.7 89.95± 4.1 94.3± 3.1 88.08± 3.8 87.48± 5.0
II 77.84± 6.8 80.74± 6.6 80.66± 11.4 80.75± 11.2 84.83± 6.7 79.83± 5.4 85.42± 5.4
III 75.07± 7.8 80.04± 7.9 77.14± 9.2 78.28± 12.6 74.13± 14.3 80.42± 4.9 87.62± 4.5
IV 75.93± 7.0 79.7± 7.6 74.82± 11.6 75.34± 11.8 70.7± 18.5 79.2± 5.8 81.46± 9.1
V 77.51± 7.3 84.95± 6.8 75.96± 14.8 76.07± 13.3 84.77± 7.2 83.23± 4.6 86.31± 5.8
VI 78.3± 7.6 84.81± 6.9 84.72± 6.6 84.66± 7.5 80.15± 6.7 84.03± 4.4 87.79± 4.8
VII 79.37± 7.6 82.25± 6.9 79.17± 9.8 79.44± 11.8 81.75± 6.7 86.05± 3.7 87.12± 3.8

Scenario I is a vanilla case of small bags. In I-IV, for
each cluster we have two independent bag distributions
given by Bernoulli sampling instances independently
into bags. In II and III these correspond to contrasting
bag sizes, while in IV each bag distribution is a mixture
of such Bernoulli samplings with (for each bag) the
probability first drawn from the same powerlaw distri-
bution. In V-VI we have one bag distribution which
samples from across the three clusters, while in VII we
have two bag distributions straddling two clusters each.
Scenario VI has straddle bags with different cluster
biases, does not admit a feasible SDP-I (Fig. 2), and
we use an approximate solution to sample the weights.

Experiment Setup. We compare against the follow-
ing algorithms from previous works: (i) the following
mean-map (MM) based methods: the original MM of
Quadrianto et al. (2009); LMM (vG,s), AMM(MM)
and AMM (LMM (vGS)) (min versions) of Patrini et al.
(2014); (iii) the LMMCMmethod from Scott and Zhang
(2020), and the (iv) KL-divergence loss baseline from
Ardehaly and Culotta (2017). The implementations
of (i) and (ii) are adapted from the code made avail-
able by Patrini et al. (2014), and of (iii) from the code
made available by Scott and Zhang (2020). Our gen-
eralized bag based model training given in Sec. 5.2,
implemented in TensorFlow 2 and instantiated with a
linear classifier (with sigmoid activation), is denoted
by LIN(`22, S) and is trained as per Sec. 5.2 while the

loss formulation of Ardehaly and Culotta (2017) for
uniformly sampled bags, LIN(KL-div, U), was simi-
larly implemented for training the same linear model.
Since our focus is to validate our generalized bag based
training, among the recent state of the art methods,
we choose to compare against training and loss frame-
works such as Scott and Zhang (2020); Ardehaly and
Culotta (2017) rather than model (DNN, GAN etc)
specific methods.

We also compare the following variations in our method
within the minibatch training : (i) using original bags
sampled from uniformly at random (u.a.r.) chosen bag
distribution instead generalized bags LIN(`22, U), (ii)
using iid N(0, 1) weights w1, . . . , wk to construct the
generalized bags, LIN(`22, R).

For each experiment we recorded the AUCs for the
above scenarios. The experiments were done using 5-
times 5-fold cross validation of each dataset. For each
of the 5-folds, and the 5-test/train splits per fold, and
each scenario I-VII, the bag distributions are created
only from the instance-level training set. The train
set consists of separate sets of bags sampled from the
different bag distributions (as shown in Table 1) pro-
vided along with each bag’s label proportions. The test
set however is still at the instance level. A random
bag from a bag distribution is generated by sampling
uniformly from the corresponding training subset of

On Combining Bags to Better Learn from Label Proportions

Table 3: AUC for Australian (%). Instance level oracle (Logistic Reg.) has AUC of 93.47± 2.4.

MM LMM
(v(G,s))

AMM
(MM)

AMM
(LMM)

(v(G,s)))
LMMCM LIN

(KL-div, U)

LIN
(`22, S)

Our Method

I 89.78± 3.0 89.92± 3.0 92.26± 2.3 92.29± 2.3 92.1± 2.8 90.81± 2.3 92.31± 2.4
II 83.38± 2.9 86.83± 3.0 86.3± 4.7 86.39± 4.7 90.82± 2.8 87.62± 2.5 90.15± 2.8
III 85.72± 2.4 86.85± 2.8 85.74± 3.5 85.81± 3.7 90.0± 3.0 87.13± 2.6 90.88± 2.6
IV 85.78± 2.3 86.7± 3.0 85.14± 3.6 85.26± 4.1 89.63± 3.6 86.49± 2.4 85.12± 3.2
V 83.75± 2.2 88.35± 2.6 87.79± 3.6 87.85± 3.6 90.44± 2.6 88.08± 2.3 90.34± 2.7
VI 84.41± 2.8 87.63± 2.9 88.28± 3.3 88.47± 3.8 90.21± 2.6 87.12± 4.5 91.43± 2.5
VII 84.72± 2.5 87.38± 3.0 87.95± 3.6 87.91± 3.5 90.21± 2.9 89.07± 2.9 91.53± 2.7

bags. The algorithms in previous works do not consider
multiple bag distributions and are provided the entirety
of the training set of bags as a whole.

Algorithms MM of Quadrianto et al. (2009), LMM
(vG,s), AMM(MM) and AMM (LMM (vGS)) (min ver-
sions) of Patrini et al. (2014), and LMMCM of Scott
and Zhang (2020) are executed for all of their parameter
ranges as described in the respective works, except for
the λ = 10−5 setting in LMMCM which was observed
to cause instability and timeouts. The performance of
the best parameter setting for each scenario was taken
for each of the algorithms. The classifier in our method
was optimized using SGD with training rate 10−4 over
Ntrain = 1000 steps of Qtrain = 32 sized mini-batch
training with each sample in a mini-batch being a gen-
eralized bag (or bag for the single bag baselines). We
point out that we only perform hyper-parameter sweep
for previous works; not for our training loop.

Appendix A provides additional details of these experi-
ments.

Table 4: SDP [S] vs iid N(0, 1) [R] wts vs Single Bags [U]
for LIN(`22,_)

dataset # S R U

Ionosphere I 87.48± 5.0 88.67± 4.2 89.11± 4.1
II 85.42± 5.4 77.17± 5.6 77.86± 5.9
III 87.62± 4.5 78.42± 4.5 78.64± 5.4
IV 81.46± 9.1 76.06± 6.6 77.31± 6.6
V 86.31± 5.8 78.64± 6.3 82.13± 4.9
VI 87.79± 4.8 81.9± 5.7 83.27± 5.0
VII 87.12± 3.8 83.39± 4.9 85.79± 3.9

Australian I 92.31± 2.4 92.18± 2.4 92.24± 2.4
II 90.15± 2.8 86.67± 2.7 87.03± 2.5
III 90.88± 2.6 86.41± 2.7 86.46± 2.7
IV 85.12± 3.2 84.67± 2.5 85.68± 2.5
V 90.34± 2.7 87.43± 2.6 87.76± 2.4
VI 91.43± 2.5 84.92± 7.7 86.48± 5.3
VII 91.53± 2.7 88.47± 3.2 89.0± 3.0

Classifier Performance. Tables 2 and 3 show the
performance of our method compared to previous tech-
niques and a instance level Logistic regression model on
two datasets. On the Ionosphere dataset (Table 2) our
method LIN(`22, S) performs better than the previous
methods in all except the scenario I where LMMCM
performs the best. In the more complicated bag distri-
bution scenarios LIN(`22, S) outperforms LMMCM by

up to five percentage points e.g. in scenarios III, IV, VI
and VII. Among the mean-map based methods LMM
has the best performance, though lower than LIN(`22,
S) in all scenarios.

On the Australian dataset, all algorithms perform rel-
atively better. Our method LIN(`22, S) and LMMCM
perform nearly the same (and the best overall) in all
the scenarios except IV in which LMMCM is better.

We notice that all algorithms have higher standard de-
viations on the Ionosphere dataset than the Australian
one (also observed in Patrini et al. (2014)). A notable
pattern is that our method’s performance across all
scenarios in the Ionosphere dataset is relatively stable
to distribution shifts. In contrast, performance of other
methods varies significantly based on the scenario and
bag distributions used.

Table 4 provides the comparison of (i) our method,
(ii) taking random normal weights, and (iii) using only
the original bags. We see that using SDP computed
weights do provide significant benefit vs the random
weights. Similarly using generalized bags over original
bags also provides significant gains.

6.2 Real World Dataset: Criteo CTR

We provide an evaluation of our method on the Criteo
Kaggle Display Advertising Challenge Dataset (Criteo
(2014)) for click-through-rate (CTR) prediction. This
consists of around 45 million rows, each an ad served
with click/no-click label. It has 13 numeric features (N1
to N13), and 26 categorical features (C1 to C26) whose
values are hashed. Typically, bag distributions would
emerge from aggregation over some categorical features
(e.g. product vertical, location, advertiser). Accord-
ingly, we construct 5 bag distributions by aggregating
over C14 and C7. Further, as a simple approxima-
tion method, we use the values of C15 as a proxy for
the instances in the corresponding SDP-I. Adhering to
practical privacy constraints, bags smaller than size
50 are discarded. Additionally, bags larger than 2500
are discarded for faster convergence. Details of these
preprocessing and approximation steps are deferred to
Appendix B.

Rishi Saket, Aravindan Raghuveer, Balaraman Ravindran

We use a 5-fold train-test split with the bag distribu-
tions generated on each training set. The implementa-
tions of the previous methods (except for (KL-div, U)
evaluated on UCI datasets (Tables 2, 3) do not scale
to the Criteo dataset size and are omitted. We train a
similar (as in Sec. 6.1) linear classifier (with sigmoid
activation) using (i) single bags `22-loss baseline (`22, U),
(ii) single bag KL-divergence loss baseline (KL-div, U),
(iii) our generalized bags with SDP computed weights
(`22, S), and (iv) our method with `1-loss (`1, S). A
mini-batch has 8 samples of 5-bag tuples, each with
one bag from the 5 bag distributions. The AUC scores
on the test set in the last 10 training epochs (out of a
total of 20) are considered. The results are included in
Table 5. Our method performs the best overall with a
statistically significant AUC gap over the baselines.

Table 5: AUC for Criteo (%). Instance level Linear
classifier (log. reg) AUC of 76.25± 0.02.

LIN
(`22, U)

LIN
(KL-div, U)

LIN
(`22, S)

Our Method

LIN
(`1, S)

72.22± 0.20 71.63± 0.20 72.65± 0.17 72.52± 0.14

6.3 Real World Dataset: MovieLens 20M

Along similar lines as the Criteo CTR experiments,
we also provide an evaluation on the MovieLens-20m
(Harper and Konstan (2016); Movielens-20M) dataset
for movie good/bad rating prediction. Firstly, the
movie ratings are reduced to binary {0, 1} using a nat-
ural partition of the rating scale. The dataset consists
of around 19.8 million timestamped ratings of 10370
movies, with movies rated multiple times by different
users. Each of these movies further has an associated
vector of of 1128 genome tag scores with each score
measuring the relevance of that tag to the movie’s re-
views. It is reasonable to assume that this genome tag
scores vector captures the quality of the movie, and
correlates with the ratings it receives, albeit from differ-
ent users. Of course, movies may receive a mixture of
good and bad ratings making this a noisy classification
dataset, with an instance consisting of a timestamped
rating with the feature vector of the genome tag scores
for the movie.

We created natural bags as follows: For a given date,
the instances timestamped with that date are grouped
into 5 bags based on timestamp mod 5. These bags are
then partitioned into 12 bag distributions, one for each
month of the year. In a manner similar to the previous
subsection, we use the movie genres strings to create
proxy instances to formulate SDP-I for computing the
weight distribution. Bags smaller than size 50 are dis-
carded and larger than 2500 are discarded. Additional

details are deferred to Appendix C.

Using a 5-fold train-test split with the bag distribu-
tions generated on each training set, we train a 2-layer
perceptron (2LP) classifier – with a dense 64-node hid-
den layer with relu activations and sigmoid activated
output – using the same methods as in Sec. 6.2. A
mini-batch has 4 samples of 12-bag tuples, each with
one bag from the 12 bag distributions. The AUC scores
on the test set in the last 10 training epochs (out of
a total of 20) are considered. The results included
in Table 6 show that our method performs the best
overall with a statistically significant AUC gap over the
baselines. The scores are low for all the methods due
to this being a noisy classification dataset, the instance
level AUC itself being 71.79%.

Table 6: AUC for MovieLens20m (%). Instance level
2-layer perceptron (log. reg) AUC of 71.79± 0.03.

2LP
(`22, U)

2LP
(KL-div, U)

2LP
(`22, S)

Our Method

2LP
(`1, S)

62.62± 0.35 63.53± 0.25 64.35± 0.47 64.03± 1.03

Experimental Code. The code used for the
empirical studies included in this paper is avail-
able at https://github.com/google-research/
google-research/tree/master/On_Combining_Bags_
to_Better_Learn_from_Label_Proportions.

7 CONCLUSION

We approach the LLP problem from a less studied
direction - distribution of bags. Since bags are pre-
determined, they may not be amenable to an optimal
LLP solution. We propose a method to linearly combine
bags from different distributions to form Generalized
Bags that satisfy certain isotropicity conditions. We
prove bounds on the instance level accuracy of an LLP
model trained on such generalized bags, independent
of how the labels are distributed. Our experiments
also demonstrate the applicability and robustness of
our methods to various bag distribution scenarios on
pseudo-synthetic and real-world datasets. We showed
empirically that even a simple approximation method-
ology of the SDP computation provides a statistically
significant gain over baselines on large datasets. A
future direction of research is to design more sophis-
ticated and robust approximation methods that can
help further improve the performance of the classifier.

References

UCI Ionosphere. https://archive.ics.uci.edu/ml/
datasets/ionosphere.

https://github.com/google-research/google-research/tree/master/On_Combining_Bags_to_Better_Learn_from_Label_Proportions
https://github.com/google-research/google-research/tree/master/On_Combining_Bags_to_Better_Learn_from_Label_Proportions
https://github.com/google-research/google-research/tree/master/On_Combining_Bags_to_Better_Learn_from_Label_Proportions
https://archive.ics.uci.edu/ml/datasets/ionosphere
https://archive.ics.uci.edu/ml/datasets/ionosphere

On Combining Bags to Better Learn from Label Proportions

Statlog (Australian Credit Approval) data set.
https://archive.ics.uci.edu/ml/datasets/
statlog+(australian+credit+approval).

Ehsan Mohammady Ardehaly and Aron Culotta. Co-
training for demographic classification using deep
learning from label proportions. In ICDM, pages
1017–1024, 2017.

Gerda Bortsova, Florian Dubost, Silas N. Ørting, Ioan-
nis Katramados, Laurens Hogeweg, Laura H. Thom-
sen, Mathilde M. W. Wille, and Marleen de Bruijne.
Deep learning from label proportions for emphysema
quantification. In Medical Image Computing and
Computer Assisted Intervention - MICCAI, volume
11071 of Lecture Notes in Computer Science, pages
768–776. Springer, 2018.

Lei Chen, Zheng Huang, and Raghu Ramakrishnan.
Cost-based labeling of groups of mass spectra. In
Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, pages 167–178,
2004.

Shuo Chen, Bin Liu, Mingjie Qian, and Changshui
Zhang. Kernel k-means based framework for aggre-
gate outputs classification. In Yücel Saygin, Jef-
frey Xu Yu, Hillol Kargupta, Wei Wang, Sanjay
Ranka, Philip S. Yu, and Xindong Wu, editors,
ICDM, pages 356–361, 2009.

Criteo. Kaggle display advertising challenge dataset,
2014. URL http://labs.criteo.com/2014/02/
kaggle-display-advertising-challenge-dataset/.

Nando de Freitas and Hendrik Kück. Learning about
individuals from group statistics. In UAI, pages
332–339, 2005.

Lucio Mwinmaarong Dery, Benjamin Nachman,
Francesco Rubbo, and Ariel Schwartzman. Weakly
supervised classification in high energy physics. Jour-
nal of High Energy Physics, 2017(5):1–11, 2017.

Thomas G. Dietterich, Richard H. Lathrop, and Tomás
Lozano-Pérez. Solving the multiple instance problem
with axis-parallel rectangles. Artif. Intell., 89(1–2):
31–71, January 1997. ISSN 0004-3702. doi: 10.1016/
S0004-3702(96)00034-3. URL https://doi.org/10.
1016/S0004-3702(96)00034-3.

Dheeru Dua and Casey Graff. UCI machine learning
repository, 2017. URL http://archive.ics.uci.edu/
ml.

Gabriel Dulac-Arnold, Neil Zeghidour, Marco Cu-
turi, Lucas Beyer, and Jean-Philippe Vert. Deep
multi-class learning from label proportions. CoRR,
abs/1905.12909, 2019. URL http://arxiv.org/abs/
1905.12909.

F. Maxwell Harper and Joseph A. Konstan. The movie-
lens datasets: History and context. ACM Trans.

Interact. Intell. Syst., 5(4):19:1–19:19, 2016. doi:
10.1145/2827872. URL https://doi.org/10.1145/
2827872.

Jerónimo Hernández-González, Iñaki Inza, and José An-
tonio Lozano. Learning bayesian network classifiers
from label proportions. Pattern Recognit., 46(12):
3425–3440, 2013.

Dimitrios Kotzias, Misha Denil, Nando de Freitas, and
Padhraic Smyth. From group to individual labels
using deep features. In SIGKDD, pages 597–606,
2015.

Jiabin Liu, Bo Wang, Zhiquan Qi, Yingjie Tian, and
Yong Shi. Learning from label proportions with
generative adversarial networks. In Hanna M. Wal-
lach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett,
editors, NeurIPS, pages 7167–7177, 2019.

Movielens-20M. Movielens 20m dataset. URL https:
//grouplens.org/datasets/movielens/20m/.

David R. Musicant, Janara M. Christensen, and
Jamie F. Olson. Supervised learning by training on
aggregate outputs. In ICDM, pages 252–261. IEEE
Computer Society, 2007.

Giorgio Patrini, Richard Nock, Tibério S. Caetano, and
Paul Rivera. (almost) no label no cry. In Zoubin
Ghahramani, Max Welling, Corinna Cortes, Neil D.
Lawrence, and Kilian Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems,
pages 190–198, 2014.

Novi Quadrianto, Alexander J. Smola, Tibério S. Cae-
tano, and Quoc V. Le. Estimating labels from label
proportions. J. Mach. Learn. Res., 10:2349–2374,
2009.

Stefan Rueping. Svm classifier estimation from group
probabilities. In ICML, 2010.

Stefan Rüping. SVM classifier estimation from group
probabilities. In Johannes Fürnkranz and Thorsten
Joachims, editors, ICML, pages 911–918, 2010.

Clayton Scott and Jianxin Zhang. Learning from label
proportions: A mutual contamination framework. In
NeurIPS, 2020.

Yong Shi, Jiabin Liu, Bo Wang, Zhiquan Qi, and
Yingjie Tian. Deep learning from label proportions
with labeled samples. Neural Networks, 128:73–81,
2020.

Marco Stolpe and Katharina Morik. Learning from
label proportions by optimizing cluster model selec-
tion. In Dimitrios Gunopulos, Thomas Hofmann,
Donato Malerba, and Michalis Vazirgiannis, editors,
ECML PKDD Proceedings, Part III, volume 6913,
pages 349–364. Springer, 2011.

https://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval)
https://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval)
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
https://doi.org/10.1016/S0004-3702(96)00034-3
https://doi.org/10.1016/S0004-3702(96)00034-3
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1905.12909
http://arxiv.org/abs/1905.12909
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://grouplens.org/datasets/movielens/20m/
https://grouplens.org/datasets/movielens/20m/

Rishi Saket, Aravindan Raghuveer, Balaraman Ravindran

R. Vershynin. How close is the sample covariance
matrix to the actual covariance matrix? J. Theor.
Probab., 25:655—-686, 2012a.

Roman Vershynin. Introduction to the non-asymptotic
analysis of random matrices. In Compressed Sensing,
pages 210–268. Cambridge University Press, 2012b.
URL https://arxiv.org/pdf/1011.3027.pdf.

Janusz Wojtusiak, Katherine Irvin, Aybike Birerdinc,
and Ancha V Baranova. Using published medical
results and non-homogenous data in rule learning.
In 2011 10th International Conference on Machine
Learning and Applications and Workshops, volume 2,
pages 84–89. IEEE, 2011.

Felix X. Yu, Dong Liu, Sanjiv Kumar, Tony Jebara,
and Shih-Fu Chang. ∝SVM for learning with label
proportions. In ICML, volume 28 of JMLR Workshop
and Conference Proceedings, pages 504–512, 2013.

Felix X. Yu, Sanjiv Kumar, Tony Jebara, and Shih-Fu
Chang. On learning with label proportions. CoRR,
abs/1402.5902, 2014. URL http://arxiv.org/abs/
1402.5902.

https://arxiv.org/pdf/1011.3027.pdf
http://arxiv.org/abs/1402.5902
http://arxiv.org/abs/1402.5902

Supplementary Material:
On Combining Bags to Better Learn from Label Proportions

A ADDITIONAL DETAILS FOR
PSEUDO-SYNTHETIC DATASET
EXPERIMENTS

A.1 Hyperparameter Tuning for
Comparative Methods

As mentioned in Section 6.1, we compare against the fol-
lowing mean-map based methods: MM of Quadrianto
et al. (2009), LMM (vG,s), AMM(MM) and AMM
(LMM (vGS)) (min versions) of Patrini et al. (2014).
The implementation of all these (and for the Logistic
Regression oracle baseline) is adapted from the the
code1 made publicly available by Patrini et al. (2014).
We execute all these baselines for all the hyperparam-
eter settings used in Patrini et al. (2014). In particu-
lar, (i) for logistic regression: λ ∈ {0, 1, 10, 100}, (ii)
for MM: λ ∈ {0, 1, 10, 100}, (iii) for LMM (vG,s):λ ∈
{0, 1, 10, 100}, γ ∈ {0.01, 0.1, 1}, σ ∈ {0.25, 0.5, 1}, (iv)
for AMM(MM): λ ∈ {0, 1, 10, 100}, and (v) for AMM
(LMM (vGS)): λ ∈ {0, 1, 10, 100}, γ ∈ {0.01, 0.1, 1}.

The implementation of the LMMCM method was
taken from the code2 released by Scott and Zhang
(2020). The method was executed on λ ∈
{1, 10−1, 10−2, 10−3, 10−4}. The parameter setting
10−5 resulted in instability and time-outs on the bag
distribution scenarios in our experiments. We note
that the LMMCM method requires that the number
of bags be even which the experiments of Scott and
Zhang (2020) ensured. In our experiments that may
not be true, in which case one randomly chosen bag is
dropped.

As mentioned in Section 6.1, for each method above,
for each dataset and scenario the score taken was that
corresponding to parameter setting with the highest
average AUC across the 5 times 5 fold-split runs.

A.2 SDP Solutions Used

Here we describe solutions to the SDP in Find-wt-
dist (Alg. 1) for the bag distribution scenarios I-VII.
For each scenario ν = I,. . . , VII the solution W is a
dν × dν matrix where dν is the total number of bag

1https://github.com/giorgiop/almostnolabel
2https://github.com/Z-Jianxin/

Learning-from-Label-Proportions-A
-Mutual-Contamination-Framework

distributions in scenario ν. Except for scenario VI, the
SDP is feasible – with scenarios II and III admitting
the same solution. The resultant solutions to the SDP
Wν are given in Table A1.

For the bag distributions in VI, the SDP however is
infeasible. We use a simple slack variables method
to relax the constraints of the SDP as given in Fig.
2. The number of slack variables in full generality is
quadratic in the number of instances in the dataset.
However, leveraging the independence in the sampling
of instances in the bags of our distributions we solve
the relaxed SDP on clusters of two instances each.
Minimizing the slack variable sum (weighted by λ =
102) we obtain a rank-4 matrix W as a solution to the
relaxed SDP, also listed in Table A1. The weights in the
solution are ordered corresponding to bag distributions
per cluster i, where for each cluster the heavier (by
size) bag distribution is ordered earlier. For scenarios
V-VII, the straddling bag distribution occur first, then
the others for clusters i = 1, 2, 3.

A.3 Comparison with `1-loss

We also compare with the results given by optimiz-
ing the generalized bag level `1-loss instead of `22-loss.
Table A2 shows the comparison of `22-loss using SDP
computed weights vs `1-loss with SDP [S] or random
Gaussian [R] weights as well as using original bags [U]
instead of generalized bags. We observe that on both
the (`22,S) and (`1,S) methods perform the best over-
all, with the latter performing better better than the
former on the Ionosphere dataset, while both perform
similarly on the Australian dataset. This provides ev-
idence for the efficacy of `1-loss optimization, as well
as the performance benefit accrued by using the SDP
calculated weights even for the `1-loss case.

Extending our work to more loss functions and find-
ing a general framework to understand the interaction
between loss functions and generalized bags is a very
interesting problem that we leave for future work.

B EXPERIMENTS ON CRITEO
CTR DATASET

We elaborate on the description of the experiments
presented in Sec. 6.2.

https://github.com/giorgiop/almostnolabel
https://github.com/Z-Jianxin/Learning-from-Label-Proportions-A
https://github.com/Z-Jianxin/Learning-from-Label-Proportions-A
-Mutual-Contamination-Framework

Rishi Saket, Aravindan Raghuveer, Balaraman Ravindran

Table A1: SDP solution matrices W

Scenario W

I
[

3.125 −3.125
−3.125 3.125

]

II, III


0.136 0. 0. −1.22 0. 0.

0. 0.136, 0. 0. −1.22 0.
0. 0. 0.136 0. 0. −1.22
−1.22 0. 0. 10.98 0. 0.

0. −1.22 0. 0. 10.98 0.
0. 0. −1.22 0. 0. 10.98



IV


2.131 0. 0. −2.131 0. 0.

0. 2.131 0. 0. −2.131 0.
0. 0. 2.131 0. 0. −2.131

−2.131 0. 0. 2.131 0. 0.
0. −2.131 0. 0. 2.131 0.
0. 0. −2.131 0. 0. 2.131


V

 5.36 −1.79 −1.79 −1.79
−1.79 0.596 0.596 0.596
−1.79 0.596 0.596 0.596
−1.79 0.596 0.596 0.596


VI

 0.368 −1.408 −1.471 −1.471
−1.408 5.39 5.631 5.631
−1.471 5.631 5.882 5.882
−1.471 5.631 5.882 17.921



VII


3.13 −1.04 −3.125 1.3e− 04 3.13
−1.04 0.6 1.04 −7.4 −1.8
−3.125 1.04 3.125 −1.7e− 04 −3.13

1.3e− 04 −0.74 −1.7e− 04 2.23 2.23
3.13 −1.8 −3.13 2.23 5.36



Table A2: (`22,S) vs (`1,[S,R,U])

Ionosphere
(`22,S) (`1,S) (`1,R) (`1,U)

I 87.48± 5.0 88.55± 4.3 88.94± 4.1 89.21± 4.0
II 85.42± 5.4 86.9± 4.6 79.63± 5.3 79.33± 5.6
III 87.62± 4.5 88.06± 3.7 80.43± 4.4 80.01± 5.1
IV 81.46± 9.1 84.2± 7.0 78.61± 5.8 78.78± 6.1
V 86.31± 5.8 87.44± 4.9 80.92± 5.5 83.19± 4.6
VI 87.79± 4.8 88.4± 4.1 83.48± 4.8 84.07± 4.6
VII 87.12± 3.8 87.87± 3.6 84.83± 4.3 86.39± 3.7

Australian
(`22,S) (`1,S) (`1,R) (`1,U)

I 92.31± 2.4 92.22± 2.4 92.18± 2.4 92.23± 2.4
II 90.15± 2.8 90.1± 2.8 87.68± 2.6 87.56± 2.5
III 90.88± 2.6 90.66± 2.5 87.41± 2.5 87.05± 2.6
IV 85.12± 3.2 86.4± 2.6 85.76± 2.4 86.28± 2.4
V 90.34± 2.7 90.32± 2.5 88.3± 2.5 88.23± 2.4
VI 91.43± 2.5 91.19± 2.3 86.27± 6.4 87.12± 4.8
VII 91.53± 2.7 91.42± 2.6 89.17± 3.0 89.34± 3.0

Feature Preprocessing. The features of the dataset
are first preprocessed as follows. The numerical feature
values are categorized into around 40 buckets – of
exponentially increasing values – labeled by integers
starting from 0. The raw categorical feature values are
given as hashes, and for each such feature the distinct
values are converted into integers starting from 0. The
missing values in each feature are assigned to be integer
means of the values of that feature.

Bag Distributions. We choose two categorical fea-
tures C14 and C7 to create the bag distributions as
follows. For each distinct pairs of values of C14 and
C7 there is a bag consisting of all instances with those
two values in C14 and C7 respectively. Thus, for each

distinct value of C14 we have a collection (distribution)
of bags given by the different co-occurring values of
C7. However, the number of bags for each of the 26
distinct values of C14 vary significantly. To make sure
we have roughly equal number of bags per distribution
we partition the values of C14 into 5 groups and for
each group we take the union of the corresponding
collections as a bag distribution. Thus, we obtain 5 dif-
ferent bag distributions. We only consider bags of sizes
at least tlow = 50 and at most thigh = 2500. The bag
distributions are computed for each train-split (of the
5-fold split) separately. There are approximately 36,100
training bags for each of the train-splits, partitioned
roughly evenly among the 5 bag distributions.

Approximate SDP Solution. (Table A3) The num-

ber of constraints of SDP-I in Fig.2 makes it prohibitive
to formulate and solve exactly at the scale of the this
dataset. For our experiment we do a crude approxi-
mation as follows. We select C15, which has around
15,000 distinct values, and partition these values into
50 buckets have similar similar frequency counts. We
use the new C15_bucketized feature as a proxy for in-
stances and formulate an approximate version of SDP-I.
Note that the bags may now be multisets in terms of
the values of C15_bucketized. Thus, we compute for
the 5 bag distributions, the 50 × 50 second moment
matrix Q(i) as well as the 50-dimensional mean-vectors
µ(i) (i = 1, . . . , 5) to correctly formulate an extension
of SDP-I for multiset bags. The SDP is over a 5 × 5
psd matrix, and has

(
50
2

)
+ 50 = 1275 constraints.

The SDP is, due to these real-data constraints, not

On Combining Bags to Better Learn from Label Proportions

Table A3: Approx. SDP solution normalized matrix
W for Criteo Kaggle dataset experiments


0.26 −0.271 −0.073 −0.106 0.164
−0.271 0.305 0.142 0.122 −0.209
−0.073 0.142 0.217 0.062 −0.16
−0.1061 0.122 0.062 0.0487 −0.086

0.164 −0.209 −0.160 −0.086 0.169



exactly feasible and is solved approximately using slack
variables for the constraints as given in (5), with λ =
101 and λ′ = 1. We formulate and solve this SDP
for the entire unsplit dataset using higher bag size
threshold values tlow = 63 and at most thigh = 3125
and use the normalized solution (presented in Table
A3) in the training loops (as described in Sec. 5.2) for
each of the 5 train/test splits.

Model Training. As mentioned above, the feature
vectors values preprocessed to be integers. We use a
linear classifier with sigmoid activation which takes as
input one-hot encodings of the feature vectors. We
omit those features which have more than 10,000 dis-
tinct values. The total number of the input features
(expanded as one-hot encodings) to the classifier is
20179.

The model is trained on the training data aggregated
into bags as above for our generalized bags methods
and the single bag baselines as presented in Sec. 6.2.
In the bag training loop, each mini-batch step has 8
samples of 5-tuples of bags, one bag each sampled uni-
formly from the 5 bag distributions. The single bag
methods consider the mini-batch as consisting of 8×5
= 40 training bags. Our generalized bags methods
generate 25 generalized bags for each of the 5-tuples,
by independently sampling multiple weight vectors uni-
formly using the Gaussian covariance matrix W given
by the SDP.

The model is also trained on the row-level training data
for the linear (log. reg.) classifier using binary cross-
entropy loss. Here, the training splits have around 36.5
million labeled instances.

The test splits used for evaluating the performance for
all the methods have approximately 9 million labeled
instances. We use the Adam optimizer with 10−3 learn-
ing rate, and for each split take AUC scores on the test
set for the last 10 (out of a total of 20) training epochs.

C EXPERIMENTS ON
MOVIELENS 20M

As mentioned in Sec. 6.3 the genome tag score feature
vectors are available per movie, and therefore no ad-
ditional feature preprocessing is required. The movie

ratings are reduced to binary by letting a rating of 4
and above be 1 and 0 otherwise.

The 12 bag distributions (one for each month) as de-
scribed in 6.3 are computed for each train-split (of the
5-fold split) separately. There are approximately 33,000
training bags for each of the train-splits, partitioned
roughly evenly among the 12 bag distributions.

Approximate SDP Solution. (Table A4) Each

movie has a genres string and we use these to construct
proxy instances for solving the SDP approximately as
follows. To even out the distribution of the genres
strings so that we obtain 50 representative proxies,
we first randomly subdivide the genres strings - for a
movie with a genres string g, we assign a rating in-
stance of the movie the subdivided genres string (g, r)
where r is an independent uniform random integer in
{1, 2, 3, 4, 5}. These subdivided genres strings are then
partitioned into 50 buckets of roughly equal sizes to
obtain the 50 proxy instances. As before, for each of
the 12 bag distributions, we compute the the 50× 50
second moment matrix as well as the 50-dimensional
mean-vector. The SDP is over a 12 × 12 psd matrix,
and has

(
50
2

)
+ 50 = 1275 constraints. The use of slack

variables (see (5)) with λ = 101 and λ′ = 1 to ensure
feasibility of the SDP is as before. To ensure that the
SDP solution is not concentrated on just a few bag dis-
tributions, we also add a constraint to the psd matrix
ensuring that no diagonal entry is more than twice the
minimum diagonal entry.

Model Training. The 2-layer perceptron (2LP) de-
scribed in Sec. 6.3 is trained on the training data
aggregated into bags for our generalized bags meth-
ods and the single bag baselines. In the bag training
loop, each mini-batch step has 4 samples of 12-tuples
of bags, one bag each sampled uniformly from the 12
bag distributions. The single bag methods consider
the mini-batch as consisting of 4×12 = 48 training
bags. Our generalized bags methods generate 60 gener-
alized bags for each of the 12-tuples, by independently
sampling multiple weight vectors uniformly using the
Gaussian covariance matrix W given by the SDP.

The model is also trained on the row-level training
data for the 2LP classifier using binary cross-entropy
loss. Here, the training splits have around 15.84 million
labeled instances.

The test splits used for evaluating the performance
for all the methods have approximately 3.96 million
labeled instances. We use the Adam optimizer with
10−3 learning rate, and for each split take AUC scores
on the test set for the last 10 (out of a total of 20)
training epochs.

Rishi Saket, Aravindan Raghuveer, Balaraman Ravindran

Table A4: Approx. SDP solution normalized matrix W for MovieLens 20M dataset experiments



0.1170 0.1169 0.1169 −0.1151 0.0862 −0.0826 −0.0821 −0.0824 0.1169 −0.0825 0.0812 −0.0240
0.1169 0.1170 0.1169 −0.1155 0.0860 −0.0826 −0.0822 −0.0825 0.1169 −0.0826 0.0809 −0.0226
0.1169 0.1169 0.1170 −0.1149 0.0863 −0.0825 −0.0819 −0.0823 0.1168 −0.0824 0.0814 −0.0250
−0.1151 −0.1155 −0.1149 0.1170 −0.0830 0.0821 0.0826 0.0824 −0.1157 0.0822 −0.0772 0.0098
0.0862 0.0860 0.0863 −0.0830 0.0646 −0.0604 −0.0595 −0.0600 0.0858 −0.0602 0.0613 −0.0250
−0.0826 −0.0826 −0.0825 0.0821 −0.0604 0.0586 0.0583 0.0584 −0.0827 0.0585 −0.0567 0.0138
−0.0821 −0.0822 −0.0819 0.0826 −0.0595 0.0583 0.0586 0.0584 −0.0823 0.0584 −0.0556 0.0100
−0.0824 −0.0825 −0.0823 0.0824 −0.0600 0.0584 0.0584 0.0586 −0.0825 0.0585 −0.0562 0.0120
0.1169 0.1169 0.1168 −0.1157 0.0858 −0.0827 −0.0823 −0.0825 0.1170 −0.0826 0.0807 −0.0217
−0.0825 −0.0826 −0.0824 0.0822 −0.0602 0.0585 0.0584 0.0585 −0.0826 0.0586 −0.0565 0.0131
0.0812 0.0809 0.0814 −0.0772 0.0613 −0.0567 −0.0556 −0.0562 0.0807 −0.0565 0.0586 −0.0274
−0.0240 −0.0226 −0.0250 0.0098 −0.0250 0.0138 0.0100 0.0120 −0.0217 0.0131 −0.0274 0.0586



	INTRODUCTION
	PREVIOUS WORK
	GENERALIZED BAGS
	LOSS BOUNDS
	SAMPLING GENERALIZED BAGS
	Bounding the sample size |B |
	Training Setup
	Real-world bag distributions
	Multiset bags and correlated bag distributions

	EXPERIMENTS
	Pseudo-synthetic datasets
	Real World Dataset: Criteo CTR
	Real World Dataset: MovieLens 20M

	CONCLUSION
	ADDITIONAL DETAILS FOR PSEUDO-SYNTHETIC DATASET EXPERIMENTS
	Hyperparameter Tuning for Comparative Methods
	SDP Solutions Used
	Comparison with 1-loss

	EXPERIMENTS ON CRITEO CTR DATASET
	EXPERIMENTS ON MOVIELENS 20M

