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Abstract

Given a target function f , how large must a
neural network be in order to approximate f?
Recent works examine this basic question on
neural network expressivity from the lens of
dynamical systems and provide novel “depth-
vs-width” tradeoffs for a large family of func-
tions f . They suggest that such tradeoffs
are governed by the existence of periodic
points or cycles in f . Our work, by fur-
ther deploying dynamical systems concepts,
illuminates a more subtle connection be-
tween periodicity and expressivity: we prove
that periodic points alone lead to suboptimal
depth-width tradeoffs and we improve upon
them by demonstrating that certain “chaotic
itineraries” give stronger exponential trade-
offs, even in regimes where previous analy-
ses only imply polynomial gaps. Contrary to
prior works, our bounds are nearly-optimal,
tighten as the period increases, and han-
dle strong notions of inapproximability (e.g.,
constant L1 error). More broadly, we iden-
tify a phase transition to the chaotic regime
that exactly coincides with an abrupt shift in
other notions of function complexity, includ-
ing VC-dimension and topological entropy.

1 Introduction

Whether a neural network (NN) succeeds or fails at
a given task crucially depends on whether or not its
architecture (depth, width, types of activation units
etc.) is suitable for the task at hand. For example,
a “size-inflation” phenomenon has occurred in recent
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years, in which NNs tend to be deeper and/or larger.
Recall that in 2012, AlexNet had 8 layers. In 2015,
ResNet won the ImageNet competition with 152 lay-
ers (Krizhevsky et al., 2012; He et al., 2016), This
trend still continues to date, with modern models us-
ing billions of parameters (Brown et al., 2020). The
empirical success of deep neural networks motivates
researchers to ask: What are the theoretical benefits
of depth, and what are the depth-vs-width tradeoffs?

This question gives rise to the study of neural net-
work expressivity, which characterizes the class of func-
tions that are representable (or approximately repre-
sentable) by a NN of certain depth, width, and activa-
tion. For instance, Eldan and Shamir (2016) propose
a family of “radial” functions in R

d that are easily
expressible with 3-layered feedforward neural nets of
small width, but require any approximating 2-layer
network to have exponentially (in d) many neurons.
In other words, they formally show that depth—even
if increased by 1—can be exponentially more valuable
than width.

Not surprisingly, understanding the expressivity of
NNs was an early question asked in 1969, when Min-
sky and Papert showed that the Perceptron can only
learn linearly separable data and fails on simple XOR
functions (Minsky and Papert, 1969). The natural
question of which functions can multiple such Percep-
trons (i.e., multilayer feedforward NN) express was ad-
dressed later by Cybenko (1989); Hornik et al. (1989)
proving the so-called universal approximation theo-
rem. This states, roughly, that just one hidden layer of
standard activation units (e.g., sigmoids, ReLUs etc.)
suffices to approximate any continuous function arbi-
trarily well. Taken at face value, any continuous func-
tion is a 2-layer (i.e., 1-hidden-layer) network in dis-
guise, and hence, there is no reason to consider deeper
networks. However, the width required can grow arbi-
trarily, and many works in the following decades quan-
tify those depth-vs-width tradeoffs.

Towards this direction, one typically identifies a func-
tion together with a “measure of complexity” to
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demonstrate benefits of depth. For example, the semi-
nal work by Telgarsky (2015, 2016) relies on the num-
ber of oscillations of a narrow family of triangle map-
pings on [0, 1] that can be expressed recursively with
deep neural networks. Other relevant notions of com-
plexity to the expressivity of NNs include the VC di-
mension (Warren, 1968; Anthony and Bartlett, 1999;
Schmitt, 2000), the number of linear regions (Montu-
far et al., 2014; Arora et al., 2016) or activation pat-
terns (Hanin and Rolnick, 2019), the dimension of al-
gebraic varieties (Kileel et al., 2019), the Fourier spec-
trum (Barron, 1993; Eldan and Shamir, 2016; Daniely,
2017; Lee et al., 2017; Bresler and Nagaraj, 2020), frac-
tals (Malach and Shalev-Shwartz, 2019), topological
entropy (Bu et al., 2020), Lipschitzness (Safran et al.,
2019; Hsu et al., 2021), global curvature and trajectory
length (Poole et al., 2016; Raghu et al., 2017) just to
name a few.

This work builds upon recent papers (Chatziafratis
et al., 2019, 2020), which study expressivity from the
lens of discrete-time dynamical systems and extend
Telgarsky’s results beyond triangle (tent) maps. At
a high-level, their idea is the following: if the initial
layers of a NN output a real-valued function f , then
concatenating the same layers k times one after the
other outputs fk := f ◦f ◦ . . .◦f , i.e., the composition
of f with itself k times. By associating each discrete
timestep k to the output of the corresponding layer in
the network, one can study expressivity via the under-
lying properties of f ’s trajectories. Indeed, if f con-
tains higher-order fixed points, called periodic points,
then deeper NNs can efficiently approximate fk, but
shallower nets would require exponential width, gov-
erned by f ’s periodicity.

Inspired by these novel connections to discrete dynam-
ical systems, we pose the following natural question:

Apart from periodicity, are there other properties of
f ’s trajectories that govern the expressivity tradeoffs?

We indeed prove that f ’s periodicity alone is not the
end of the story, and we improve on the known depth-
width tradeoffs from several perspectives. We exhibit
functions of the same period with very different be-
haviors (see Sec. 2) that can be distinguished by the
concept of “chaotic itineraries.” We analyze these here
in order to achieve nearly-optimal tradeoffs for NNs.
Our work highlights why previous works that exam-
ine periodicity alone only obtain loose bounds. More
specifically:

• We accurately quantify the oscillatory behavior of
a large family of functions f . This leads to sharper
and nearly-optimal lower bounds for the width of
NNs that approximate fk.

• Our lower bounds cover a stronger notion of ap-
proximation error, i.e., constant separations be-
tween NNs, instead of bounds that become small
depending heavily on f and its periodicity.

• At a conceptual level, we introduce and study
certain chaotic itineraries, which supersede
Sharkovsky’s theorem (see Sec. 1.2).

• We elucidate connections between periodicity and
other function complexity measures like the VC-
dimension and the topological entropy (Alsedà
et al., 2000). We show that all of these measures
undergo a phase transition that exactly coincides
with the emergence of the chaotic regime based
on periods.

To the best of our knowledge, we are the first to incor-
porate the notion of chaotic itineraries from discrete
dynamical systems into the study of NN expressivity.
Before stating and interpreting our results, we provide
some basic definitions.

1.1 Function Approximation and NNs

This paper employs three notions of approximation to
compare functions f, g : [0, 1] → [0, 1].

• L1(f, g) = ‖f − g‖1 =
∫ 1

0
|f(x)− g(x)| dx.

• L∞(f, g) = ‖f − g‖∞ = supx∈[0,1] |f(x)− g(x)| .
• Classification error RS,t: For some sample
S = {x1, . . . , xn} ⊆ [0, 1] and thresh-
old t ∈ [0, 1], let RS,t(f, g) be the frac-
tion of samples that classifiers derived by
thresholding f and g disagree on. That is,
RS,t(f, g) = 1

n

∑n
i=1 1 {[[f(xi)]]t 6= [[g(xi)]]t} for

[[x]]t = 1 {x ≥ t}.

While L1 and L∞ directly measure the ability of a
hypothesis to approximate a fixed function, RS,t mea-
sures the difference between functions by framing the
question as a classification problem.

For what follows, let N (u, ℓ) be the family of feedfor-
ward NNs of depth ℓ and width at most u per layer
with ReLU activation functions.1 All our results also
hold for the more general family of semialgebraic acti-
vations (Telgarsky, 2016).

1.2 Discrete Dynamical Systems

To construct families of functions that yield depth-
separation results, we rely on a standard notion of uni-
modal functions from dynamical systems (Metropolis
et al., 1973).

1Recall ReLU(x) = max(x, 0).
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Definition 1. Let f : [0, 1] → [0, 1] be a continuous
and piece-wise differentiable function. We say f is a
unimodal mapping if:

1. f(0) = f(1) = 0, and f(x) > 0 for all x ∈ (0, 1).

2. There exists a unique maximizer x′ ∈ (0, 1) of f ,
i.e., f is strictly increasing on the interval [0, x′)
and strictly decreasing on (x′, 1].

Our constructions rely on unimodal functions that are
concave and also symmetric around 1

2 (i.e., f(x) =
f(1 − x) for all x ∈ [0, 1])2. We note that the result-
ing function family is fairly general, already captur-
ing the triangle waves of Telgarsky (2015, 2016) and
the logistic map used in previous depth-separation re-
sults (Schmitt, 2000). Moreover, the study of one-
dimensional discrete dynamical systems by applied
mathematicians explicitly identifies unimodal map-
pings as important objects of study (Metropolis et al.,
1973; Alsedà et al., 2000).

Recall that a fixed point x∗ of f is a point where
f(x∗) = x∗. A more general notion of higher-order
fixed points is that of periodicity.

Definition 2. For some p ∈ N, we say that x1 ∈
[0, 1] is a point of period p if fp(x1) = x1 and
fk(x1) 6= x1

3 for all k ∈ [p − 1].4 The sequence
x1, f(x1), . . . , f

p−1(x1) is called a p-cycle, and f has
periodicity p if such a cycle exists.

For example, the identify map f(x) = x has a fixed
point (or a point of period 1) at any x ∈ [0, 1]. Like-
wise, f(x) = 1 − x has a fixed point at x = 1

2 and a
point of period 2 at any other choice of x. The tri-
angle map f(x) = min(2x, 2(1 − x)) has a fixed point
at x = 2

3 ; a 2-cycle with x1 = 2
5 and x2 = 4

5 ; and a
3-cycle with x1 = 2

9 , x2 = 4
9 and x3 = 8

9 (among other
cycles of higher periodicity).

Does the existence of some p-cycle in f have any im-
plications about the existence of other cycles? These
relations between the periods of f are of fundamen-
tal importance to the study of dynamical systems.
In particular, Li and Yorke (1975) proved in 1975
that “period 3 implies chaos” in their celebrated work,
which also introduced the term “chaos” to mathemat-
ics and later spurred the development of chaos the-
ory. Interestingly, an even more general result was
already obtained a decade earlier in Eastern Europe,
by Sharkovsky (1964, 1965):

2Throughout, symmetric f refers to such functions that
are symmetric around 1

2
.

3Throughout the paper, fk means composition of f with
itself k times, or fk = f ◦ f ◦ · · · ◦ f

︸ ︷︷ ︸
k

.

4As is common, [m] = {1, 2, . . . ,m}.

Theorem 1 (Sharkovsky’s Theorem). Let f : [0, 1] →
[0, 1] be continuous. If f contains period p and p ⊲ p′,
then f also contains period p′, where the symbol “ ⊲”
is defined based on the following (decreasing) ordering:

3 ⊲ 5 ⊲ 7 ⊲ . . . ⊲ 2 · 3 ⊲ 2 · 5 ⊲ 2 · 7 ⊲ . . .

. . . ⊲ 22 · 3 ⊲ 22 · 5 ⊲ 22 · 7 ⊲ . . . ⊲ 23 ⊲ 22 ⊲ 2 ⊲ 1.

This ordering, called Sharkovsky’s ordering, is a total
ordering on the natural numbers, where l ⊲ r whenever
l is to the left of r. The maximum number in this
ordering is 3; if f contains period 3, then it also has all
other periods, which is also known as Li-Yorke chaos.
Chatziafratis et al. (2019, 2020) apply this theorem
to obtain depth-width tradeoffs based on periods and
obtain their most powerful results when p = 3. We go
beyond Sharkovsky’s theorem and prove that tradeoffs
are determined by the “itineraries” of periods.5

Definition 3 (Itineraries). For a p-cycle x1, . . . , xp,
suppose that xa1

< · · · < xap
for aj ∈ [p]. The

itinerary of the cycle is the cyclic permutation of
xa1

, . . . , xap
induced by f , which we represent by the

string a = a1 . . . ap. Because cyclic permutations are
invariant to rotation, we assume (without loss of gen-
erality) that a1 = 1.

Definition 4 (Chaotic Itineraries). A p-cycle is a
chaotic itinerary or an increasing cycle if its itinerary
is 12 . . . p. That is, x1 < · · · < xp.

Examining chaotic itineraries circumvents the limi-
tations of prior works based on periods and yields
sharper exponential depth-width tradeoffs. For exam-
ple, there are two distinct itineraries of 4-cycles on
unimodal maps: a = 1234 and a = 1324. The former
is chaotic, and repeatedly applying the function yields
a complex function that is hard to approximate; the
latter does not guarantee hardness of approximation,
and there exist easily approximable functions fk de-
rived recursively from mappings f that have the 1324
itinerary. We discuss this case more thoroughly in Sec-
tion 2 and explore other examples of chaotic itineraries
in App. 7.1. Unlike other function complexity proper-
ties, the existence of a chaotic itinerary is easily veri-
fiable (see App. 7.3).

1.3 Our Main Contributions

Our principal goal is to use knowledge about f ’s
itineraries to more accurately quantify the number of
oscillations—the number of monotone pieces of a suf-
ficient size, formally defined in Definitions 5 and 6—of
fk as a measure of complexity and draw connections
to other complexity measures. Section 3 produces

5These are called “patterns” in Alsedà et al. (2000).



Expressivity of Neural Networks via Chaotic Itineraries beyond Sharkovsky’s Theorem

sharper and more robust NN approximability tradeoffs
than prior works by leveraging chaotic itineraries and
unimodality. Section 4 shows how a phase transition
in VC-dimension and topological entropy of f occurs
exactly when the growth rate of oscillations shifts from
polynomial to exponential.

While previous works count oscillations too, they ei-
ther construct too narrow a range of functions6, ob-
tain loose depth-width tradeoffs7, or have unsatisfac-
tory approximation error. 8 In Section 3, we improve
along these three directions by taking advantage of
the unimodality and itineraries of f . The unimodality
of f allows us to quantify both the number of piece-
wise monotone pieces of fk (i.e., oscillations) and the
corresponding height between the highest and lowest
values of fk’s oscillations. This improvement on the
height enables stronger notions of function approxima-
tion (e.g., constant error rates with no dependence on
f or its period p). Chaotic itineraries allow an im-
proved analysis of the number of oscillations in fk and
grant sharper exponential lower bounds on the width
of any shallow net g approximating fk.

We say that our results are nearly-optimal because we
exhibit a broad family of functions f that are inap-
proximable by shallow networks of width O(ρk) for
ρ arbitrarily close to 2. Because no unimodal func-
tion f can induce more than 2k oscillations in fk, we
cannot aspire to tighter exponent bases in this set-
ting.9 On the other hand, none of the bounds from
previous works (except the narrow bounds of Telgar-
sky) produce width bounds of more than Ω(φk), where
φ ≈ 1.618 is the Golden Ratio. To demonstrate our
sharper tradeoffs, we state a special case of our results
for the L∞ error.

Theorem 2. For p ≥ 3 and k ∈ N, consider any
symmetric, concave unimodal mapping f with an in-
creasing p-cycle and any g ∈ N (u, ℓ) with width

u ≤ 1

8

(

max

(

2− 4

2p
, φ

))k/ℓ

Then, L∞(fk, g) = Ω(1), independent of f, p, k.

Remark 1. When g is shallow with depth ℓ = O(k1−ǫ)
(e.g., ℓ = k0.99), then its width must be exponen-
tially large in order to well-approximate fk. This

6e.g., Telgarsky (2015, 2016) analyzes only a restricted
family of surjective triangle mappings constructed from
neural networks with semi-algebraic gates.

7e.g., Chatziafratis et al. (2019, 2020) have a suboptimal
dependence on p under stringent Lipschitz assumptions.

8e.g., Chatziafratis et al. (2019, 2020); Bu et al. (2020)
do not obtain constant error rates.

9Our results also transfer to non-unimodal functions via
the observation that for bimodal g, there is some unimodal
f such that the number of oscillations of g is at most twice
those of f .

exponential separation in k is sharper than prior
works (Chatziafratis et al., 2019, 2020), and quickly
becomes even sharper (tending to 2) with larger values
of p. This is counterintuitive as Sharkovsky’s order-
ing implies that period 3 is the most chaotic and prior
works recover a suboptimal rate of at most φ ≈ 1.618
(see Table 1).

Remark 2. Our approximation error is constant in-
dependent of all other parameters f, k, p. Previous re-
sults (Chatziafratis et al., 2019, 2020; Bu et al., 2020)
obtain a gap that depends on f, p and may be arbitrar-
ily small. Moreover, we have required nothing of the
Lipschitz constant of f , unlike the strict assumptions
on the Lipschitz constant L of f by Chatziafratis et al.
(2020) (e.g., they require L = φ for period p = 3).
Indeed, Propositions 2 and 3 in the Appendix 9.6 il-
lustrate how their lower bounds break down for large L
and how their L∞ bounds can shrink, becoming arbi-
trarily weak for certain 3-periodic f .

We also present analogous results for the classification
error and the L1 errors. Please see the full statements
in Theorems 4 and 5. Furthermore, Theorems 6 and
7 offer an improvement on the results of Chatziafratis
et al. (2020) by giving constant-accuracy L∞ lower
bounds without needing a chaotic itinerary.

In addition, Section 4 relates our chaotic itineraries to
standard notions of function complexity like the VC
dimension and the topological entropy (for precise def-
initions, see Sec. 4). The types of periodic itineraries of
f give rise to two regimes: the doubling regime and the
chaotic regime. In the former, we have a polynomial
number of oscillations, while the latter is character-
ized by an exponential number of oscillations. Here
we show the following correspondence:

Theorem 3 (Informal). The transition between these
two regimes exactly coincides with a sharp transition
in the VC-dimension of the iterated mappings fk for
fixed f (from bounded to infinite) and in the topological
entropy (from zero to positive).

Our Techniques To quantify the oscillations of fk,
we use its chaotic itineraries to decompose the [0, 1]
interval into several subintervals {Ij}j=p−1

j=1 . We count

the number of times fk “visits” each Ij , by identifying
a suitable matrix A whose spectral radius is a lower
bound on the growth rate of oscillations. The associ-
ated characteristic polynomial of A is λp − 2λp−1 + 1
and has larger spectral radius that that of prior works
for all periods. Moreover, the corresponding oscilla-
tions of at least one of the subintervals Ij do not shrink
in size, giving a bound on the total number of oscilla-
tions of a sufficient size. This provides a lower bound
on the height between the peak and the bottom of
these oscillations that later provides constant approx-
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Figure 1: Plots of unimodal mappings with different
itineraries f1234, f1324, and f123. Despite their similar-
ities, f1234 leads to the most oscillations and sharpest
depth-width tradeoffs (see Fig. 2).

imation errors for small shallow NNs.

More broadly, our work builds on the efforts to char-
acterize large families of functions that give depth sep-
arations and addresses questions raised by Eldan and
Shamir (2016); Telgarsky (2016); Poole et al. (2016);
Malach and Shalev-Shwartz (2019) about the proper-
ties of hard-to-represent functions. Similar to periods,
the concept of chaotic itineraries can serve as a cer-
tificate of complexity, which is also easy to verify for
unimodal f (see Proposition 1 in Appendix).

2 Warm-up Examples

This section presents illustrative examples and instan-
tiates our results for some simple cases. These high-
light the limitations of exclusively considering period-
icity of cycles alone—and not itineraries—when de-
veloping accurate oscillation/crossing bounds (see also
Def. 5, 6) and sharp expressivity tradeoffs.

Consider the three unimodal mappings in Figure 1, fa
with itineraries a ∈ {1324, 1234, 123}. Observe that
f1234 has the cycle ( 15 ,

2
5 ,

3
5 ,

4
5 ), f1324 has ( 15 ,

3
5 ,

2
5 ,

4
5 ),

and f123 has ( 14 ,
1
2 ,

3
4 ). Despite their similarities, they

give rise to significantly different behaviours in fk
a
.

What do prior works based on NN approximation with
respect to periods and Sharkovsky’s theorem alone tell
us? Chatziafratis et al. (2019, 2020) show that the 3-
cycle of f123 ensures that fk has Ω(φk) oscillations,
where φ ≈ 1.618 is the golden ratio. However, their
theorems do not imply anything for f1324 and f1234,
since 4 is a power of 2, and they require odd periods.

As it turns out, f1234 leads to exponential oscillations
and f1324 leads only to polynomial oscillations:

Figure 2: The chaotic itinerary f1234 has more oscil-
lations than f123 even though 3 ⊲ 4 by Sharkovsky’s
Theorem. Itineraries f1234 and f1324 (both of period
4) differ dramatically in oscillation count, showing why
periodicity alone fails to capture the optimal tradeoffs.

• A mapping with a 1324-itinerary is guaranteed
no other cycles except the 2-cycle and a fixed
point (Metropolis et al., 1973). Sharkovsky’s
theorem and Chatziafratis et al. (2019) predict
this outcome, since 4 is the third-right-most el-
ement of the Sharkovsky ordering, and its exis-
tence alone promises nothing more. The order-
ing of itineraries introduced by (Metropolis et al.,
1973) (see Table 2 in Appendix) indicates that the
particular 1324-itinerary only implies the periods
2 and 1, and confirms this intuition. We classify
this itinerary as part of the doubling regime and
prove in Theorem 8 that any fk with a maximal
1324-itinerary (that is, there is no 8-cycle) can-
not exhibit sharp depth-width tradeoffs: for any
ǫ > 0, there exists a 2-layer ReLU neural network

g of width O(k
3

ǫ ) such that L∞(fk
1324, g) ≤ ǫ.

• Going beyond Sharkovsky’s theorem, a mapping
with a 1234-itinerary—even though it is of period
4—it is guaranteed to contain a 3-cycle as well
(see Table 2 in Appendix). Hence, “itinerary-
1234 implies period-3, implies chaos,” and fk

1234

has at least Ω(φk) oscillations and is hard to ap-
proximate by small shallow NNs. Moreover, The-
orem 4 and Table 1 show that fk

1234 actually has
Ω(ρk) oscillations for ρ ≈ 1.839 > φ. A corol-
lary is that any NN g of depth

√
k and width

O(1.839
√
k) has L∞(fk

1234, g) = Ω(1), which is a
stronger separation (constant error) than the ones
given by Chatziafratis et al. (2019, 2020).

The reverse is not true: Sharkovsky’s Theorem guar-
antees that period-3 implies period-4, but the only 4-
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cycle guaranteed by the theorem is actually the non-
chaotic 1324-itinerary, already shown to lead to mini-
mal function complexity.

Furthermore, as p increases, the existence of a chaotic
itinerary 12 . . . p on f ensures that fk has Ω(ρk) oscil-
lations for ρ → 2.10 Figure 2 demonstrates these differ-
ences in oscillations (by counting the number of mono-
tone pieces of functions fk

a
with a maximal itinerary-

a). As indicated theoretically, the number of oscilla-
tions of f1324 is polynomially-bounded, while the oth-
ers grow exponentially fast, with f1234 being closer to
2k. Please see Appendix 6 for more such examples.

Generally, prior constructions where the oscillation
count of fk increase at a rate faster than φk were too
narrow (including only the triangle map). Because
f1234 breaks the barrier, we abstract away the details
and point to chaotic itineraries as the main source of
complexity, leading to sharper depth-width tradeoffs.

While periodicity tells a compelling story about why
fk
123 is difficult to approximate, it fails to explain
why fk

1234 is even more complex. The exponential-
vs-polynomial gap in the function complexity of f1234
and f1324 depends solely on the order of the elements
of the cycle and distinguishes functions that NNs can
easily approximate from those they cannot.

The remainder of the paper addresses the question in-
troduced here—when does the itinerary tell us much
more than the length of the period—in a general
context that explores a “hierarchy” of such chaotic
itineraries, strengthens a host of NN inapproximabil-
ity bounds (Sec. 3), and reveals tight connections with
other complexity notions, like the VC-dimension and
topological entropy (Sec. 4).

3 Depth-Width Tradeoffs via Chaotic

Itineraries

We give our main hardness results on the inapproxima-
bility of functions generated by repeated compositions
of f to itself when f has certain cyclic behavior. Sec-
tion 3.2 applies insights about chaotic itineraries to
prove constant L∞ and L1 lower bounds on the ac-
curacy of approximating fk when f has an increasing
cycle. Section 3.3 strengthens previous bounds on the
number of oscillations when f has an odd cycle, which
is not necessarily increasing. Appendix 8 presents Ta-
ble 3 that illustrates the key differences between re-
sults.

10Similarly to Telgarsky (2016), the optimal achievable
rate is ρ ≤ 2 if we start with a unimodal f (e.g., tent map).
If one used multimodal functions as a building block (e.g.,
starting with f ′ = f2 or f ′ = f3), we could achieve larger
rates (e.g., 4 or 8 respectively).

3.1 Notation

To measure the function complexity of fk, we count
the number of times fk oscillates. We employ two
notions of oscillation counts. The first is relatively
weak and counts every interval on which f is either
increasing or decreasing, regardless of its size.

Definition 5. Let f : [0, 1] → [0, 1]. M(f) represents
the number of monotone pieces of f . That is, it is the
minimum m such that there exists x0 = 0 < x1 < · · · <
xm−1 < xm = 1 where f is monotone on [xj−1, xj ] for
all j ∈ [m].

The second instead counts the number of times a fixed
interval of size b− a is crossed:

Definition 6. Let f : [0, 1] → [0, 1] and [a, b] ⊆ [0, 1].
Ca,b(f) represents the number of crossings of f on the
interval [a, b]. That is, it is the maximum c such that
there exist

0 ≤ x1 < x′
1 ≤ x2 < x′

2 ≤ · · · ≤ xc < x′
c ≤ 1

where for all j ∈ [c], f([xj , x
′
j ]) ⊂ [a, b] and either

f(xj) = a and f(x′
j) = b or vice versa.

Characteristic Polynomials The base of the ex-
ponent of our width bounds is shown to equal the
largest root of one of two polynomials:

Pinc,p(λ) = λp − 2λp−1 + 1,

Podd,p(λ) = λp − 2λp−2 − 1.

Let ρinc,p and ρodd,p be the largest roots of Pinc,p and
Podd,p respectively. Table 1 illustrates that as p grows,
ρinc,p increases to 2, while ρodd,p drops to

√
2. Note

that ρodd,p ∈ (
√
2,
√

2 + 2/2p/2) (Alsedà et al., 2000).
We bound the growth rate of ρinc,p with the following:

Fact 1. ρinc,p ∈ [max(2 − 4
2p , φ), 2), where φ = 1+

√
5

2
is the Golden Ratio.

We prove Fact 1 in Appendix 9.2.

3.2 Inapproximability of Iterated Functions

with Increasing Cycles

Our inapproximability results that govern the size of
neural network g necessary to adequately approximate
fk when f has an increasing cycle (like Theorem 2) rely
on a key lemma that bounds the number of constant-
size oscillations of fk.

Lemma 1 (Oscillation Bound for Increasing Cycles).
Suppose f is a symmetric, concave unimodal mapping
with an increasing p-cycle for some p ≥ 3. Then, there
exists [a, b] ⊂ [0, 1] with b−a ≥ 1

18 such that Ca,b(f
k) ≥

1
2ρ

k
inc,p for all k ∈ N.
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Table 1: Approximate values of ρinc,p, the lower
bound on ρinc,p in Fact 1, and ρodd,p (for odd p).

p ρinc,p Fact 1 ρodd,p

3 1.618 1.618 1.618
4 1.839 1.75 n/a
5 1.928 1.875 1.513
6 1.966 1.938 n/a
7 1.984 1.969 1.466
8 1.992 1.984 n/a
9 1.996 1.992 1.441
10 1.999 1.996 n/a

We prove Lemma 1 in Appendix 9.1. For an increas-
ing p-cycle x1, . . . , xp, we lower-bound M(fk) (the to-
tal number of monotone pieces, regardless of size) by
relating the number of times fk crosses each interval
[xj , xj+1] to the number of crossings of fk−1. Doing
so entails analyzing the largest eigenvalues of a transi-
tion matrix, which gives rise to the polynomial Pinc,p.
We prove that the intervals crossed must be sufficiently
large due to the symmetry, concavity, and unimodality
of f .

Remark 3. If one does not wish to assume that f is
unimodal, symmetric, or concave, then the proof can be
modified to show that Ca,b(f

k) = Ω(ρk) for the same
ρ, but for b − a dependent on f . These results are
similar in flavor to those of Chatziafratis et al. (2019,
2020); Bu et al. (2020), and they suffer from the same
drawback: potentially vacuous approximation bounds
when a and b are close. Appendix 9.6 shows natural
functions that are either not symmetric or not concave,
whose oscillations shrink in size arbitrarily.

3.2.1 L∞ Approximation and Classification

Our first result is a restatement of Theorem 2 that
quantifies inapproximability in terms of both L∞ and
classification error, which are comparable to the re-
spective results of Bu et al. (2020) and Chatziafratis
et al. (2019).

Theorem 4. Suppose f is a symmetric concave uni-
modal mapping with an increasing p-cycle for some
p ≥ 3. Then, any k ∈ N and g ∈ N (u, ℓ) with

u ≤ 1
8ρ

k/ℓ
inc,p have ‖fk − g‖∞ = Ω(1).

Moreover, there exists S with |S| = 1
2⌊ρ

k/ℓ
inc,p⌋ and t ∈

(0, 1) such that RS,t(f
k, g) ≥ 1

4 .

The proof follows from our main Lemma 1 above and
Theorem 10/Corollary 2 in the Appendix (two previ-
ous inapproximability bounds based on oscillations).

Despite relying on unimodality assumptions and the

existence of increasing cycles, Theorem 4 obtains much
stronger bounds than its previous counterparts:

• The assumption that f has an increasing cycle
causes a much larger exponent base for the width
bound. Chatziafratis et al. (2019, 2020) only
prove that the existence of 3-cycle mandates a
width of Ω(φk/ℓ). We exactly match that bound
for p = 3, and improve upon it when p > 3. As il-
lustrated by Table 1, increasing p pushes the base
ρinc,p rapidly to 2, which is the maximum expo-
nent base for the increase of oscillations of any
unimodal map. (And the maximal topological
entropy of a unimodal map.) This also approx-
imately matches the bases from Bu et al. (2020),
which scale with the topological entropy of f .

• As illustrated in Appendix 9.6, the inaccuracy of
neural networks with respect to the L∞ approx-
imation in Chatziafratis et al. (2019, 2020); Bu
et al. (2020) may be arbitrarily small for certain
choices of f . Our unimodality assumptions ensure
that the oscillations of fk are large and hence,
that the inaccuracy of g is constant.

3.2.2 L1 Approximation

We also strengthen the bound on L1-inapproximability
given by Chatziafratis et al. (2020) by again introduc-
ing a stronger exponent and applying unimodality to
yield a constant-accuracy bound.

Theorem 5. Consider any L-Lipschitz f : [0, 1] →
[0, 1] with an increasing p-cycle for some p ≥ 3. If
L = ρinc,p, then for any k ∈ N, any g ∈ N (u, ℓ) with

u ≤ 1
16ρ

k/ℓ
inc,p has ‖fk − g‖1 = Ω(1).

The proof follows again using our main Lemma 1 and
using Theorem 11 in the Appendix.

We make Theorem 5 more explicit by showing that
many tent maps meet the Lipschitzness condition. Let
ftent,r = 2rmin(x, 1− x) be the tent map, parameter-
ized by r ∈ (0, 1). Our result improves upon Chatzi-
afratis et al. (2020), by obtaining constant approxi-
mation error and using the larger ρinc,p rather than
ρodd,p.

Corollary 1. For any p ≥ 3 and k ∈ N, any g ∈
N (u, ℓ) with u ≤ 1

16ρ
k/ℓ
inc,p has ‖fk

tent,ρinc,p
−g‖1 = Ω(1).

We prove Corollary 1 in Appendix 9.4. The only non-
trivial part of the proof involves proving the existence
of an increasing p-cycle that causes fk to have Ω(ρkinc,p)
oscillations.
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3.3 Improved Bounds for Odd Periods

While Theorems 4 and 5 give stricter bounds on the
width of neural networks needed to approximate it-
erated functions fk than Chatziafratis et al. (2019,
2020), they also require extra assumptions about the
cycles—namely, that the cycles are increasing. How-
ever, more powerful inapproximability results with
constant error are still possible even without additional
assumptions. Specifically, we leverage unimodality to
improve the desired inaccuracy to a constant without
compromising width.

As before, the results hinge on a key technical lemma
that bounds the number of interval crossings.

Lemma 2. For some odd p ≥ 3, suppose f is a sym-
metric concave unimodal mapping with an odd p-cycle.
Then, there exists [a, b] ⊂ [0, 1] with b− a ≥ 0.07 such

that Ca,b(f
k) = ρk−p

odd,p for any k ∈ N.

We prove Lemma 2 in Appendix 9.5. The challeng-
ing part is to find a lower bound on the length of the
intervals crossed.

Like before, we provide lower-bounds on approxima-
tion up to a constant degree.

Theorem 6. For some odd p ≥ 3, suppose f is a
symmetric, concave unimodal mapping with any p-
cycle. Then, any k ∈ N and any g ∈ N (u, ℓ) with

u ≤ 1
8ρ

(k−p)/ℓ
odd,p have ‖fk − g‖∞ = Ω(1).

Moreover, there exists S with |S| = 1
2⌊ρkodd,p⌋ and t ∈

(0, 1) such that RS,t(f
k, g) ≥ 1

4 .

The proof is immediate from Lemma 2, Theorem 10,
and Corollary 2 in the Appendix.

We also get the analogous result but for the L1 error:

Theorem 7. Consider any L-Lipschitz f : [0, 1] →
[0, 1] with a p-cycle for some odd p ≥ 3. If L = ρodd,p,

then, any k ∈ N and g ∈ N (u, ℓ) with u ≤ 1
16ρ

(k−p)/ℓ
odd,p

have ‖fk − g‖1 = Ω(1).

Remark 4. We impose strict conditions on the Lip-
schitz constant because the bounds are vacuous or im-
possible for functions with other Lipschitz constants.
By Lemma 3.1 of Chatziafratis et al. (2020), there are
no L-Lipschitz interval mappings f whose iterates fk

have Ω(ρodd,p)
k oscillations when L < ρodd,p. On the

other hand, if L > ρodd,p, then our proofs would yield
vacuous lower bounds because they depend on (

ρodd,p

L )k,
which is arbitrarily small for large k. See Section 3.1
of Chatziafratis et al. (2020) for a more thorough treat-
ment of this issue.

The proof is immediate from Lemma 1 and Theo-
rem 11 in the Appendix.

4 Periods, Phase Transitions and

Function Complexity

We formalize the correspondence between different no-
tions of function complexity in dynamical systems and
learning theory: neural network approximation, oscil-
lation count, cycle itinerary, topological entropy, and
VC-dimension. We make Theorem 3 rigorous by pre-
senting two regimes into which unimodal mappings
can be classified—the doubling regime and the chaotic
regime—and show that all of these measurements of
complexity hinge on which regime a function belongs
to.11

The following two theorems split most of the space of
unimodal mappings into one of two regimes and show
that the doubling regime (so called because all cycles
have power-of-two lengths and their itineraries are not
chaotic) is intrinsically simpler from an approxima-
tion theoretic and a function complexity standpoint
than the chaotic regime (where there exist chaotic
itineraries). The pair of theorems combined known
facts about approximation and topological entropy
with new ideas about VC dimension. They support the
claim that the phase transition that separates map-
pings with chaotic itineraries from those without is
meaningful, because it also separates functions fk that
cannot be tractably approximated from those that can
and separates highly expressive iterates fk from those
that cannot express complex data patterns.

Some components of the claims regarding the topolog-
ical entropy are the immediate consequences of other
results; however, we include them to give a complete
picture of the gap between the two regimes. We be-
lieve the upper bound on monotone pieces of fk in
the doubling regime and both VC-dimension bounds
below to be novel.

We define VC-dimension and introduce topological en-
tropy in Appendix 10, along with the proofs of both
theorems. For the VC-dimension, we consider the hy-
pothesis class Hf,t := {[[fk]]t : k ∈ N}, which corre-
sponds to the class of iterated fixed maps.

Theorem 8. [Doubling Regime] Suppose f is a sym-
metric unimodal mapping whose maximal cycle is a
primary cycle of length p = 2q. That is, there exists
a p-cycle but no 2p-cycles (and thus, no cycles with
lengths non-powers-of-two). Then, the following are
true:

11These two regimes correspond to different settings of
the parameters r in the bifurcation diagram of Figure 7 in
the Appendix. The doubling regime is the left-hand-side,
where the stable periods routinely split in two before the
first chaos is encountered. The chaotic regime is to the
right-hand-side, which is characterized by chaos punctu-
ated by intermittent stability.
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1. For any k ∈ N, M(fk) = O((4k)q+1).

2. For any k ∈ N, there exists g ∈ N (u, 2) with u =
O((4k)q+1/ǫ) such that

∥
∥g − fk

∥
∥
∞ ≤ ǫ. More-

over, if f = ftent,r, then there exists g ∈ N (u, 2)
with u = O((4k)q+1) and g = fk.

3. htop(f) = 0.

4. For any t ∈ (0, 1), VC(Hf,t) ≤ 18p2.

The proof of Theorem 8 relies on a recursive char-
acterization of fk whenever f has a maximum cycle
length of 2q. To prove the first claim, we use this re-
cursive structure to bound the number of monotone
regions by relating the number of monotone regions of
fk to some g2k, where g has a maximum cycle length
no more than 2q−1. The second and third claims are
implications of the first. The fourth claim relies on
a different recursive argument which shows that the
family of iterated maps fk for fixed f are unable to
shatter certain subsets of points.

Theorem 9. [Chaotic Regime] Suppose f is a uni-
modal mapping that has a p-cycle where p is not a
power-of-two. Then, the following are true:

1. There exists some ρ ∈ (1, 2] such that for any k ∈
N, M(fk) = Ω(ρk).

2. For any k ∈ N and any g ∈ N (u, ℓ) with ℓ ≤ k and
u ≤ 1

8ρ
k/ℓ, there exist samples S with |S| = 1

2

⌊
ρk
⌋

such that RS,1/2(f
k, g) ≥ 1

4 .

3. htop(f) ≥ ρ > 0.

4. There exists a t ∈ (0, 1) such that VC(Hf,t) = ∞.

Remark 5. As discussed in Appendix 7, any non-
primary cycle implies the existence of a cycle whose
length is not a power of two. Thus, these results also
apply if there exists any non-primary power-of-two cy-
cle, such as the 1234-itinerary 4-cycle.

The first three claims are implications of the proofs
from previous sections of paper and previous works.
The fourth claim relies on applying Sharkovsky’s theo-
rem to prove the existence of an infinitely large number
of cycles with coprime lengths. Then, by considering
a set of points each contained in a cycle of different
coprime lengths, we show that a large number of iter-
ates k is sufficient to “shatter” the points by realizing
every possible labeling.

5 Conclusion

In this work, we build new connections between deep
learning theory and dynamical systems by applying re-
sults from discrete-time dynamical systems to obtain

novel depth-width tradeoffs for the expressivity of neu-
ral networks. While prior works relied on Sharkovsky’s
theorem and periodicity to provide families of func-
tions that are hard-to-approximate with shallow neu-
ral networks, we go beyond periodicity. Studying
the chaotic itineraries of unimodal mappings, we re-
veal subtle connections between expressivity and dif-
ferent types of periods, and we use them to shed new
light on the benefits of depth in the form of enhanced
width lower bounds and stronger approximation er-
rors. More broadly, we believe that it is an exciting
direction for future research to exploit similar tools
and concepts from the literature of dynamical systems
in order to improve our understanding of neural net-
works, e.g., their dynamics, optimization and robust-
ness properties.
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Expressivity of Neural Networks via Chaotic Itineraries
beyond Sharkovsky’s Theorem:

Supplementary Materials

6 Supplement for Section 2

Figures 3 and 5 demonstrate two emblematic cases where the differences in function complexity of f123, f1234,
and f1324 are most evident. Both figures provide a function for each fa that has a maximal itinerary of a. (That
is, there is no “higher-ranked” itinerary from Table 2 present in fa; all other cycles are induced by the existence
of a cycle with itinerary a.)

Figures 3 and 4 provide a simple case where the elements of the cycles are evenly spaced ( 14 ,
1
2 ,

3
4 for f123;

1
5 ,

2
5 ,

3
5 ,

4
5

for f1234, f1324). Despite the fact that f1234 and f1324 have the same maximum value, they exhibit substantially
different fractal-like patterns, which produce exponentially more oscillations for f1234.

Figure 5 and 6 instead considers logistic maps of the form flog,r(x) = 4rx(1 − x) for the values of r where
itinerary a is super-stable, or when nearby iterates converge to the cycle exponentially fast. These functions
are concave, symmetric, and unimodal. Here, complexity strictly increases with the maximum value of flog,r.
Indeed, f1234, f123 and f1324 ordered by height is the order by which they exhibit most to least chaotic behavior.

Figure 3: A comparison of the function complexity (as measured by the number of monotone pieces) of fk for
unimodal mappings f having cycles with different itineraries. The left shows f , f2, f5, and f10 for a function
with a 1234 4-cycle. The center has a 1324 4-cycle. The bottom has a 123 3-cycle. Figure 4 shows how the
number of monotone pieces of fk increases with k for each mapping.
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Figure 4: Visualizes the number of monotone pieces of fk which increases with k for each mapping along with
2k (the maximum number of monotone pieces of any unimodal f). Note that the 1234 itinerary produces a more
“complex” function with more monotone pieces than 123, despite the Sharkovsky analysis from Chatziafratis et al.
(2019) arguing that 3-cycles are the most powerful when determining iteration counts. Moreover, the number of
monotone pieces of the 1234 and 123 itineraries increases exponentially, while that of the 1324 itineraries does
not. (Identical to Figure 2.)

Figure 5: Demonstrates the same ideas as Figure 3, except instead of using asymmetric and non-concave piecewise
functions, we use the scaled logistic map, flog,r. Using Table 1 of Metropolis et al. (1973), we set the parameter
r to 3.96, 3.50, and 3.83 respectively to ensure that a super-stable 1234, 1324, and 123 cycle exists.
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Figure 6: Like Figure 4, vizualizes the differences in number of monotone pieces for the logistic mappings
described in Figure 5.

7 More Examples for Itineraries

7.1 Examples of Itineraries

Let the tent map and logistic map be defined by ftent,r(x) = 2rmax(x, 1 − x) and flog,r(x) = 4rx(1 − x)
respectively, for parameter r ∈ (0, 1).

Example 1. For all r ∈ ( 12 , 1], there is a two-cycle C of itinerary 12 (which is the only itinerary for a 2-cycle)
in ftent,r with

C =

(
2r

1 + 4r2
,

4r2

1 + 4r2

)

.

Example 2. When r = 1+
√
5

4 , there is a two-cycle C of flog,r with

C =

(

1

2
,
1 +

√
5

4

)

.

Example 3. When r ∈ [ 1+
√
5

4 , 1], ftent,r has a three-cycle C of itinerary 123 with

C =

(
2r

1 + 8r3
,

4r2

1 + 8r3
,

8r3

1 + 8r3

)

.

Note that this and Example 1 are consistent with Sharkovsky’s Theorem; whenever there exists a three-cycle,
there also exists a two-cycle.

Example 4. When r ∈ [ 12 , 1], there also exists a four-cycle C of itinerary 1324 for ftent,r with

C =

(
8r3 − 4r2 + 2r

16r2 + 1
,
16r4 − 8r3 + 4r2

16r2 + 1
,
16r4 − 8r3 + 2r

16r2 + 1
,
16r4 − 4r2 + 2r

16r2 + 1

)

.

Again, this reaffirms Sharkovsky’s Theorem, since this cycle always exists when the above three-cycle exists.

Example 5. However, when r ∈ (0.9196 . . . , 1], there also exists a four-cycle C of itinerary 1234 for ftent,r with

C =

(
2r

16r2 + 1
,

4r2

16r2 + 1
,

8r3

16r2 + 1
,

16r4

16r2 + 1

)

.

This demonstrates a relationship beyond Sharkovsky’s theorem: whenever a 1234 four-cycle exists, a 123 three-
cycle also exists. This will be integral to the bounds we show.

Example 6. The triangle map from Telgarsky (2016), ftent,1 has an increasing p-cycle Cp for every p ∈ N with

Cp =

(
2

1 + 2p
,

22

1 + 2p
, . . . ,

2p

1 + 2p

)

.

Thus Theorem 10 and Fact 1 retrieve the fact used by Telgarsky that M(ftent,1) = Ω(2k).
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Table 2: For any unimodal function f , let fr(x) := rf(x) for r > 0. As r increases, any such family obtains
new cycles in the same order, and those cycles are super-stable in the same order. This translates Table 1 of
Metropolis et al. (1973) to our notation and shows at what values of r, flog,r has various super-stable cycles of
length at most 6.

Cycle length p Itinerary Regime r s.t. super-stable for flog,r Cycle Type

2 12 Doubling 0.8090 Primary
4 1324 Doubling 0.8671 Primary
6 143526 Chaotic 0.9069 Primary
5 13425 Chaotic 0.9347 Stefan, Primary
3 123 Chaotic 0.9580 Stefan, Increasing, Primary
6 135246 Chaotic 0.9611
5 12435 Chaotic 0.9764
6 124536 Chaotic 0.9844
4 1234 Chaotic 0.9901 Increasing
6 123546 Chaotic 0.9944
5 12345 Chaotic 0.9976 Increasing
6 123456 Chaotic 0.9994 Increasing

7.2 Orderings of Itineraries

As has been mentioned before, the existence of some cycles can be shown to imply the existence of other cycles.
Sharkovsky’s Theorem famously does this by showing that if p ⊲ p′, then the existence of a p-cycle implies the
existence of a p′-cycle. Proposition 1 can be used to imply that the existence of a chaotic p-cycle implies the
existence of a chaotic (p − 1)-cycle. These pose a broader question: Is there a complete ordering on all cycle
itineraries that can appear in unimodal mappings? And does this ordering coincide with the amount of “chaos”
induced by a cycle?

Researchers of discrete dynamical systems have thoroughly investigated these questions; we refer interested
readers to Metropolis et al. (1973); Alsedà et al. (2000) for a more comprehensive survey. We introduce the
basics of this theory as it relates to our results.

Metropolis et al. (1973) present a partial ordering over cyclic itineraries present in unimodal mappings, which
serves as a measurement of the complexity of the function. That is, two itineraries a and a′ may be related
analogously to Sharkovsky’s Theorem with a ⊲ a′, if f having itinerary a implies that f has itinerary a′. This
ordering for all cycles of length at most 6 is illustrated in Table 2. For instance, if a unimodal map has a cycle
with itinerary 12435, then it also has a cycle with itinerary 135246.

We make several observations about the table and make connections to the itineraries discussed elsewhere in the
paper.

• The table does not contradict Sharkovsky’s Theorem. Note that 3 ⊲ 5 ⊲ 6 ⊲ 4 ⊲ 2, and order in which the first
itinerary occurs of a period is the same as the Sharkovsky ordering:

12 ⊳ 1324 ⊳ 143526 ⊳ 13425 ⊳ 123.

• The last cycle to occur for a given period is its increasing cycle and it occurs as p increases (not with the
Sharkovsky ordering of p):

12 ⊳ 123 ⊳ 1234 ⊳ 12345 ⊳ 123456.

• The first cycle to appear for every odd period is its Stefan cycle (123, 13425). This is proved by Alsedà
et al. (2000) and justifies why Theorem 6 relies on the existence of a Stefan cycle whenever there is an odd
period.

• There exist cycles of power-of-two length (e.g. 1234) that induce non-power-of-two cycles (e.g. 123).
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Figure 7: Bifurcation diagrams—which display the qualitative behavior of a family of functions fr as the pa-
rameter r ∈ [0, 1] changes—showing the convergence behavior for iterates fk

r (x) for large k. For fixed r on the
horizontal axis, the points plotted correspond to fk(x0) for very large k. Regions of r where a vertical slice
contains p discrete points indicates the existence of a stable p-cycle, since fk(x0) converges exclusively to those
points. Regions where the slice has a dispersed mass of points exhibit chaos. As r increases, cycles of different
itineraries appear and experience stability in the same order indicated by Table 2. In the first plot, fr is the
logistic map fr(x) = flog,r(x) = 4rx(1−x). The second fr is the“flat tent map,” fr(x) = min{ 5rx

2 , r, 5rx
2 (1−x)},

and the third is the sine map, fr(x) = r sin(πx). The three are qualitatively identical and exhibit self-similarity.

Following the last bullet point, we distinguish between the 2q-cycles that only induce cycles of length 2i for i < q
and those that induce non-power-of-two cycles. To do so, we say that the itinerary of a p-cycle is primary if it
induces no other p-cycle with a different itinerary.

We say that an itinerary a′ = a′1 . . . a
′
2p of a 2p-cycle is a 2-extension of itinerary a = a1 . . . ap of a p-cycle if

ai =

⌈
a′i
2

⌉

=

⌈
a′i+p

2

⌉

for all i. For instance, 12 is a 2-extension of 1, 1324 is of 12, 15472638 is of 1324, and 135246 is of 123.

Theorem 2.11.1 of Alsedà et al. (2000) characterizes which itineraries are primary. It critically shows that a power-
of-two cycle is primary if and only if it is composed of iterated 2-extensions of the trivial fixed-point itinerary 1.
As a result, 1324 is a primary itinerary and 1234 is not. This sheds further light on the warmup example given
in Section 2 and expanded upon in Appendix 6, where fk

1324 has a polynomial number of oscillations, while fk
1234

has an exponential number.

According to Theorem 2.12.4 of Alsedà et al. (2000), the existence a non-primary itinerary of any period implies
the existence of some cycle with period not a power of two. Hence, f can only be in the doubling regime (where
all periods are powers of two) if all of those power-of-two periods are primary. The existence of any non-primary
power-of-two period (such as 1234 or 13726548) implies that the f is in the chaotic regime.

This ordering can also be visualized using the bifurcation diagrams in Figure 7. The diagram plots the convergent
behavior of fk

r (x) for large k, where r is some parameter and reflects the complexity of the unimodal function fr.
(When r = 0, fr = 0; when r = 1, xmax = 1, and C0,1(f

k) = 2k.) As r increases, the number of oscillations of
fk
r increases and with it, new cycles are introduced. Each new cycle has a stable region over parameters r where
fk
r (x) converges to the cycle, and the bifurcation diagram visualizes when each of these stable regions occurs.
While the three functions families fr have different underlying unimodal functions, they produce qualitatively
identical bifurcation diagrams that feature the same ordering of itineraries.

Our discussions of the doubling and chaotic regimes in Section 4 are inspired by these bifurcation diagrams.
Parameter values r are naturally partitioned into two categories: those on the left side of the diagram where the
plot is characterized by a branching of cycles (the doubling regime) and those on the right side where there are
extended regions of chaos, interrupted by small stable regions (the chaotic regime).

7.3 Identifying Increasing Cycles in Unimodal Maps

It is straightforward to determine whether a symmetric and unimodal f has an increasing p-cycle. Algorithmically,
one can do so by verifying that f( 12 ) >

1
2 and counting how many consecutive values of k ≥ 2 satisfy fk(x0) <

1
2 .
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Proposition 1. Consider some p ≥ 2 and a symmetric unimodal mapping f . f has an increasing p-cycle if

f2

(
1

2

)

< · · · < fp

(
1

2

)

≤ 1

2
< f

(
1

2

)

,

then f has an increasing p-cycle.

Proof. Refer to Figure 8 for a visualization of the variables and inequalities defined.

Let x′ = f( 12 ). By the unimodality of f and the fact that x′ > 1
2 , there exists some x′′ > 1

2 such that

f(x′′) < f2(x′′) < · · · < fp−1(x′′) =
1

2
.

Because f is monotonically increasing on [0, 1
2 ], the following string of inequalities hold.

f(x′) ≤ f(x′′) < f2(x′) ≤ f2(x′′) < · · · < fp−1(x′) ≤ fp−1(x′′) =
1

2
(1)

It then must hold that x′ ≥ x′′.

Let g(x) = fp(x)−x and note that g is continuous. Because 1
2 maximizes f , it must be the case that fp(x′) ≤ x′

and g(x′) ≤ 0. Because fp(x′′) = x′ and x′′ ≤ x′, g(x′′) ≥ 0. Hence, there exists x∗ ∈ [x′′, x′] such that g(x∗) = 0
and fp(x∗) = x∗.

Since x∗ ∈ [x′′, x′], it must also be the case that f j(x∗) ∈ [f j(x′), f j(x′′)] for j ∈ [p − 1]. By Equation (1), it
follows that

f(x∗) < f2(x∗) < · · · < fp−1(x∗) < fp(x∗) = x∗.

Hence, there exists an increasing p-cycle.

8 Comparison with Prior Works

Given the large number of results presented in this paper and the many axes of comparison one can draw
between these results and their predecessors in Telgarsky (2016); Chatziafratis et al. (2019, 2020), we provide
Table 3 to illuminate these comparisons. It reinforces our key contributions, namely that (1) the presence of
increasing cycles makes a function more difficult to approximate than a 3-cycle alone; (2) requiring that f satisfy
unimodality constraints gives lower-bounds to constant accuracy that cannot be made vacuous by adversarial
choices of f ; and (3) the key distinction between “hard” and “easy” functions is the existence of non-primary
power-of-two cycles.

We provide context for each column to clarify what its cells mean and how to compare their values.

• “Condition” specifies what must be true of the complexity of f in order for the relevant bounds to occur.
All but the latter two conditions describe a very broad array of functions, while the last two focus only on
a restricted subset of tent mappings.

– “Maximal PO2” means that the maximal cycle of f is a primary12 p-cycle where p is a power of two.
This means that f lies in the doubling regime described in Theorem 8.

– “htop(f) ≥ ρ” considers any f with a lower-bound on its topological entropy for some ρ > 1. Notably,
all conditions other than “Maximal PO2” satisfy this for some ρ.

– “Non-primary” means that any non-primary cycle exists in f . That is, if f is known to have a non-
primary power-of-two cycle, then the results apply.

– “Non-PO2” refers to any f that has a p-cycle where p is not a power of two.

– “Odd cycle” includes any f that has a p-cycle where p is odd.

12See Appendix 7.2.
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1/2 x′′f(x′′)f2(x′′)f
p−2(x′′)

x′f(x′) f2(x′) fp−1(x′)

x∗f (x∗)f2 (x∗) fp−2 (x∗)fp−1 (x∗)

x

f(x)

Figure 8: Visualizes the proof of Proposition 1.

Condition Approx. Unimodal? Concave? Symmetric? L ≤ ρ? Acc. Exp. Hard? Source

1 Maximal PO2 L∞ Yes No Yes No Ω(1) Any No Thm 8

2 htop(f) ≥ ρ L∞ No No No No ǫ(f) ρ Yes BZL Thm 16

3 Non-primary Cls. No No No No 1
4 (1, φ] Yes CNPW Thm 1.6, Re-

mark 5

4 Non-primary L∞ No No No No ǫ(f) (1, φ] Yes CNPW Thm 1.6, Re-

mark 5, BZL Thm 16

5 Non-PO2 Cls. No No No No 1
4 (1, φ] Yes CNPW Thm 1.6

6 Non-PO2 L∞ No No No No ǫ(f) (1, φ] Yes CNPW Thm 1.6,
BZL Thm 16

7 Odd cycle Cls. No No No No 1
4 (

√
2, φ] Yes CNP Thm 1.1

8 Odd cycle L∞ No No No No ǫ(f) (
√
2, φ] Yes CNP Thm 1.1,

BZL Thm 16

9 Odd cycle L∞ Yes Yes Yes No Ω(1) (
√
1, φ] Yes Thm 6

10 Odd cycle L1 No No No Yes ǫ(f) (
√
2, φ] Yes CNP Thm 1.2

11 ftent,ρp/2 L1 Implied Implied Implied Implied Ω(1) (
√
2, φ] Yes CNP Lemma 3.6

12 Odd cycle L1 Yes Yes Yes Yes Ω(1) (
√
2, φ] Yes Thm 7

13 Inc. Cycle Cls. No No No No 1
4 [φ, 2) Yes Thm 4, Remark 3

14 Inc. Cycle L∞ No No No No ǫ(f) [φ, 2) Yes Thm 4, Remark 3

15 Inc. Cycle L∞ Yes Yes No No Ω(1) [φ, 2) No Prop 2

16 Inc. Cycle L∞ Yes No Yes No Ω(1) [φ, 2) No Prop 3

17 Inc. Cycle L∞ Yes Yes Yes No Ω(1) [φ, 2) Yes Thm 4

18 Inc. Cycle L1 No No No Yes ǫ(f) [φ, 2) Yes Thm 5, CNP Thm 1.2

19 Inc. Cycle L1 Yes Yes Yes Yes Ω(1) [φ, 2) Yes Thm 5

20 ftent,ρp/2 L1 Implied Implied Implied Implied Ω(1) [φ, 2) Yes Cor 1

21 ftent,1 L1 Implied Implied Implied Implied Ω(1) 2 Yes Telgarsky

Table 3: Compares the conditions and limitations of the theoretical results presented in this paper and its
predecessors. New results are bolded.
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– “Inc. cycle” means that f has an increasing p-cycle for some p, i.e. a cycle with itinerary 12 . . . p.

– ftent,ρp/2 refers to families of tent maps scaled by ρp solving the polynomials from Chatziafratis et al.
(2020) Lemma 3.6 (for odd periods) and Corollary 1 (for increasing cycles).

– The last row refers exclusively to the tent map of height 1 and slope 2.

• “Approx.” refers to how difference between neural network g and iterated map fk is measured. The
options are L1, L∞, and classification error. It’s easier to show that g can L1-approximate fk than it is
to show that g can L∞-approximate f ; conversely, it’s most impressive to show lower bound results with
respect to the L1 error than it is for the L∞ error.

Chatziafratis et al. (2019, 2020) consider classification error, Bu et al. (2020) focus on L∞ approximation,
and Chatziafratis et al. (2020) also consider L1 approximation. We routinely translate classification errors
to L∞ errors using Corollary 2, which draws on Theorem 16 of Bu et al. (2020).

• “Unimodal?,” “Concave?,” and “Symmetric?,” have “Yes” if and only if f must meet the respective
property for the proof to hold. They have “Implied” if the value of “Condition” already ensures that the
property is satisfied and the requirement need not be enforced.

• “L ≤ ρ?” is “Yes” if the results only hold if f is chosen with a Lipschitz constant less than the rate of
growth of its oscillations. This is a very restrictive condition met by very few functions (including no logistic
maps with cycles).

• “Acc.” specifies the desired accuracy of the hardness result. “Ω(1)” means that there exists some constant
ǫ such that for any choice of f in the category, any neural network g will be unable to approximate f up to
accuracy ǫ. “ǫ(f)” means that the degree of approximation may depend on the chosen function f (and the
period p) that belongs to the category; these bounds may be vacuous by an adversarial choice of f . As a
result, hardness results with “Ω(1)” are more impressive.

• “Exp.” refers to the base of the exponent of the lower-bound on the width necessary to approximate fk

using a shallow network g. Larger values indicate stronger bounds.

• “Hard?” is “Yes” if for every f satisfying the conditions to the left, f cannot be approximated up to the
specified accuracy by any neural network g. It is “No” if there exists some f satisfying the conditions that
can be approximated to a stronger degree of accuracy.

• “Source” denotes where to find the result. Some of the less interesting results are not given their own
theorems and rather are immediate implications of several theorems across this body of literature. For the
sake of space, we use “CNPW” to refer to (Chatziafratis et al., 2019); “CNP” for (Chatziafratis et al., 2019);
“BZL” for (Bu et al., 2020); and “Telgarsky” for (Telgarsky, 2016).

9 Additional Proofs for Section 3

9.1 Proof of Lemma 1

We restate and prove the lemma. This is the main technical lemma that we use to get the sharper depth-width
tradeoffs and the improved notion of constant approximation.

Lemma 1 (Oscillation Bound for Increasing Cycles). Suppose f is a symmetric, concave unimodal mapping with
an increasing p-cycle for some p ≥ 3. Then, there exists [a, b] ⊂ [0, 1] with b−a ≥ 1

18 such that Ca,b(f
k) ≥ 1

2ρ
k
inc,p

for all k ∈ N.

Proof. We first lower-bound the total number of oscillations that will appear an increasing p-cycle is present.
Later, we show that the size of the oscillations is large as well.

Because we have an increasing cycle of itinerary 12 . . . p, we assume (wlog) that the cycle is (x1, . . . , xp) with
x1 < x2 < · · · < xp. Define intervals Ij := [xj , xj+1] for j ∈ {1, . . . , p− 1}. Because f is continuous, we conclude
that Ij+1 ⊂ f(Ij) for all j < p and Ij ⊂ f(Ip−1) for all j. Figure 9 visualizes these relationships.
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x

f(x)

xp−1 xpx1 x2 x3 xp−2

I1 I2 Ip−2 Ip−1

I1
. . .

I2 I3 Ip−2 Ip−1

Figure 9: Visualizes the intervals I1, . . . , Ip−1 defined in the proof of Lemma 1 and which intervals f maps to
one another when f has an increasing p-cycle.

Using the methods of Chatziafratis et al. (2019), we define y(k) ∈ N
p−1 such that y

(k)
j is a lower bound on the

number of times fk passes through interval Ij , or

Cxj ,xj+1
(fk) ≥ y

(k)
j .

We can then encode the interval relationships above with y(k+1) = Apy
(k) where y(0) is a vector of all ones and

and Ap ∈ {0, 1}(p−1)×(p−1) with (Ap)i,j = 1 {j = p− 1 or i = j + 1}. We get the following adjacency matrix for
the intervals, capturing the mapping relationships (under f) between them:

Ap =












0 0 0 · · · 0 1
1 0 0 · · · 0 1
0 1 0 · · · 0 1
0 0 1 · · · 0 1
...

...
...

. . .
...

...
0 0 0 · · · 1 1












.

We find the characteristic polynomial of Ap and lower-bound y(k+1) with the spectral radius of Ap. We show by
induction on p ≥ 3 that

det(Ap − λI) = (−1)p−1

(

λp−1 −
p−2
∑

i=0

λi

)

.

For the base case p = 3, we have:

det(A3 − λI) =

∣
∣
∣
∣

−λ 1
1 1− λ

∣
∣
∣
∣
= λ2 − λ− 1,

which satisfies the desired form.
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Now, we show the inductive step by expanding the determinant of Ap − λI.

det(Ap − λI) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−λ 0 0 · · · 0 1
1 −λ 0 · · · 0 1
0 1 −λ · · · 0 1
0 0 1 · · · 0 1
...

...
...

. . .
...

...
0 0 0 · · · −λ 1
0 0 0 · · · 1 1− λ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= −λ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−λ 0 · · · 0 1
1 −λ · · · 0 1
0 1 · · · 0 1
...

...
. . .

...
...

0 0 · · · −λ 1
0 0 · · · 1 1− λ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0 · · · 0 1
1 −λ · · · 0 1
0 1 · · · 0 1
...

...
. . .

...
...

0 0 · · · −λ 1
0 0 · · · 1 1− λ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

The left determinant exactly equals det(Ap−1 − λI), which we can expand using the inductive hypothesis. The
second equals (−1)p−2, because p− 2 row swaps (which are elementary row operations) can be used to move the
first row to the bottom and make the matrix upper-triangular with diagonals of one. We conclude the inductive
step below.

det(Ap − λI) = −λ det(Ap−1 − λI)− (−1)p−2

= −λ(−1)p−2

(

λp−2 −
p−3
∑

i=0

λi

)

+ (−1)p−1 = (−1)p−1

(

λp−1 −
p−2
∑

i=0

λi

)

.

We find the eigenvalues of Ap by finding the roots of the polynomial

P (x) = λp−1 −
p−2
∑

i=0

λi = 0.

Observe that there must be a root greater than 1 because P (1) = 2− p < 0 and P (2) = 1 > 0. Equivalently, if
λ 6= 1,

P (x) = λp−1 − 1− λp−1

1− λ
=

λp − 2λp−1 + 1

λ− 1
= 0.

Hence, finding the largest root of P is equivalent to finding the largest root of λp − 2λp−1 + 1, which is ρinc,p by
definition.

This implies that the spectral radius of Ap, sp(Ap) = ρinc,p > 1, and hence, we also have sp(Ak
p) = sp(Ap)

k =

ρkinc,p. Since all the elements in Ap and in Ak
p are non-negative, then the infinity norm of Ak

p is by definition

the maximum among its row sums. Since the last column of Ap is the all 1’s vector, the largest row sum in Ak
p

appears at its last row:

||Ak
p||∞ =

p−1
∑

j=1

(Ak
p)p−1,j

We can now use the fact that the infinity norm of a matrix is larger than its spectral norm:

||Ak
p||∞ ≥ ρkinc,p

We conclude that there exists at least one interval Ij∗ (e.g., the interval Ip−1) which is crossed at least ρkinc,p
times by fk, so Cxj∗ ,xj∗+1

(fk) ≥ ρkinc,p.

Thus, for some a′, b′ we get Ca′,b′(f
k) ≥ ρkinc,p. But can we find a′, b′ with large difference b′ − a′?

Now, we show that the intervals traversed are sufficiently large, in order to lower-bound Ca,b(f
k) with b−a ≥ 1

18 .
By Lemma 3, there exists some j with xj+1 − xj ≥ 1

18 . It suffices to show that fk traverses the interval Ij
sufficiently many times.
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From earlier in the proof, there exists some j∗ such that f crosses Ij∗ at least N := ρkinc,p times. We conclude by
showing that every other interval is traversed at least half as often as this most popular interval, which suggests
that Cxj ,xj+1

(f) ≥ N
2 .

For A ∈ R
(p−1)×(p−1) as defined earlier in the section and for y(k) := Ak~1, we argue inductively that the elements

of y(k) are non-decreasing and that y
(k)
p−1 ≤ 2y

(k)
1 . For the base case, this is trivially true for k = 0.

Suppose it holds for k. By construction, we have y
(k+1)
1 = y

(k)
p−1 and y

(k+1)
j = y

(k)
j−1 + y

(k)
p−1 for all j > 1. By the

inductive hypotheses,

y
(k+1)
1 ≤ y

(k+1)
2 ≤ · · · ≤ y

(k+1)
p−1 ≤ 2y

(k+1)
1 .

Therefore, fk crosses interval Ij at least
N
2 times, and Ij has width at least 1

18 . The claim immediately follows.

Lemma 3. For some p ≥ 3, consider a symmetric concave unimodal function f with an increasing p-cycle of
x1 < · · · < xp. Then, there exists j ∈ [p− 1] such that xj+1 − xj ≥ 1

18 .

Proof. By the continuity of f , note that [x1, xp] ⊂ f3([xp−3, xp−2]). There then exists some y1 ∈ [xp−3, xp−2]
such that f3(y1) = y1, y2 := f(y1) ∈ [xp−2, xp−1], and y3 := f(y2) ∈ [xp−1, xp]. Thus, if f has a maximal p-cycle,
then f also has a 3-cycle corresponding to xp−3 < y1 < y2 < y3 < xp.

We now show that y3 − y1 must be sufficiently large by concavity. For f to be concave, the following inequality
must hold:

f(y1)− f(0)

y1 − 0
≥ f(y2)− f(y1)

y2 − y1
> 0 >

f(y3)− f(y2)

y3 − y2
≥ f(1)− f(y3)

1− y3
,

or equivalently,
y2
y1

≥ y3 − y2
y2 − y1

> 0 > −y3 − x1

y3 − y2
≥ − y1

1− y3
.

In addition, note that y1 < 1
2 and y3 > 1

2 . If the former were false, then f(y2) ≤ f(y1) (by unimodality), which
contradicts y3 > y2. If the latter were false, then f(y3) > f(y2), which contradicts y1 < y3.

We consider two cases and show that either way, the interval must have width at least 1
6 .

• If y2 − y1 ≤ 2
5 (y3 − y1), then

y3−y2

y2−y1
≥ 3

2 , which mandates that y1 ≤ 2y2

3 to ensure concavity. Thus,

y3 − y1 ≥ y3 −
2y2
3

≥ y3
3

≥ 1

6
.

• If y2 − y1 ≥ 2
5 (y3 − y1), then

y3−y1

y3−y2
≥ 5

3 , and thus y1 ≥ 5
3 (1− y3) and y3 ≥ 1− 3y1

5 . Then,

y3 − y1 ≥ 1− 3y1
5

− y1 = 1− 8y1
5

≥ 1

5
.

Thus, we must have

max{xp−2 − xp−3, xp−2 − xp−1, xp − xp−1} ≥ 1

18
.

9.2 Proof of Fact 1

Fact 1. ρinc,p ∈ [max(2− 4
2p , φ), 2), where φ = 1+

√
5

2 is the Golden Ratio.

Proof. Let Pinc,p(λ) = λp − 2λp−1 + 1.

First, observe that ρinc,p < 2, because Pinc,p(λ) > 0 whenever λ ≥ 2. We lower-bound ρinc,p by finding some
λ for each p such that Pinc,p(λ) ≤ 0 or equivalently λp−1(2 − λ) ≥ 1 for all p ≥ 3, which bounds ρinc,p by the
Intermediate Value Theorem.
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Consider λ = 2− 4
2p . Then,

λp−1(2− λ) =

(

2− 4

2p

)p−1

· 4

2p
= 2

(

1− 2

2p

)p−1

≥ 2

(

1− 2(p− 1)

2p

)

= 2− 2 · p− 1

2p−1

≥ 2− 2 · 1
2
= 1.

9.3 Previous Results about Hardness of Approximating Oscillatory Functions

We rely on prior results from Chatziafratis et al. (2019, 2020) to show that an iterated function fk is inapprox-
imable by neural networks. These results hold if fk has sufficiently many crossings of some interval. We apply
these results later with improved bounds on both the number and the size of crossings.

Chatziafratis et al. (2019) show that the classification error of fk can be bounded if there are enough oscillations.

Theorem 10 ((Chatziafratis et al., 2019), Section 4). Consider any continuous f : [0, 1] → [0, 1] and any
g ∈ N (u, ℓ). Suppose there exists a < b such that Ca,b(f) = Ω(ρt) and suppose u ≤ 1

8ρ
k/ℓ. Then, for t = a+b

2 ,
there exists S with |S| = 1

2

⌊
ρk
⌋
samples such that

RS,t(f
k, g) ≥ 1

2
− (2u)ℓ

n
.

We adapt that claim to lower-bound the L∞ approximation of fk by g.

Corollary 2. Consider any continuous f : [0, 1] → [0, 1] and any g ∈ N (u, ℓ). Suppose there exists a < b such
that Ca,b(f) = Ω(ρt) and suppose u ≤ 1

8ρ
k/ℓ. Then,

∥
∥fk − g

∥
∥
∞ ≥ b− a

2
.

Proof. By Theorem 10, there exists some x ∈ [0, 1] such that (wlog) fk(x) ≤ a and g(x) ≥ a+b
2 . The conclusion

for the L∞ error is immediate by definition.

Chatziafratis et al. (2020) give a lower-bound on the ability of a neural network g to L1-approximate fk, provided
a correspondence between the Lipschitz constant of f and the rate of oscillations ρ.

Theorem 11 (Chatziafratis et al. (2020) Theorem 3.2). Consider any L-Lipschitz f : [0, 1] → [0, 1] and any
g ∈ N (u, ℓ). Suppose there exists a < b such that Ca,b(f) = Ω(ρt). If L ≤ ρ and u ≤ 1

16ρ
k/ℓ, then

∥
∥fk − g

∥
∥
1
= Ω((b− a)2).

The Lipschitzness assumption is extremely strict, especially because they show in their Lemma 3.1 that L ≥ ρ
whenever f has a period of odd length.

9.4 Proof of Corollary 1

Corollary 1. For any p ≥ 3 and k ∈ N, any g ∈ N (u, ℓ) with u ≤ 1
16ρ

k/ℓ
inc,p has ‖fk

tent,ρinc,p
− g‖1 = Ω(1).

Proof. This theorem follows from Theorem 5 and Lemma 1. Because ftent,ρp/2 is ρp-Lipschitz, it remains only
to prove that there exists an increasing p-cycle. We show that

1

2
, f

(
1

2

)

, . . . , fp−1

(
1

2

)

is such a cycle.
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x

f(x)

xp−1
xp xp−2 x3

xp−3

I1 I2
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. . .

I2

Ip−2Ip−1

xp−4 x1

x2

x4
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I(p+1)/2

I(p+3)/2
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Figure 10: Gives an example of a Stefan p-cycle (which is relied upon in Lemma 2 and demonstrates the interval
relationships). Analogous to Figure 9.

By definition of the tent map, f( 12 ) =
ρinc,p

2 and f2( 12 ) = ρinc,p(1− ρinc,p

2 ). If we assume for now that f j( 12 ) ≤ 1
2

for all j ∈ {2, . . . , p− 1}, then

fp

(
1

2

)

= ρp−1
inc,p

(

1− ρinc,p
2

)

= −1

2

(

ρpinc,p − 2ρp−1
inc,p + 1

)

+
1

2
= 0 +

1

2
.

Because fp( 12 ) =
1
2 and we assumed that f j+1( 12 ) = ρinc,pf

j( 12 ) for j ≥ 2 and ρ > 1, it must be the case that
f j( 12 ) ≤ 1

2 for all j ∈ {2, . . . , p− 1}.
Lemma 1 thus implies that fk has Ω(ρkinc,p) crossings, which enables us to complete the proof by invoking
Theorem 5, since the Lipschitzness condition is met.

9.5 Proof of Lemma 2

Lemma 2. For some odd p ≥ 3, suppose f is a symmetric concave unimodal mapping with an odd p-cycle.
Then, there exists [a, b] ⊂ [0, 1] with b− a ≥ 0.07 such that Ca,b(f

k) = ρk−p
odd,p for any k ∈ N.

Proof. By Theorems 2.94 and 3.11.1 of Alsedà et al. (2000), there exists a p-cycle of the form

xp < xp−2 < · · · < x3 < x1 < x2 < x4 < · · · < xp−1,

which is known as a Stefan cycle. The analysis of Section 3.2 of Chatziafratis et al. (2020) shows that
C[x1,x2](f

k) ≥ ρkodd,p. Their exploitation of the relationships between intervals is visualized in 10. By the con-

tinuity of f , applying f an additional p− 1 times gives C[xp,x1](f
k+p−1) ≥ ρkodd,p. Because [xp−2, x1] ⊂ [xp, x1],

applying f one more time gives C[x2,xp−1](f
k+p) ≥ ρkodd,p.

Hence, by redefining k, we have

max{C[x1,x2](f
k), C[x2,xp−1](f

k), C[xp,x1](f
k)} ≥ ρk−p

odd,p.
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Since [xp, xp−1] is the disjoint union of [x1, x2], [x2, xp−1], and [xp, x1], there exists [a, b] ⊂ [xp, xp−1] with

b− a ≥ 1
3 (xp−1 − xp) such that C[a,b](f

k) ≥ ρk−p
odd,p.

The problem reduces to placing a lower bound on xp−1−xp. To do so, we derive contradictions on the concavity
and symmetry of f . Let r = f( 12 ) ∈ (xp, 1) be the the largest outcome of f , and let

a = sup
x,x′∈[1−r,r]

∣
∣
∣
∣

f(x)− f(x′)

x− x′

∣
∣
∣
∣

be the maximum absolute slope of f on [1− r, r]. a must be finite by the concavity and continuity of f , and if
f is differentiable, a = f ′(1− r) = −f ′(r). Thus, f is a-Lipschitz on that interval.

Because f([xp, xp−1]) ⊆ [xp, r] ⊂ [1 − r, r], it follows that
∣
∣f2(x)− f2(x′)

∣
∣ ≤ a2 |x− x′|. Thus, x2 − xp ≤

a2(xp−2−xp) and x2−xp ≤ x4−xp ≤ a2(x2−xp−2). Averaging the two together, we have x2−xp ≤ a2

2 (x2−xp),

which means a ≥
√
2.

To satisfy concavity, the following must be true:

f(1− r)− f(0)

1− r − 0
=

f(r)

1− r
≥ a ≥

√
2.

We rearrange the inequality and apply properties of monotonicity to lower-bound r away from 1
2 :

r ≥ 1− f(r)√
2

≥ 1− f(xp−1)√
2

= 1− xp√
2
> 1− 1

2
√
2
.

It also must be the case for any x ∈ [ 12 , 1], that:

∣
∣
∣
∣
∣

f(x)− f
(
1
2

)

x− 1
2

∣
∣
∣
∣
∣
≤ 2.

Otherwise, the concavity of f would force f( 12 ) > 1.

We finally assemble the pieces to lower-bound the gap between xp−1 and xp:

xp−1 − xp ≥ xp−1 −
1

2
≥ −1

2

(

f(xp−1)− f

(
1

2

))

=
r

2
− xp

2

>
1

2
− 1

4
√
2
− 1

4
=

1

4
− 1

4
√
2
> 0.07.

9.6 Necessity of Symmetry and Concavity Assumptions in Theorems 4 and 5

We demonstrate the weakness of the bounds promised by Chatziafratis et al. (2019, 2020); Bu et al. (2020)
and argue that our assumptions of symmetry and concavity are necessary in order to avoid such non-vacuous
bounds. To do so, we exhibit two families of functions in Propositions 2 and 3 which contain functions with
increasing p-cycles for every p that produce large numbers of oscillations, yet are trivial to approximate because
their oscillations can be made arbitrarily small. The functions considered in both cases are unimodal and lack
symmetry and concavity respectively.

These expose a fundamental shortcoming of other approaches to the hardness of neural network approximation
in the aforementioned works because they all rely on showing that for every mapping f meeting some condition
(e.g. odd period, positive topological entropy), there exists some [a, b] ∈ [0, 1] where Ca,b is exponentially large,
and hence no poly-size shallow neural network g can obtain L∞(fk, g) ≤ P (b − a) for some polynomial P .
However, because [a, b] depends on f , their difference can potentially be arbitrarily small. The propositions show
that this concern is significant and that [a, b] indeed becomes arbitrarily narrow for simple 3-periodic functions.
While Chatziafratis et al. (2019) avoid addressing this issue head-on by focusing on classification error over L∞
error, their classification lower-bounds rely on misclassification of points whose actual distance can be shrinking
(see for example Figure 11).
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Figure 11: Plots the asymmetric function with a p-cycle referenced in Proposition 2 for p = 3 and ǫ = 0.1. While
f oscillates frequently, f can be trivially 0.1-approximated by three ReLUs. As ǫ → 0, the L∞ approximation
hardness guarantees implied by Chatziafratis et al. (2019) become vacuous because the oscillations, even though
they are exponentially many, they shrink in size.

The implications of these propositions contrast with the more robust hardness results we present in Theorems 4,
5, 6, and 7, which leverage unimodality, symmetry, and concavity to ensure that the accuracy of approximation
can be no better than some constant (independent on f, p) when the neural network g is too small. We show
here that those assumptions are necessary by exhibiting functions that satisfy all but one, and become easy to
L∞-approximate with small depth-2 ReLU networks.

Proposition 2. For p ≥ 3 and for sufficiently small ǫ > 0, there exists a concave unimodal mapping f with a
chaotic p-cycle such that for any k, there exists g ∈ N (3, 2) with

L∞(fk, g) ≤ ǫ.

Proof. For all j ∈ [p], let xj = 1 − p−j+1
p ǫ. Define f to be a piecewise-linear function with p + 1 pieces chosen

with boundaries that satisfy

f(0) = 0, f(x1) = x2, f(x2) = x3, . . . , f(xp−1) = xp, f(xp) = x1, f(1) = 0.

We visualize f for p = 3 in Figure 11. f is unimodal because it increases on [0, xp−1] and decreases on [xp−1, 1].
It is concave because f ′(x) does not increase as x grows, since

f ′(x) =







1− p−1

p
ǫ

1−ǫ > 1 x ∈ [0, x1)

1 x ∈ (x1, xp−1)

−p+ 1 x ∈ (xp−1, xp)

− 1−ǫ
ǫ x ∈ (xp, 1],

as long as 1−ǫ
ǫ > p− 1.

We show inductively that for all k, there exists ak < bk such that fk(ak) = fk(bk) = 1−ǫ, fk([ak, bk]) ∈ [1−ǫ, 1],
and fk has exactly one linear piece for each of the intervals [0, ak] and [bk, 1].

These are true for the base case k = 1 for a1 ∈ (0, x1) and b1 = xp.

If the claim holds for k, then there is some ak+1 ∈ (0, ak) and bk+1 ∈ (bk, 1) such that f(ak+1) = f(bk+1) = ak.
Then, fk+1(ak+1) = fk+1(bk+1) = 1 − ǫ and fk+1([0, ak+1]) = fk+1([bk+1, 1]) = [0, 1 − ǫ]. For all x ∈ [0, ak+1],
f j(x) ≤ 1−ǫ for all j ≤ k+1. Hence, fk+1 is linear on [0, ak+1] (and also [bk+1, 1]. Because f([x1, xp]) = [x1, xp],
fk+1([ak+1, bk+1]) ⊆ [x1, xp] ⊆ [1− ǫ, 1]. The claim then holds for k + 1.

Thus, the piecewise linear mapping g with boundaries g(0) = 0, g(ak) = 1 − ǫ, g(bk) = 1 − ǫ, and g(1) = 0 is
an ǫ-approximation of f . Because g has three pieces and contains the origin, it can be exactly represented by a
linear combination of four ReLUs, and hence as a depth-2 neural network of width 3.
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Figure 12: Another example of a function with a 3-cycle that can be ǫ-approximated for arbitrarily small ǫ.
(Here, ǫ = 0.1.) This function corresponds to the one in Proposition 3 and the Chatziafratis et al. (2019) bounds
are again vacuous for small ǫ. Unlike Figure 11, this function is symmetric, but not concave.

Proposition 3. For p ≥ 3 and for sufficiently small ǫ > 0, there exists a symmetric unimodal mapping f with
a chaotic p-cycle such that for any k, there exists g ∈ N (3, 2) with

L∞(fk, g) ≤ ǫ.

Proof. Let xj = 1
2 − p−1−j

2(p−1)ǫ for all j ∈ [p − 1] and xp = 1
2 + ǫ

2 . Let f be a piecewise-linear function with

boundaries

f(0) = 0, f

(
1

2
− ǫ

2

)

=
1

2
− p− 2

p− 1
· ǫ
2
, f

(
1

2
− ǫ

2(p− 1)

)

=
1

2
, f

(
1

2

)

=
1

2
+

ǫ

2
,

f

(
1

2
+

ǫ

2(p− 1)

)

=
1

2
, f

(
1

2
+

ǫ

2

)

=
1

2
− p− 2

p− 1
· ǫ
2
, f(1) = 0.

We visualize f for p = 3 in Figure 12. Note that f is symmetric and unimodal and has an increasing p-cycle
x1 < · · · < xp. It is not concave because f ′(x) = 1 for x ∈ [x1, xp−2] and f ′(x) = 2(p− 1) for x ∈ [xp−2, xp−1].

Using a very similar argument to argument from the proof of Proposition 2, for all k, there exists ak < bk such
that fk is linear on [0, ak] and [bk, 1] and fk([ak, bk]) ∈ [ 12 − ǫ, 1

2 + ǫ]. As before, there exists a piecewise linear
function with three pieces (which can be thought of as a depth-2 neural network of width 3) that ǫ-approximates
f .

10 Additional Proofs for Section 4

10.1 Preliminaries

Before reintroducing and proving the theorems about the doubling and chaotic regime, we introduce topological
entropy and define VC-dimension.

10.1.1 Topological Entropy

Topological entropy is a well-known measure of function complexity in dynamical systems that measures the
“bumpiness” of a mapping. Like we do with chaotic itineraries, Bu et al. (2020) draw analogies between the
neural network approximability of fk and the topological entropy of f . We do not give a rigorous definition
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of topological entropy, but we include a well known result connecting topological entropy to the number of
monotone pieces (not constant-sized crossings), which is stated as Lemma 3 of the aforementioned work.

Lemma 4. [Misiurewicz and Szlenk (1980); Young (1981)] If f : [0, 1] → [0, 1] is continuous and piece-wise
monotone, then the topological entropy of f satisfies the following:

htop(f) = lim
k→∞

1

k
logM(fk).

10.1.2 VC-Dimension

We capture the complexity of the mappings produced by repeated application of f , by measuring the capability
of a family of iterates to fit arbitrarily-labeled samples with the VC-dimension. For some threshold parameter
t ∈ (0, 1), we first define a hypothesis class that we use to cast this family of iterated functions as Boolean-valued.

Definition 7. For some unimodal f : [0, 1] → [0, 1] and threshold t ∈ (0, 1), let

Hf,t := {[[fk]]t : k ∈ N}

be the Boolean-valued hypothesis class of classifiers of composed functions.

The following is the standard definition of the VC-dimension:

Definition 8 (Vapnik and Chervonenkis (2013)). For some hypothesis class H containing functions [0, 1] →
{0, 1}, we say that H shatters samples x1, . . . , xd ∈ [0, 1] if for every labeling of the samples σ1, . . . , σd ∈ {0, 1},
there exists some h ∈ H such that h(xi) = σi for all i ∈ [d]. The VC-dimension of H, VC(H) is the maximum d
such that there exists x1, . . . , xd ∈ [0, 1] that H shatters.

VC(Hf,t) will be a useful measurement of complexity of the mapping f , which as we show is tighly connected
with the notion of periodicity and oscillations. Notably, this is a measurement of the complexity of iterated
maps and is not a typical formulation of VC-dimension for neural networks, since those typically would consider
a fixed depth and a fixed width, but variable values for the weights, rather than fixed f and variable k.

10.2 Proof for Theorem 8 and 9

Theorem 8. [Doubling Regime] Suppose f is a symmetric unimodal mapping whose maximal cycle is a primary
cycle of length p = 2q. That is, there exists a p-cycle but no 2p-cycles (and thus, no cycles with lengths non-
powers-of-two). Then, the following are true:

1. For any k ∈ N, M(fk) = O((4k)q+1).

2. For any k ∈ N, there exists g ∈ N (u, 2) with u = O((4k)q+1/ǫ) such that
∥
∥g − fk

∥
∥
∞ ≤ ǫ. Moreover, if

f = ftent,r, then there exists g ∈ N (u, 2) with u = O((4k)q+1) and g = fk.

3. htop(f) = 0.

4. For any t ∈ (0, 1), VC(Hf,t) ≤ 18p2.

Proof. Claim 1 follows from a somewhat involved argument in Appendix 10.3 that uses an inductive argument
to compare the behavior of a mapping with a maximal p-cycle to one with a maximal p

2 -cycle. By categorizing
intervals of [0, 1] based on how fk behaves on that interval, we analyze how fk+1 in turn behaves, which leads
to a bound on the monotone pieces M(fk).

Claim 2 is a simple consequence of Claim 1, by using the fact that a ReLU network can piecewise approximate
each monotone piece of fk. This argument appears in Appendix 10.4.

Claim 3 follows easily from Claim 1 and Lemma 4. We note that this derivation about the topological entropy
and the periodicity of f is a known fact in the dynamical systems community.

Claim 4 relies on another recursive argument that frames VC-dimension in terms of the possible trajectories of
fk(x) for fixed x and changing k. We characterize these trajectories by making use of Regular Expressions and
by bounding the corresponding VC dimension in Appendix 10.5.
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Theorem 9. [Chaotic Regime] Suppose f is a unimodal mapping that has a p-cycle where p is not a power-of-two.
Then, the following are true:

1. There exists some ρ ∈ (1, 2] such that for any k ∈ N, M(fk) = Ω(ρk).

2. For any k ∈ N and any g ∈ N (u, ℓ) with ℓ ≤ k and u ≤ 1
8ρ

k/ℓ, there exist samples S with |S| = 1
2

⌊
ρk
⌋
such

that RS,1/2(f
k, g) ≥ 1

4 .

3. htop(f) ≥ ρ > 0.

4. There exists a t ∈ (0, 1) such that VC(Hf,t) = ∞.

Proof. Claims 1 and 2 are immediate implications Theorems 1.5 and 1.6 of Chatziafratis et al. (2019). Claim
3 follows by applying Lemma 4 to Claim 1 (again this derivation about the topological entropy is basic in the
literature on dynamical systems).

The most interesting part of the theorem is the last claim. We prove Claim 4 in Appendix 10.6 by showing that
the VC-dimension of the class is at least d for all d ∈ N. The argument relies on the existence of an infinite
number of cycles of other lengths, as guaranteed by Sharkovsky’s Theorem.

10.3 Proof of Theorem 8, Claim 1

We restate Claim 1 of the theorem as the following proposition and prove it.

Proposition 4 (Claim 1 of Theorem 8). Suppose f is a symmetric unimodal mapping whose maximal cycle is
of length p = 2q. Then, for any k ∈ N, M(fk) = O((4k)q+1).

In order to bound the number of times f oscillates based on its power-of-two periods, we categorize f by its
cyclic behavior and the bound the number of local maxima and minima f has based on its characterization.

Definition 9 (Category). For q ≥ 0 and z ∈ {0, 1}, let Fq,z contain the set of all symmetric unimodal functions
f such that (1) f has a 2q-cycle, (2) f does not have a 2q+1-cycle, and (3) [[f2q ( 12 )]]1/2 = z.

We abuse notation to let M(Fk
q,z) = maxf∈Fq,z

M(fk). Thus, for f given in the theorem statement with a
2q-cycle, but not a 2q+1-cycle, our final bound is obtained by

M(fm) ≤ max{M(Fm
q,0),M(Fm

q,1)}.

We let M(f, a, b) represent the number of monotone pieces of f on the sub-interval [a, b] ⊂ [0, 1].

We build a large-scale inductive argument by first bounding base cases M(Fk
0,0) and M(Fk

0,1). Then, we relate

M(Fk
q,z) to M(Fk

q−1,1−z) to get the desired outcome.

Before beginning the proof, we state a slight refinement of the part of the theorem, which takes into account the
newly-introduced categories, from which the claim follows.

Proposition 5. For any k ∈ N, q ≥ 0, and z ∈ {0, 1},

M(Fk
q,z) ≤

{

2(3q)k q is even, z = 0, or q is odd, z = 1

2(3q)k+1 q is even, z = 1, or q is odd, z = 0.

Thus, proving Proposition 5 is sufficient to prove Proposition 4. The remainder of the section proves Proposi-
tion 5.

10.3.1 Special Case Proof for q = 1

We show that M(Fk
0,0) = 2 and M(Fk

0,1) = 2k.

For fr as defined above, we characterize the number of oscillations that are added by increasing r past 1
2 , where

super-stability of a fixed point exists. Figure 13 illustrates those results.
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Figure 13: The base case results of Proposition 5 demonstrate the number of oscillations of fk increases when
f moves from F0,0 to F0,1. The plots show f and f5 for f ∈ F0,0 (f = flog,0.45) on the left and f ∈ F0,1

(f = flog,0.775) on the right.

To analyze the oscillation patterns of fk, we define several “building blocks,” which represent disjoint pieces of
fk. That is, the interval [0, 1] can be partitioned into several sub-intervals, each of which has fk follow certain
simple behavior that we categorize. We argue that any iterate can be decomposed into those pieces and then
show how applying f to fk modifies the pieces in order to analyze fk+1. Here are the function pieces that we
analyze, which map interval [a, b] ⊆ [0, 1] to [0, 1]:

Definition 10. For any f : [0, 1] → [0, 1] and for any [a, b] ⊆ [0, 1], f is referred to on interval [a, b] as:

• a increasing crossing piece Ic if f is strictly increasing on [a, b] and has f(a) = 0, f(b) > 1
2 , and

f ′(b) > 0;

• a decreasing crossing piece Dc if f is strictly decreasing on [a, b] and has f(a) > 1
2 , f(b) = 0, and

f(a) < 0;

• a up peak Up if there exists some c ∈ (a, b) that maximizes f on [a, b], f is strictly increasing on [a, c), f
is strictly decreasing on (c, b], and f(x) > 1

2 for all x ∈ [a, b];

• a up valley Uv if there exists some c ∈ (a, b) that minimizes f on [a, b], f is strictly decreasing on [a, c), f
is strictly increasing on (c, b], and f(x) > 1

2 for all x ∈ [a, b]; and

• a down peak Dp if there exists some c ∈ (a, b) that maximizes f on [a, b], f is strictly increasing on [a, c),
f is strictly decreasing on (c, b], and f(x) ≤ 1

2 for all x ∈ [a, b].

If there exists a sequence of intervals J1, . . . , Jm such that f is piece ηi on Ji, then we represented f with the
string η1 . . . ηm.

We specify an invariant for each part of the theorem, such that proving the invariant is sufficient to prove the
proposition:

1. If f ∈ F0,0, then fk is a down peak on [0, 1] for all k, and fk has two monotone pieces.

2. If f ∈ F0,1, f is represented by Ic(UpUv)k−1UpDc. That is, [0, 1] can be partitioned into 2k + 1 subsequent
intervals J1, . . . J2k+1 such that fk is an increasing crossing piece on J1, a decreasing crossing piece on J2k+1

(if k 6= 0), an up peak on J2j for j ∈ {1, . . . , k}, and a up valley on J2j+1 for j ∈ {1, . . . , k − 1}. Hence, fk

has k distinct maxima and 2k monotone pieces. Figure 14 illustrates this invariant.

Base Case:
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Figure 14: For f ∈ F0,1 (f = flog,0.775), visualizes the decomposition of f , f2, and f3 into IcUpDc, IcUpUvUpDc,
and Ic(UpUv)2UpDc respectively.

1. For f ∈ F0,0, f
1 = f is trivially a down peak on [0, 1] by the definition of F0,0, since

1
2 maximizes f .

2. For f ∈ F0,1, f can be represented by IcUpDc. That is, [0, 1] can be decomposed into intervals I1, I2, and
I3, on which fr is an increasing crossing piece, an up peak, and a decreasing crossing piece respectively.

Inductive Step:

We examine what happens to each function piece when f is applied to it. We can use the following analysis,
along with the inductive hypothesis to show that fk+1 can be decomposed as we expect it to be.

1. Examining the down peak proves first invariant for the case when f ∈ F0,0. Because f strictly increases
on [0, 1

2 ] and because f([0, 1]) ⊆ [0, 1
2 ] if f

k is a down peak, f ◦ fk also supports a down peak on [0, 1].

Because we inductively assume that fk is a low peak on [0, 1], it then follows that fk+1 is also a down peak
on [0, 1].

2. We first prove a claim, which implies that f has no down peaks for f ∈ F0,1. Let xmax = f( 12 ),

Claim 1. If f ∈ F0,1, then f(( 12 , xmax]) ⊆ ( 12 , xmax].

Proof. Because 1
2 maximizes f , f(x) ≤ xmax for all x ∈ [ 12 , xmax]. Since f monotonically decreases, on

[ 12 , xmax], the claim can only be false if f(xmax) <
1
2 . We show by contradiction that this is impossible.

Because f is continuous and monotonically increases on [0, 1
2 ] and ranges from 0 to xmax ≥ 1

2 , there exists
some x′ ≤ 1

2 such that f(x′) = 1
2 and f2(x′) = xmax.

Let g(x) = f2(x) − x. By assumption, g( 12 ) = f(xmax) − 1
2 < 0. By definition of x′, g(x′) = 1

2 − x′ ≥ 0.
Because g is continuous, the Intermediate Value Theorem implies the existence of x′′ ∈ [x′, 1

2 ) such that
g(x′′) = 0 and f2(x′′) = x′′. Since f has no two-cycles, it must be the cause that f(x′′) = x′′ and x′′ = 1

2 .
However, this contradicts our finding that x′′ < 1

2 , which means that f(xmax) ≥ 1
2 and the claim holds.
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Now, we proceed with analyzing each of the function pieces on some interval [a, b] ⊆ [0, 1] when f ∈ F0,1.
The transformations are visualized in Figure 14.

• Increasing crossing piece: If fk has an Ic on [a, b], then fk+1 can be represented by IcUp on [a, b].

There exist c and d such that a < d < c < 1
2 < b, fk(c) = 1

2 , and fk(d) = c. Then, [a, 1
2 (c + d)]

supports an increasing crossing piece on f ◦ fk—because f(fk(a)) = 0, f(fk( 12 (c+ d))) > 1
2 , and f ◦ fk

is strictly increasing on that interval since f is increasing before reaching 1
2 . [0.5(c + d), b] supports a

high peak—because c is a local maxima on f ◦ fk, and f ◦ fk is strictly increasing before c and strictly
decreasing after c.

• Decreasing crossing piece: For the same arguments, fk+1 can represented by UpDc on [a, b] if fk is
represented by Dc on [a, b].

• Up peak: Because f strictly decreases for x > 1
2 and because fk([a, b]) ⊆ ( 12 , xmax] if Up represents fk

on [a, b], c becomes a local minimum for f ◦ fk, and fk+1 is a high valley Uv on [a, b].

• Up valley: Because f strictly decreases for x > 1
2 and because fk([a, b]) ⊆ ( 12 , xmax] if Uv represents

fk on [a, b], c becomes a local maximum for f ◦ fk, and fk+1 is a high peak Up on [a, b].

Now, consider the inductive hypothesis. Because fk can be represented by Ic(UpUv)k−1UpDc, applying the
above transformations to each piece implies that fk+1 can be represented by Ic(UpUv)kUpDc. Hence, the
inductive argument goes through.

10.3.2 General Case Proof

The argument proceeds inductively. We show that if we have some f ∈ Fq,k, then we can find some other
function h ∈ Fq−1,1−k and characterize the behavior of f in terms of the behavior of h.

Since we assume that q ≥ 1, there will always exist some x∗ > 1
2 that is a fixed point of f .13 By symmetry,

f(1− x∗) = x∗. Let φ : [0, 1] → [1− x∗, x∗] be a decreasing isomorphism with φ(x) = x∗ − x(2x∗ − 1), and let

h = φ−1 ◦ f2 ◦ φ.

h is a useful construct, because its behavior resembles simpler versions of f , with fewer cycles and oscillations.
We use properties of h to relate pieces of fk to those of hk/2. We illustrate this recursive and fractal-like behavior
in Figure 15.

Note that hk = φ−1 ◦ f2k ◦ φ.
Lemma 5. h is a symmetric unimodal mapping with h ∈ Fq−1,1−z.

Proof. We verify the conditions for f to be unimodal mapping.

1. h is continuous and piece-wise differentiable on [0, 1] because f2 is, and h is merely a linear transformation
of f2.

2. h(0) = h(1) = 0. h((0, 1)) is strictly positive because f((1 − x∗, x∗)) = (x∗, xmax), f2((1 − x∗, x∗)) =
(f(xmax), x

∗), and f(xmax) < f(x∗) = x∗ by f being decreasing on [ 12 , 1].

3. h is uniquely maximized by 1
2 because 1

2 minimizes f2 on the interval [1− x∗, x∗]. f maps both [1− x∗, 1
2 ]

and [ 12 , x
∗] onto [x∗, xmax] and is increasing and decreasing on the respective intervals. Because f maps

[x∗, xmax] onto [f(xmax), x
∗] and f(xmax) < x∗ and is decreasing on [x∗, xmax], f

2 is increasing on [1−x∗, 1
2 ]

and decreasing on [ 12 , x
∗].

Thus, h is maximized by 1
2 , increases before

1
2 , and decreases after 1

2 .

4. We must also show that h is well-defined, which entails proving that h(x) ≤ 1 for all x ∈ [0, 1]. Suppose
that were not the case. Then, h( 12 ) > 1, and there exists some x′ ≤ 1

2 with h(x′) = 1. There also exists
some x∗∗ ∈ [1− x′, 1] with h(x∗∗) = x∗∗ by the Intermediate Value Theorem.

13Sharkovsky’s Theorem yields this by showing that the existence of a 2q-cycle implies the existence of any 2j-cycle,
for all j ∈ {0, . . . , q − 1}. x∗ > 1

2
by our assumption that a 2-cycle x1 < x2 exists. It must be true that x2 > 1

2
;

otherwise, f(x2) > x2 > x1, which breaks the cycle. Because f( 1
2
) > 1

2
and f(x2) < x2, there exists x∗ ∈ ( 1

2
, x2) such

that f(x∗) = x∗ by the Intermediate Value Theorem.
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Figure 15: Visualizes the analogy between mappings in Fq,z and Fq−1,1−z. The left plots the first 4 iterates of
f = flog,0.9 ∈ F4,1 (has a maximal 4-cycle with f4( 12 ) >

1
2 ), while the right plots those of f = flog,0.85 ∈ F2,0

(has a maximal 2-cycle with f2( 12 ) <
1
2 . The purple highlighted regions on the left behave qualitatively similar

to flog,0.85, while the green regions are similar to f2
log,0.85.
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Let g(x) = h3(x)− x and note that g is continuous on [0, x′]. Observe that g(1− x∗∗) = 2x∗∗ − 1 > 0 and
g(x′) = −x′ < 0. Thus, there exists x′′ ∈ [1− x∗∗, x′] with g(x′′) = 0. Because h is increasing on [0, x′] and
x′ > 1 − x∗∗, it must be the case that h(x′) > x∗∗ > x′. Thus, x∗∗ is not a fixed point and must be on a
3-cycle in h.

However, if x∗∗ is on a 3-cycle in h, then φ(x∗∗) must be part of a 6-cycle in f . This contradicts the
assumption that f cannot have a 2q+1-cycle, because Sharkovsky’s Theorem states that a 6-cycle implies a
2q+1-cycle.

We show that h is symmetric.

h(x) = φ−1(f2(φ(x))) = φ−1(f2(1− φ(x))) = φ−1(f2(1− x∗ + x(2x∗ − 1)))

= φ−1(f2(x∗ − (1− x)(2x∗ − 1))) = φ−1(f2(φ(1− x))) = h(1− x).

If f2q ( 12 ) ≥ 1
2 , then h2q−1

( 12 ) ≤ 1
2 , and if f2q ( 12 ) ≤ 1

2 , then h2q−1

( 12 ) ≥ 1
2 . Thus, [[h2q−1

( 12 )]]1/2 = [[f2q ( 12 )]]1/2.
By Lemma 6, h has a 2q−1-cycle and does not have a 2q-cycle. Thus, h ∈ Fq−1,1−z.

Lemma 6. For p ∈ Z+, h has a p-cycle if and only if f has a 2p-cycle.

Proof. Suppose x1, . . . , xp is a p-cycle for h. Then, φ(x1), . . . , φ(xp) is a p-cycle for f2. If x1, . . . , xp are distinct,
then so must be φ(x1), . . . , φ(xp), since φ is an isomorphism. Thus,

φ(x1), f(φ(x1)), . . . , φ(xp), f(φ(xp))

is a 2p-cycle for f .

Conversely, if x1, . . . , x2p is a 2p-cycle for f , then x1, x3, . . . , x2p−1 is a p-cycle for f2 and

φ−1(x1), . . . , φ
−1(x2p)

is a p-cycle for h.

We proceed with a proof similar in structure to the one in the last section, where we divide each fk into intervals
and monitor the evolution of each as k increases. We define the classes of the pieces of some 1-dimensional map
fk on interval [a, b] below. We visualize these classes in Figure 16.

• fk is an approach A on [a, b] if f is strictly increasing, fk(a) = 0, and fk(b) = 1− x∗.

• Similarly, fk is a departure D on [a, b] if fk is strictly decreasing, fk(a) = 1− x∗, and fk(b) = 0.

• fk is an i-Left Valley Lvi on [a, b] if fk : [a, b] → [f(xmax), x
∗] and if there exists some strictly increasing and

bijective σ : [a, b] → [1−x∗, x∗] such that fk = φ◦hi◦φ−1◦σ on [a, b]. Note that fk(a) = fk(b) = x∗—unless
i = 0, in which case fk(a) = 1− x∗ and fk

r (b) = x∗.

• fk is analogously a i-Right Valley Rvi if the same condition holds, except that σ is strictly decreasing.

• fk is an i-Left Peak Lpi on [a, b] if fk−1 is Lvi−1 on [a, b]. It follows that fk : [a, b] → [x∗, xmax], that there
exists some c ∈ [a, b] such that fk(c) = xmax (because 1

2 ∈ [f(xmax), x
∗]), and that fk(a) = fk(b) = x∗.

• fk is an i-Right Peak Rpi on [a, b] if fk−1 is Rvi−1 on [a, b]. The same claims hold as Lpi.

Now, the proof of the number of oscillations proceeds in two steps. (1) We analyze how each of the above pieces
evolves with each application of f . (2) We show how many maxima and minima each translates to.

Lemma 7. When f ∈ Fq,z for q ≥ 1 and for all k ∈ Z+, f
k can be decomposed into 2k + 3 pieces η1, . . . , η2k+3

such that

ηi is







A if i = 1

Lvj if i = 2j + 2 for j ∈ {0, 1, . . . , ⌊k/2⌋}
Lpj if i = 2j + 1 for j ∈ {1, . . . , ⌊(k + 1)/2⌋}
Rvj if i = 2k − 2j + 2 for j ∈ {0, 1, . . . , ⌊(k − 1)/2⌋}
Rpj if i = 2k − 2j + 3 for j ∈ {1, . . . , ⌊k/2⌋}
D if i = 2k + 3
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Figure 16: Similar to Figure 14, visualizes the classifications of f, f2, f3, f4 for f = flog,0.9 ∈ F4,1, and
demonstrates that the decompositions are ALv0Lp0Rv0D, ALv0Lp1Lv1Rp1Rv0D, ALv0Lp1Lv1Lp2Rv1Rp1Rv0D, and
ALv0Lp1Lv1Lp2Lv2Rp2Rv1Rp1Rv0D respectively.

That is, if k is even, then f can be represented by

ALv0Lp1Lv1 . . . Lvk/2−1Lpk/2Lvk/2Rpk/2Rvk/2−1 . . .Rv1Rp2Rv0D.

If k is odd, then f is represented by

ALv0Lp1Lv1 . . . Lp(k−1)/2Lv(k−1)/2Lp(k+1)/2Rv(k−1)/2Rp(k−1)/2 . . .Rv1Rp2Rv0D.

Proof. This lemma is proved inductively. f can be decomposed into the pieces ALv0Lp1Rv0D.

• By unimodality and symmetry, f is strictly increasing on [0, 1
2 ) and strictly decreasing on ( 12 , 1]. There

exists some x1 such that [0, x1] is strictly increasing and f(x1) = 1 − x∗ (because 1 − x∗ < x∗ < xmax).
Thus, f is A on [0, x1]. Similarly, [1−x1, 1] is strictly decreasing and f(1−x1) = 1−x∗, which implies that
f is D on [1− x1, 1].

• Note that x1 < 1− x∗ < x∗ < 1− x1, and f is increasing on [x1, 1− x∗] and decreasing on [x∗, 1− x1].

Because [x1, 1− x∗] is monotone, there exists continuous and increasing σ : [x1, 1− x∗] → [1− x∗, x∗] such
that f(x) = σ(x). Since h0 is the identity map, it trivially also holds that f(x) = φ(h0(φ−1(σ(x)))). Because
f(x1) = 1− x∗ and f(x∗) = x∗, it follows that f is Lv0 on [x1, 1− x∗].

By a similar argument, f is Rv0 on [x∗, 1 − x1], with the only difference being that σ needs to be strictly
decreasing for it to hold.

• [1− x∗, x∗] is Lp1 because [1− x∗, x∗] is Lv0 on the identity map f0. This trivially holds using the identity
σ map.

Now, we prove the inductive step, which can be summed up by the following line:

A → ALv0;D → Rv0D; Lvj → Lpj+1; Lpj → Lvj ;Rvj → Rpj+1;Rpj → Rvj .

We show each part of the relationship as follows:
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• If fk is A on [0, b], then there exists some c ∈ (0, b) such that fk+1(c) = 1−x∗ because fk is an isomorphism
between [0, b] and [0, x∗].

It follows that fk+1 is A on [0, c] because fk+1 is strictly increasing on the interval from 0 to 1− x∗.

[c, b] is Lv0 because there must exist some increasing σ such that fk+1(x) = σ(x) on that interval. Thus, it
follows that fk+1 = φ ◦ h0 ◦ φ−1 ◦ σ on [0, b].

• The same argument holds for D. If fk is D on [a, 1], then there exists c ∈ (a, 1) such that [a, c] is Rv0 and
[c, 1] is D.

• If fk is Lvj on [a, b], then fk+1 is Lpj+1 on the same interval by the definition of Lpj+1.

• Similarly, if fk is Rvj on [a, b], then fk+1 is Rpj+1 on the same interval by the definition of Rpj+1.

• If fk is Lpj on [a, b], then fk−1 is Lvj−1 and hence fk−1 maps to [f(xmax), x
∗] on the interval. Therefore,

there exists σ such that fk−1 = φ ◦ hj−1 ◦ φ−1 ◦ σ on the interval. We use the properties of h to show that
fk+1 is Lvj on [a, b]. Note that f2 = φ ◦ h ◦ φ−1 on [f(xmax), x

∗].

fk+1 = f2 ◦ fk−1 = φ ◦ h ◦ φ−1 ◦ φ ◦ hj−1 ◦ φ−1 ◦ σ = φ ◦ hj ◦ φ−1 ◦ σ

Thus, fk+1 satisfies the condition to be Lvj .

• By a identical argument, if fk is Rpj on [a, b], then fk+1 is Rvj .

The remainder of this argument follows by applying the above transition rules for each piece to the inductive
hypothesis about the ordering of pieces in fk to obtain the ordering for fk+1.

Now, we determine how many local maxima and minima are contained in each type of piece. Let maxima(f)
and minima(f) represent the number of local maxima and minima respectively on mapping f on interval [0, 1].
We bound the total number of monotone pieces with these bounds by using M(f) = 2maxima(f). We similarly
abuse notation to bound the number of maxima and minima in a category with maxima(Fk

q,z) and minima(Fk
q,z),

and in the interval [a, b] with maxima(f, a, b) and minima(f, a, b).

By the base case in the previous section maxima(Fk
0,0) = 1, minima(Fk

0,0) = 2, maxima(Fk
0,1) = k, and

minima(Fk
0,1) = k + 1. We obtain recurrences to represent maxima(Fk

q,z) and minima(Fk
q,z).

For each part, we rely on the following facts: If σ is a strictly increasing bijection, then maxima(f ◦ σ, a, b) =
maxima(f, a, b). If σ is strictly decreasing, then minima(f ◦ σ, a, b) = maxima(f, a, b). (The reverse are true for
minima of f .)

We analyze each type of piece individually, considering what happens when f has some kind of piece on interval
[a, b].

• Because A and D segments are strictly increasing or decreasing, maxima(f, a, b) = 0 when f has either piece
on [a, b]. minima(f, a, b) = 1 because segments that support A contain 0 and segments with D have 1, each
of which f maps to 0.

• Because each Lvi segment of fk on [a, b] can be represented as φ ◦ hi ◦ φ−1 ◦ σ, and because φ is strictly
decreasing, maxima(fk

r , a, b) = minima(hi) and minima(fk
r , a, b) = maxima(hi). By Lemma 5, h ∈ Fq−1,1−z,

maxima(fk
r , a, b) ≤ minima(F i

q−1,1−z) and minima(fk
r , a, b) ≤ maxima(F i

q−1,1−z).

The same analysis holds for each Rvi segment.

• Consider an Lpi segment of fk on [a, b], which has output spanning the interval [x∗, xmax]. Because
x∗ > 1

2 , f is strictly decreasing on the domain [x∗, xmax]. Thus, fk+1 must satisfy maxima(fk+1
r , a, b) =

minima(fk
r , a, b) and minima(fk+1

r , a, b) = maxima(fk
r , a, b).

Note by the definition of Lpi that [a, b] must also support an Lvi−1 segment on fk−1 and an Lvi segment
on fk+1. From the previous bullet, the Lvi segment must have at most minima(F i

q−1,1−z) maxima and

maxima(F i
q−1,1−z) minima. Because there must be a one-to-one correspondence between minima of fk+1
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and maxima of fk on the interval and vice versa, the Lpi segment has maxima(fk
r , a, b) ≤ maxima(F i

q−1,1−z)

and minima(fk
r , a, b) ≤ minima(F i

q−1,1−z).

The same analysis hold for each Rpi segment.

Therefore, we can construct a recurrence relationship for the number of maxima and minima for fk
r based on

the sequences found in Lemma 7.

maxima(Fk
q,z) ≤

⌊k/2⌋
∑

i=0

minima(Fk
q−1,1−z)

︸ ︷︷ ︸

Lvi

+

⌊(k−1)/2⌋
∑

i=0

minima(Fk
q−1,1−z)

︸ ︷︷ ︸

Rvi

+

⌊(k+1)/2⌋
∑

i=1

maxima(Fk
q−1,1−z)

︸ ︷︷ ︸

Lpi

+

⌊k/2⌋
∑

i=1

maxima(Fk
q−1,1−z)

︸ ︷︷ ︸

Rpi

minima(Fk
q,z) = 2

︸︷︷︸

A&D

+

⌊k/2⌋
∑

i=0

maxima(Fk
q−1,1−z)

︸ ︷︷ ︸

Lvi

+

⌊(k−1)/2⌋
∑

i=0

maxima(Fk
q−1,1−z)

︸ ︷︷ ︸

Rvi

+

⌊(k+1)/2⌋
∑

i=1

minima(Fk
q−1,1−z)

︸ ︷︷ ︸

Lpi

+

⌊k/2⌋
∑

i=1

minima(Fk
q−1,1−z)

︸ ︷︷ ︸

Rpi

We bound maxima(Fk
q,z) and minima(Fk

q,z) by induction to prove Proposition 5. We use the following inductive
assumption over all k, q, and z, which suffices to prove the claim:

maxima(Fk
q,z),minima(Fk

q,z) ≤
{

(4q)k q is even, z = 0, or q is odd, z = 1

(4q)k+1 q is even, z = 1, or q is odd, z = 0.

By the previous section, the claim holds for q = 0 and all k and z, which gives the base case.

Moving forward, we assume that the claim holds for all values of q′ with q′ ≤ q and any k and z. We prove that
it holds for q + 1 with any choices of k and z.

We show that the bound holds for minima(Fk
q+1,z) when q+1 is even and z = 1, or q+1 is odd and z = 0. The

other cases are nearly identical. Since the bounds are trivial for k = 1, we prove them below for k ≥ 2.

minima(Fk
q+1,z) ≤ 2 +

⌊k/2⌋
∑

i=0

(4i)q+1 +

⌊(k−1)/2⌋
∑

i=0

(4i)q+1 +

⌊(k+1)/2⌋
∑

i=0

(4i)q+1 +

⌊k/2⌋
∑

i=0

(4i)q+1

≤ 4 · k
2
· (2k)q+1 + (2(k + 1))q+1 ≤ (2k)q+2 + (3k)q+1 ≤ (4k)q+2.

10.4 Proof of Theorem 8, Claim 2

We restate the claim:

Proposition 6 (Claim 2 of Theorem 8). Suppose f is a symmetric unimodal mapping whose maximal cycle is
of length p = 2q. For any k ∈ N, there exists g ∈ N (u, 2) with width u = O((4k)q+1/ǫ) such that L∞fk, g ≤ ǫ.
Moreover, if f = ftent,r, then there exists g of width O((4k)q+1) with g = fk.

Proof. This part follows the bound on monotone pieces of fk given in Proposition 4 and a simple neural network
approximation bound.
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Lemma 8. Consider some continuous f : [0, 1] → [0, 1] with M(f) ≤ m. For any ǫ ∈ (0, 1), there exists
g ∈ N (u, 2) of width u = O(mǫ ) such that L∞(f, g) ≤ ǫ.

Proof. A monotone function mapping to [0, 1] can be ǫ-approximated by a piecewise-linear function with O( 1ǫ )
pieces, and hence, a 2-layer ReLU network of width O( 1ǫ ).

Every monotone piece can be approximated as such, which means that g has width O(mǫ ).

For the case where f = ftent,r for some r, it is always true that
∣
∣ d
dxf

k
tent,r(x)

∣
∣ = (2r)k, except when x is a local

maximum or minimum. Thus, every monotone piece of fk is linear, and f can be exactly expressed with a
piecewise linear function with O((4q)k+1) pieces, and also a ReLU neural network of width ((4q)k+1).

10.5 Proof of Theorem 8, Claim 4

Recall that for unimodal f : [0, 1] → [0, 1] and threshold t ∈ (0, 1),

Hf,t := {[[fk]]t : k ∈ N}

is the hypothesis class under consideration.

Proposition 7 (Claim 4 of Theorem 8). Suppose f is a symmetric unimodal mapping whose maximal cycle is
of length p = 2q. For any t ∈ (0, 1), VC(Hf,t) ≤ 18p2.

This proof is involved and requires some setup and new definitions.

10.5.1 Notation

Let {0, 1}N represent all countable infinite sequences of Boolean values, and let {0, 1}∗ represent all finite se-
quences (including the empty sequence).

For y ∈ {0, 1}N, let yi:j = (yi, . . . , yj) ∈ {0, 1}j−i+1 and yi: = (yi, yi+1, . . . ) ∈ {0, 1}N. For w ∈ {0, 1}n, w′ ∈
{0, 1}n′

, let ww′ = w ◦ w′ ∈ {0, 1}n+n′

be their concatenation. Let wj = w ◦ w ◦ · · · ◦ w ∈ {0, 1}jn.

10.5.2 Iterated Boolean-Valued Functions, Regular Expressions, and VC-Dimension

Before we give the main result, we give a way to upper-bound the VC-dimension of countably infinite hypothesis
classes H = {h1, h2, . . . , } ⊆ ([0, 1] → {0, 1}). For some x ∈ X , define sH : [0, 1] → {0, 1}N as sH(x) = (hi(x))i∈N.
We by H over all choices of x ∈ [0, 1]:

SH = {sH(x) : x ∈ [0, 1]} ⊂ {0, 1}N.

With this notation, H shatters d points if and only if there exist y(1), . . . , y(d) ∈ SH such that |{(y(1)j , . . . , y
(n)
j ) :

j ∈ N}| = 2d. We equivalently say that y(1), . . . , y(d) are shattered.

Here’s where the idea of Regular Expressions (Regexes) comes in. If we can show all elements in SH are
represented by some infinite-length Regex, then we can upper-bound the number of points H can shatter, which
is necessary to bound the expressive capacity of unimodal functions with recursive properties.

To that end, we first introduce a different notion of shattering. Then, we’ll give an upper-bound for the VC-
dimension of H when we have a Regex for SH.

Definition 11. We say that H (or SH) weakly shatters d points if there exist w(1) ◦ y(1), . . . , w(d) ◦ y(d) ∈ SH
for w(1), . . . , w(d) ∈ {0, 1}∗ such that y(1), . . . , y(d) are shattered. Let the weak VC-dimension of H represent
the maximum number of points H can weakly shatter and denote it VCweak(H) = VCweak(SH).

Using this notation, we can extend our notion of weak VC-dimension to any subset of {0, 1}N, whether or not it
corresponds to a hypothesis class. If H ⊂ S ⊂ {0, 1}N, then VCweak(H) ≤ VCweak(S).

Note that if H shatters d points, then it also trivially weakly shatters d points. We can get this by taking
w1 = . . . , wd to be the empty strings. Thus, the VC(H) ≤ VCweak(H).
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A Regex is a recursively defined subset of {0, 1}N that can be represented by a string. We describe how a Regex
R ⊆ {0, 1}N can be defined below.

• One way to define a Regex is with a repeating sequence w∞ for w ∈ {0, 1}n. That is,
w∞ = {y ∈ {0, 1}N : yin+1:(i+1)n = w, ∀i ∈ N}.

For instance, (011)∞ = {(0, 1, 1, 0, 1, 1, 0, 1, 1, . . . )}.
• For w ∈ {0, 1}n, if R is a Regex, then wR is also a Regex. This means satisfying sequences must start with
w and then the remainder of the bits must satisfy R.

wR = {y ∈ {0, 1}N : y1:n = w, yn+1: ∈ R}.

• w∗R is also a Regex, where w∗ represents any number of recurrences of the finite sequence s. That is,

w∗R = ∪∞
j=0w

jR.

• If R′ is also a Regex, then so is R ∪R′.

• If R′ is also a Regex, then so is R⊕R′, where the odd entries of sequences in R⊕R′ concatenated together
must be in R and the even entries must be in R′.

R⊕R′ = {y ∈ {0, 1}N : y1,3,5,... ∈ R, y2,4,6,... ∈ R′}.

Now, we can create a recursive upper-bound on the number of points H can weakly shatter. To do so, we assume
that H ⊆ R for some Regex R and bound the weak VC dimension of R.

Lemma 9. Consider infinite-length Regexes R,R′, R′′ and w ∈ {0, 1}n.

1. If R = w∞, then VCweak(R) ≤ log2 n.

2. If R = wR′, then VCweak(R) ≤ VCweak(R
′) + log2 n+ 1.

3. If R = w∗R′, then VCweak(R) ≤ VCweak(R
′) + log2 n+ 1.

4. If R = R′ ∪R′′, then VCweak(R) ≤ VCweak(R
′) + VCweak(R

′′).

5. If R = R′ ⊕R′′, then VCweak(R) ≤ 4max(VCweak(R
′),VCweak(R

′′)) + 2.

Proof. 1. If R = w∞, then the set Y = {y : w ◦ y ∈ w∞, w ∈ {0, 1}∗} contains at most n elements. Hence,
∣
∣
∣{(y(1)j , . . . , y

(d)
j ) : j ∈ N}

∣
∣
∣ ≤ n

for any fixed y(1), . . . , y(d) ∈ Y , and no more than d = log2 n points can be weakly shattered.

2. Suppose R weakly shatters d points, so y(1), . . . , y(d) are shattered for some w(1) ◦ y(1), . . . , w(d) ◦ y(d) ∈ R.

If Y = {(y(1)j , . . . , y
(d)
j ) : j ∈ N} and Yn = {(y(1)j , . . . , y

(d)
j ) : j ≤ n}, then |Y | = 2d and |Yn| ≤ n. There

exists some v ∈ {0, 1}1+log2 n such that v ◦ σ ∈ Y \ Yn for all σ ∈ {0, 1}d−1−log2 n. Therefore,

|{(y(2+log2 n)
j , . . . , y

(d)
j ) : j > n}| = 2d−1−log2 n,

and there exist d− 1− log2 n points that can be weakly shattered by R′, since none of the labelings with w
are necessary.

3. Once again, suppose R weakly shatters d points, y(1), . . . , y(d) for w(1) ◦ y(1), . . . , w(d) ◦ y(d) ∈ R. Because
each w(i) ◦ y(i) ∈ w∗R′, there exists an index ℓi such that (w(i) ◦ y(i))1:ℓi = wℓi/n and (w(i) ◦ y(i))ℓi+1: ∈ R′.
Without loss of generality, assume y(1), . . . , y(d) are ordered such that ℓi −

∣
∣w(i)

∣
∣ decreases. That is, the

first 1 + log2 n sequences are the ones that “leave w∗ last.” Let ℓ∗ := ℓ1+log2 n −
∣
∣w(1+log2 n)

∣
∣. Define Y

and Yℓ∗ analogously to the previous part and note that |Y | = 2d. Because Yℓ∗ corresponds only to labelings
where the first 1 + log2 n elements come from subsets of w∞, there exists some v ∈ {0, 1}1+log2 n such that
v ◦ σ ∈ Y \ Yℓ∗ for all σ ∈ {0, 1}d−1−log2 n. As before, there exist d − 1 − log2 n points that can be weakly
shattered by R′
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4. There is no set of VCweak(R
′) + 1 and VCweak(R

′′) + 1 points that can be weakly shattered by R′ and R′′

respectively. Any VCweak(R
′) + VCweak(R

′′) + 1 points in R must have at either VCweak(R
′) + 1 points in

R′ or VCweak(R
′′) + 1 points in R′′. Thus, at least one subset cannot be shattered.

5. Suppose without loss of generality that d := VCweak(R
′) ≥ VCweak(R

′′). Consider any w(1) ◦ y(1), . . . , w(d) ◦
y(4d+3) ∈ R. WLOG, assume that

∣
∣w(1)

∣
∣ , . . . ,

∣
∣w(2d+2)

∣
∣ are even, which implies that w

(1)
odd ◦y

(1)
odd, . . . w

(2d+2)
odd ◦

y
(2d+2)
odd ∈ R′ and w

(1)
even ◦ y(1)even, . . . w

(2d+2)
even ◦ y(2d+2)

even ∈ R′′. Therefore,
∣
∣
∣{(y(1)j , . . . , y

(4d+3)
j ) : j ∈ N}

∣
∣
∣ ≤ 22d+1

∣
∣
∣{(y(1)j , . . . , y

(2d+2)
j ) : j ∈ N}

∣
∣
∣

≤ 22d+1
(∣
∣
∣{(y(1)j , . . . , y

(2d+2)
j ) : j ∈ Nodd}

∣
∣
∣+
∣
∣
∣{(y(1)j , . . . , y

(2d+1)
j ) : j ∈ Neven}

∣
∣
∣

)

≤ 22d+1 · 2
d∑

i=0

(
2d+ 2

i

)

< 22d+2 · 22d+1 = 24d+3.

The last line follows by the Sauer Lemma. Thus, R cannot shatter 4d+3 points if R′ and R′′ cannot shatter
d points.

Here’s an example of how to apply our regex rules:

VCweak(1
∗0(01)∞ ∪ 10∞) ≤ VCweak(1

∗0(01)∞) + VCweak(10
∞)

≤ 1 + VCweak(0(01)
∞) + 1 + VCweak(0

∞)

≤ 2 + 1 + VCweak((01)
∞)

≤ 3 + 1 = 4.

10.5.3 Proof of the Proposition 7

Recall that we consider the hypothesis class

Hf,t := {[[fk]]t : k ∈ N}

for symmetric unimodal f and t ∈ (0, 1).

To build up the argument, we first bound the VC-dimension for two simple cases.

• First, we consider the case when f has no fixed point. Thus, for all x ∈ (0, 1], f(x) < x, which means that
the sequence f(x), f2(x), . . . is decreasing.

If the threshold t is 0 or is greater than f( 12 ), then the sequence will be all 0’s or 1’s, which will imply that
VC(Hf,t) = 0. Thus, the only interesting thresholds are t ∈ (0, f( 12 )]. Because the sequence is decreasing,
SHf,t

= 1∗0∞. From Lemma 9, VC(Hf,t) ≤ VCweak(Hf,t) ≤ 1.

• Let x1 < · · · < xm be all the fixed points of f . Suppose xm ≤ 1
2 . By symmetry, for all j ∈ [m], f(1−xj) = xj .

To analyze this function, we partition [0, 1] into 2m+2 intervals: I0 = [0, x1), I
′
0 = (1−x1, 1], Im = [xm, 1

2 ],
I ′m = ( 12 , 1− xm], Ij = [xj , xj+1), and I ′j = (1− xj+1, 1− xj ] for all j ∈ {1, . . . ,m− 1} (visualized in Figure
17).

Because f is unimodal and because the edges of all intervals map to fixed points, for all j ∈ {0, . . . ,m},
f(I ′j) = f(Ij) = Ij . In this case, it must be the case that q = 0 because f cannot have a 2-cycle. Such a
cycle is impossible because it would have to be contained entirely in some Ij . In those intervals, it must be
the case that either ∀x ∈ Ij , f(x) ≥ x, or ∀x ∈ Ij , f(x) ≤ x (if this were not the case, then this would imply
the existence of a fixed point other than xj in Ij). Thus, cyclic behavior within an interval is impossible.

Thus, we can construct a Regex to represent the itinerary of any x ∈ [0, 1]:
⋃m

j=0 I
∞
j .14 Now, we consider

all possible locations of threshold t:

14This is a massive abuse of notation, but we use the same Regex notation to denote the intervals that are traversed as
we use to denote the values of Boolean sequence.
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x

f(x)

x1

I0 I1

I0 I1 I2

x2 1/2 1− x2 1− x1

I2 I ′2 I ′1 I ′0

I ′0 I ′1 I ′2

Figure 17: A plot of f with fixed point m = 2 fixed points—both less than 1
2—subdivided into intervals. The

relationships of which intervals f maps onto one another are also visualized.

– If t ∈ Ij , such that f(x) ≥ x for x ∈ Ij , then SHf,t
⊆ 0∗1∞∪0∞∪1∞. By Lemma 9, VCweak(Hf,t) ≤ 1.

– If t ∈ Ij , such that f(x) ≤ x for x ∈ Ij , then SHf,t
⊆ 1∗0∞∪0∞∪1∞. By Lemma 9, VCweak(Hf,t) ≤ 1.

– If t ∈ ⋃m
j=0 I

′
j , then SHf,t

= 0∞, and VCweak(Hf,t) = 0.

Now, we give a lemma, which relates the VC-dimension of complex functions to that of simpler ones. Let Fq

refer to the family of symmetric unimodal functions that have a 2q-cycle but not a 2q+1-cycle.

Lemma 10. For any f ∈ Fq with fixed point x∗ > 1
2 and any t ∈ [0, 1],

VCweak(Hf,t) ≤ 4 max
g∈Fq−1,t′∈[0,1]

VCweak(Hg,t′) + 10.

Proof. Consider some such f . Let x1 < · · · < xm be the fixed points of f where xm = x∗ > 1
2 . Because 1

2
maximizes f , f( 12 ) ≥ xm > 1

2 . This fixed point must the only fixed point no smaller than 1
2 ; the existence of

another such fixed point would contradict the fact that f is decreasing on ( 12 , 1]. Thus, x1, . . . , xm−1 < 1
2 .

We build a recursive relationship by considering f2 and relating some its output on some segments of [0, 1] to
other maps with smaller q. For now, we instead attempt to upper-bound the VC-dimension of Hf2,t.

For all j ∈ [m], unimodality implies that xj and 1−xj are the only points that map to xj and that the following
ordering holds.

0 < x1 < . . . , < xm−1 < 1− xm <
1

2
< xm < 1− xm−1 < . . . , 1− x1 < 1.

By the Intermediate Value Theorem, there exists some x′
m ∈ (xm, 1−xm−1) such that f(x′

m) = f(1−x′
m) = 1−xm

and f2(x′
m) = f2(1− x′

m) = xm.

We define intervals as follows:

• I0 = [0, x1) and I ′0 = (1− x1, 1].

• For all j ∈ [m− 2], Ij = [xj , xj+1) and I ′j = (1− xj+1, 1− xj ].

• Im−1 = [xm−1, 1− x′
m) and I ′m−1 = (x′

m, 1− xm−1].

• Im = [1− x′
m, 1− xm) and I ′m = (xm, x′

m].

• Im+1 = [1− xm, 1
2 ), and I ′m+1 = [ 12 , xm].
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For any j ∈ {0, . . . ,m+1}, f is increasing on all intervals Ij and decreasing on I ′j . By symmetry, f(Ij) = f(I ′j).
For all j ∈ {0, . . . ,m− 2}, f(Ij) = Ij . f(Im−1) = Im−1 ∪ Im, f(Im) = Im+1 ∪ I ′m+1, and f(Im+1) ⊆ I ′m, because
f( 12 ) ∈ [xm, x′

m).15

From there, we obtain additional properties for f2: f2(Im−1) = Im−1 ∪ Im ∪ Im+1 ∪ I ′m+1, f
2(Im) ⊆ I ′m, and

f2(Im+1) ⊂ Im+1 ∪ I ′m+1. This suggests that there is recurrent structure that we can take advantage of to count
all of the patterns.

Let Jm+1 := Im+1∪I ′m+1. We create a Regex to track the behavior of iterates f2, which we visualize in Figure 18:

m−2⋃

j=0

I∞j ∪ I∗m−1ImI ′∞m ∪ I ′∞m ∪ I∗m−1J
∞
m+1.

When an iterate of f2 gets “stuck” in one of I0, I1, . . . , Im−1, it must either be at a fixed point, be strictly
increasing, or be strictly decreasing. To suggest otherwise would imply the existence of another fixed point
in those intervals, because f2 is monotonically increasing or decreasing in all of those and either all x yield
f2(x) ≥ x or f2(x) ≤ x.

For the remaining intervals, one might notice in Figure 18 that zooming in on the intervals Im, Jm+1, and I ′m
for f2 gives what looks like unimodal maps.16 We take advantage of that structure to bound the complexity of
the 0/1 Regexes for those intervals. We can formalize this by defining symmetric unimodal mappings hm and
hm+1 and bijective monotonic mappings φm : I ′m → (0, 1] (increasing) and φm+1 : Jm+1 → [0, 1] (decreasing)
such that:

• For x ∈ Im, f2(x) = φ−1
m ◦ hm ◦ φm(1− x).

• For x ∈ I ′m, f2(x) = φ−1
m ◦ hm ◦ φm(x).

• For x ∈ Jm+1, f
2(x) = φ−1

m+1 ◦ hm+1 ◦ φm+1(x).

Because f cannot have a cycle of length 2q+1, hm and hm+1 may not have cycles of length 2q. Thus, we can
reason inductively about how iterates behave when they’re trapped in those intervals.

We do another case analysis of the 0/1 Regexes induced by different choices of t.

• If t ∈ Ij for j ∈ {0, . . . ,m− 1}, then SH
f2,t

⊆ 0∞ ∪ 1∞ ∪ 0∗1∞ ∪ 1∗0∞ because a sequence of iterates only
crosses t if it enters the correct interval Ij , where the iterate then will be stuck and must monotonically
increase or decrease. By Lemma 9, VCweak(Hf2,t) ≤ 2.

• If t ∈ I ′j for j ∈ {0, . . . ,m− 1}, then SH
f2,t

= 0∞, and VCweak(Hf2,t) = 0.

• If t ∈ Im, then SH
f2,t

= 0∞ ∪ 1∞ ∪ 0∗1∞. Then, VCweak(Hf2,t) ≤ 1.

• If t ∈ Jm+1, then SH
f2,t

= 0∞ ∪ 0∗1∞ ∪ 0∗J∞
m+1. Because hm+1 has at most a cycle of length 2q−1, we have

that

VCweak(Hf2,t) ≤ 2 + max
t′

VCweak(Hhm+1,t′).

• If t ∈ I ′m, then SH
f2,t

= 0∞ ∪ 0∗I ′∞m . This gives us that

VCweak(Hf2,t) ≤ 1 + max
t′

VCweak(Hhm,t′).

15This must be the case for the assumptions to be met. If f( 1
2
) < xm, then xm cannot be a fixed point because 1

2

maximizes f . If f( 1
2
) > x′

m, then there exists a 3-cycle with points in Im+1, I
′

m−1, Im, which contradicts the assumption
that we only have power-of-two cycles.

16We use similar techniques here to those used in Section 10.3.2.
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x

f(x)

x1

I0 I1

I0 I1 I2

1/2 x2 1− x1

I2 I ′2 I ′1 I ′0

I ′0 I ′1 I ′2

1− x2

x2

x1

1− x2

x′
21− x′

2

I ′3I3

J3

J3

f2(x)

1− x′
2

1
2

x′
2

f :

I0 I1 I2

I ′0 I ′1 I ′2

J3
f :

Figure 18: Like Figure 17, plot of f and f2 with m = 3 fixed points with xm > 1
2 and visualizes the mappings

between intervals.

To get VCweak(Hf,t), notice that SHf,t
= SH

f2,t
⊕ SH′

f2,t
, where H′

f2,t refers to the outcome of all odd iterates

of f . We show that SH′

f2,t
⊆ SH

f2,t
because the latter could induce all sequences produced by the former by

starting with some x′ such that f2(x′) = f(x). Thus, by Lemma 9,

VCweak(Hf,t) ≤ 4max
t′

VCweak(Hf2,t′) + 2

≤ 4max(2 + max
t′

VCweak(Hhm+1,t′), 1 + max
t′

VCweak(Hhm,t′)) + 2

≤ 4 max
g∈Fq−1,t′

VCweak(Hg,t′) + 10.

Now, we prove a bound on the VC-dimension for arbitrary q by induction with Lemma 10 to show that for
VC(Hf,t) ≤ 18 · 4q.
This holds when q = 0. There are two possible cases for the fixed point of such an f . If the the largest fixed
point is smaller than 1

2 , then, by the simple cases explored at the beginning, VCweak(Hf,t) ≤ 1. Otherwise, we
apply Lemma 10 along with the the other simple case—which tells us what happens when there are no fixed
point—to get that VCweak(Hf,t) ≤ 4(1) + 10 = 14. This trivially satisfies the proposition.

For the inductive step for arbitrary q, we iteratively apply Lemma 10 to obtain the final bound.

VC(Hf,t) ≤ 4 max
g∈Fq−1,t′

VCweak(Hg,t′) + 10

≤ 4q max
g∈F0,t′

VCweak(Hg,t′) + 10

q−1
∑

i=0

4i

≤ 14 · 4q + 10

3
4q ≤ 18 · 4q.
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10.6 Proof of Theorem 9, Claim 4

Proposition 8. Suppose f is a symmetric unimodal function with a 2qm-cycle for odd m. Then for

K = exp (O (q + d log(d+m))) ,

VC(Hf,K) ≥ d for Hf,K =
{
[[fk]]1/2 : k ∈ [K]

}
.

The claim holds by this proposition, since the VC-dimension of Hf is larger than every d and hence must be
infinite.

Proof. The proof of this claim relies on the existence of a lemma that describes a characteristic of odd-period
cycles of unimodal functions.

Lemma 11. Let f be a symmetric unimodal function with some odd cycle x1, x2, . . . , xm of length m > 1 such
that f(xi) = xi+1 and f(xm) = x1. Then, there exists some i such that xi <

1
2 and f(xi) ≥ 1

2 .

Proof. To prove the claim, it suffices to show that the following two cases are impossible: (1) x1, . . . , xm < 1
2

and (2) x1, . . . , xm ≥ 1
2 .

1. Suppose x1, . . . , xm < 1
2 . By unimodality xj < xj′ implies that f(xj) < f(xj′). If x1 is the smallest element

of the cycle, then f(x1) > x1. For any other xj , f(xj) > x1, which means that x1 cannot be part of a cycle,
which contradicts the odd cycle.

2. Suppose instead that x1, . . . , xm ≥ 1
2 .

For this to be the case, f( 12 ) > 1
2 by unimodality. This fact paired with f(1) < 1 implies the existence

of some x∗ ∈ ( 12 , 1) with f(x∗) = x∗. Because f is decreasing on [1/2, 1], f([1/2, x∗)) ⊆ (x∗, 1] and
f((x∗, 1]) = [0, x∗).

If x1 ∈ [ 12 , x
∗), then x2 ∈ (x∗, 1], and x3 ∈ [ 12 , x

∗). If apply this fact repeatedly, the oddness of m implies
that xm ∈ [ 12 , x

∗) and x1 ∈ (x∗, 1], a contradiction.

We show that VC(Hf2q ,K/2q ) > d. If f has a cycle of length 2q · m, then f2q has a cycle of length m. By

Sharkovskii’s Theorem, for all odd m′ > m, f2q also has a cycle of length m′. Let p1 < · · · < pd be the smallest

prime numbers greater than m. According to Lemma 12, pd ≤
(
K
2q

)1/d
for

K = 2q (O(max(d log d,m))
d
= exp (O (q + d log(d+m))) .

For j ∈ [m], let x(j) be the point guaranteed by Lemma 11 with f2q·pj (x(j)) = x(j), x(j) < 1
2 , and f2q (x(j)) ≥ 1

2 .

Therefore, it follows that f2q·ℓpj (x(j)) < 1
2 and f2q(ℓpj+1)(x(j)) ≥ 1

2 for all ℓ ∈ Z≥0.

To show that Hf2q shatters x(1), . . . , x(d), we show that for any labeling σ ∈ {0, 1}d, there exists h ∈ Hf2q ,K/2q

such that h(x(j)) = σj .

• If σ = (0, . . . , 0), then consider f2q·k, where k =
∏n

j=1 pj . Then, for all j, f2q·k(x(j)) < 1
2 . Because

k ≤ pdd ≤ K
2q , there exists some h ∈ Hf2q ,K/2q that assigns zero to every x(j).

• Similarly, if σ = (1, . . . , 1), we instead consider f2q·k for k = 1 +
∏n

j=1 pj . Now, for all j, f2q·k(x(j)) ≥ 1
2 ,

and k ≤ pdd ≤ K
2q , which means there exists satisfactory h ∈ Hf2q ,K/2q .

• Otherwise, assume WLOG that (σ1, . . . , σℓ) = (0, . . . , 0) and (σℓ+1, . . . , σd) = (1, . . . , 1) for ℓ ∈ (1, d). We

satisfy the claim for f2q·k if we choose some k with k = q1
∏ℓ

i=1 pi = 1+ q2
∏d

i=ℓ+1 pi, for some q1, q2 ∈ Z+.
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We find q1 ∈ [
∏d

i=ℓ+1 pi] and q2 ∈ [
∏ℓ

i=1 pi] by choosing them such that:

q1

ℓ∏

i=1

pi ≡ 1 (mod
d∏

i=ℓ+1

pi)

q2

d∏

i=ℓ+1

pi ≡ −1 (mod
ℓ∏

i=1

pi).

This is possible because p1, . . . , pd are prime, and gcd
(
∏ℓ

i=1 pi,
∏d

i=ℓ+1 pi

)

= 1.

Because k ≤∏d
i=1 pi ≤ pdd ≤ K

2q , there must exist some satisfactory h ∈ Hf2q ,K/2q .

Lemma 12. For m ≥ 3 and any d ≥ 0, there exist d primes such that m ≤ p1 < · · · < pd for

pd = O(max(d log d,m)).

Proof. Let π(x) = |{y ∈ [x] : y is prime}| be the number of primes no larger than x. By the Prime Number
Theorem,

x

log(x) + 2
≤ π(x) ≤ x

log(x)− 4
,

for all x ≥ 55 (Rosser, 1941). Thus, for some m′ = O(max(d log d,m)), the number of prime numbers smaller
than m′ is

Ω

(
d log d

log(d log d)
+

m

logm

)

= Ω

(

d+
m

logm

)

,

and the number between m and m′ is Ω(d). Thus, pd ≤ m′.
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