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Abstract

Motivated by problems of ranking with par-
tial information, we introduce a variant of the
cascading bandit model that considers flex-
ible length sequences with varying rewards
and losses. We formulate two generative
models for this problem within the general-
ized linear setting, and design and analyze
upper confidence algorithms for it. Our anal-
ysis delivers tight regret bounds which, when
specialized to standard cascading bandits, re-
sults in sharper guarantees than previously
available in the literature. We evaluate our
algorithms against a representative sample of
cascading bandit baselines on a number of
real-world datasets and show significantly im-
proved empirical performance.

1 INTRODUCTION

A well-known problem in content recommendation is
the generation of slates of items whereby, given a set of
available items and a limited number of available slots,
the goal of the system is to come up with an ordered
sequence of items to be arranged in the slots so as to
best fulfil some goal, like improving the experience of
the user at hand. Applications are ubiquitous, from
web search to news recommendation and from com-
putational advertising to web page content optimiza-
tion. These are among the most prominent motivating
applications behind the more abstract problem often
called learning to rank.

The cascade model (e.g., Chuklin et al. (2015)) for
ranking problems has emerged as a simple and effec-
tive way to model user behavior in a number of ap-
plications. In this model, the user scans the slate se-
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quentially from top to bottom and clicks on the first
item they find attractive, disregarding all subsequent
items in the slate. The length of the slate may vary
widely across applications, ranging from a few items
in computational advertising to dozens in news rec-
ommendation to hundreds in web search. In these and
many other dynamic domains, one has to deal with
a near continuous stream of new items to be recom-
mended, along with new users to be served. Out of
the collected user feedback, and in the face of a con-
stantly evolving content universe and set of targeted
users, the learning system is expected to maintain over
time a good mapping between user/item features and
item rankings.

In order to encompass a variety of learning-to-rank
applications for dynamic environments, we introduce
a generalized version of the well-known cascading ban-
dit model of Kveton et al. (2015a). Our model consid-
ers flexible sequence length with varying rewards and
losses. The problem is broadly described by position-
dependent rewards rj and losses `j . These parameters
measure how well the ranking system is doing depend-
ing on the position j of the first positive signal, as
well as the potential loss associated with a sequence
of j negative signals. Since rewards are positive and
losses are negative, and the two sequences are decreas-
ing with j (in particular, `j becomes more and more
negative as j increases), this model is intended to cap-
ture a natural planning trade-off: If we commit to a
long sequence, we may increase our chance of success
(positive reward), but also expose ourselves to the risk
of a very negative loss if all signals on that sequence
turn out to be negative.

This trade-off is typical in planning scenarios where
each negative signal in the sequence is indeed a cost
for the system. As a relevant and motivating exam-
ple, suppose we want to deploy our planning algorithm
within a payment system (e.g., Stripe) where, at each
round we process one transaction, and the goal is to
find payment “routes” to fulfill the transaction. Here
each payment attempt with a chosen route is an item
in the list, and it comes with a cost for the system.
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A positive signal on a route corresponds to payment
fulfillment through that route, while a negative signal
corresponds to a payment failure. Every unsuccessful
attempt reduces the net reward gathered by a subse-
quent success, and may translate into bigger losses if
in the end the payment is not fulfilled. This provides
a new use case of cascade models since we have to pre-
dict a ranked sequence of routes for the payment to be
fulfilled with as few retries as possible. Note that the
length of the ranked sequence can be large and flexible
which further aligns this application to our setting.

Our contribution. In this paper, we describe two
contextual upper confidence bandit algorithms for this
problem, specifically focusing on the case of long
ranked sequences. We analyze the two algorithms both
theoretically and experimentally. Our theoretical anal-
ysis delivers tighter regret guarantees than previous in-
vestigations. In particular, we obtain a regret bound
of the form

√
bT , where T is the time horizon and b

is the length of the ranked sequences, as opposed to
b
√
T achieved by prior work in cascading bandits. We

then validate our algorithms experimentally on well-
known benchmark datasets, and show significantly im-
proved performance as compared to state-of-the-art al-
gorithms proposed in the cascading bandit literature.

Related work. The study of cascading bandit mod-
els for ranking problems has been initiated by Kve-
ton et al. (2015a). The authors study the problem
of learning to rank items on a fixed number of slots
under the so-called cascade click model of user behav-
ior. Li et al. (2016); Zong et al. (2016); Li and Zhang
(2018) investigate large-scale variants where the re-
ward of an item follows (generalized) linear structure.
Cheung et al. (2019) gives an analysis for Thompson
sampling. Cascading bandits have also been studied
under more general click models, which can recover
the standard cascade click model as well as other clas-
sical click models in the literature of online learning to
rank (e.g., Zoghi et al. (2017); Lattimore et al. (2018);
Li et al. (2019)). Li and De Rijke (2019) considers
cascading bandits in non-stationary environments, and
Hiranandani et al. (2020) studies more comprehensive
cascading models of user behavior that account for
both position bias and diversity of recommendations.
Kveton et al. (2015a) also consider algorithms where
exploration occurs at the top of the list by reversing
the order in which items are presented.1 All these
works consider the case of sequences with fixed length
and, when specialized to the original cascading bandit
model of Kveton et al. (2015a) or generalized linear

1This idea has been further explored in Combes et al.
(2015), where an optimal analysis is given that, however,
only applies to a non-contextual scenario with a fixed num-
ber of arms.

variants thereof, their analyses deliver regret guaran-
tees with a suboptimal dependence on the length of
the sequence, which is a main theoretical concern in
this paper. An in-context regret bound comparison to
many of these works is carried out in Section 3. Fur-
ther related work is discussed in Appendix C.

2 SETTING, MAIN NOTATION

We formalize our problem of contextual bandits with
long and variable length sequences as follows. Learn-
ing proceeds in a discrete sequence of time steps (or
rounds or trials). At each time t, the learner processes
a transaction having at its disposal a (finite) set of
actions (or items) At = {x1,t, x2,t, . . . , xkt,t} ⊆ A =
{x ∈ Rd : ||x||2 ≤ 1}, each action being described by
a d-dimensional feature vector of (Euclidean) norm at
most one.2 Set At is our context information at time t,
while set A is the universe of all possible actions. Col-
lectively, At may include information about the spe-
cific context in which learning is applied. In a pay-
ment scenario, this will typically include the transac-
tion amount, the buyer and seller identities (or features
thereof), the credit card company identity (or features
thereof), etc. In a news recommendation problem this
may include user features, news-of-the-day topic fea-
tures, and so on. Each action corresponds to an item
available at time t. The learning problem is parameter-
ized by a decreasing (or non-increasing) sequence of re-
wards r1,t, r2,t, . . . and a decreasing (or non-increasing)
sequence of losses `0,t, `1,t, `2,t, . . ., where

1 ≥ r1,t ≥ r2,t ≥ . . . > 0

0 > `0,t ≥ `1,t ≥ `2,t ≥ . . . > −1 .

The rewards are positive, while the losses are negative.
The dependence on t of these quantities emphasizes
the potential dependence of these values on the cur-
rent context. E.g., in the payment scenario, ri,t is often
proportional to the amount of the current transaction.
Moreover, to set the scale of these parameters, we shall
assume throughout that ri,t ∈ [0, 1] and `i,t ∈ [−1, 0]
for all i and t. Finally, each transaction may be accom-
panied by a budget value bt that bounds from above
the number of allowed retries, as defined next.

In round t, the algorithm is compelled to play an or-
dered sequence of actions Jt = 〈xj1,t , xj2,t , . . . xjst,t〉 ,
where each component vector xji,t is taken from At.
We call Jt a retry sequence or simply a sequence3. The
set of all such sequences Jt corresponds to the action
space available to the learner at time t. Notice that

2This normalization is done for notational convenience
only; any bounded action space would work here.

3A sequence might have repeated actions, but for sim-
plicity we assume here each component of Jt is distinct.
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the length st of Jt is part of the action selected by the
learner (that is, the algorithm has to decide the length
of the sequence as well). This length st determines the
number of retries on the transaction at time t. Jt can
also be empty; in such a case we have st = 0 and write
Jt = 〈〉. The budget constraint bt requires st to satisfy
st ≤ bt. In general, bt may depend on time, and there
are practical scenarios where this is indeed advisable,
e.g., a payment system where the number of attempts
depends on the transaction amount.

Sequence Jt has associated rewards and losses as de-
tailed next. Upon committing to Jt, if Jt = 〈〉 we
simply suffer loss (or negative reward) `0,t and go to
the next round. Otherwise, the first item xj1,t is at-
tempted. If xj1,t is successful we gather reward r1,t and
stop, going to the next round. If xj1,t is unsuccessful,
xj2,t is attempted. If xj2,t is successful we gather re-
ward r2,t and again stop. In this way, finally, xjst,t is
attempted. If xjst,t is successful we gather reward rst,t
and stop. Otherwise, we “give up” and incur loss `st,t.
A pictorial illustration is given in Figure 1.

The more traditional scenario considered in past in-
vestigations (e.g., Kveton et al. (2015a); Combes et al.
(2015); Zong et al. (2016); Li and Zhang (2018)), called
“vanilla” in our experiments, is recovered by simply
setting ri,t = 1 and `i,t = 0 for all i and t.

The general effort behind this parametrization for re-
wards and losses is to capture the tension between a
potentially small reward of a successful late retry and
a potentially small loss of an early give up. On one
hand, the earlier is the success in a sequence Jt the
higher the reward we gain. On the other, the later we
give up (after many unsuccessful attempts) the higher
is the loss we incur. Notice that this tension does not
arise in the above-mentioned “vanilla” scenario.

For simplicity, in our model rewards and losses in-
curred at time t only depend on the position of the
items in sequence Jt, rather than the actually played
item in that position. Also, upon processing the trans-
action at time t, the algorithm has to commit to the
entire sequence Jt, that is, this sequence cannot be
changed on the fly based on partial observations we
are gathering on that sequence.4 So, this is indeed a
(parametric) cascading bandit model.

After playing Jt at time t, the algorithm observes the
reward associated with Jt, which is generated as fol-
lows. Let the outcome vector Yt be a Boolean vector

4This is typically the case when the system is serving
ranked content to (human) users, but it also applies to the
payment problem in the introduction when the only signal
we observe on a failed payment is the failure itself, with
no extra information. In this case, it is easy to see that an
optimal solution will be non-adaptive within the sequence.

Figure 1: An illustration of the action space. Suppose
at time t the algorithm can select among items in At =
{x1, . . . , x10}, and that bt = 5. In this example Jt =
〈x2, x3, x1, x6〉. If action x2 succeeds, we gather r1,t,
while if x2 fails, x3, x1, and x6 are tried in turn. If all
these actions fail, we incur loss `4,t. Also, notice that
if x3 was successful, we do not actually see whether x1

and x6 would have been successful or not.

Yt = (y1,t, . . . , y|At|,t) ∈ {0, 1}|At|. Then we can define
the reward Rt(Jt, Yt) of sequence Jt at time t (i.e., on
the transaction occurring at time t) w.r.t. outcome Yt
as follows (for ease of notation, we drop subscript t
and leave the dependence on At implicit):

R(J, Y ) = r1yj1 +. . .+rsyjs

s−1∏
i=1

(1−yji)+`s

s∏
i=1

(1−yji)

(1)
if J 6= 〈〉, and R(J, Y ) = `0 otherwise, where s is the
length of J . The above simply encodes the decision list
exemplified by Figure 1, with the addition that if Jt =
〈〉 the algorithm decides to give up immediately, hence
incurring loss `0,t, irrespective of the outcome vector
Yt. As in standard cascading bandits, the algorithm
does not observe the entire outcome vector Yt, in fact,
it specifically observes those components of Yt allowing
to determine the actual value of reward Rt(Jt, Yt). We
learn a generative model of Yt as described next.

2.1 Generative model

We loosely follow Zong et al. (2016); Li and Zhang
(2018); Hiranandani et al. (2020). Given the special
form of the reward function, all we need to model are
specific conditional probabilities. In order to prop-
erly define a generative model for Yt, we start off
by formally viewing Yt as a Boolean random vector
Yt = (y1,t, . . . , y|At|,t) ∈ {0, 1}|At| with joint distribu-
tion pYt(At). Notice that Yt’s components need not
be independent. The marginals and relevant condi-
tional distributions of pYt(At) are defined as follows.
For brevity, let p(xj) denote the (marginal) probability
that item xj succeeds, and

p(xj |xi1 , . . . , xik) (2)
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be the probability that xj succeeds given that
xi1 , . . . , xik have all failed. Once all conditional prob-
abilities (2) for all xj , xi1 , . . . , xik are available, we
are automatically defining the generative process for
the outcome Yt which is relevant to a sequence Jt =
〈xj1,t , xj2,t , . . . , xjst,t〉. This is because, for the sake of
computing Rt(Jt, Yt), the relevant events associated
with Yt are those encoded by the strings

〈1〉, 〈0, 1〉, . . . , 〈 0, . . . , 0︸ ︷︷ ︸
st−1 zeroes

, 1〉, 〈0, . . . , 0︸ ︷︷ ︸
st zeroes

〉 , (3)

where the order of components within each string is
determined by Jt, and,

P

〈0, . . . , 0︸ ︷︷ ︸
k zeroes

, 1〉

 =

k−1∏
i=1

(
1− p(xji,t |xj1,t , . . . , xji−1,t)

)
× p(xjk,t |xj1,t , . . . , xjk−1,t

) ,

for k = 0, . . . , st − 1,

P

〈0, . . . , 0︸ ︷︷ ︸
st zeroes

〉

 =

k∏
i=1

(
1− p(xji,t |xj1,t , . . . , xji−1,t

)
)
.

We will soon give (2) a parametric form. For now,
observe that, based on the above generative model, we
can define the expected reward EYt [Rt(Jt, Yt)] of Jt
on At w.r.t. the random draw of Yt. Specifically, if we
take an expectation of (1) we obtain (we again drop
subscript t for readability):

EY [R(J, Y )]

= r1 p(xj1) + . . .

+ rs p(xjs |xj1 , . . . , xjs−1)

s−1∏
i=1

(
1− p(xji |xj1 , . . . , xji−1)

)
+ `s

s∏
i=1

(
1− p(xji |xj1 , . . . , xji−1

)
)
, (4)

and EY [R(J, Y )] = `0 if J = 〈〉. The involved condi-
tional probabilities (2) are the only ones that matter
in computing the expected reward EY [R(J, Y )]. This
quantity can be either positive or negative, due to the
fact that the last term in (4) is negative.

For a given pair (At, bt), a natural benchmark to
compare to is the Bayes optimal sequence J∗t =
〈xj∗1,t , xj∗2,t , . . . , xj∗s∗t ,t〉, that is, the sequence Jt that

maximizes EYt [Rt(Jt, Yt)] over all possible sequences
built on At, of length at most bt. Recall that J∗t is
computed by knowing beforehand all probabilities (2)
for all candidate sequences Jt. Consequently, we define
the time-t (pseudo) regret of an algorithm that com-
mits to Jt on At as EYt [Rt(J∗t , Yt)] − EYt [Rt(Jt, Yt)] ,
and its cumulative regret over T rounds on the se-

quence of pairs (A1, b1), (A2, b2) . . . , (AT , bT ) as

T∑
t=1

EYt [Rt(J∗t , Yt)]− EYt [Rt(Jt, Yt)] .

Our goal is to make the above quantity as small as
possible (with high probability). Next, we formulate a
parametric model for the conditional probabilities (2),
and show: (i) how to compute J∗t , and (ii) how to de-
fine the contextual bandit algorithms that determines
Jt so as to make the cumulative regret small.

2.2 Parametric model

Given our universe of actions A = {x ∈ Rd : ||x||2 ≤
1}, we associate each item x with a so-called cover-
age vector c(x) = (c1(x), . . . , cd′(x)) ∈ [0, 1]d

′
, where

d′ is the dimensionality of a latent space of topics.5

The coverage ci(A
′) of a (finite) set A′ ⊆ A of items

on topic i is a monotone and sub-modular function
on sets, e.g., ci(A

′) = 1 −
∏
x∈A′(1 − ci(x)), with

ci(∅) = 0. Here we slightly abuse the notation and
set ci(x) = ci({x}). Following, e.g., Yue and Guestrin
(2011); Hiranandani et al. (2020), we then define the
d′-dimensional vector c′(xj | xi1 , . . . , xik) of coverage
differences, whose i-th component is

ci({xi1 , . . . , xik , xj})− ci({xi1 , . . . , xik}) ∈ [0, 1] .

Since such vectors have only positive components, we
shift them to their center so as both positive and nega-
tive components exist,6 and then divide by a constant
that makes their norm at most 1. For instance, we
may set

c̄i(xj | xi1 , . . . , xik) =
1√
d′

(
2c′i(xj | xi1 , . . . , xik)− 1

)
to be the i-th component of the transformed vector
c̄({xi1 , . . . , xik}) of coverage differences.

Our parametric model is represented by a d′-
dimensional vector u ∈ Rd′ with the link function7

5Such coverage vectors can be obtained based on do-
main knowledge. E.g., they may be obtained as a latent
probability distribution after training a Gaussian Mixture
Model where the d′ Gaussian centroids represent the latent
topics, and ci(x) is the probability that x belongs to topic
i according to the mixture model. This is essentially what
we do in our experiments in Section 5.

6This re-centering is simply aimed at improving the nu-
merical properties of the resulting estimators. This is not
a strictly necessary step and, as such, it does not change
the semantics of the setting.

7As the reader can easily see, the content of this paper
can be seamlessly extended to more general link functions
(see, e.g., the treatment in Gentile and Orabona (2012))
but, for simplicity of presentation, we restrict to the sig-
moidal link.
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σ : R → [0, 1], σ(z) = exp (z)
1+exp (z) . Specifically we set

the conditional probability as

p(xj | xi1 , . . . , xik) = σ(c̄(xj | xi1 , . . . , xik)>u) . (5)

Hence the marginal probabilities p(x) and conditional
probabilities p(xj | xi1 , . . . , xik) are encoded as gener-
alized linear functions with unknown parameter vec-
tor u, where the feature representation of xj depends
on xi1 , . . . , xik . The idea is that if the additional
topic-wise diversity brought up by xj as compared to
the already selected xi1 , . . . , xik is relevant w.r.t. the
weight vector u, then the probability that xj is success-
ful given that xi1 , . . . , xik has failed should be large.
The opposite happens if the additional diversity con-
tributed by xj is indifferent w.r.t. u.

We now separate two cases: (i) the independent out-
come case, where only marginal probabilities p(x) are
needed, and (ii) the more general dependent out-
come case, where also the conditional probabilities
p(xj |xi1 , . . . , xik) have to be considered. As we will
see in the sequel, (ii) reduces to (i), up to the computa-
tion of J∗t . For the independent case we can simply set
c̄(x |x1, . . . , xk) = x, for all x, x1, . . . , xk, and d′ = d
to save notations, which makes p(x) = σ(u>x).

3 INDEPENDENT OUTCOMES

This is the simplest possible setting where the Boolean
vector Yt has independent components. In this case,
in (2) we have p(xj |xi1 , . . . , xik) = p(xj) for all
xi1 , xi2 , . . . , xik , and xj . Hence there is no reason
to model conditional probabilities, and we restrict to
modeling p(x) = σ(u>x). Moreover, in this case,
Bayes is formulated only by means of marginal proba-
bilities p(xi), and can be shown8 to reduce to sorting
items in At in decreasing order of p(xj) and cutting
the sequence so obtained at the appropriate place by
a brute-force search over all lengths s ≤ bt.

The bandit algorithm corresponding to (or mimick-
ing) the above Bayes computation is described in Al-
gorithm 1. In this pseudo-code and elsewhere, we
use the notation Yt ↓ Jt, henceforth called outcome
projected onto the retry sequence, to denote the bi-
nary string of the form (3) which encodes the compo-
nents of outcome vector Yt that are revealed by play-
ing sequence Jt. Recall Figure 1 for an example: If
Yt = (0, 0, 1, 1, 0, 1, 1, 0, 0, 1) and Jt = 〈x1, x2, x7, x10〉
we have Yt ↓ Jt = 〈0, 0, 1〉, that is, playing Jt when
the outcome is Yt reveals the components of Yt in the
order determined by Jt up to the first 1 in Yt. In
this example, we observe the 1st, the 2nd, and the 7th

8Due to space limitations, all proofs are postponed to
the appendix.

component of Yt. Notice, in particular, that we do not
observe Yt’s 10th component.

Algorithm 1 replaces the true marginal probabilities
p(xj) = σ(u>xj) with upper confidence estimations

p̂j,t = σ(∆̂j,t + εj,t), and then mimics the Bayes op-
timal computation to determine Jt. The update rule
is a second-order descent method on an appropriate
loss function (logistic, in this case) associated with the
link function σ. Notice that the items xj which do not
occur in Yt ↓ Jt have sj,t = 0, hence they do not con-
tribute to the update of Mt or wt. Yet, it is important
to emphasize that si,t can be zero (that is, the corre-
sponding component yt,i is not observed) also due to
the fact that an earlier item than xi in Jt has been suc-
cessful. In Algorithm 1 the update wct+j−1 → wct+j
is done by computing a standard Newton step.

A convenient way of viewing the way the algorithm
works is as follows. The time horizon is split into
rounds t = 1, 2, . . . , T , each round containing multi-
ple update steps. At the beginning of round t, the
algorithm commits to a sequence Jt of length ŝt us-
ing the weight vector wct available at the beginning of
that round. Then feedback sequence Yt ↓ Jt of length
ŝ′t ≤ ŝt is observed and a sequence j = 1, . . . , ŝ′t of
updates are executed within round t. The remaining
ŝt − ŝ′t are those corresponding to sj,t = 0.

Notice that, unlike the cascading contextual bandit
algorithms available in the literature (e.g., Zong et al.
(2016); Li et al. (2016); Li and Zhang (2018); Liu et al.
(2018a); Li (2019); Li et al. (2019); Hiranandani et al.
(2020)), our Algorithm 1 clearly tells apart through
the update rule the actions in the sequence Jt that
have been observed to be failures (sj,t = −1) and those
that have not been observed at all (sj,t = 0). It is this
richer update rule that allow us to prove a sharper re-
gret guarantee than those available in the literature.
Also, as shown in our experiments (Section 5) this up-
date rule turns out to be significantly more effective in
practice.

It is also worth observing that the vanilla scenario
where rj,t = 1 and `j,t = 0 for all j and t or even,
more generally, in the case where only the losses `j,t
are zero, the Bayes optimal sequence J∗t has length bt,
and so is the length ŝt of the sequence Jt computed
by Algorithm 1. This is very easy to see from the def-
inition of function E(∆1, . . . ,∆s) in (6) in Algorithm
1’s pseudocode: All terms in the sum there are strictly
positive, since so are all multiplicative factors involv-
ing σ(∆i) and in the vanilla scenario ri,t = 1 for all i

and t. In this case, the sequence Ĵt,s maximizing the

function ÊYt [R(Ĵt,s, Yt)] therein is forced to be of max-
imal length bt. For the very same reason, in the vanilla
scenario also the Bayes optimal sequence J∗t will be of



Cascading Bandits with Variable Length Sequences

Algorithm 1 Simplified contextual bandit algorithm in the independent case with link function σ(x) = exp(x)
1+exp(x) .

Input: Maximal budget b > 0, learning rate η > 0, exploration parameter α ≥ 0
Init: M0 = bI ∈ Rd×d, w1 = 0 ∈ Rd, c1 = 1
For t = 1, 2, . . . , T

1. Get:

• Set of actions At = {x1,t, . . . , x|At|,t} ⊆ {x ∈ Rd : ||x|| ≤ 1} ,

• budget bt ≤ b ;

2. For xj ∈ At, set ∆̂j,t = x>j wct ;

3. Compute Jt :

• Let Ĵt,s = 〈xĵt,1 , . . . , xĵt,s〉 be made of the s largest items in At in non-increasing order of p̂j,t, where :

– p̂j,t = σ(∆̂j,t + εj,t),

– ε2j,t = αx>j M
−1
ct−1xj ,

• Set ŝt = arg maxs=0,1,...,bt ÊYt [R(Ĵt,s, Yt)] , with

ÊYt [R(Ĵt,s, Yt)] =

{
E
(

∆̂ĵt,1,t
+ εĵt,1,t, . . . , ∆̂ĵt,s,t

+ εĵt,s,t

)
if s ≥ 1

`0,t otherwise ,

where

E(∆1,∆2, . . . ,∆s)

= r1,t σ(∆1) + r2,t σ(∆2)(1− σ(∆1)) + . . .+ rs,t σ(∆s)

s−1∏
i=1

(1− σ(∆i)) + `s,t

s∏
i=1

(1− σ(∆i)) ; (6)

• Finally, Jt = Ĵt,ŝt ;

4. Observe feedback Yt ↓ Jt =

〈yt,̂jt,1 , yt,̂jt,2 , . . . , yt,̂jt,ŝ′t 〉 = 〈0, . . . , 0, 1〉, for some ŝ′t ≤ ŝt or

〈yt,̂jt,1 , yt,̂jt,2 , . . . , yt,̂jt,ŝt 〉 = 〈0, . . . , 0, 0〉

5. For j = 1, . . . , ŝt (in the order of occurrence of items in Jt) update:

Mct+j−1 = Mct+j−2 + |sj,t|xjx>j , wct+j = wct+j−1 + η σ(−sj,t w>ct+j−1xj) sj,tM
−1
ct+j−1xj ,

where

sj,t =


1 If yt,j is observed and yt,j = 1

−1 If yt,j is observed and yt,j = 0

0 If yt,j is not observed ,

6. ct+1 ← ct + ŝt .

maximal length bt.

The next theorem, which is the main result of this
section, applies to a version of Algorithm 1 where the
learning rate η and the exploration parameter α are
given specific values depending on the problem pa-
rameters b, d, T, δ – see Algorithm 2 in Appendix A
for details.

Theorem 1. Assume there exists D > 0 such that
u>xj ∈ [−D,D] for all xj ∈ A,9 and let b = maxt bt.
Then a version of Algorithm 1 exists such that with

9Notice that since we have assumed ||xj ||2 ≤ 1 for all
vectors xj , we also have ||u||2 ≤ D.

probability at least 1 − δ, with δ < 1/e, the cumula-
tive regret of this algorithm run with link function σ
satisfies

T∑
t=1

EYt [R(J∗t , Yt)]− EYt [R(Jt, Yt)]

≤ 4
√
Tα(b, d, T, δ,D) d log(1 + T ) ,

where α(b, d, T, δ,D) = O
[
e2D

(
b+ d log

(
1 + bdT

δ

))]
,

the big-oh hiding additive and multiplicative constants
independent of T , d, b, D, and δ.

Proof sketch. The proof first shows (Lemma 2 in Ap-
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pendix A) a fundamental monotonicity property of
function E(∆1, . . . ,∆s) in (6), by virtue of which an
upper confidence exploration scheme can be defined.
Then, we relate in Lemma 3 the one-time regret of
the algorithm to how close ∆̂j,t turns out to be to the
corresponding ∆j,t = u>xj,t:

EYt [R(J∗t , Yt)]− EYt [R(Jt, Yt)]

≤
st∑
i=1

εji,t

i−1∏
h=1

(1− σ(∆jh,t)) ,

where Jt = 〈xj1,t, . . . , xjst ,t〉, and εji,t is such that

|∆̂j,t−∆j,t| ≤ εj,t. Notice that the contribution to the
bound of each item in the list shrinks as we move down
the list. This feature, which turns out to be key to the
sharpness of the analysis. This gives rise to the b→

√
b

gain which leverages the way the algorithm updates
its own weights. Then, we rely on a somewhat stan-
dard analysis of online Newton step algorithms (the
one we use is an adaptation of Hazan et al. (2007);
Gentile and Orabona (2012)) to quantify the above
approximation levels εj,t. This bound can be found
within the proof of Theorem 1 in Appendix A, where
it is shown that ε2j,t ≤

(
x>j,tM̄

−1
ct−1xj,t

)
α(b, d, T, 2δ,D) ,

where M̄ct−1 is the (conditional) average of the matrix
Mct−1 the algorithm uses for the update, where the
random bits |si,t| therein get replaced by their expec-

tations
∏i−1
h=1(1−σ(∆jh,t)), which are the same as the

quantities occurring in the one-time regret bound men-
tioned above. Summing over t, relying on standard
inequalities, and bounding the effect of the delayed
feedback inherent in the learning protocol (Lemma 6)
concludes the proof.

Remark 1. The dependence on eD above is common
to all logistic bandit bounds,10 and is due to the non-
linear shape of σ(·) (see, e.g., Filippi et al. (2010);
Gentile and Orabona (2012); Zhang et al. (2016); Li
et al. (2017); Faury et al. (2020), where it takes the
form of an upper bound on 1/σ′(·)). Also notice that
D is meant to be a constant here. As for the depen-
dence on the sequence length b, our bound has the form
Õ(
√
bT ).

Regret bound comparison. Many papers have
tackled the problem of cascading bandits with con-
textual information, some of them adopting a linear

10This actually applies only to the so-called frequen-
tist regret bounds, which are the ones considered here.
Switching to a Bayesian regret guarantee allows one to
give bounds which, under some conditions, are independent
of D – see Dong et al. (2019). Staying within the realm
of frequentist guarantees, it might be possible to improve
Theorem 1 by following the more refined self-concordant
analysis contained in Faury et al. (2020). This analysis
allows one to move the multiplicative dependence on eD

from
√
T to a lower order term in T .

model assumption (e.g., Zong et al. (2016); Li et al.
(2016, 2019); Hiranandani et al. (2020)), others a gen-
eralized linear model assumption (e.g., Li and Zhang
(2018); Liu et al. (2018a); Li (2019)). Most of these
papers have been chiefly motivated by learning-to-rank
tasks applied to recommendation problems. Our us-
age of cascading bandits may be motivated by widely
different application domains, where the sequence Jt
can potentially be far longer than the ranked list of
items typically served to the user of an online content
provider. So, we are interested in both the dependence
on the time horizon T and the maximal length b. Our
bound of the form

√
bT improves on past results in

contextual cascading bandits, where the dependence
on b is either of the form b

√
T (Zong et al. (2016);

Li et al. (2019); Hiranandani et al. (2020)) or of the
form b

√
bT (Liu et al. (2018a)) or of the form eb+

√
bT

(Li and Zhang (2018); Li (2019)) or even of the form
1
p∗

√
bT (Li et al. (2016)), where p∗ is the smallest prob-

ability of any sequence of length b, which can easily be
exponentially small in b, even in the case of indepen-
dent outcomes considered here. Many of these results
are specific to the “vanilla” scenario, which we recover
as a special case of our setting. Recall that in the
vanilla case there is no loss of generality in restricting
to sequences of maximal length bt, hence our improved
regret guarantee directly applies to that case as well.

4 DEPENDENT OUTCOMES

Starting from the parametric model of Section 2.2, we
can write the conditional probabilities as

p(xjk+1
|xj1 , . . . , xjk) = σ(∆j1,...,jk,jk+1

) ,

where ∆j1 = c(xj1)>u and

∆j1,...,jk,jk+1
= c(xjk+1

| xj1 , . . . , xjk)>u ,

for all k ≥ 1. With this notation, and the function
E(·, . . . , ·) defined in (6), the expected regret (4) can
be written as

EY [R(J, Y )] =

{
E(∆j1 , . . . ,∆j1,...,js) if J 6= 〈〉
`0 otherwise .

The algorithm operating with the above generative
model is an adaptation of the one we presented for
the independent case. The main difference here is that
we use conditional probabilities computed from cover-
age difference vectors. Notice that calculating J∗ may
be computationally intractable. Yet, having at our
disposal an oracle that maximizes EY [R(J, Y )] over
J , we could clearly carry out a formal regret analysis
similar to the one in Theorem 1. As in Hiranandani
et al. (2020), we resort to a greedy algorithm to re-
duce the computational complexity. Specifically, we
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give an order over all candidate items based on their
coverage difference vectors c(· | xĵt,1 , . . . , xĵt,k−1

) w.r.t.

the already listed items. Then the empirical mean and
upper confidence levels are computed based on these
difference vectors, while the length of the sequence is
chosen based on a search over all possible length values
with the computed upper confidence levels.

Below we describe a simple greedy algorithm operating
on true probabilities p(xjk+1

|xj1 , . . . , xjk), and give
the pseudocode of its bandit counterpart in Appendix
B. The bandit version of this algorithm will be tested
in our experimental comparison in Section 5.

For convenience, we drop subscript t. On the set
of available actions A, the algorithm builds sequence
Js = 〈xj1 , xj2 , . . . , xjs〉 of length s ≤ bt as follows. For
k = 1, . . . , s, append to 〈xj1 , xj2 , . . . , xjk−1

〉 item

xjk = arg max
x∈A\{xj1 ,...,xjk−1

}
p(x |xj1 , . . . , xjk−1

) . (7)

The analysis bounds the scaled cumulative regret, also
considered in previous work (e.g., Hiranandani et al.
(2020)), where one-time regret is defined as

EY [γ(s∗t )R(J∗t , Y )]− EY [R(Jt, Y )] . (8)

The analysis leverages the fact that the greedy algo-
rithm gives an approximation ratio 0 < γ(s∗t ) < 1,
with some mild assumptions on rewards ri and losses
`i. Then by a result similar to Theorem 1 for the in-
dependent case, we can derive a regret bound of the
form

√
α(b, d′, T, δ,D)T d′ log T – see Appendix B.

5 EXPERIMENTS

In order to demonstrate the efficacy of the proposed
algorithms, we present our experimental results on
ranking tasks defined on the Million Songs Bertin-
Mahieux et al. (2011), Yelp Inc. and Crawford
(2017), MovieLens-25M Harper and Konstan (2015),
and MNIST LeCun et al. (1998) datasets. We com-
pare our algorithms (Algorithm 1, called “Indepen-
dent” here, abbreviated as “Ind”, and Algorithm 3
in Appendix B, called “Dependent”, abbreviated as
“Dep”) to a number of exploration-exploitation base-
lines in the cascading bandits literature,11 specifically
to the CascadeLinUCB algorithm of Zong et al. (2016)
(called “C-UCB” later on), the GL-CDCM algorithm

11This set of baselines are collectively a good pool of rep-
resentatives of the relevant literature. In particular, we do
not compare to traditional learning to rank methods that
do not rely on exploration/exploitation, since the partial
information structure of our problem would make this com-
parison somewhat questionable.

of Liu et al. (2018b) which relies on a generalized lin-
ear model with the original Maximum Likelihood Es-
timator (MLE) as in Filippi et al. (2010), an ε-greedy
version of our Algorithm 2 (called “Eps” later on), a
purely random policy (called “Rand” later on), and
two more baselines obtained from Ind and Dep by re-
versing the order in which the items are presented.
It has been suggested Kveton et al. (2015a); Combes
et al. (2015) that reversing the order may have the
advantage of speeding up learning since it allows the
system to gather more feedback on low quality items.
We call these two inverse ranking baselines “Ind-Inv”
and “Dep-Inv”, respectively.

Datasets and preprocessing. We describe pre-
processing on MovieLens-25M. The Million Songs and
Yelp datasets have been treated similarly. MovieLens-
25M contains ratings of 59, 047 movies by 162, 541
users, and is popularly studied in the recommenda-
tion system literature. We sample 10, 000 movies at
random and calculate the SVD of the corresponding
162, 541×10, 000 ratings matrix into 10 principal com-
ponents. The projection matrices from the SVD are
used to compute embeddings of dimension d = 10 for
the remaining 49, 047 movies for training the bandit al-
gorithms. The embeddings are normalized to unit L2-
norm and the dataset is shuffled randomly. In every
round of bandit learning, the algorithm is presented
with a non-overlapping chunk of movies as arms (At).
The chunk size is 100 (except for the last one, which
is of size 47). The outcome of an arm is decided by
the mean rating received by the corresponding movie
in the dataset. If this mean rating is greater than its
median value in the dataset the outcome is a success,
else is a failure. For Dep (and Dep-Inv) the 49,047
SVD-projected d-dimensional vectors have been used
to compute coverage vectors through a Gaussian Mix-
ture Model (GMM) with d′ centroids.

As for MNIST, this is a multi-class classification
dataset. We designed 10 ranking tasks out of it, one
for each of the 10 classes in the dataset. Each task has
one class as the “pivot-class” giving success, all other
classes yielding failure. The algorithm must rank a
collection of samples to have an item of the pivot-class
(if present) as high up in the list as possible. See Ap-
pendix D for further details.

Scenarios. We study two reward/loss scenarios. The
first one, called “Vanilla”, is designed to reproduce
the standard setting studied in the traditional cascad-
ing bandit literature: rj,t = 1 and `j,t = 0, for all t
and j = 1, 2, . . . , bt. The second one, called “Exponen-
tial”, is comprised of exponentially decaying rewards
and losses, and is designed to incentivize early suc-
cess: rj,t = 1

2j−1 , and `j,t = 4
5 ×

1
2j − 1, for all t and

j = 0, 1, . . . , bt. Notice that in this case r1,t = 1 and
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Figure 2: Average cumulative reward CR(t)/t as a
function of t = 1, . . . , T for the various algorithms on
Million Songs Dataset (MSD) (1st column), Yelp (2nd
column), and MovieLens-25M (3rd column). Vanilla
scenarios (with bt = 1) are in the top row, exponential
scenarios (with bt = 10) are in the bottom row. Notice
that when bt = 1, Ind = Ind-Inv and Dep = Dep-
Inv, so only 6 curves are displayed on the top plots.
Also, for exponential rewards (bottom row), we do not
have C-UCB, GL-CDCM and Eps baselines as they
are only defined for the vanilla reward scenario. Dep
(green curve) performs best across the datasets, with
an exception of MovieLens-25M, where Ind (red curve)
performs comparably.

`0,t = −0.2. The exponential scenario captures the
true essence of the proposed models since it remains
sensitive to early success even for larger budgets.

Tuning of Hyperparameters. We run a fine grid-
search over the space of hyperparameters of each al-
gorithm and only report the results corresponding to
the combination of hyperparameters that obtains the
largest final cumulative reward. We search the value
of learning rate η in the range 1.0 − 100.0, explo-
ration parameter α on a logarithmic scale in the range
10−9 − 10.0, ε in ε-greedy in 0.01− 0.5, L2 regulariza-
tion weight λ in our implementation of the GL-CDCM
baseline Liu et al. (2018b) on a logarithmic scale in the
range 10−7 − 103 and the number d′ of latent compo-
nents for the proposed dependent algorithm between
3 and 30.

Results. Figure 2 and Figure 3 contain some elements
of our experimental comparison among all algorithms,
further results are contained in Appendix D. We eval-
uate the algorithms in terms of their time-averaged
Cumulative Reward (CR) obtained over all rounds of
training by computing, for each algorithm, the frac-
tion of reward/loss units accumulated per time step,
up to time t, for t = 1, . . . , T . If a given dataset has
T chunks then each algorithm is trained for exactly

T rounds. Figure 2 shows the variation of CR(t)
t over

rounds of training for two relevant scenarios. In the ex-
ponential scenario, we restrict to comparing Ind, and
Dep to Rand, Ind-Inv and Dep-Inv, since the other
baselines are not designed to cope with it.

Figure 3: Ind operating on the three datasets MSD
(left), Yelp (middle), and MovieLens (right) in the ex-
ponential scenario with bt = 100. The plots report, for
each chunk of the datasets (x-axis), the length ŝt of the
sequence Jt computed by Ind (“Seq Len”) along with
the position where the first success is observed (“Succ
Step”), that is, value ŝ′t for Jt (y-axis) – please recall
the notation in Algorithm 1. Chunks where success is
not observed are excluded. The algorithm never satu-
rates budget bt, while achieving success within the first
few items (ŝ′t ≤ 12 for all t where success is achieved).

Notice that for small bt in the vanilla scenario and
all values of bt in the exponential scenario, achieving
higher CR is synonymous of early success, and we ob-
serve that the proposed dependent algorithm (“Dep”)
outperforms the other algorithms in these scenarios, an
exception being MovieLens-25M, where the proposed
Independent (“Ind”) algorithm performs comparably.
The “Inv” versions of Ind and Dep do not happen to
be strong competitors, but perhaps on MNIST in the
vanilla scenario (Table 7 in Appendix D).

Figure 3 reports the inner behavior of Ind on three
datasets when deciding on the actual length of se-
quence Jt on each chunk. The algorithm never sat-
urates the budget length. Further results are provided
in the appendix, where similar trends as those reported
here can be observed. In particular, Appendix D re-
ports a more extensive study on how the performances
in the two scenarios vary with different choices of bt.

6 CONCLUSIONS

We have introduced a cascading bandit model with
flexible sequences and varying rewards and losses. The
model is specifically focused on applications, like web
search or payment systems, where the item sequence
can be significantly long. We have analyzed two algo-
rithms with improved regret guarantees, and have em-
pirically demonstrated their competitiveness against a
number of baselines on popular real-world datasets.
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Online learning under delayed feedback. In Inter-
national Conference on Machine Learning, pages
1453–1461. PMLR, 2013.
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Supplementary Material:
Learning to Plan Variable Length Sequences of Actions with a

Cascading Bandit Click Model of User Feedback

A APPENDIX

Algorithm 2 contains a more detailed version of Algorithm 1 of Section 3 where, in particular, we replace the
exploration parameter α with an exact expression α(b, d, T, δ,D) needed for the analysis. Algorithm 2 also
includes for technical reasons a projection step at the end. Specifically, the update of vector wct+j−1 → wct+j is
done by first projecting wct+j−1 onto the set {w ∈ Rd : |w>xj | ≤ D} to obtain w′ct+j−1, and then by computing
a standard Newton step. The projection can be efficiently calculated in closed form (see the proof of Lemma 5
below).

The following lemma shows that, in the independent case, the Bayes optimal sequence can be computed efficiently.

Lemma 1. Let pY (A) =
∏|A|
j=1 p(xj), and b be the budget length. Then J∗ can be computed as follows. Set

s∗ = arg max
s=0,1,...,b

EY [R(J∗s , Y )] ,

where J∗s = 〈xj∗1 , xj∗2 , . . . , xj∗s 〉, xj∗1 , xj∗2 , . . . , xj∗s the items associated with the s largest marginal probabilities
p(xj), xj ∈ A, sorted in non-increasing order. Then J∗ = J∗s∗ , with J∗ = 〈〉 if s∗ = 0.

Proof. Consider the following argument.

1. Let J = 〈xj1 , xj2 , . . . , xjk , . . . , jk′ , . . . , xjs〉, be an arbitrary sequence, and let a perturbed sequence J ′ =
〈xj1 , xj2 , . . . , xjk′ , . . . , xjk , . . . , xjs〉 be obtained from J just by swapping xjk with xjk′ . Moreover, suppose
p(xjk′ ) > p(xjk). Then considering the difference EY [R(J ′, Y )] − EY [R(J, Y )] and relying on the fact that
rewards rj are non-decreasing, we want to show that EY [R(J ′, Y )] ≥ EY [R(J, Y )]. It suffices to show the
claim for the case where xjk and xjk′ are adjacent in J , so that k′ = k + 1.

Let us introduce the short-hand notation pi = p(xji), and Π =
∏k−1
i=1 (1−pi). Our assumption then becomes

pk+1 ≥ pk. Now, since Y ’s components are independent, EY [R(J ′, Y )] has the form of function E(·, . . . , ·)
defined in Lemma 2. Then, because k and k+ 1 are adjacent positions, one can easily verify that, removing
common terms, the difference EY [R(J ′, Y )]− EY [R(J, Y )] can be written as

EY [R(J ′, Y )]− EY [R(J, Y )] = Π
[
rk (pk+1 − pk) + rk+1

(
pk(1− pk+1)− pk+1(1− pk)

)]
= Π (rk − rk+1)(pk+1 − pk)

which is non-negative, since Π ≥ 0, rk ≥ rk+1 and pk+1 ≥ pk.

As the above argument holds for an arbitrary starting sequence J , this shows that, for any given (unordered)
set of items contained in J , the best way to sort them in order to maximize EY [R(J, Y )] is to have then in
non-increasing order of their marginal probabilities p(xj).

2. Next, let J = 〈xj1 , xj2 , . . . , xjk , . . . , xjs〉, be an arbitrary sequence, and let a perturbed sequence J ′′ =
〈xj1 , xj2 , . . . , xjk′′ , . . . , xjs〉 be obtained from J just by replacing item xjk by xjk′′ , where p(xj′′k ) ≥ p(xjk).
Again, we need to show that EY [R(〈J ′′, Y )] ≥ EY [R(J, Y )]. This claim immediately follows from the mono-
tonicity property contained in Lemma 2, thereby showing that, for any given length s, the best assortment
of items in J is one that contains those corresponding to the s largest marginal probabilities p(xj). In turn,
combined with the previous item, this implies that J∗ has necessarily the form J∗s = 〈xj∗1 , xj∗2 , . . . , xj∗s 〉,
for some length s ∈ {1, . . . , bt}, where xj∗1 , xj∗2 , . . . , xj∗s are the items associated with the s largest marginal
probabilities p(xj), sorted in non-increasing order.
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Algorithm 2 The contextual bandit algorithm in the independent case with link function σ(x) = exp(x)
1+exp(x) .

Input: Confidence level δ ∈ [0, 1], width parameter D > 0, maximal budget parameter b > 0
Init: M0 = bI ∈ Rd×d, w1 = 0 ∈ Rd, c1 = 1
For t = 1, 2, . . . , T

1. Get:

• Set of actions At = {x1,t, . . . , x|At|,t} ⊆ {x ∈ Rd : ||x|| ≤ 1} ,

• budget bt ≤ b ;

2. For xj ∈ At, set ∆̂j,t = x>j wct ;

3. Compute Jt :

• Let Ĵt,s = 〈xĵt,1 , . . . , xĵt,s〉 be made of the s largest items in At in non-increasing order of p̂j,t, where :

– p̂j,t = σ(∆̂j,t + εj,t),

– ε2j,t = (x>j M
−1
ct−1xj) α(b, d, T, δ) , with

α(b, d, T, δ,D) =2bD2 +

(
cσ
cσ′

)2

d log

(
1 +

2

b

(
T

cσ
1− cσ

+ 4 log
4(T + 1)

δ

))
+ 2

(
12

(
cσ
cσ′

)2

+
36(1 +D)

cσ′

)
log

2b(T + 4)

δ
+ 20D2 log

2bd(T + 1)

δ

• Set ŝt = arg maxs=0,1,...,bt ÊYt [R(Ĵt,s, Yt)] ,
with

ÊYt [R(Ĵt,s, Yt)] =

{
E
(

∆̂ĵt,1,t
+ εĵt,1,t, . . . , ∆̂ĵt,s,t

+ εĵt,s,t

)
if s ≥ 1

`0,t otherwise ,

where

E(∆1,∆2, . . . ,∆s) = r1,t σ(∆1) + . . .+ rs,t σ(∆s)

s−1∏
i=1

(1− σ(∆i)) + `s,t

s∏
i=1

(1− σ(∆i)) ;

• Finally, Jt = Ĵt,ŝt ;

4. Observe feedback Yt ↓ Jt =

〈yt,̂jt,1 , yt,̂jt,2 , . . . , yt,̂jt,ŝ′t 〉 = 〈0, . . . , 0, 1〉, for some ŝ′t ≤ ŝt or

〈yt,̂jt,1 , yt,̂jt,2 , . . . , yt,̂jt,ŝt 〉 = 〈0, . . . , 0, 0〉

5. For j = 1, . . . , ŝt (in the order of occurrence of items in Jt) update:

Mct+j−1 = Mct+j−2 + |sj,t|xjx>j , wct+j = w′ct+j−1 +
1

cσ′
M−1
ct+j−1∇j,t ,

where

sj,t =


1 If yt,j is observed and yt,j = 1

−1 If yt,j is observed and yt,j = 0

0 If yt,j is not observed ,

and ∇j,t = σ(−sj,t ∆̂′j,t) sj,t xj , where ∆̂′j,t = x>j w
′
ct+j−1

with
w′ct+j−1 = arg min

w :−D≤w>xj≤D
dct+j−2(w,wct+j−1) ;

6. ct+1 ← ct + ŝt .



Cascading Bandits with Variable Length Sequences

3. What remains is to maximize over length s ∈ {0, 1, . . . , b}. Notice that there is no guarantee that, viewed as
a function of s, the quantity EY [R(J∗s , Y )] will have a specific behavior, like unimodality. Hence, we need
to try out all allowed values of s ≤ b, including s = 0.

This concludes the proof.

The next lemma is of preliminary importance. It delivers a monotonicity property showing that the upper
confidence scheme adopted in Algorithm 2 is properly defined, but it also serves in the proof of subsequent
lemmas.

Lemma 2. For constants r1 ≥ r2 . . . ≥ rs > 0, `s < 0, and a differentiable function p : R → [0, 1] which is
monotonically increasing, the function E : Rs → R defined as

E(∆1,∆2, . . . ,∆s) = r1 p(∆1) + r2 p(∆2)(1− p(∆1)) + . . .+ rs p(∆s)

s−1∏
i=1

(1− p(∆i)) + `s

s∏
i=1

(1− p(∆i)) (9)

enjoys the following properties:

1. E is non-decreasing in each individual variable ∆i.

2. If, in addition, ri ∈ [0, 1], for i = 1, . . . , s, `s ∈ [−1, 0], and dp(∆)
d∆ ≤ z for all ∆ ∈ R, then ∂E(∆1,...,∆s)

∂∆i
≤

z(ri − `s) ≤ 2z holds for all ∆1, . . . ,∆s ∈ R, and i.

3. Under the same assumption as in item 2 above,

∂E(∆1, . . . ,∆s)

∂∆k
≤ 2z

k−1∏
j=1

(1− p(∆j)) .

Proof. Define, for k = 1, . . . , s,

Ek = Ek(∆k,∆k+1, . . . ,∆s)

= rk p(∆k) + rk+1 p(∆k+1)(1− p(∆k)) + . . .+ rs p(∆s)

s−1∏
i=k

(1− p(∆i)) + `s

s∏
i=k

(1− p(∆i)) ,

and notice that

Ek ≤ rk

(
p(∆k) + p(∆k+1)(1− p(∆k)) + . . .+ p(∆s)

s−1∏
i=k

(1− p(∆i))

)
+ `s

s∏
i=k

(1− p(∆i))

(due to the fact that rs ≤ rs−1 ≤ . . . ≤ rk+1 ≤ rk)

≤ rk

(
p(∆k) + p(∆k+1)(1− p(∆k)) + . . .+ p(∆s)

s−1∏
i=k

(1− p(∆i)) +

s∏
i=k

(1− p(∆i))

)
(since `s ≤ 0 ≤ rk)

= rk

(since the expression in braces equals 1) .

Then we have, for k ≥ 2

Ek−1 = (1− p(∆k−1))︸ ︷︷ ︸
≥0

Ek + rk−1 p(∆k−1) (10)

= p(∆k−1) (rk−1 − Ek)︸ ︷︷ ︸
≥rk−1−rk≥0

+Ek . (11)

From (11) one can see that, viewed solely as a function of ∆k−1, the quantity Ek−1 can be seen as a positive
constant times p(∆k−1) (since rk−1 − Ek ≥ 0 and Ek only depends on variables ∆k, . . . ,∆s) plus a constant
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term independent of ∆k−1 (again, because Ek only depends on ∆k, . . . ,∆s). We can now proceed by backward
induction on k = s, s − 1, . . . , 1. For k = s we have Es = `s(1 − p(∆s)) which is non-decreasing in ∆s since so
is p(·), and `s < 0. Assuming by induction Ek is non-decreasing in ∆k, . . . ,∆s, we have from (11) that Ek−1 is
non-decreasing in ∆k−1, thanks to the fact that p(∆k−1) is monotonically increasing in ∆k−1, Ek only depends
on ∆k . . . ,∆s, and rk−1 − Ek ≥ 0. Moreover, Ek−1 is also non-decreasing in ∆k, . . . ,∆s since, from (10), Ek−1

is a positive constant (i.e., independent of ∆k, . . . ,∆s) times Ek plus a constant term, again independent of
∆k, . . . ,∆s. Since by induction Ek is non-decreasing in ∆k, . . . ,∆s, so is Ek−1.

The above holds for all k, hence it holds in particular for k = 1, which concludes the proof of the first part.

As for the second part, we again proceed by backward induction on k = s, s − 1, . . . , 1. We have ∂Es(∆s)
∂∆s

=

−`s ∂p(∆s)
∆s

≤ z(−`s) ≤ z(rs − `s) for all ∆s. Then assume by the inductive hypothesis that ∂Ek(∆k,...,∆s)
∂∆i

≤
z(ri − `s) for all ∆k, . . . ,∆s, and i = k, . . . , s. From (11), we can write

∂Ek−1(∆k−1, . . . ,∆s)

∂∆k−1
=
∂p(∆k−1)

∂∆k−1
(rk−1 − Ek) ≤ z(rk−1 − `s) ≤ 2z , (12)

the first inequality deriving from Ek ≥ `s. On the other hand, from (10) we also have, for i = k, . . . , s,

∂Ek−1(∆i, . . . ,∆s)

∂∆i
= (1− p(∆k−1))

∂Ek(∆k, . . . ,∆s)

∂∆i
≤ ∂Ek(∆k, . . . ,∆s)

∂∆i
≤ z(ri − `s) ,

the inequality following from the inductive hypothesis.

Again, the above holds for all k, hence it holds for k = 1, which concludes the proof of the second part.

Finally, as for the third part, we first observe that, for any k,

∂E(∆1, . . . ,∆s)

∂∆k
=

k−1∏
j=1

(1− p(∆j))
∂Ek(∆k, . . . ,∆s)

∂∆k
,

and then apply the bound ∂Ek(∆k,...,∆s)
∂∆k

≤ 2z from (12) to obtain the claimed result.

The next two lemmas will be the basis for our regret analysis.

Lemma 3. Let us assume the independence model for outcome Y . Then, for given set of actions A, and budget
b, let J∗ be the Bayes optimal sequence and J = 〈xj1 , . . . , xjs〉 be the sequence computed by Algorithm 2 on A

and b, with link function σ such that σ′(∆) ≤ z for all ∆ ∈ R. Further, let ∆j = u>xj, and ∆̂j = w>xj, for

all xj ∈ A, and assume |∆j − ∆̂j | ≤ εj for all j such that xj ∈ A, where w is the vector used by Algorithm 2 to
compute J . Then the one-time regret EY [R(J∗, Y )]− EY [R(J, Y )] can be bounded as follows:

EY [R(J∗, Y )]− EY [R(J, Y )] ≤

{
4z
∑s
i=1 εji

∏i−1
h=1(1− σ(∆jh)) if J 6= 〈〉

0 otherwise .
(13)

Proof. Irrespective of whether J 6= 〈〉 or J∗ 6= 〈〉, we can write

EY [R(J∗, Y )] − EY [R(J, Y )]

≤ ÊY [R(J∗, Y )]− EY [R(J, Y )]

(using the first part of Lemma 2 combined with the condition |∆j − ∆̂j | ≤ εj)
≤ ÊY [R(J, Y )]− EY [R(J, Y )]

(since, by definition of J , ÊY [R(J∗, Y )] ≤ ÊY [R(J, Y )].

Notice that this implies that in the case where our algorithm happens to play J = 〈〉
the regret is ≤ 0).

= E(∆̂j1 + εj1 , . . . , ∆̂js + εjs)− E(∆j1 , . . . ,∆js)

(where E(·) is defined in (9))

≤ E(∆j1 + 2εj1 , . . . ,∆js + 2εjs)− E(∆j1 , . . . ,∆js)

(using again the first part of Lemma 2 together with |∆j − ∆̂j | ≤ εj) .
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Now, by the mean-value theorem, we can write

E(∆j1 + 2εj1 , . . . ,∆js + 2εjs)− E(∆j1 , . . . ,∆js) = 2

s∑
i=1

∂E(∆j1 , . . . ,∆js)

∂∆ji

∣∣
∆j1=ξjs ,...,∆js=ξjs

εji ,

where ξji ∈ (∆ji ,∆ji + 2εji), for i ∈ [s]. The third part of Lemma 2 then allows us to write

∂E(ξj1 , . . . , ξjs)

∂∆ji

≤ 2z (1− σ(ξj1)) . . . (1− σ(ξji−1
))

≤ 2z (1− σ(∆j1)) . . . (1− σ(∆ji−1)) ,

the second inequality deriving from the monotonicity of σ(·) and the fact that ξji ∈ (∆ji ,∆ji + 2εji). Replacing
back, and summing over i yields the claimed bound.

In order to quantify εj in Lemma 3, we introduce a suitable surrogate loss function L(·) that determines the
dynamics of the algorithm (i.e., the proposed update rule being an online Newton step w.r.t. to this loss function),
along with its convergence guarantees. In the proofs that follow we set

L(∆) = log(1 + e−∆) .

Notice that σ(∆) = −L′(−∆).

Lemma 4. Consider any item xji ∈ A, and the random variable sji ∈ {−1, 0, 1} whose value is given in the
algorithm’s pseudocode. Also, assume xji occurs in the i-th position of sequence J = 〈xj1 , xj2 , . . . , xjs〉. Let cσ
and cσ′ be two positive constants such that, for all ∆ ∈ [−D,D] we have |L′(∆)| ≤ cσ and L′′(∆) ≥ cσ′ . Set
∆ji = u>xji . Then, for any ∆̂′ji ∈ R we have

0 ≤ var[L(sji∆̂ji)− L(sji∆ji) | J ] ≤ 2(cσ)2

cσ′
E[L(sji∆̂ji)− L(sji∆ji) | J ] .

Proof. Let us introduce the shorthands

∆j = u>j x, pji = σ(∆ji), Πi−1 = (1− σ(∆j1)) . . . (1− σ(∆ji−1
)) .

We can write

P(sji = 1 | J) = Πi−1 pji

P(sji = −1 | J) = Πi−1 (1− pji)
P(sji = 0 | J) = 1− P(sji = 1 | J)− P(sji = −1 | J) .

Hence, for all ∆̂ji ∈ R we have

E[L(sji∆̂ji) − L(sji∆ji) | J ]

= Πi−1

(
pji

(
L(∆̂ji)− L(∆ji)

)
+ (1− pji)

(
L(−∆̂ji)− L(−∆ji)

))
≥ Πi−1

(
pji

(
L′(∆ji)(∆̂ji −∆ji) +

cσ′

2
(∆̂ji −∆ji)

2
)

+(1− pji)
(
L′(−∆ji)(∆ji − ∆̂ji) +

cσ′

2
(∆̂ji −∆ji)

2
))

(using L′′(∆ji) ≥ cσ′)

= Πi−1
cσ′

2
(∆̂ji −∆ji)

2

(since pji = −L′(−∆ji) and 1− pji = −L′(∆ji) .

Moreover,

var[L(sji∆̂ji)− L(sji∆ji) | J ] ≤ E[(L(sji∆̂ji)− L(sji∆ji))
2 | J ]

≤ Πi−1(cσ)2(∆̂ji −∆ji)
2

(using |L′(∆ji)| ≤ cσ) .

Piecing together gives the claimed bound.
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The next lemma helps us define the upper confidence parameters εj,t. To this effect, for t ∈ [T ], let dt(u,w) be
the Mahalanobis distance between vectors u and w as

dct(u,w) = (u− w)>Mct(u− w) ,

where Mct is the matrix maintained by Algorithm 2 at the ct-th update. The next lemma follows from somewhat
standard arguments, and relies on the exp-concavity of L(·).

Lemma 5. Assume there exists D > 0 such that u>xj ∈ [−D,D] for all xj ∈ A. Let cσ and cσ′ be two positive
constants such that, for all ∆ ∈ [−D,D] we have 0 < 1 − cσ ≤ σ(∆) ≤ cσ < 1 and σ′(∆) ≥ cσ′ . Then with
probability at least 1− δ, with δ < 1/e, we have

dct−1(u,w′ct)

≤ bD2 +

(
cσ
cσ′

)2

d log

(
1 +

2

b

( t cσ
1− cσ

+ 4 log
2(t+ 1)

δ

))
+

(
12

(
cσ
cσ′

)2

+
36(1 +D)

cσ′

)
log

2b(t+ 4)

δ

uniformly over ct ∈ [bT ], where bt ≤ b for all t ∈ [T ].

Proof. Given items A, the update rules w′ct+j−1 → wct+j → w′ct+j combined with the lower bound L′′(∆) ≥ cσ′
allows us to write for all t (adapted from, e.g., Hazan et al. (2007); Gentile and Orabona (2012))

dct−1(u,w′ct) ≤ bD
2 +

(
1

cσ′

)2

·
t−1∑
k=1

ŝk∑
j=1

∇>j,kM−1
ck+j−1∇j,k −

2

cσ′

t−1∑
k=1

ŝk∑
j=1

(
L(sj,kx

>
j w
′
ck+j−1)− L(sj,ku

>xj)
)
,

(14)

where ck = ŝ1 + ŝ2 + . . .+ ŝk−1.

In particular, notice that the step wct+j → w′ct+j is a projection of wct+j onto the convex set {w ∈ Rd : −D ≤
w>xj ≤ D} w.r.t. Mahalanobis distance dct+j−1(·, ·). This projection can be computed in closed form as follows:

w′ct+j−1 =


wct+j−1 if |w>ct+j−1xj | ≤ D

wct+j−1 −
w>ct+j−1xj−D
x>j M

−1
ct+j−2xj

M−1
ct+j−2xj if w>ct+j−1xj > D

wct+j−1 −
w>ct+j−1xj+D

x>j M
−1
ct+j−2xj

M−1
ct+j−2xj if w>ct+j−1xj < −D .

Further, we lower bound with high probability
∑t−1
k=1

∑ŝk
j=1

(
L(sj,kx

>
j w
′
ck+j−1)−L(sj,ku

>xj)
)

using the fact that

the conditional expectation of the loss difference L(sj,kx
>
j w
′
ck+j−1)−L(sj,ku

>xj) is non-negative (Lemma 4).12

The same lemma also allows for fast rates of convergence, so that we can apply any Freedman-like inequality
(see, e.g., Lemma 3 in Kakade and Tewari (2008)) for bounded martingale difference sequences to conclude that

t−1∑
k=1

ŝk∑
j=1

(
L(sj,kx

>
j w
′
ck+j−1)− L(sj,ku

>xj)
)
≥ −

(
6(cσ)2

cσ′
+ 18L(−D)

)
log

b(t+ 4)

δ

with b ≥ bt for all t, holds with probability ≥ 1 − δ/(bt(t + 1)), the boundedness of the difference sequence
following from the fact that |u>xj | ≤ D holds by assumption, and |x>j w′ck+j−1| ≤ D holds by the projection

12Here, Lemma 4 is applied with expectations conditioned on past history.
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steps wck+j−1 → w′ck+j−1. We then upper bound L(−D) by 1 +D and exploit a known upper bound:

t−1∑
k=1

ŝk∑
j=1

∇>j,kM−1
ck+j−1∇j,k =

t−1∑
k=1

ŝk∑
j=1

σ2(−sj,kx>j w′ck+j−1)|sj,k|
(
x>j M

−1
ck+j−1xj

)
≤ (cσ)2

t−1∑
k=1

ŝk∑
j=1

|sj,k|
(
x>j M

−1
ck+j−1xj

)
(from the fact that L′(∆) ≤ cσ for all ∆ ∈ [−D,D], and |x>j w′ck+j−1| ≤ D)

≤ (cσ)2d log

1 +
1

b

t−1∑
k=1

ŝk∑
j=1

|sj,k|

 (15)

(from a standard inequality, e.g., Cesa-Bianchi et al. (2005)) .

Since |sj,k| is a Bernoulli random variable which is 1 (that is, the corresponding component of outcome vector

Yk is observed) with (conditional) probability Πj−1,k =
∏j−1
i=1 (1− σ(∆i,k)) , where

∆i,k = u>xi , i = 1, . . . , ŝk ,

we can apply again the aforementioned Freedman-like inequality from Kakade and Tewari (2008) to conclude
that

P

∃t :

t−1∑
k=1

ŝk∑
j=1

|sj,k| ≤ 2

t−1∑
k=1

ŝk∑
j=1

Πj−1,k + 4 log
t(t+ 1)

δ

 ≥ 1− δ .

In turn, since ∆i,k ∈ [−D,D], we have 1−σ(∆i,k) ≤ cσ for all i and k, so that
∑ŝt
j=1 Πj−1,k ≤

∑∞
j=1 (cσ)

j
= cσ

1−cσ .
After some overapproximations, the above implies

P

∃t :

t−1∑
k=1

ŝk∑
j=1

|sj,k| ≤ 2(t− 1)
cσ

1− cσ
+ 8 log

t+ 1

δ

 ≥ 1− δ .

We plug it back into (15), then back into (14) and replace δ by δ/2 to obtain the claimed result.

The next lemma takes care of the delayed feedback inherent in the cascading bandit learning protocol.

Lemma 6. Let M be a d× d positive definite matrix whose minimal eigenvalue is ≥ b, for some b ∈ {1, 2, . . . , },
and x1, x2, . . . , xb ∈ {x ∈ Rd : ||x|| ≤ 1}. Then

b∑
j=1

x>j M
−1xj ≤ e

b∑
j=1

x>j M
−1
j xj ,

where Mj = M + x1x
>
1 + . . . xjx

>
j , and e is the base of natural logarithms.

Proof. Consider the quantity x>M−1
j x, with M0 = M . We first prove that, for any x ∈ Rd,

x>M−1x ≤
(

1 +
1

b

)j
x>M−1

j x (16)

holds for all j ∈ [b].

By the Sherman-Morrison formula for matrix inversion we have, for an arbitrary x ∈ Rd, and j ≥ 1,

x>M−1
j x = x>(Mj−1 + xjx

>
j )−1x

= x>M−1
j−1x−

(x>M−1
j−1xj)

2

1 + x>j M
−1
j−1xj

≥ x>M−1
j−1x−

(x>M−1
j−1x)(x>j M

−1
j−1xj)

1 + x>j M
−1
j−1xj

(from the Cauchy-Schwarz inequality)
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so that

x>M−1
j−1x ≤ x

>M−1
j x+

(x>M−1
j−1x)(x>j M

−1
j−1xj)

1 + x>j M
−1
j−1xj

.

Hence, rearranging terms, we can write

x>M−1
j−1x ≤ x

>M−1
j x(1 + x>j M

−1
j−1xj) ≤ x

>M−1
j x

(
1 +

1

b

)
,

the second inequality deriving from the assumption ||xj || ≤ 1 and the fact that since the smallest eigenvalue of
M is at least b, so is the smallest eigenvalue of Mj−1 ≥M . Unwrapping this recurrence over j gives (16).

From (16), since (1 + 1/b)j ≤ e when j ≤ b, we have

x>M−1x ≤ e x>M−1
j x .

Since this holds for a generic x, we instantiate in turn x to x1, x1, . . . , xb, and sum over j ∈ [b]. This yields

b∑
j=1

x>j M
−1xj ≤ e

b∑
j=1

x>j M
−1
j xj ,

as claimed.

Proof of Theorem 1. Consider matrix Mct−1 in Lemma 5. If Jr = 〈xĵr,1 , . . . , xĵr,ŝr 〉, for r = 1, . . . , t − 1, we

can write

Mct−1 = bI +

t−1∑
r=1

ŝr∑
j=1

|sj,r|xĵr,jx
>
ĵr,j

,

where |sj,r| is a Bernoulli random variable which is 1 (that is, the corresponding component of outcome vector

Yr is observed) with probability Πj−1,r =
∏j−1
i=1 (1− σ(∆i,r)) , where

∆i,r = u>xĵr,i , i = 1, . . . , ŝr .

Let

M̄ct−1 = bI +

t−1∑
r=1

ŝr∑
j=1

Πj−1,r xĵr,jx
>
ĵr,j

,

and consider the matrix martingale difference sequence

|sj,r|xĵr,jx
>
ĵr,j
−Πj−1,r xĵr,jx

>
ĵr,j

, r = 1, . . . , t− 1, j = 1, . . . , ŝr .

By a standard Freedman-style matrix martingale inequality (e.g., Tropp (2011)) adapted to our scenario we have,
for positive constants θ and θ′,

P
(
∃t : λmax

(
Mct−1 − M̄ct−1

)
≥ θ, ||M̄ct−1|| ≤ θ′

)
≤ d exp

(
−θ2/2

θ′ + θ/3

)
, (17)

where λmax(·) denotes the algebraically largest eigenvalue of the matrix at argument, and || · || denotes the
spectral norm.

We now proceed according to a standard stratification argument (e.g., Cesa-Bianchi and Gentile (2008)). Setting
A(x, δ) = 2 log xd

δ and f(A, r) = 2A+
√
Ar, we can write

P
(
∃t : λmax

(
Mct−1 − M̄ct−1

)
≥ f(A(||M̄ct−1||, δ), ||M̄ct−1||)

)
≤
∞∑
r=0

P
(
∃t : λmax

(
Mct−1 − M̄ct−1

)
≥ f(A(||M̄ct−1||, δ), ||M̄ct−1||), 2r − 1 ≤ ||M̄ct−1|| ≤ 2r+1

)
≤
∞∑
r=0

P
(
∃t : λmax

(
Mct−1 − M̄ct−1

)
≥ f(A(2r+1, δ), 2r+1), ||M̄ct−1|| ≤ 2r+1

)
≤
∞∑
r=0

d exp

(
−f2(A(2r+1, δ), 2r+1)/2

2r+1 + f(A(2r+1, δ), 2r+1)/3

)
,
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the last inequality deriving from (17).

Since f(A, r) satisfies f2(A, r) ≥ Ar + A + 2/3f(A, r)A, the exponent in the last exponential is at least
A(2r+1, δ)/2, implying

∞∑
r=0

exp
(
−A(2r+1, δ)/2

)
=

∞∑
r=0

δ

d 2r+1
= δ/d ,

which in turn implies

P
(
∃t : λmax

(
Mct−1 − M̄ct−1

)
≥ f(A(||M̄ct−1||, δ), ||M̄ct−1||)

)
≤ δ .

Plugging back the definitions of f(A, r) and A(x, δ), noticing that ||M̄ct−1|| = λmax(M̄ct−1) ≤ b(t + 1) (due to
the fact that ||M̄ct−1|| is positive definite and ||xĵt,j || ≤ 1), and overapproximating gives

P

(
∃t : λmax

(
Mct−1 − M̄ct−1

)
≥ 4 log

bd(t+ 1)

δ
+

√
2λmax(M̄ct−1) log

bd(t+ 1)

δ

)
≤ δ .

Further, we use
√
ab ≤ a/2 + b/2 with a = λmax(M̄ct−1) and b = 2 log bd(t+1)

δ . Rearranging gives

P
(
∃t :

1

2
λmax

(
M̄ct−1

)
− λmax(M̄ct−1 −Mct−1) ≤ −5 log

bd(t+ 1)

δ

)
≤ δ

or, equivalently,

P
(
∀t 1

2
λmax

(
M̄ct−1

)
− λmax(M̄ct−1 −Mct−1) ≥ −5 log

bd(t+ 1)

δ

)
≥ 1− δ .

Now, observing that

λmax

(
M̄ct−1

)
− λmax(2M̄ct−1 − 2Mct−1) ≤ λmax

(
2Mct−1 − M̄ct−1

)
the above implies

P
(
∀t λmax

(
Mct−1 −

1

2
M̄ct−1

)
≥ −5 log

bd(t+ 1)

δ

)
≥ 1− δ ,

which can be rewritten as

P

(
∀t ∀v ∈ Rd :

v>
(
Mct−1 − 1

2M̄ct−1

)
v

v>v
≥ −5 log

bd(t+ 1)

δ

)
≥ 1− δ .

If we define
d̄ct−1(u,w) = (u− w)>M̄ct−1(u− w)

the above inequality allows us to conclude that

dct−1(u,w) ≥ 1

2
d̄ct−1(u,w)− 20D2 log

bd(t+ 1)

δ

holds with probability at least 1 − δ, uniformly over all u,w ∈ Rd such that ||u − w|| ≤ 2D and all rounds t.
Hence, combining with Lemma 5, and upper bounding t by T ,

d̄ct−1(u,w′ct) ≤ α(b, d, T, 2δ,D)

where

α(b, d, T, 2δ,D) = 2bD2 +

(
cσ
cσ′

)2

d log

(
1 +

2

b

( T cσ
1− cσ

+ 4 log
2(T + 1)

δ

))
+ 2

(
12

(
cσ
cσ′

)2

+
36(1 +D)

cσ′

)
log

b(T + 4)

δ
+ 20D2 log

bd(T + 1)

δ
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with probability at least 1− 2δ.

Then Cauchy-Schwarz inequality allows us to write, for all x ∈ Rd,

(u>x− x>w′ct)
2 ≤ x>M̄−1

ct−1x d̄ct−1(u,w′ct) ≤
(
x>M̄−1

ct−1x
)
α(b, d, T, 2δ) .

We are therefore in a position to apply Lemma 3 with J therein set to Jt = 〈xĵt,1 , . . . , xĵt,ŝt 〉 and εj set to

εĵt,j =

√(
x>
ĵt,j

M̄−1
ct−1xĵt,j

)
α(b, d, T, 2δ,D), for j = 1, . . . , ŝt. Thus we can write

T∑
t=1

EYt [R(J∗t , Yt)]− EYt [R(Jt, Yt)] ≤ 4z
√
α(b, d, T, 2δ,D)

T∑
t=1

ŝt∑
j=1

√(
x>
ĵt,j

M̄−1
ct−1xĵt,j

)
Πj−1,t . (18)

Now, for each round t, consider the quantity

ŝt∑
j=1

(
x>
ĵt,j

M̄−1
ct−1xĵt,j

)
Πj−1,t

Noticing that M̄0 = bI, we invoke Lemma 6 with xj therein set to xĵt,j
√

Πj−1,t and write

ŝt∑
j=1

(
x>
ĵt,j

M̄−1
ct−1xĵt,j

)
Πj−1,t ≤ e

ŝt∑
j=1

(
x>
ĵt,j

M̄−1
ct−1+jxĵt,j

)
Πj−1,t (19)

where

M̄ct−1+j = M̄ct−1 +

j∑
i=1

xĵt,ix
>
ĵt,i

Πi−1,t ,

with Π0,t = 1. Thus, for each t,

ŝt∑
j=1

√(
x>
ĵt,j

M̄−1
ct−1xĵt,j

)
Πj−1,t =

ŝt∑
j=1

√(
x>
ĵt,j

M̄−1
ct−1xĵt,j

)
Πj−1,t

√
Πj−1,t

≤

√√√√ ŝt∑
j=1

(
x>
ĵt,j

M̄−1
ct−1xĵt,j

)
Πj−1,t

√√√√ ŝt∑
j=1

Πj−1,t

(from the Cauchy-Schwarz inequality)

≤

√√√√ e cσ
1− cσ

ŝt∑
j=1

(
x>
ĵt,j

M̄−1
ct−1+jxĵt,j

)
Πj−1,t

(from (19), along with Πj−1,t ≤ 1 and
∑ŝt
j=1 Πj−1,t ≤ cσ

1−cσ ,

as argued within the proof of Lemma 5) .
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Getting back to (18), combining with the last inequality we have

T∑
t=1

EYt [R(J∗t , Yt)]− EYt [R(Jt, Yt)]

≤ 4z
√
α(b, d, T, 2δ,D)

T∑
t=1

√√√√ e cσ
1− cσ

ŝt∑
j=1

(
x>
ĵt,j

M̄−1
ct−1+jxĵt,j

)
Πj−1,t

≤ 4z

√
e cσ

1− cσ
α(b, d, T, δ,D)T

T∑
t=1

ŝt∑
j=1

(
x>
ĵt,j

M̄−1
ct−1+jxĵt,j

)
Πj−1,t ,

(again from the Cauchy-Schwarz inequality)

≤ 4z

√
e cσ

1− cσ
α(b, d, T, δ,D)T d log

1 +
1

b

T∑
t=1

ŝt∑
j=1

Πj−1,t


(from a standard inequality, e.g., (Cesa-Bianchi et al., 2005),

along with ||xĵt,j || ≤ 1 and M0 = bI)

≤ 4z

√
e cσ

1− cσ
α(b, d, T, δ,D)T d log(1 + T )

(since Πj−1,t ≤ 1 and ŝt ≤ b) .

Since the above holds with probability ≥ 1− 2δ, we replace δ by δ/2 in α(b, d, T, 2δ,D). Then we consider that,

since σ(x) = exp (x)
1+exp (x) , we have cσ = eD

1+eD
(so that cσ

1−cσ = eD), cσ′ = e−D/(1 + e−D)2 ≥ e−D/4, and z = 1.

Plugging back gives the claimed result.

B ALGORITHM FOR THE CASE OF DEPENDENT OUTCOMES

For completeness, we give in Algorithm 3 (see end of the paper) the pseudocode of the greedy algorithm arising
from the dependent model of outcomes. All in all, the algorithm performs the same updates as Algorithm 2,
but applied to the coverage difference vectors c̄(xjk | xj1 , . . . , xjk−1

) instead of the original feature vectors xjk .
Moreover, Algorithm 3 replaces the computation of Jt by mimicking the greedy algorithm described in Section 4.
In the experiments of Section 5, we replaced Algorithm 3 with a simplified version that removes the projection
step and introduces the two parameters α and η as in Algorithm 1.

In the pseudocode of Algorithm 3 we define

α(b, d′, T, δ,D) = 2bD2 +

(
cσ
cσ′

)2

d′ log

(
1 +

2

b

( T cσ
1− cσ

+ 4 log
4(T + 1)

δ

))
+ 2

(
12

(
cσ
cσ′

)2

+
36(1 +D)

cσ′

)
log

2b(T + 4)

δ
+ 20D2 log

2bd′(T + 1)

δ
.

Below we give the derivation for the approximation ratio claimed in the main body of the paper

Lemma 7. Fix s ∈ {0, 1, . . . , b}. Let J∗ = 〈xj∗1 , . . . , xj∗s 〉 be the Bayes optimal sequence under model (5) with
unknown vector u. Let (xj′1 , xj′2 , . . .) be the order of items according to Eq.(7) and the unknown vector u and

J ′ = 〈xj′1 , . . . , xj′s〉 be the sequence taking first s elements. Suppose c̄(xk |x1, . . . , xk−1)>u ∈ [−D,D] for all

x1, . . . , xk ∈ A. Assume all components of u are non-negative and that13 ‖u‖1 ≤
√
d′(z−(1−1/e)cσ′ )

6(z2−(1−1/e)c2
σ′ )

. Moreover,

13Notice that, since z = 1 and cσ′ = e−D/(1 + e−D)2, this requirement is essentially equivalent to something like

||u||1 = O(
√
d′).
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let the reward and loss sequences satisfy14

s(rs − `s) max

{
1

s
, 1− s− 1

2
cσ

}(
1−

(
1− 1

e

)
cσ′

z

)
+ 3 `s

(
1−max

{
1

s
, 1− s− 1

2
cσ

}(
1− 1

e

)
cσ′(rs − `s)
z(r1 − `s)

)
≥ 0 .

Let

γ(s) =

{
max{ 1

s , 1−
s−1

2 cσ}(1− 1
e ) cσ′ (rs−`s)z(r1−`s) s ≥ 2 ,

1 s = 0, 1 .

Then

EY [R(J ′, Y )] ≥ γ(s) EY [R(J∗, Y )] .

Proof. It is immediate to see the conclusion holds for s = 0, 1. Now assume s ≥ 2. Let J = 〈xj1 , . . . , xjs〉 be any

sequence of length s. Then, setting for brevity a = 2/
√
d′ and a′ = −1/

√
d′(1, . . . , 1)>, we can write

EY [R(J, Y )] = E(∆j1 ,∆j1,j2 , . . . ,∆j1,j2,...,js)

= r1p(∆j1) + r2p(∆j1,j2)(1− p(∆j1)) + · · ·+ rsp(∆j1,...,js)

s−1∏
i=1

(1− p(∆j1,...,ji))

+ `s(1−
s∏
i=1

(1− p(∆j1,...,ji)))

= (r1 − `s)p(∆j1) + (r2 − `s)p(∆j1,j2)(1− p(∆j1)) + · · ·

+ (rs − `s)p(∆j1,...,js)

s−1∏
i=1

(1− p(∆j1,...,ji)) + `s

≤ (r1 − `s)(1−
s∏
i=1

(1− p(∆j1,...,ji))) + `s

≤ (r1 − `s)
s∑
i=1

p(∆j1,...,ji) + `s

= (r1 − `s)
s∑
i=1

σ(a · c′(xji | xj1 , . . . , xji−1)>u+ a′>u) + `s

≤ (r1 − `s)
s∑
i=1

(
σ(a · c′(xji | xj1 , . . . , xji−1)>u) + cσ′a

′>u
)

+ `s

≤ (r1 − `s)
s∑
i=1

(
σ(0) + z · a · c′(xji | xj1 , . . . , xji−1

)>u+ cσ′a
′>u
)

+ `s

= (r1 − `s)(s/2 + s cσ′ a
′>u+ z · a · 〈c′({xj1 , . . . , xjs}), u〉) + `s

= (r1 − `s)(s/2 + s cσ′ a
′>u+ z · a · 〈c′(J), u〉) + `s ,

where the fourth and third lines from last are both from the properties of the σ function. Also

EY [R(J, Y )] ≥ (rs − `s)(1−
s∏
i=1

(1− p(∆j1,...,ji))) + `s

≥ (rs − `s) max
{1

s
, 1− s− 1

2
cσ

} s∑
i=1

p(∆j1,...,ji) + `s

14For example, this requirement holds when rs ≥ 5|`s| for all s ≥ 1, and
cσ′
z
≤ 1

2(1−1/e)
.
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= (rs − `s) max
{1

s
, 1− s− 1

2
cσ

} s∑
i=1

σ(a · c′(xji | xj1 , . . . , xji−1
)>u+ a′>u) + `s

≥ (rs − `s) max
{1

s
, 1− s− 1

2
cσ

} s∑
i=1

(
σ(a · c′(xji | xj1 , . . . , xji−1

)>u) + z · a′>u
)

+ `s

≥ (rs − `s) max
{1

s
, 1− s− 1

2
cσ

} s∑
i=1

(
σ(0) + cσ′ a · c′(xji | xj1 , . . . , xji−1

)>u+ z · a′>u
)

+ `s

= (rs − `s) max
{1

s
, 1− s− 1

2
cσ

}
(s/2 + s z a′>u+ cσ′ a 〈c′({xj1 , . . . , xjs}), u〉) + `s

= (rs − `s) max
{1

s
, 1− s− 1

2
cσ

}
(s/2 + s z a′>u+ cσ′ a 〈c′(J), u〉) + `s ,

where the second inequality is by Lemma 1 of Hiranandani et al. (2020), and the fourth and fifth lines are from
the properties of the σ function. Thus

EY [R(J ′, Y )] ≥ (rs − `s) max
{1

s
, 1− s− 1

2
cσ

}(
s/2 + s z a′>u+ a cσ′〈c′(J ′), u〉

)
+ `s

≥ (rs − `s) max
{1

s
, 1− s− 1

2
cσ

}(
s/2 + s z a′>u+ a cσ′

(
1− 1

e

)
max
J
〈c′(J), u〉

)
+ `s

≥ (rs − `s) max
{1

s
, 1− s− 1

2
cσ

}(
s/2 + s z a′>u+ a cσ′

(
1− 1

e

)
〈c′(J∗), u〉

)
+ `s

≥ (rs − `s) max
{1

s
, 1− s− 1

2
cσ

}
×
(
s/2 + s z a′>u+ a cσ′

(
1− 1

e

)(EY [R(J∗, Y )]− `s
a z (r1 − `s)

− s

2az
− s cσ′ a

′>u

az

))
+ `s

≥ max
{1

s
, 1− s− 1

2
cσ

}(
1− 1

e

)cσ′(rs − `s)
z(r1 − `s)

EY [R(J∗, Y )]

+ (rs − `s) max
{1

s
, 1− s− 1

2
cσ

}
s

(
1

2
(1−

(
1− 1

e

)cσ′
z

) + a′>u(z −
(

1− 1

e

)c2σ′
z

)

)
+ `s

(
1−max

{1

s
, 1− s− 1

2
cσ

}(
1− 1

e

)cσ′(rs − `s)
z(r1 − `s)

)
≥ max

{1

s
, 1− s− 1

2
cσ

}(
1− 1

e

)cσ′(rs − `s)
z(r1 − `s)

EY [R(J∗, Y )] .

In the above, the second inequality is based on the fact that the selection of J ′ is equivalent to running greedy
on maximizing 〈c(J), u〉 over J , along with the typical approximation ratio of monotone and sub-modular set
function optimization. The third inequality is by maxJ〈c′(J), u〉 ≥ 〈c′(J∗), u〉. The fourth inequality is by the
lower bound of EY [R(J∗, Y )] in terms of 〈c′(J∗), u〉. The last inequality is by the definition of a′, and the
assumptions on rs, `s.

The next lemma is the dependent outcome counterpart to Lemma 3.

Lemma 8. Let us assume the dependent model (5) for outcome vector Y . Then, for given set of actions A, and
budget b, let J∗ be the Bayes optimal sequence and J = 〈xj1 , . . . , xjs〉 be the sequence computed by Algorithm
3 on A and b, with link function σ such that σ′(∆) ≤ z for all ∆ ∈ R. Further, let ∆j1,...,jk = u>c̄(xjk |
xj1 , . . . , xjk−1

), and ∆̂j1,...,jk = w>c̄(xjk | xj1 , . . . , xjk−1
), for all conditional vectors computed from A, and

assume |∆j1,...,jk − ∆̂j1,...,jk | ≤ εj1,...,jk for all j sequence, where w is the vector used by Algorithm 3 to compute
J . Suppose15 ∆j1,...,kk + 2εj1,...,jk ∈ [−D,D] for all xj1 , . . . , xjk ∈ A. Then the scaled one-time regret (8) can be
bounded as follows:

EY [γ(s∗t )R(J∗, Y )]− EY [R(J, Y )] ≤

{
4z
∑s
i=1 εj1,...,ji

∏i−1
h=1(1− σ(∆j1,...,jh)) if J 6= 〈〉

0 otherwise .

15This requirement is controllable since εj1,...,jk is reasonably small after O(log T ) rounds.
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Proof. Irrespective of whether J 6= 〈〉 or J∗ 6= 〈〉, we can write

EY [γ(s∗t )R(J∗, Y )]− EY [R(J, Y )]

≤ ÊY [γ(s∗t )R(J∗, Y )]− EY [R(J, Y )]

≤ ÊY [R(J ′, Y )]− EY [R(J, Y )]

≤ ÊY [R(J, Y )]− EY [R(J, Y )]

= E(∆̂j1 + εj1 , ∆̂j1,j2 + εj1,j2 , . . . , ∆̂j1,j2,...,js + εj1,j2,...,js)− E(∆j1 ,∆j1,j2 . . . ,∆j1,j2,...,js) ,

where ÊY is defined as in Algorithm 2 by using ∆̂j1,...,kk + εj1,...,jk . Here J ′ is computed similarly in Lemma 7

but under ∆̂j1,...,kk + εj1,...,jk and length s∗t . The γ(s∗t )-approximation still holds according to Lemma 7. The

list J ′ is just Ĵs∗t in Algorithm 3 and is no better than J under ÊY according to the computation of s.

Similar to the proof of Lemma 3, by the mean-value theorem, we can write

E(∆j1 + 2εj1 ,∆j1,j2 + 2εj1,j2 , . . . ,∆j1,j2,...,js + 2εj1,j2,...,js)− E(∆j1 ,∆j1,j2 . . . ,∆j1,j2,...,js)

=2

s∑
i=1

∂E(∆j1 ,∆j1,j2 . . . ,∆j1,j2,...,js)

∂∆j1,j2,...,ji

∣∣
∆j1

=ξj1 ,...,∆j1,...,js
=ξj1,...,js

εj1,...,ji ,

where ξj1,...,ji ∈ (∆j1,...,ji ,∆j1,...,ji + 2εj1,...,ji). The third part of Lemma 2 then allows us to write

∂E(∆j1 ,∆j1,j2 . . . ,∆j1,j2,...,js)

∂∆j1,j2,...,ji

∣∣
∆j1

=ξj1 ,...,∆j1,...,js
=ξj1,...,js

≤ 2z (1− σ(ξj1)) · · · (1− σ(ξj1,...,ji−1
))

≤ 2z (1− σ(∆j1)) · · · (1− σ(∆j1,...,ji−1
)) ,

the second inequality deriving from the monotonicity of σ(·) and the fact that ξj1,...,ji ∈ (∆j1,...,ji ,∆j1,...,ji +
2εj1,...,ji). Replacing back, and summing over i yields the claimed bound.

Based on this lemma, we combine with the corresponding remaining parts in the proof for the independent case.
This gives us a scaled regret bound which coincides with the one for the dependent case.

Yet, it is worth stressing that, despite the two regret bounds look alike, the two underlying notions of regret
are widely different, both because we have now a scaled regret, and because of the different assumptions on the
process generating the outcomes as compared to the independent case.

C FURTHER RELATED WORK

Kveton et al. (2015b) studies a variant of cascading bandits where the feedback stops when a 0 outcome is
observed, as opposed to a 1 outcome of the standard cascading bandit model. This reward is equivalent to a
Boolean AND function on the sequence, and the available sequences are defined by combinatorial constraints
of the problem. Zhou et al. (2018) also studies a variant of cascading bandits where each arm has an extra
(unknown) cost when displayed. The length of the recommended sequences can also change, but in their setting
this is due to the trade-off between the attractiveness and the cost of an item, while in our setting this is
due to the trade-off between attractiveness of items and both reward and loss values. The combinatorial semi-
bandit setting with probabilistically triggered arms ZZ et al. (2018) is a generalization of the cascading bandit
setting that also encompasses, for instance, influence maximization problems. The authors are able to remove
the inconvenient dependence on 1/p∗ alluded to at the end of Section 3, but their comprehensive analysis only
applies to non-contextual bandit scenarios.

Besides cascading bandits, relevant works investigate bandits with submodular reward functions to account for
diversity in the item assortment (e.g., Yue and Guestrin (2011); Takemori et al. (2020)). In particular, Takemori
et al. (2020) show a regret bound of the form

√
bT in a submodular bandits scenario with rewards on items similar

to our setting, yet relying on a feedback which is more informative than ours. For instance, in the independent
case, their setting is equivalent to a (constrained) combinatorial bandits scenario with semi-bandit feedback with
linear rewards.
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Regarding the generative model for outcome vectors, following previous work Li and Zhang (2018), we assumed
the probability that an item is successful is ruled by a generalized linear model (GLM), Such a model is more
convenient than a purely linear model, since the sigmoidal link function would always map values to (0, 1) which
we need here to encode probabilities and compute the Bayes optimal sequence. The bandit problem under
GLM assumptions is first studied in Filippi et al. (2010), whose regret bound can be improved by the finer
self-concordant analysis of Faury et al. (2020). The online Newton step analysis presented here is inspired by the
GLM-based bandit analysis contained in Gentile and Orabona (2012). See also Zhang et al. (2016) for similar
results. Li et al. (2017) gives an optimal solution for this model up to a constant coefficient.

Finally, the update method that deals with long sequences in our paper also often appears in the study of bandit
algorithms with delayed feedback. There is indeed some kind of similarity between a cascading model and a
delayed feedback model in bandits: both share the need for a bandit algorithm to deal with signals that are
received somehow later than the time the algorithm commit to actions. Relevant works in bandits with delayed
feedback include Dudik et al. (2011); Joulani et al. (2013); Cesa-Bianchi et al. (2019); Pike-Burke et al. (2018);
Zhou et al. (2019); Arya and Yang (2020). Yet, we are not aware of a way to reduce the delayed bandit model
to the cascading bandit model, or vice versa.

D FURTHER EXPERIMENTAL RESULTS

This section contains details on our experimental setting and further results that have been omitted from the
main paper.

D.1 Dataset Preprocessing

We report here the pre-processing steps we followed for the Million Songs, Yelp, and MNIST datasets.

• Million Songs: The Million Songs Dataset (MSD) is a repository of audio features and metadata of a
million contemporary pop songs. We consider the Echo Nest Taste Profile Subset of MSD that contains
the play-counts of some of these songs by real users. We pick 100, 000 users that have played the highest
number of songs and 50, 000 songs with the highest number of users. We sample 10, 000 songs at random
and calculate the singular value decomposition (SVD) of the corresponding 100, 000×10, 000 ratings matrix
into 10 principal components. The projection matrices from the SVD are used to compute embeddings of
dimension d = 10 for the remaining 40, 000 songs for training the bandit algorithms. The embeddings are
normalized to unit L2-norm and the dataset is shuffled randomly. In every round of bandit learning, the
algorithm is presented with a non-overlapping chunk of movies as arms (At). The chunk size is 100. The
outcome of an arm is decided by the mean rating received by the corresponding movie in the dataset. If
this mean rating is greater than its median value in the dataset, the outcome is a success, else is a failure.
As mentioned in Section 2.2, for the dependent algorithm the 40,000 SVD-projected d-dimensional vectors
have been used to compute coverage vectors through a Gaussian Mixture Model (GMM) with d′ centroids.

• Yelp: The Yelp Dataset Challenge is a library of restaurants (and related businesses) and their reviews
from customers. We pick 200, 000 users that have reviewed the highest number of businesses and 50, 000
businesses with the highest number of reviews. We sample 10, 000 businesses at random and calculate the
singular value decomposition (SVD) of the corresponding 200, 000× 10, 000 ratings matrix into 10 principal
components. The projection matrices from the SVD are used to compute embeddings of dimension d = 10
for the remaining 40, 000 businesses for training the bandit algorithms. The embeddings are normalized
to unit L2-norm and the dataset is shuffled randomly. In every round of bandit learning, the algorithm is
presented with a non-overlapping chunk of movies as arms (At). The chunk size is 100. The outcome of an
arm is decided by the mean rating received by the corresponding movie in the dataset. If this mean rating
is greater than its median value in the dataset, the outcome is a success, else is a failure. As mentioned in
Section 2.2, for the dependent algorithm the 40, 000 SVD-projected d-dimensional vectors have been used
to compute coverage vectors through a GMM with d′ centroids.

• MNIST: The MNIST dataset consists of 60, 000 training samples and 10, 000 test samples. We draw 19, 800
samples at random from the training split for constructing a d = 10-dimensional embedding space using
Principal Component Analysis (PCA) and combine the remaining training samples with the test samples and
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randomly shuffle it to create a dataset of 50, 200 samples for training the bandit algorithm. As mentioned
in Section 2.2, for the dependent algorithm the 50, 200 SVD-projected 10-dimensional vectors are used to
compute coverage vectors through a GMM with d′ centroids. All observed vectors (embeddings and coverage
vectors) are scaled to unit L2-norm.

MNIST has 10 output classes. For each of these output classes, we define a sub-task that considers that class
as the “pivot-class”. At every round of bandit learning, we present the agent with a non-overlapping chunk
of examples as arms. The agent observes success only if it chooses an arm whose output class matches the
pivot class. We choose the pivot class at the beginning of each experiment and keep it constant throughout.

D.2 Results

Our additional experimental results are summarized in Tables 1 through 7, and Figure 4.

Tables 1 – 5 contain the final cumulative reward CR achieved by the tested algorithms on the three datasets
MSD, Yelp, and MovieLens at the end of bandit training, as we vary the budget parameter bt across the values
1, 5, 10, 50, 100. Table 7 has a similar content on the MNIST dataset, but in aggregate form over the 10 pivot
classes. Finally, Figure 4 is simply the Dep counterpart to Figure 2 in the main body of the paper.

Observe that since vanilla rewards do not distinguish between early and late successes in the sequence, for larger
values of bt the performances of all algorithms become indistinguishable from one another. Besides, when bt = 50
or bt = 100 also Rand performs as well as all other algorithms. This is made evident in all tables. This is not
the case for the exponential scenario where, given the decreasing values of rewards and losses, early successes (or
early give ups) are always more profitable than late successes (or late give ups).

In most cases, Dep turns out to be the best performer, especially in the exponential scenario. In the MNIST
dataset, the Inv versions of Ind and Dep tend to be competitive only in the vanilla scenario.

In the vanilla scenario, GL-CDCM turns out to be a good competitor, often at par with Ind or even superior to
it, but still worse than Dep. Besides, it should be emphasized that the MLE estimation contained in GL-CDCM
makes its running time far higher than that of Ind and Dep. On the other hand, C-UCB tends to be worse than
all other algorithms (Excluding Rand and Eps).

Finally, a quick comparison between Figure 4 and Figure 2 reveals that Dep tends to produce longer sequences
than Ind, but also to achieve slightly earlier successes.

To summarize, from these experiments, the following trends emerge.

1. In a vanilla scenario that emphasizes early success (bt small), the baseline algorithms (Eps, C-UCB, GL-
CDCM) are rarely the winner. In most cases, the winner is the proposed dependent (Dep) algorithm. On
the other hand, as the budget bt grows the algorithms tend to be indistinguishable. This has to be expected,
as when bt is large even the random policy (Rand) becomes competitive in the vanilla scenario.

2. In the exponential scenario, Dep generally outperforms Ind, with the exception of a few pivot classes in the
MNIST dataset and on MovieLens with bt ≥ 5.

3. Ind and Dep are clearly outperforming their corresponding “Inv” variants Ind-Inv and Dep-Inv, with a few
exceptions on the MNIST dataset. This finding seems to contradict the experimental results reported in
Kveton et al. (2015a).

4. C-UCB is always inferior to most of their competitors, while GL-CDCM is sometimes superior to Ind, but
still worse than Dep.

5. As for a deeper understanding of the behavior of Ind and Dep in the exponential scenario, our experiments
reveal that: (i) neither Ind nor Dep do saturate their budget length, and (ii) Ind produces shorter sequences
than Dep, though on these datasets Dep tends to achieve success slightly earlier in the list.
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Table 1: Comparison of cumulative reward at the end of training on the Million Songs Dataset for the Vanilla
reward scenario. “Rand” refers to the random policy, “Eps” is the ε-greedy version of our Algorithm 1, “C-UCB”
is the cascading bandit algorithm of Zong et al. (2016), while “GL-CDCM” is the one from Liu et al. (2018b).
Moreover, “Ind” and “Dep” are abbreviations for the Independent (Algorithm 1) and Dependent (Algorithm 3)
algorithms proposed in this paper. Finally, “Ind-Inv” and “Dep-Inv” are the versions of “Ind” and “Dep” where
the list is presented in reverse order (as suggested by Kveton et al. (2015a); Combes et al. (2015)). Standard
deviations for the randomized algorithms (Rand and Eps) over 100 repetitions are in braces. For each value of
bt, we emphasize in bold the best performance.

Rand Eps C-UCB GL-CDCM Ind-Inv Dep-Inv Ind Dep
bt = 1 199.1(9.7) 309.0(0.1) 286.0 314.0 328.0 355.0 328.0 355.0
bt = 5 386.4(3.5) 373.6(5.0) 396.0 399.0 399.0 399.0 399.0 399.0
bt = 10 398.6(0.6) 392.7(2.1) 399.0 399.0 399.0 399.0 399.0 399.0
bt = 50 399.0(0.0) 399.0(0.0) 399.0 399.0 399.0 399.0 399.0 399.0
bt = 100 399.0(0.0) 399.0(0.0) 399.0 399.0 399.0 399.0 399.0 399.0

Table 2: Same as in Table 1 with the exponential reward scenario. Notice that scenario does not include the
baselines “Eps”, “C-UCB” and “GL-CDCM” since those baselines are defined to work only in the vanilla scenario.

Rand Ind-Inv Dep-Inv Ind Dep
bt = 1 81.8(15.8) 285.4 328.6 285.4 328.6
bt = 5 253.9(8.6) 337.2 360.4 356.4 376.4
bt = 10 265.8(6.8) 329.2 354.1 356.4 376.4
bt = 50 266.5(6.8) 329.2 347.4 356.4 376.4
bt = 100 266.5(7.2) 329.2 347.4 356.4 376.4

Table 3: Same as in Table 1 for the Yelp dataset.
Rand Eps C-UCB GL-CDCM Ind-Inv Dep-Inv Ind Dep

bt = 1 199.4(9.9) 251.2(2.5) 246.0 291.0 275.0 330.0 275.0 330.0
bt = 5 386.9(3.4) 361.4(6.1) 396.0 398.0 398.0 399.0 399.0 399.0
bt = 10 398.6(0.6) 389.3(3.2) 399.0 399.0 399.0 399.0 399.0 399.0
bt = 50 399.0(0.0) 399.0(0.0) 399.0 399.0 399.0 399.0 399.0 399.0
bt = 100 399.0(0.0) 399.0(0.0) 399.0 399.0 399.0 399.0 399.0 399.0

Table 4: Same as in Table 2 for the Yelp dataset.
Rand Ind-Inv Dep-Inv Ind Dep

bt = 1 79.9(16.1) 200.6 288.6 200.6 288.6
bt = 5 253.9(9.7) 310.7 340.1 325.8 358.7
bt = 10 265.7(7.4) 290.2 322.5 325.8 361.3
bt = 50 265.6(7.3) 301.8 314.2 326.0 361.3
bt = 100 265.4(7.1) 301.4 314.2 326.0 361.3
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Table 5: Same as in Table 1 for the Movielens dataset.
Rand Eps C-UCB GL-CDCM Ind-Inv Dep-Inv Ind Dep

bt = 1 244.7(11.2) 431.0(0.2) 406.0 456.0 453.0 461.0 453.0 461.0
bt = 5 474.7(3.7) 464.9(16.2) 489.0 490.0 490.0 490.0 490.0 490.0
bt = 10 489.5(0.7) 483.9(4.7) 490.0 490.0 490.0 490.0 490.0 490.0
bt = 50 490.0(0.0) 490.0(0.0) 490.0 490.0 490.0 490.0 490.0 490.0
bt = 100 490.0(0.0) 490.0(0.0) 490.0 490.0 490.0 490.0 490.0 490.0

Table 6: Same as in Table 2 for the Movielens dataset.
Rand Ind-Inv Dep-Inv Ind Dep

bt = 1 97.3(17.7) 430.8 442.0 430.8 442.0
bt = 5 311.9(9.6) 429.9 446.4 475.5 472.6
bt = 10 326.2(7.8) 420.8 442.7 476.0 472.6
bt = 50 326.8(7.9) 404.8 440.3 476.0 472.6
bt = 100 326.6(7.9) 390.2 440.3 476.0 472.6

Table 7: Number of wins of each algorithm out of the 10 sub-problems of the MNIST dataset. Ties are broken
by splitting the score equally among the winners. E.g., in the exponential scenario with bt = 10, Dep at score
7.5 means that Dep turned out to be the winner in 7 out of the 10 sub-problems, and tied with Dep-Inv in one of
the remaining 3. For each of the two scenarios and each value of bt, we emphasize in bold the best performance.

Vanilla Reward scenario Exponential Reward scenario
Rand Eps C-UCB GL-CDCM Ind-Inv Dep-Inv Ind Dep Rand Ind-Inv Dep-Inv Ind Dep

bt = 1 0 1 2 0 1 2 2 2 0 3 2 3 2
bt = 5 0 0 1.5 1.25 2.5 2.75 0.25 1.75 0 0 2 1 7
bt = 10 0 0 0.5 1.33 1 3.58 1.25 2.33 0 0 2.5 0 7.5
bt = 50 0 0 1.67 1.67 1.67 1.67 1.67 1.67 0 0 0 5 5
bt = 100 1.43 0 1.43 1.43 1.43 1.43 1.43 1.43 0 0 0 5 5

Figure 4: Dep operating on the three datasets MSD (left), Yelp (middle), and MovieLens (right) in the
exponential scenario with bt = 100. The plots report, for each chunk of the datasets (x-axis), the length ŝt of
the sequence Jt computed by Ind (“Seq Len”) along with the position where the first success is observed (“Succ
Step”), that is, value ŝ′t for Jt (y-axis) – please recall the notation in Algorithm 1. Chunks where success is not
observed are excluded. The algorithm never saturates budget bt, while achieving success within the first few
items. In particular, for all t where success is achieved, we have ŝ′t ≤ 4 on MSD, ŝ′t ≤ 10 on Yelp, and ŝ′t ≤ 4 on
MovieLens-25M.
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E CO2 EMISSION RELATED TO EXPERIMENTS

Experiments were conducted using Google Cloud Platform in region europe-west1, which has a carbon efficiency
of 0.27 kgCO2eq/kWh. A cumulative of 5000 hours of computation was performed on hardware of type Intel
Xeon E5-2699 (TDP of 145W).

Total emissions are estimated to be 195.75 kgCO2eq of which 100 percents were directly offset by the cloud
provider. Estimations were conducted using the MachineLearning Impact calculator presented in Lacoste et al.
(2019).

https://mlco2.github.io/impact#compute
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Algorithm 3 The contextual bandit algorithm in the dependent case with link function σ(x) = exp(x)
1+exp(x) .

Input: Confidence level δ ∈ [0, 1], width parameter D > 0, maximal budget parameter b > 0;
Init: M0 = bI ∈ Rd′×d′ , w1 = 0 ∈ Rd′ , c1 = 1
For t = 1, 2, . . . , T :

1. Get:

• Set of actions At = {x1,t, . . . , x|At|,t} ⊆ {x ∈ Rd′ : ||x|| ≤ 1} ,

• budget bt ≤ b ;

2. Compute Jt :

• For k = 1, . . . ,min{bt, |At|} :

xĵt,k = arg max
x∈At\{xĵt,1 ,...,xĵt,k−1

}
σ
(
c̄(x | xĵt,1 , . . . , xĵt,k−1

)>wct + εt(x | xĵt,1 , . . . , xĵt,k−1
)
)
,

where ε2t (x | xĵt,1 , . . . , xĵt,k−1
) = c̄(x | xĵt,1 , . . . , xĵt,k−1

)>M−1
ct−1c̄(x | xĵt,1 , . . . , xĵt,k−1

)α(b, d′, T, δ,D)

• Let Ĵt,s = 〈xĵt,1 , . . . , xĵt,s〉 for any s ≤ bt;

• Set ŝt = arg max
s=0,1,...,bt

ÊYt [R(Ĵt,s, Yt)] , with

∆̂ĵt,k,t
= c̄(xĵt,k | xĵt,1 , . . . , xĵt,k−1

)>wct

ε2
ĵt,k,t

= c̄(xĵt,k | xĵt,1 , . . . , xĵt,k−1
)>M−1

ct−1 c̄(xĵt,k | xĵt,1 , . . . , xĵt,k−1
) α(b, d′, T, δ,D)

ÊYt [R(Ĵt,s, Yt)] =

{
E
(

∆̂ĵt,1,t
+ εĵt,1,t, . . . , ∆̂ĵt,s,t

+ εĵt,s,t

)
if s ≥ 1

`0,t otherwise ,

where function E(·, . . . , ·) is as (6) in Algorithm 1;

• Finally, Jt = Ĵt,ŝt ;

3. Observe feedback Yt ↓ Jt =

〈yt,̂jt,1 , yt,̂jt,2 , . . . , yt,̂jt,ŝ′t 〉 = 〈0, . . . , 0, 1〉, for some ŝ′t ≤ ŝt or

〈yt,̂jt,1 , yt,̂jt,2 , . . . , yt,̂jt,ŝt 〉 = 〈0, . . . , 0, 0〉

4. For k = 1, . . . , ŝt (in the order of occurrence of items in Jt) update :

Mct+k−1 = Mct+k−2 + |sk,t| c̄(xĵt,k | xĵt,1 , . . . , xĵt,k−1
) c̄(xĵt,k | xĵt,1 , . . . , xĵt,k−1

)> ,

wct+k = w′ct+k−1 +
1

cσ′
M−1
ct+k−1∇k,t ,

where

sk,t =


1 If yt,k is observed and yt,k = 1

−1 If yt,k is observed and yt,k = 0

0 If yt,k is not observed ,

and ∇k,t = σ(−sk,t ∆̂′k,t) sk,t c̄(xĵt,k | xĵt,1 , . . . , xĵt,k−1
) , where ∆̂′k,t = c̄(xĵt,k | xĵt,1 , . . . , xĵt,k−1

)>w′ct+k−1

with
w′ct+k−1 = arg min

w :−D≤w>c̄(xĵt,k |xĵt,1 ,...,xĵt,k−1
)≤D

dct+j−2(w,wct+k−1) ;

5. ct+1 ← ct + ŝt .
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