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Abstract

Data on matrix manifolds are ubiquitous on
a wide range of research fields. The key is-
sue is estimation of the modes (i.e., maxima)
of the probability density function underlying
the data. For instance, local modes (i.e., local
maxima) can be used for clustering, while the
global mode (i.e., the global maximum) is a
robust alternative to the Fréchet mean. Pre-
viously, to estimate the modes, an iterative
method has been proposed based on a Rie-
mannian gradient estimator and empirically
showed the superior performance in cluster-
ing (Ashizawa et al., 2017). However, it has
not been theoretically investigated if the it-
erative method is able to capture the modes
based on the gradient estimator. In this pa-
per, we propose simple iterative methods for
mode estimation on matrix manifolds based
on the Euclidean metric. A key contribution
is to perform theoretical analysis and estab-
lish sufficient conditions for the monotonic
ascending and convergence of the proposed
iterative methods. In addition, for the pre-
vious method, we prove the monotonic as-
cending property towards a mode. Thus, our
work can be also regarded as compensating
for the lack of theoretical analysis in the pre-
vious method. Furthermore, the robustness
of the iterative methods is theoretically inves-
tigated in terms of the breakdown point. Fi-
nally, the proposed methods are experimen-
tally demonstrated to work well in clustering
and robust mode estimation on matrix man-
ifolds.
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1 Introduction

Data on Riemannian manifolds have been gathering
a great deal of attentions. Probably, the simplest ex-
ample is data on the unit sphere called the directional
data in statistics (Mardia, 1972). An important group
is the matrix manifold (Absil et al., 2008) where Stiefel
manifold, Grassmann manifold and set of symmetric
positive definite (SPD) matrices frequently appear in
many practical situations. Stiefel manifold is the set
of orthogonal matrices, and motion estimation requires
orthogonal matrices as data samples by which the rigid
motions can be expressed (Tuzel et al., 2005). Grass-
mann manifold is the set of linear subspaces, and has
been used in action recognition (Slama et al., 2015).
Covariance matrices, which are SPD when they have
full rank, can be seen in diffusion tensor imaging (Dry-
den et al., 2009). More examples can be found in
signal processing (Arnaudon et al., 2013), computer
vision (Lui, 2012; Turaga and Srivastava, 2016) and
brain science (Yger et al., 2016).

For Euclidean data, the modes have offered a wide-
range of applications (Fukunaga and Hostetler, 1975;
Comaniciu and Meer, 2002; Sager and Thisted, 1982;
Chen et al., 2016), which are defined as maxima of the
probability density function underlying the data. For
instance, the global mode (i.e., the global maximum)
can been seen as a robust alternative to the sample
mean, and this robustness has been used in a number
of mode-based regression methods using linear mod-
els (Lee, 1989; Yao and Li, 2014; Feng et al., 2020) as
well as neural networks (Sasaki et al., 2020). On the
other hand, mean shift clustering (MS) makes use of
local modes (i.e., local maxima) and has a significant
advantage over the standard methods that the num-
ber of clusters is automatically determined from data.
Thus, it would be an important issue to estimate the
modes for data on Riemannian manifolds as well.

For mode estimation, the important step is to esti-
mate the Riemannian gradient of the probability den-
sity function. To this end, Subbarao and Meer (2006,
2009) take two steps of firstly estimating the probabil-
ity density function and secondly computing its Rie-
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mannian gradient. Then, based on the computed gra-
dient, an iterative method called the Riemannian MS
(RMS) was proposed to estimate the modes. A no-
table point is that the monotonic ascending property
of the iterative method towards the modes is theoret-
ically guaranteed under certain conditions. However,
the two-step approach in the Riemannian gradient es-
timation seems suboptimal because a good density es-
timator does not necessarily mean a good gradient esti-
mator. There exist related works to RMS (Tuzel et al.,
2005; Cetingul and Vidal, 2009; Caseiro et al., 2012),
but these also follow a similar two-step approach in
gradient estimation.

A sophisticated approach has been taken in Ashizawa
et al. (2017), where a single step approach is adopted
and a gradient model is directly fitted to the true Rie-
mannian gradient. Then, based on the direct gradient
estimation, an iterative method was proposed, and ex-
perimentally demonstrated to work better than RMS
in clustering. However, unlike RMS, theoretical analy-
sis of the iterative method has not been performed. In
addition, this method requires to compute the expo-
nential and logarithm maps on Riemannian manifolds,
which are often computationally expensive and make
the direct gradient estimation very complicated.

In this paper, we propose simple iterative methods for
mode estimation on important matrix manifolds in-
cluding the Stiefel, Grassmann manifolds and set of
SPD matrices. We follow the direct approach in Rie-
mannian gradient estimation as Ashizawa et al. (2017),
yet employ a simple model based on the Euclidean
metric. Based on our gradient models, we derive novel
iterative methods for mode-seeking based on the fixed-
point scheme, which has been used in Euclidean MS
as well (Comaniciu and Meer, 2002, Section 2.1). In
contrast with Ashizawa et al. (2017), our methods do
not require to compute the exponential and logarithm
maps, and thus would be substantially simpler and
computationally efficient.

Furthermore, our notable contribution is to perform
theoretical analysis in terms of the convergence and
robustness. We establish sufficient conditions for con-
vergence of the sequences generated by the proposed
iterative methods with monotonic ascending. In addi-
tion, we prove the monotonic ascending property of the
existing method (Ashizawa et al., 2017) as well. Thus,
our work can be regarded as compensating for the
lack of theoretical analysis in Ashizawa et al. (2017).
The robustness of mode estimation on Riemannian
manifolds is also investigated through the breakdown
point (Huber and Ronchetti, 2009), which has not been
done previously. Finally, we numerically demonstrate
that the proposed methods work well in clustering and
robust mode estimation on matrix manifolds.

Notations: The Frobenuous norm of a matrix X ∈
Rd1×d2 is defined as ‖X‖F :=

√
tr(X>X) where >

is the matrix transpose and tr(·) denotes the trace.
O ∈ Rd1×d2 means the null matrix whose elements are
all zeros, and Id is the d by d identity matrix. For a
square matrix Z, sym(Z) := 1

2 (Z+Z>) and ddiag(Z)
denotes the diagonal matrix whose diagonals are those
of Z. The Euclidean gradient of a function f(X) is
denoted by ∇Xf(X).

Let us denote a Riemannian manifold by M and the
tangent space at X ∈ M by TXM on which a Rie-
mannian metric 〈·, ·〉X is defined . The Exponential
map expX(·) at X is a mapping from TXM to M,
while logX(·) is one from M to TXM. The Rieman-
nian gradient of a function f(X) at X ∈M is denoted
by grad(f(X)) ∈ TXM. When M is a submanifold
of Rd1×d2 , then grad(f(X)) = PX(∇Xf(X)) (Absil
et al., 2008) where PX(·) is the orthogonal projection
onto TXM of an embedded submanifold or the hori-
zontal space of a quotient manifold. The Riemannian
distance dist(X,Y ) is defined as the infimum of the
length of all curves connecting X ∈M to Y ∈M (Ab-
sil et al., 2008).

2 Problem setup and related work

Problem setup: Suppose that we are given n i.i.d.
data samples on a Riemannian manifold M drawn
from the probability density function p as D :=

{Xi ∈M}ni=1
i.i.d.∼ p(X). Our primal interest is to es-

timate the modes (i.e., maxima) of p(X) from D.

A simple example of M is the unit sphere Ωd−1 := {x ∈
Rd | ‖x‖ = 1} on which data is called the directional
data in statistics (Mardia, 1972). In the application
point of view, an important group is the matrix man-
ifold : For instance, the Stiefel manifold (Absil et al.,
2008) is a set of orthonormal matrices and a general-
ization of the unit sphere. Another example is the set
of symmetric positive definite (SPD) matrices. Here,
we begin with general Riemannian manifolds and then
focus on particular matrix manifolds.

Related work: The Fréchet mean is a repre-
sentative summary of data on Riemannian mani-
folds (Karcher, 1977), and defined as the minimizer
of 1

n

∑n
i=1 dist2(X,Xi) with respect to X. When

the Riemannian distance dist(·, ·) is equal to the Eu-
clidean distance, the Fréchet mean reduces to the sam-
ple mean. The Fréchet mean has been used on a vari-
ety of fields, but is known to be vulnerable to outliers.
A robust variant is the geometric median (Fletcher
et al., 2009), which minimizes 1

n

∑n
i=1 dist(X,Xi).

However, as in the Euclidean median, the geometric
median would also implicitly assume the underlying
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density is symmetric, and this might not hold when
outliers concentrate on a one side of the true me-
dian because they make the underlying density highly
skewed.

For Euclidean data, one of the most popular meth-
ods is the mean shift (MS) method (Fukunaga and
Hostetler, 1975; Cheng, 1995; Comaniciu and Meer,
2002), and its Riemannian extension has been pro-
posed (Subbarao and Meer, 2006, 2009), which we call
the Riemannian mean shift (RMS). RMS starts by em-
ploying the following estimator for the data density,
which is akin to kernel density estimation (KDE):

p̂(X) :=
ch,K
n

n∑
i=1

K

(
dist2(X,Xi)

h2

)
, (1)

where h > 0 is a bandwidth parameter, K(·) is a non-
negative function and ch,K denotes a positive constant.
Then, the Riemannian gradient is computed as

grad(p̂(X)) =
2ch,K
nh2

n∑
i=1

logX(Xi)L

(
dist2(X,Xi)

h2

)
,

where L(t) := − d
dtK(t) and we used the relation

grad(dist2(X,Y )) = −2 logX(Y ) proved in Karcher
(1977). Inspired by the Euclidean mean shift
method (Comaniciu and Meer, 2002), the following up-
date rule is iteratively used to seek a mode of p̂(X):
Denoting the τ -th iterate by X(τ), τ = 0, 1, 2, . . . ,

X(τ + 1) = expX(τ)

(
M̃(X(τ))

)
, (2)

where X(0) can be one of the samples Xi, and

M̃(X) :=

∑n
i=1 logX(Xi)L

(
dist2(X,Xi)

σ2

)
∑n
i=1 L

(
dist2(X,Xi)

σ2

) .

Eq.(2) is repeatedly applied untilX(τ) converges. No-
tably, Subbarao and Meer (2009) proved that the fol-
lowing inequality holds with the update rule (2) under
some conditions: For τ = 0, 1, 2, . . . ,

p̂(X(τ + 1))− p̂(X(τ)) ≥ 0, (3)

which implies that (2) has the monotonic ascending
property towards a mode of p̂(X). However, the two-
step approach of estimating the Riemannian gradient
seems suboptimal because a good density estimator
does not necessarily mean a good gradient estimator.

Ashizawa et al. (2017) adopted a more sophisticated
approach for Riemannian gradient estimation, and the
main idea is to directly fit a gradient model g(X) to
the true log-density gradient g∗(X) := grad(log p(X))

under the squared-loss as follows:

J(g) :=

∫
M
‖g(X)− g∗(X)‖2Xp(X)dVX − C

=

∫
M
〈g(X), g(X)〉Xp(X)dVX

− 2

∫
M
〈g(X), g∗(X)〉Xp(X)dVX , (4)

where ‖ · ‖2X := 〈·, ·〉X , dVX denotes the Riemannian
volume form induced by the metric 〈·, ·〉X (Lee, 2018)
and C :=

∫
M〈g

∗(X), g∗(X)〉Xp(X)dVX . Eq.(4) can
be regarded as a Riemannian extension of the Fisher
divergence, which has been used for direct density gra-
dient estimation on the Euclidean space (Cox, 1985;
Sasaki et al., 2014). When M is a Riemannian man-
ifold without boundary, the following “integration by
parts” (Lee, 2012, Chapter 16) is applicable to make
the second term on the right-hand side of (4) to be
tractable:∫

M
〈g(X), g∗(X)〉Xp(X)dVX

= −
∫
M

div(g(X))p(X)dVX ,

where div is the divergence operator on M (Lee, 2018).
Thus, the empirical version of J(g) is obtained by

Ĵ(g) :=
1

n

n∑
i=1

[〈g(Xi), g(Xi)〉Xi
+ 2div(g(Xi))] .

(5)

For g(X), the following gradient model is adopted:

g(X) :=

n∑
i=1

ai logX(Xi)φ

(
dist2(X,Xi)

σ2

)
, (6)

where φ(·) is a nonnegative function whose conditions
are specified later. Then, by substituting (6) into (5),
the parameter vector a = (a1, . . . , an)> is estimated

by minimizing Ĵ(a). In order to seek the modes,
Ashizawa et al. (2017) proposed the following itera-
tive rule as in RMS and used it until X(τ) converges:

X(τ + 1) = expX(τ)(M(X(τ))), (7)

where

M(X) =

∑n
i=1 ai logX(Xi)φ

(
dist2(X,Xi)

σ2

)
∑n
i=1 aiφ

(
dist2(X,Xi)

σ2

) .

Ashizawa et al. (2017) empirically demonstrated
that (7) works much better than RMS in clustering on
the Grassmann manifold. However, in contrast with
RMS, theoretical analysis has not been performed.
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Furthermore, when M is a matrix manifold (e.g., the
set of SPD matrices), expX(·) and logX(·) may re-
quire to compute the matrix exponential and loga-
rithm (Boumal, 2020, Section 11.5), which could make

the computation of Ĵ(g) very complicated and the it-
eration (7) slow. Here, we follow the same direct ap-
proach in Riemannian gradient estimation as Ashizawa
et al. (2017), yet employ a simpler gradient model
and derive update rules for mode estimation on matrix
manifolds. A key contribution is to perform theoret-
ical analysis and establish sufficient conditions of the
convergence for the proposed iterative methods with
monotonic ascending. In addition, we theoretically
prove the monotonic ascending property of the existing
update rule (7). The robustness of the iterative meth-
ods in mode estimation is also investigated in terms of
breakdown point (Huber and Ronchetti, 2009).

3 Mode seeking on matrix manifolds

This section supposes that M is a matrix manifold,
which is constructed from Rd1×d2 (d1 ≥ d2) by taking
the operations of embedded submanifolds and quotient
manifolds (Absil et al., 2008). Thus, X ∈ M can be
regarded as an element in Rd1×d2 by adopting the Eu-
clidean coordinate, yet has to satisfy a certain condi-
tion: For instance, if X is an element in the Stiefel
manifold, X is a d1 by d2 orthonormal matrix in the
sense that X>X = Id2 . Here, we introduce sim-
ple models for Riemannian gradient estimation from
which we derive iterative rules to seek the modes on
important matrix manifolds. We do not show how to
estimate the models in this section, but the details are
given in the supplementary material.

3.1 Iterative update rule on St(d1, d2)

We first focus on the Stiefel manifold St(d1, d2) :=
{X ∈ Rd1×d2 |X>X = Id2}. Since it is a maximum
of log p(X), from the optimality condition, a mode of
log p(X) satisfies

grad(log p(X)) = O (X ∈M). (8)

Alternatively, the mode can be seen as a maximum of

the following Lagrangian function on Rd1×d2
as

log p(X)− 1

2
tr(Λ>(X>X − Id2)) (X ∈ R

d1×d2
),

where Λ is a d2 by d2 matrix of Lagrange multipli-
ers. Then, the mode satisfies the optimality conditions
given by

∇X log p(X)−Xsym(Λ) = O (9)

X>X = Id2 . (10)

Next, we substitute our Euclidean gradient model for
∇X log p(X) in (9) and derive an update rule based
on the fixed-point scheme.

For the Euclidean gradient ∇X log p(X), we employ
the following trace model:

ge(X) =

n∑
i=1

aiXiφ

(
tr(X>Xi)

σ2

)
, (11)

where ai are coefficients and the conditions of φ(·) are
specified in Theorem 1. Then, substituting the trace
model (11) for ∇X log p(X) in (9) yields

ge(X)−Xsym(Λ)

=

n∑
i=1

aiXiφ

(
tr(X>Xi)

σ2

)
−Xsym(Λ) = O.

Applying the fixed-point scheme to the equation above
gives the following naive update rule as

X ←
n∑
i=1

aiXiφ

(
tr(X>Xi)

σ2

)
sym(Λ)−1.

By denoting the τ -th iterate by X(τ) and taking
X>X = Id2 in (10) into account, the update rule
is finally obtained as

X(τ + 1) = Z(τ)(Z(τ)>Z(τ))−
1
2 (12)

where Z(τ) :=
∑n
i=1 aiXiφ

(
tr(X(τ)>Xi)

σ2

)
.

Directional data: The simplest example is the case
of d2 = 1, which corresponds to directional data (i.e.,
data on Ωd1−1). Then, from (12), the update rule for
directional data x ∈ Ωd1−1 is obtained as

x(τ + 1) =

∑n
i=1 aixiφ

(
x(τ)>xi

σ2

)
∥∥∥∑n

i=1 aixiφ
(

x(τ)>xi
σ2

)∥∥∥ , (13)

where ‖ · ‖ denotes the Euclidean norm. Previously,
mean shift clustering has been extended for directional
data (Kobayashi and Otsu, 2010; Kafai et al., 2010;
Zhang and Chen, 2020, 2021) and is called as the direc-
tional mean shift (DMS). Interestingly, the update rule
used in DMS is a special case of (13) where ai = 1/n
for i = 1, 2, . . . , n. Thus, our work can be regarded as
a generalization of DMS.

Oblique manifold: By essentially following the
same steps as the Stiefel manifold, we can derive an up-
date rule on the oblique manifold (Absil and Gallivan,
2006): Ob(d1, d2) := {X ∈ Rd1×d2 : ddiag(X>X) =
Id2)}. The update rule is give by

X(τ + 1) = Z(τ)(ddiag(Z(τ)>Z(τ)))−
1
2 , (14)

whose derivation is deferred to Section A.
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3.2 Iterative update rule on Gr(d1, d2)

We next consider the Grassmann manifold defined by
Gr(d1, d2) := {span(X) | X ∈ St(d1, d2)}, where
span(X) denotes the linear subspace spanned by the
columns of X. We adopt the same Lagrangian func-

tion on Rd1×d2
as the Stiefel manifold, and obtain the

same optimality conditions as (9) and (10).

For the Grassmann manifold Gr(d1, d2), we employ the
following Euclidean gradient model:

ge(X) =

n∑
i=1

aiXiX
>
i XφGr

i (X) , (15)

where φGr
i (X) := φ

(
tr(XX>XiX

>
i )

σ2

)
, and XX> is an

orthogonal projector to span(X) and can be also seen
as a matrix representation of span(X). By following
the same steps based on the fixed-point scheme, an
update rule is derived as

X(τ + 1) = Y (τ)X(τ)(X(τ)>Y (τ)>Y (τ)X(τ))−
1
2 ,

(16)

where Y (τ) :=
∑n
i=1 aiXiX

>
i φ

Gr
i (X(τ)).

3.3 Iterative update rule on S+(d)

This subsection considers the set of symmetric positive
definite (SPD) matrices: S+(d) := {X ∈ Rd×d | X =
X> � O}, where d = d1 = d2. In contrast with the
Stiefel and Grassmann manifolds, the derivation of an
update rule is not based on the Lagrangian function,
but directly on the Riemannian gradient (8) for S+(d).

Here, we employ the following model for the Euclidean
gradient:

ge(X) =

n∑
i=1

ai(Xi −X)φ

(
‖X −Xi‖2F

σ2

)
(17)

Then, with the orthogonal projector PX(·) = sym(·)
to the tangent space of S+(d) (Vandereycken et al.,
2009), a model of the Riemannian gradient is given by

PX(ge(X)) =

n∑
i=1

aisym(Xi −X)φi (X)

=

[
n∑
i=1

aiφi (X)

] [∑n
i=1 aiXiφi (X)∑n
i=1 aiφi (X)

−X
]
,

where φi(X) := φ
(
‖X−Xi‖2F

σ2

)
, we assumed∑n

i=1 aiφi (X) 6= 0, and used sym(Xi−X) = Xi−X
because Xi and X are symmetric. After substitut-
ing PX(ge(X)) for grad(∇ log p(X)) in (8), the fixed-
point scheme leads to the following update formula:

X(τ + 1) =

∑n
i=1 aiXiφi (X(τ))∑n
i=1 aiφi (X(τ))

. (18)

Eq.(18) shows that the right-hand side is an SPD ma-
trix if φ(·) and ai for all i are nonnegative.

4 Convergence analysis

This section theoretically investigates the monotonic
ascending of the proposed and existing iterative rules,
and convergence of the sequence {X(τ)}τ=0,1,....

4.1 Convergence with monotonic ascending
on St(d1, d2), Ob(d1, d2), Gr(d1, d2) and S+(d)

Here, we prove the convergence of the proposed meth-
ods on St(d1, d2), Ob(d1, d2), Gr(d1, d2) and S+(d).
This is not a trivial task because of the following two
reasons: First, each of the proposed methods is de-
rived as a stationary point of the Lagrange function or
a zero of the Riemannian gradient model. Therefore,
it is unclear if the proposed methods perform even
gradient ascent on these matrix manifolds. Second,
since we adopt the same direct approach as Ashizawa
et al. (2017) in the Riemannian gradient estimation,
it is not so straightforward to ensure the convergence
and monotonic ascending because we have no density
estimate but only a gradient estimator is available.

To investigate the monotonic ascending property
and convergence, in this analysis, we employ the
line integral on Riemannian manifolds (Lee, 2012,
Theorem 11.39): For the vector field g∗(X) =
grad(log p(X)) and a differentiable curve C(t) ∈
M, t ∈ [0, 1] connecting Y ∈ M and X ∈ M, the
line integral is formulated as

Dg∗ [Y |X] :=

∫ 1

0

〈Ċ(t), g∗(C(t))〉C(t)dt

= log p(X)− log p(Y ), (19)

where Ċ(t) := d
dtC(t). The formula (19) indicates

that the Riemannian gradient enables us to evalu-
ate the difference of the log-densities (i.e., log p(X)−
log p(Y )).

Next, we substitute our model g(X) := PX(ge(X))
for the Riemannian gradient g∗(X) and obtain

Dg[Y |X] :=

∫ 1

0

〈Ċ(t), g(C(t))〉C(t)dt. (20)

Then, from (19), we say that an iterative rule has the
monotonic ascending property if

Dg[X(τ)|X(τ + 1)] ≥ 0, (τ = 0, 1, 2, . . . ).

The following theorem states sufficient conditions for
monotonic ascending:
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Theorem 1. Suppose that the following assump-
tions hold for St(d1, d2), Ob(d1, d2), Gr(d1, d2) and
S+(d): (A1) All coefficients ai are nonnegative, (A2)
φ(·) is continuous, there exists a continuous, fi-
nite, convex and monotonically increasing (or de-
creasing) function ϕ(t) such that φ(t) = d

dtϕ(t)

(or φ(t) = − d
dtϕ(t)) for St(d1, d2), Ob(d1, d2) and

Gr(d1, d2) (or S+(d)), and φ(t) and ϕ(t) on t ≥ 0
are bounded for S+(d). Regarding Gr(d1, d2), we
further assume that (A3) tr(X(τ)>Y (τ)X(τ)) ≤
tr({X(τ)>Y (τ)>Y (τ)X(τ)} 1

2 ) for τ = 0, 1, . . . .
Then, with the Euclidean metric 〈Z,Y 〉X = tr(Z>Y ),

Dg[X(τ)|X(τ + 1)] ≥ 0,

and the sequence {Dg[X(τ)|X(τ + 1)]}τ=0,1,... con-
verges to zero when (12), (14), (16) and (18) are
used as the update rules for St(d1, d2), Ob(d1, d2),
Gr(d1, d2) and S+(d), respectively.

The proof is given in Section B. Theorem 1 indicates
that our update rules are guaranteed to monotonically
update X(τ) towards modes of the gradient models
under certain conditions. This theoretical guarantee
is the significant difference to Ashizawa et al. (2017),
and has not been established in the direct Riemannian
gradient estimation.

Assumption (A1) can be satisfied in practice: As de-
tailed in Section G, substituting the models in Sec-
tion 3 into Ĵ(g) leads to a quadratic form, and thus
the nonnegative constraint can be easily added. As-
sumption (A2) holds when ϕ(t) = exp(t), which makes

a function ϕ
(

tr(X>Xi)
σ2

)
the exponential kernel. On

the other hand, if ϕ(t) = exp(−t) for S+(d), it pro-
duces the Gaussian kernel in (17). Regarding Assump-
tion (A3) for Gr(d1, d2), we conjecture that this as-
sumption is mild because it holds when d2 = 1 (See
Section C for details).

Rigorously speaking, the monotonic ascending prop-
erty only does not necessarily guarantee the conver-
gence of {X(τ)}τ=0,1,... (Li et al., 2007). The following
theorem establishes some conditions for convergence:

Theorem 2. Assume that (B1) all coefficients ai
are positive, (B2) the number of zeros of the Rie-
mannian gradient models g(X) is finite on S0 :=
{X|Dg[X(0)|X] ≥ 0}, and (B3) Z(τ) in (12)
and (14) and Y (τ) in (16) have full rank for τ =
0, 1, . . . . Then, under Assumptions (A2,3) in Theo-
rem 1, the sequence {X(τ)}τ=0,1,... converges to a zero
of g(X) with monotonic ascending when (12), (14),
(16) and (18) are used as the update rules for
St(d1, d2), Ob(d1, d2), Gr(d1, d2) and S+(d), respec-
tively.

The proof is given in Section E, and is a similar line of

the proof for Theorem 2 in Li et al. (2007). Theorem 2
indicates that the sequence {X(τ)}τ=0,..., converges
to a mode based on the Riemannian gradient mod-
els when they have no saddle points. Thus, in most
of practical situations, the proposed methods are use-
ful to estimate the modes. On the other hand, when
the gradient models have flat local maxima or saddle
points, the convergence remains unclear. We will en-
deavor to investigate this interesting point in future.

4.2 Monotonic ascending on M

Next, we establish sufficient conditions for the mono-
tonic ascending property of (7) proposed in Ashizawa
et al. (2017).

Brief preparation: Here, we introduce some no-
tions and tools in Riemannian manifolds used in Afsari
et al. (2013) whose results are key in our proof. An
upper bound of the sectional curvature and injectivity
radius of M are denoted by κ1 and inj(M), respectively.
Then, we define a constant r∗ as

r∗ :=

{
1
2 min

{
inj(M), π√

κ1

}
κ1 > 0

1
2 inj(M) κ1 ≤ 0.

The open ball centered at Xo ∈M and with radius r,

B(Xo, r) := {X ∈M | dist(X,Xo) < r},

is called convex if for any X,Y ∈ B(Xo, r), there is
a unique minimizing geodesic from X to Y and the
geodesic entirely lies in B(Xo, r) (Lee, 2018). For any
Xo, B(Xo, r) is convex when r ≤ r∗ (Petersen, 2006).
By denoting a lower bound of the sectional curvatures
of M by κ0, the following is defined: For r > 0,

c(r, κ0) :=

{
1, κ0 ≥ 0

r
√
|κ0| coth(r

√
|κ0|), κ0 < 0

Since θ coth(θ) ≥ 1 for θ ≥ 0, it follows c(r∗, κ0) ≥ 1.

Main theorem: A simple calculation shows that the
update rule (7) can be expressed as

X(τ + 1) = expX(τ) (η(X(τ))g(X(τ))) ,

where η(X) := 1/
∑n
i=1 aiφ

(
dist2(X,Xi)

σ2

)
. This ex-

pression clearly indicates that the update rule (7)
performs Riemannian gradient ascent at X(τ) if
η(X(τ)) ≥ 0. However, this does not ensure that the
iterative rule (7) has the monotonic ascending prop-
erty as well as {X(τ)}τ=0,1,... converges to a mode of
the gradient model because the step size η(X) is adap-
tive to X. Here, we establish sufficient conditions for
monotonic ascending in the following theorem:
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Theorem 3. Assume that (C1) all of data sam-
ples are contained in the ball B(Xo,

1
3r∗) (i.e.,

{Xi}ni=1 ⊂ B(Xo,
1
3r∗) and X(0) ∈ B(Xo,

1
3r∗), (C2)

c( 4r∗
3 , κ0) < 4, (C3) all coefficients ai are nonnega-

tive and (C4) there exists a finite, convex and mono-
tonically decreasing function ϕ(t) such that φ(t) =
− d

dtϕ(t), and ϕ(t) is bounded for t ≥ 0. Then, un-
der the update rule (7) and the general Riemannian
metric 〈·, ·〉X ,

Dg[X(τ)|X(τ + 1)] ≥ 0, (21)

and the sequence {Dg[X(τ)|X(τ + 1)]}τ=0,1,... con-
verges to zero.

The proof is given in Section E. Compared with The-
orem 1, Theorem 3 has pros and cons. First of all,
Theorem 3 does not focus on particular manifolds and
thus has a high generality, while Theorem 1 is intended
for particular matrix manifolds. On the other hand,
the generality of Theorem 3 might involve some restric-
tion: Assumption (C1) requires data samples to exist
inside a (possibly small) ball. However, Theorem 1
does not have such a restriction to data samples.

Our proof is based on a previous work (Afsari et al.,
2013) whose purpose is to establish convergence condi-
tions of the Riemannian gradient decent with a fixed
step size in the Fréchet mean estimation and where
a variety of convergence conditions are established.
In fact, Assumptions (C1-2) come from Theorem 4.1
in Afsari et al. (2013). Thus, by adopting other conver-
gence results in Afsari et al. (2013), we could establish
different sufficient conditions with small modification
in our proof.

Unlike Theorem 2, the convergence of {X(τ)}τ=0,1,

is not established. However, thanks to the global
convergence theorem in Luenberger and Ye (2008),
if {X(τ)}τ=0,1, is contained in a compact set, there
would exist a subsequence of {X(τ)}τ=0,1,, which con-
verges to a zero of the Riemannian gradient model with
monotonic ascending (i.e., possibly, a mode based on
the gradient model).

5 Robustness in mode estimation

This section performs the breakdown point analysis
to investigate the robustness of the iterative methods
in mode estimation. The proof of Theorem 3 in Sec-
tion E shows that (20) gives an unnnormalized density
model from the Riemannian gradient model as follows:
With some fixed point Xo, the line integral on a curve
between X and Xo is computed as

Dg[X|Xo] =
σ2

2

n∑
i=1

aiϕ

(
dist2(X,Xi)

σ2

)
− Co, (22)

where Co := σ2

2

∑n
i=1 aiϕ

(
dist2(Xo,Xi)

σ2

)
can be seen

as a constant. Eqs.(19) and (22) indicate that∑n
i=1 aiϕ

(
dist2(X,Xi)

σ2

)
is a model for the log-density

on M up to the normalizing constant. Then, we can
define the mode of the model as

M := argmax
X∈M

[
n∑
i=1

aiϕ

(
dist2(X,Xi)

σ2

)]
.

In the finite breakdown point analysis, we add m ar-
bitrary data samples D′ := {X ′i}mi=1 into the original
samples D = {Xi}ni=1, and consider the following def-
inition of the mode from D ∪D′:

M ′ := argmax
X∈M

[
n+m∑
i=1

aiϕ

(
dist2(X,Zi)

σ2

)]
,

where Zi ∈ D ∪ D′1. The finite breakdown point (Hu-
ber and Ronchetti, 2009) is defined as

ε(M ,D) := min
1≤m≤n

{
m

n+m

∣∣∣ sup
D′

dist(M ,M ′) =∞
}
,

where sup is taken over all D′. A larger value of the
breakdown point implies more robust to the contami-
nation of {X ′i}mi=1. The following theorem shows the
finite breakdown point where dRe (or bRc) denotes the
smallest (or largest) integer larger (or smaller) than R:

Theorem 4. Assume that 0 ≤ ai ≤ amax for some
constant amax > 0 and all i = 1, 2, . . . , n+m, and ϕ(t)
for t ≥ 0 is nonnegative and reaches the maximum

at t = 0. Let R :=
∑n
i=1 ãiϕ

∗
(

dist2(M ,Xi)
σ2

)
where

ãi := ai/amax and ϕ∗(t) := ϕ(t)/ϕ(0). Then, the finite
breakdown point is given by

ε∗(M ,D) =
m∗

n+m∗
, (23)

where with Ā′m := 1
m

∑n+m
i=n+1 ãi, m

∗ satisfies

dRe ≤ m∗ ≤
⌊
R

Ā′m

⌋
+ 1. (24)

The proof is given in Section F. Theorem 4 shows that
the break down point depends on ai, σ and φ. For

instance, when σ is large such that ϕ∗
(

dist2(X,Zi)
σ2

)
≈

1 (e.g., the Gauss kernel), then R ≈
∑n
i=1 ãi ≤ n.

From the lower-bound of m∗ in (24), R = n yields
ε∗(M ,D) ≥ 1

2 , implying our model potentially has a
satisfactory robustness property.

Unlike the lower-bound, the upper-bound of m∗ in (24)
depends on Ā′m, which is the average of the coefficients

1Zi = Xi if i ≤ n. For i ≥ n+ 1, Zi = X ′
i.
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(a) Iter.=0 (b) Iter.=5 (c) Iter.=10 (d) Iter.=100

Figure 1: Illustration of a mode-seeking process on
Ωd1−1. Iter. means the number of iterations.

ãi corresponding to Zi+n = X ′i. This coefficient de-
pendency to Ā′m intuitively makes sense because m∗

can be large when Ā′m is close to zero, i.e., the coeffi-
cients ãi for all i = n+1, . . . , n+m are approximately
zeros and thus there is no influence from X ′i. On the
other hand, if the coefficients ãi are large, the finite
breakdown point could be small.

From the definition of the breakdown point, Theorem 4
is useful when M has an unbounded distance dist(·, ·).
For instance, S+(d) has an unbounded distance, while
the distance of St(d1, d2) should be bounded. In addi-
tion, we also note that with the almost same proof as
Theorem 4, essentially the same result for the break-
down point holds for the model (17) with the Frobe-
nuous norm, which is intended for S+(d). In fact, we
experimentally show the robustness of the proposed
method on S+(d) in Section 6.

We excluded the learning factor to the coefficients ai
in this analysis but should take it into account. How-
ever, it requires more sophisticated analysis to solve
this problem. Thus, we leave this interesting but chal-
lenging problem for the future.

6 Numerical illustration

This section numerically investigates the proposed
methods. As an example of St(d1, d2), mode-seeking
clustering for directional data is first performed. Then,
we compare our method with (7) in Ashizawa et al.
(2017) on Gr(d1, d2). The robustness of the proposed
method against outliers is demonstrated for S+(d). Fi-
nally, our method on S+(d) is applied to EEG data.
All details of Riemannian gradient estimation and ex-
perimental settings are deferred to Sections G and H,
respectively.

Clustering for directional data: Here, we per-
form mode-seeking clustering: In mode-seeking clus-
tering, all data samples are initially regarded as the
candidates for cluster centers, and updated towards
local modes (Figs.1(a-d)). Then, the data samples
which converged to the same mode are assigned the
same cluster label. We apply the proposed itera-

(a) n = 600 (b) d1 = 25

Figure 2: Clustering performance on directional data.
Each point and error bar denote the average and stan-
dard deviation of ARI over 30 runs, respectively.

Figure 3: Comparison to an existing method
(Geodesic (Ashizawa et al., 2017)) in terms of ARI
and CPU time on Gr(d1, d2) (d1 = 9, d2 = 2).

tive method (13) to mode-seeking clustering and com-
pare it with directional mean shift (DMR) (Zhang and
Chen, 2020). Since DMR is based on KDE, we used
the two bandwidth selection methods: The bandwidth
parameter was selected based on the rule of thumb
for directional data (Garćıa-Portugués, 2013) (DMR-
rot) or the cross-validation based on the log-likelihood
(DMRcv). Data was sampled from a mixture of three
Von Mises densities (Fig.1(a)). The performance was
measured by adjusted Rand index (ARI) (Hubert and
Arabie, 1985): A larger value of ARI means a better
clustering result.

Fig.2(a) indicates that the proposed method works
better than DMRs for higher-dimensional data: The
ARI values of both DMRrot and DMRcv decrease as
d1 increases, the proposed method keeps the ARI val-
ues high among all data dimensions. Fig.2(b) shows
that the proposed method produces high ARI values
over various numbers of data samples.

Clustering on Gr(d1, d2): Next, we compare our
method (16) with the existing method (7) in mode-
seeking clustering on Gr(d1, d2). We followed ex-
actly the same experimental setting in Ashizawa et al.
(2017)2. Fig.3 indicates that the two methods show al-
most the same performance in terms of ARI. However,

2https://t-sakai-kure.github.io/software-ja.
html
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Figure 4: Robustness against outliers on S+(d). The
data dimensions in the left and right figures are d = 3
and d = 7, respectively.

the clear difference can be seen in the computational
time: The proposed method is computationally more
efficient than the existing method (Ashizawa et al.,
2017). This would come from the fact that Ashizawa
et al. (2017) perform the singular value decomposition
to a d1 by d2 matrix in the exponential map expX(·)
of the update rule (7) at each iterate and data sam-
ple (Section H.2). Thus, when the numbers of data
samples and data dimensions are high, it would be
computationally expensive.

Outlier robustness on S+(d): Here, we investi-
gate outlier robustness of the proposed method (18)
on S+(d), and compare it with the Fréchet
mean (FMean) (Karcher, 1977), geometric median
(GMed) (Fletcher et al., 2009) and mean shift (MS).
Symmetric positive definite matrices Xi were sampled
from Xi = B>B+ diag(βi), where B is a d by d ran-
dom matrix drawn from the normal density, diag(βi)
is the diagonal matrix with the elements of βi on the
diagonal, and each element in βi was independently
sampled from a contaminated exponential density as
(1 − ε)µ−1eβ/µ + εµ−1

o e(β+5)/µo , where ε denotes the
outlier ratio. Samples from the exponential density
µ−1
o e(β+5)/µo can be regarded as outliers. Here, we set
µ = 0.5 and µo = 0.1. The total number of samples
was n = 500. The performance error was defined by

‖B>B−M̂‖F, where M̂ denotes an estimated mode.

Fig.4 clearly shows that the proposed method is robust
against outliers. As previously mentioned, FMean is
sensitive to outliers and the performance is worsened
when the contamination ratio ε is high. The perfor-
mance of GMed is not so good. A possible reason is
that as in the Euclidean median, GMed would assume
that the underlying density is symmetric, while the
density in this experiment is highly skewed by out-
liers. MS is also robust against outliers, but the pro-
posed method is clearly better than MS when the data
dimension gets larger.

Figure 5: Cross-validated classification accuracy
(mean± SD) by different methods for tangency points.

Application to EEG data We applied our method
to electroencephalograpy (EEG) data, publicly avail-
able from the BCI competition IV 3 (Dataset 1, cali-
bration data). After basic preprocessing (see the sup-
plementary material), we obtained 200 covariance ma-
trices per subject, each from a single task trial of two-
class motor imagery. Following Sabbagh et al. (2019),
we first computed their Riemannian (geometric) pro-
jections onto a tangent space TX̄M at the Fréchet
mean X̄, so that they could be associated linearly with
log-variances of EEG sources. Then, we applied L2-
regularized linear logistic regression and evaluated the
classification accuracy of the two classes of motor im-
agery using a 10-fold cross-validation (CV) scheme,
with a nested CV to optimize the L2-penalty. Here,
we attempted to replace the Fréchet mean as a refer-
ence point with its robust estimates considered above.

The result confirms that the proposed method per-
forms at least comparable with the original nonrobust
mean (KMean) as well GMed and MS (Fig. 5).

7 Conclusion

This paper proposed practical methods to estimate
the modes on four matrix manifolds based on the
Euclidean metric: Stiefel, oblique, Grassmann mani-
folds and the set of symmetric positive definite matri-
ces. The key contribution is that the convergence of
the proposed methods is theoretically guaranteed with
monotonic ascending. In addition, we established suffi-
cient conditions for the monotonic ascending property
of an existing method (Ashizawa et al., 2017). Thus,
our work can be also seen as compensating for the lack
of theoretical analysis of the existing method. Further-
more, we performed the finite-breakdown point anal-
ysis to investigate the robustness of the mode estima-
tion methods. Finally, we numerically demonstrated
the usefulness of the proposed methods in clustering
and robust mode estimation. In future, we will extend
this approach based on the Euclidean metric to other
matrix manifolds.

3http://www.bbci.de/competition/iv/
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Supplementary Material:
Mode estimation on matrix manifolds: Convergence and robustness

Without loss of generality, we suppose that σ = 1 in Sections B, D, E and F.

A Derivation of (14) for the oblique manifold Ob(d1, d2)

For the oblique manifold Ob(d1, d2), we formulate the Lagrangian function on Rd1×d2
as

log p(X)− 1

2
tr(Λ>(ddiag(X>X − Id2)) (X ∈ R

d1×d2
),

where Λ is the d2 by d2 diagonal matrix of Lagrange multipliers. Then, the optimality conditions, which the
modes satisfy, yield

∇X log p(X)−XΛ = O (25)

ddiag(X>X) = Id2 . (26)

Next, we substitute the trace model (11) for ∇X log p(X) in (25) and obtain

ge(X)−XΛ =

n∑
i=1

aiXiφ

(
tr(X>Xi)

σ2

)
−XΛ = O.

Based on the fixed-point method, the following naive update rule can be derived as

X ←
n∑
i=1

aiXiφ

(
tr(X>Xi)

σ2

)
Λ−1 = ZΛ−1,

where Z :=
∑n
i=1 aiXiφ

(
tr(X>Xi)

σ2

)
. In order to satisfy (26), we compute

ddiag(X>X) = ddiag(Λ−1Z>ZΛ−1) = Λ−1ddiag(Z>Z)Λ−1,

where we used the fact that Λ is a diagonal matrix. Thus, (26) yields

Λ = ddiag(Z>Z)−
1
2 ,

and we obtain the final update rule as

X(τ + 1) = Z(τ)(ddiag(Z(τ)>Z(τ)))−
1
2 ,

where Z(τ) :=
∑n
i=1 aiXiφ

(
tr(X(τ)>Xi)

σ2

)
.

B Proof of Theorem 1

This section gives the proofs on St(d1, d2), Gr(d1, d2) and S+(d). The proof of Ob(d1, d2) is omitted because it
is the almost same as St(d1, d2) using the orthogonal projector onto the tangent space TOb(d1, d2) as PX(Z) =
Z −Xddiag(X>Z) (Absil and Gallivan, 2006).
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B.1 Proof for the Stiefel manifold St(d1, d2)

Proof. Before going to the line integral (20), we show a simple relation on St(d1, d2). Since C(t) ∈ St(d1, d2), it
holds C(t)>C(t) = Id2 . By differentiating it with respect to t, we obtain

Ċ(t)>C(t) +C(t)>Ċ(t) = O. (27)

Then, we have a model for the Riemannian gradient as

g(X) := PX(ge(X)) =

n∑
i=1

aiPX(Xi)φ(tr(X>Xi)) =

n∑
i=1

ai(Xi −Xsym(X>Xi))φ(tr(X>Xi)), (28)

where PX(Z) = Z − Xsym(X>Z) on St(d1, d2) (Absil et al., 2008). By substituting g(X) into the line
integral (20) under the Euclidean metric 〈Y ,Z〉X = tr(Y >Z), we have

Dg[Y |X] =

∫ 1

0

[
n∑
i=1

aitr(Ċ(t)>Xi)φ(tr(C(t)>Xi))−
n∑
i=1

aitr(Ċ(t)>C(t)sym(C(t)>Xi))φ(tr(C(t)>Xi))

]
dt

=

∫ 1

0

n∑
i=1

aitr(Ċ(t)>Xi)φ(tr(C(t)>Xi))dt

=

n∑
i=1

ai
{
ϕ(tr(X>Xi))− ϕ(tr(Y >Xi))

}
, (29)

where we derived and used the following relation:

2tr(Ċ(t)>C(t)sym(C(t)>Xi)) = tr(Ċ(t)>C(t)sym(C(t)>Xi)) + tr(Ċ(t)>C(t)sym(C(t)>Xi))

= tr(Ċ(t)>C(t)sym(C(t)>Xi)) + tr(C(t)>Ċ(t)sym(C(t)>Xi))

= tr(Ċ(t)>C(t)sym(C(t)>Xi))− tr(Ċ(t)>C(t)sym(C(t)>Xi))

= 0,

where we used the trace property as tr(AB) = tr(A>B>) on the second line and applied (27) on the third line.

Next, we substitute X(τ) and X(τ + 1) into Y and X respectively, and express the right-hand side on (29) as

Dg[X(τ)|X(τ + 1)] =

n∑
i=1

aiϕ(tr(X(τ + 1)>Xi))−
n∑
i=1

aiϕ(tr(X(τ)>Xi))

≥
n∑
i=1

aiφ(tr(X(τ)>Xi)){tr(X(τ + 1)>Xi)− tr(X(τ)>Xi)}, (30)

where we applied a well-known inequality to the convex function ϕ(·): For a convex function f(t) and ḟ(t) =
d
dtf(t),

f(tx)− f(ty) ≥ ḟ(ty)(tx − ty) (tx, ty ∈ R). (31)

Then, we employ the update rule (12) to the right-hand side of (30) and obtain

Dg[X(τ)|X(τ + 1)] ≥ tr
(
X(τ + 1)>Z(τ)

)
− tr

(
X(τ)>Z(τ)

)
= tr

(
X(τ + 1)>X(τ + 1)(Z(τ)>Z(τ))1/2

)
− tr

(
X(τ)>X(τ + 1)(Z(τ)>Z(τ))1/2

)
, (32)

where we recall that Z(τ) =
∑n
i=1 aiXiφ(tr(X(τ)>Xi)). Since X(τ + 1)>X(τ + 1) = X(τ)>X(τ) = Id2 , we

have

tr
(
X(τ + 1)>X(τ + 1)(Z(τ)>Z(τ))1/2

)
= tr

(
X(τ)>X(τ)(Z(τ)>Z(τ))1/2

)
,
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which further modifies the right-hand on (32) as

Dg[X(τ)|X(τ + 1)] ≥ 1

2
tr
(

(X(τ + 1)−X(τ))>(X(τ + 1)−X(τ))(Z(τ)>Z(τ))1/2
)
. (33)

Since (X(τ + 1)−X(τ))>(X(τ + 1)−X(τ)) and Z(τ)>Z(τ) are positive semidefinite matrices, the right-hand
side on (33) is nonnegative.

It follows from (29) and the monotonic ascending property that

Dg[X(τ)|X(τ + 1)] =

n∑
i=1

ai
{
ϕ(tr(X(τ)>Xi))− ϕ(tr(X(τ + 1)>Xi))

}
≥ 0. (34)

Function ϕ(tr(X(τ)>Xi)) for X(τ),Xi ∈ St(d1, d2) is bounded because St(d1, d2) is compact. Thus, (34) means
that the sequence {

∑n
i=1 aiϕ(tr(X>(τ)Xi))}τ=0,1,... is monotonically increasing and converges as τ increases,

which implies Dg[X(τ)|X(τ + 1)]→ 0 as τ →∞. The proof is completed.

B.2 Proof for Grassmann manifold Gr(d1, d2)

Proof. With the orthogonal projector PX(Z) = Z−XX>Z onto TXGr(d1, d2) (Absil et al., 2008), a model for
the Riemannian model is given by

g(X) = PX(ge(X)) =

n∑
i=1

ai(XiX
>
i X −XX>XiX

>
i X)φGr

i (X), (35)

where we recall that φGr
i (X) = φ

(
tr(XX>XiX

>
i )
)
. Then, we compute the path integral (20) with a curve

C(t) connecting X and Y as

Dg[Y |X] =

∫ 1

0

n∑
i=1

aitr(Ċ(t)>XiX
>
i C(t)− Ċ(t)>C(t)C(t)>XiX

>
i C(t))φGr

i (C(t))dt

=

n∑
i=1

ai

∫ 1

0

tr(Ċ(t)>XiX
>
i C(t))φGr

i (C(t))dt

=

n∑
i=1

ai
2

[
ϕGr
i (X)− ϕGr

i (Y )
]
, (36)

where ϕGr
i (X) := ϕ

(
tr(XX>XiX

>
i )
)
, and we derived and used the following relation:

2tr(Ċ(t)>C(t)C(t)>XiX
>
i C(t)) = tr(Ċ(t)>C(t)C(t)>XiX

>
i C(t)) + tr(Ċ(t)>C(t)C(t)>XiX

>
i C(t))

= tr(Ċ(t)>C(t)C(t)>XiX
>
i C(t)) + tr(C(t)>Ċ(t)C(t)>XiX

>
i C(t))

= tr((Ċ(t)>C(t) +C(t)>Ċ(t))C(t)>XiX
>
i C(t))

= 0,

where we applied Ċ(t)>C(t) + C(t)>Ċ(t) = O in (27). By applying (31) for the convex function ϕ(·), a
lower-bound of Dg[X(τ)|X(τ + 1)] is obtained as

Dg[X(τ)|X(τ + 1)] ≥
n∑
i=1

ai
2
φGr
i (X(τ))

[
tr(XiX

>
i X(τ + 1)X(τ + 1)>)− tr(XiX

>
i X(τ)X(τ)>)

]
=

1

2
tr(Y (τ)X(τ + 1)X(τ + 1)>)− 1

2
tr(Y (τ)X(τ)X(τ)>)

=
1

2
tr(X(τ + 1)>Y (τ)X(τ + 1))− 1

2
tr(X(τ)>Y (τ)X(τ)). (37)
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Next, we need to show that the right-hand side on (37) is nonnegative. To this end, we express the right-hand
side on (37) as

1

2
tr(Y (τ)X(τ + 1)X(τ + 1)>)− 1

2
tr(Y (τ)X(τ)X(τ)>)

=
1

2
tr(X(τ + 1)>Y (τ)X(τ + 1)) +

1

2
tr(X(τ)>Y (τ)X(τ))− tr(X(τ)>Y (τ)X(τ))

≥ 1

2
tr(X(τ + 1)>Y (τ)X(τ + 1)) +

1

2
tr(X(τ)>Y (τ)X(τ))− tr({X(τ)>Y (τ)>Y (τ)X(τ)} 1

2 ), (38)

where we applied Assumption (A3) on the last line. SinceX(τ+1) is an orthogonal matrix, multiplyingX(τ+1)>

to both sides of the update rule (16) yields

X(τ + 1)>Y (τ)X(τ) = (X(τ)>Y (τ)>Y (τ)X(τ))
1
2 . (39)

Substituting (39) into the last term on the right-hand side of (38) gives

1

2
tr(Y (τ)X(τ + 1)X(τ + 1)>)− 1

2
tr(Y (τ)X(τ)X(τ)>)

≥ 1

2
tr(X(τ + 1)>Y (τ)X(τ + 1)) +

1

2
tr(X(τ)>Y (τ)X(τ))− tr(X(τ + 1)>Y (τ)X(τ))

=
1

2
tr(X(τ + 1)>Y (τ)X(τ + 1)) +

1

2
tr(X(τ)>Y (τ)X(τ))

− 1

2
tr(X(τ + 1)>Y (τ)X(τ))− 1

2
tr(X(τ)>Y (τ)X(τ + 1))

=
1

2
tr
{

(X(τ + 1)−X(τ))>Y (τ)(X(τ + 1)−X(τ))
}
, (40)

where we used tr(X(τ + 1)>Y (τ)X(τ)) = tr(X(τ)>Y (τ)X(τ + 1)) because Y (τ) is symmetric. Since Y (τ) is
positive semidefinite, the right-hand side on (40) is nonnegative. The convergence of {Dg[X(τ)|X(τ+1)]}τ=0,1,...

can be confirmed by following the same step as St(d1, d2). Thus, the proof is completed.

B.3 Proof for the set of symmetric matrices S+(d)

Based on the norm model (17), our model for the Riemannian gradient on S+(d) can be expressed as

g(X) =

n∑
i=1

aiPX(Xi −X)φ(‖X −Xi‖2F) =

n∑
i=1

aisym(Xi −X)φ(‖X −Xi‖2F), (41)

where PX(·) = sym(·) is the orthogonal projector onto the tangent space TXS+(d) (Vandereycken et al., 2009).
Substituting g(X) into (20) yields

Dg[X(τ)|X(τ + 1)] =

∫ 1

0

tr
(
Ċ(t)>g(C(t))

)
dt

= −
n∑
i=1

ai

∫ 1

0

tr
(
Ċ(t)>sym(C(t)−Xi)

)
φ(‖C(t)−Xi‖2F)dt

=

n∑
i=1

ai
2

{
ϕ(‖X(τ + 1)−Xi‖2F)− ϕ(‖X(τ)−Xi‖2F)

}
,
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where sym(C(t)−Xi) = C(t)−Xi. Then, we apply the inequality (31) to ϕ(·) and have

Dg[X(τ)|X(τ + 1)] ≥
n∑
i=1

ai
2
φ(‖X(τ)−Xi‖2F)

{
‖X(τ)−Xi‖2F − ‖X(τ + 1)−Xi‖2F

}
=

n∑
i=1

ai
2
φ(‖X(τ)−Xi‖2F)

{
‖X(τ)‖2F − 2tr

(
(X(τ)−X(τ + 1))>Xi

)
− ‖X(τ + 1)‖2F

}
=

n∑
i=1

ai
2
φ(‖X(τ)−Xi‖2F)

{
‖X(τ)‖2F − ‖X(τ + 1)‖2F

}
− tr

(
(X(τ)−X(τ + 1))>

{
n∑
i=1

aiXiφ(‖X(τ)−Xi‖2F)

})
. (42)

We next use the update rule (18) for the last term on the right-hand side of (42) as

tr

(
(X(τ)−X(τ + 1))>

{
n∑
i=1

aiXiφ(‖X(τ)−Xi‖2F)

})

=

n∑
i=1

aiφ(‖X(τ)−Xi‖2F)tr
(
(X(τ)−X(τ + 1))>X(τ + 1)

)
. (43)

By substituting (43) into (42), we obtain

Dg[X(τ)|X(τ + 1)] ≥
n∑
i=1

ai
2
φ(‖X(τ)−Xi‖2F)

{
‖X(τ)‖2F − 2tr(X(τ)>X(τ + 1)) + ‖X(τ + 1)‖2F

}
=

n∑
i=1

ai
2
φ(‖X(τ)−Xi‖2F)‖X(τ)−X(τ + 1)‖2F.

Since Assumptions (A1) and (A2) ensure that both ai and φ(·) are nonnegative, it holds Dg[X(τ)|X(τ+1)] ≥ 0.
Following the same step as St(d1, d2) proves Dg[X(τ)|X(τ + 1)] → 0 as τ → ∞ because ϕ(t) is assumed to be
bounded on t ≥ 0. The proof is completed.

C Assumption (A3) in d2 = 1

Here, we show that Assumption (A3) holds when d2 = 1. To this end, we denote X ∈ Gr(d1, 1) by x ∈ Rd1
where ‖x‖ = 1. Then, Assumption (A3) is given by

x>Y (τ)x ≤ (x>Y (τ)>Y (τ)x)1/2. (44)

Since Y (τ) is a symmetric positive definite matrix, the eigenvalue decomposition of Y (τ) is given by Y (τ) =
UΛU> where Λ denotes the diagonal matrix with nonnegative diagonals (i.e., eigenvalues) and U is a d1 by d1

orthogonal matrix. Inequality (44) can be equivalently expressed as

d1∑
i=1

λi(u
>
i x)2 ≤

(
d1∑
i=1

λ2
i (u
>
i x)2

)1/2

, (45)

where ui and λi denote the i-th column vector in U and diagonal in Λ, respectively. Since
∑d1
i=1(u>i x)2 =

‖U>x‖2 = ‖x‖2 = 1, applying Jensen’s inequality assures that (45) as well as (44) hold.

D Proof of Theorem 2

Proof. Here, we follow the proof for Theorem 2 in Li et al. (2007). We only consider St(d1, d2) and Gr(d1, d2), and
omit the proofs for Ob(d1, d2) and S+(d) because they are essentially the same as St(d1, d2). By Assumption (B2),
without loss of generality, we assume that there exist n zeros of the Riemannian gradient model g(X) such that

g(X̃k) = 0, k = 1, . . . , n,
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and define the minimum distance among X̃k as

dmin := min{‖X̃k − X̃k′‖F | 1 ≤ k 6= k′ ≤ n}.

As shown in the proof of Theorem 1, the sequence {
∑n
i=1 aiϕ(tr(X>(τ)Xi))}τ=0,1,... converges as τ increases.

From (33) and (34), we have

n∑
i=1

ai
{
ϕ(tr(X(τ + 1)>Xi))− ϕ(tr(X(τ)>Xi))

}
≥ 1

2
tr
(

(X(τ + 1)−X(τ))>(X(τ + 1)−X(τ))(Z(τ)>Z(τ))1/2
)

≥ 1

2
λmin‖X(τ + 1)−X(τ)‖2F,

where λmin is the minimum eigenvalue of (Z(τ)>Z(τ))1/2 and positive from Assumption (B3). The convergence
of {

∑n
i=1 aiϕ(tr(X>(τ)Xi))}τ=0,1,... implies that X(τ + 1) −X(τ) → 0 as τ → ∞. On the other hand, by

applying the update rule (12), the Riemannian gradient model for St(d1, d2) can be expressed as

g(X(τ)) =

n∑
i=1

ai(Xi −X(τ)sym(X(τ)>Xi))φ(tr(X(τ)>Xi))

= X(τ + 1)(Z(τ)>Z(τ))
1
2 −X(τ)sym(X(τ)>X(τ + 1)(Z(τ)>Z(τ))

1
2 ).

Thus, when X(τ + 1) − X(τ) → 0, g(X(τ)) → 0 as τ → ∞ because X(τ)>X(τ + 1) → Id2 and

sym((Z(τ)>Z(τ))
1
2 ) = (Z(τ)>Z(τ))

1
2 . From the convergence of X(τ + 1) − X(τ) and g(X(τ)), for all

0 < ε < dmin/3, there exists some Tε > 0 such that

‖X(τ + 1)−X(τ)‖F < ε, τ ≥ Tε, (46)

‖g(X(τ))‖F < ε, τ ≥ Tε. (47)

Next, we show that X(τ) exists in any neighborhoods of the zeros of g(X) when τ ≥ Tε. To this end, let us
define a ball with the center X̃k as

Sε,k :=
{
X|‖X − X̃k‖F < ε, X ∈ S0

}
.

Since φ is continuous, g(X) 6= 0 on V0 := S0 \
⋃n
k=1 Sε,k where \ denotes the set difference and we recall

S0 := {X|D[X(0)|X] ≥ 0}. Thus, there exists a constant cε > 0 such that

‖g(X)‖F > cε for all X ∈ V0. (48)

From (47) and (48), we have

{X(τ)}τ≥Tε ⊂
n⋃
k=1

Sε,k. (49)

Finally, we confirm that X(τ) converges to a zero of g(X). Let X ′ and X ′′ be two points in distinct balls such
that X ′ ∈ Sε,k1 and X ′′ ∈ Sε,k2 for some 1 ≤ k1 6= k2 ≤ n. Then,

‖X ′ −X ′′‖F ≥ ‖X̃k1 − X̃k2‖F − ‖X ′ − X̃k1‖F − ‖X ′′ − X̃k2‖F > dmin − ε− ε > ε, (50)

where we used dmin > 3ε. Thus, (46) and (50) mean that the sequence {X(τ)}τ≥Tε has to exist in a single ball

Sε,k for some k, which implies ‖X(τ)− X̃k‖F < ε. Therefore, {X(τ)}τ=0,1,... converges to a zero of g(X) with
monotonic ascending.
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Regarding Gr(d1, d2), the difference from St(d1, d2) is a way to prove X(τ) −X(τ) → 0 as τ → ∞. As shown
in the proof of Theorem 1, {

∑n
i=1 aiϕ

Gr
i (X(τ))}τ=0,1,... converges as τ increases. Then, from (37), we have

n∑
i=1

ai
[
ϕGr
i (X(τ + 1))− ϕGr

i (X(τ))
]
≥ tr((X(τ + 1)−X(τ))>Y (τ)(X(τ + 1)−X(τ)))

≥ λy
min‖X(τ + 1)−X(τ)‖2F, (51)

where λy
min0 denotes the minimum eigenvalue of Y (τ) and is strictly positive by Assumption (B3). From (51),

the convergence of {
∑n
i=1 aiϕ

Gr
i (X(τ))}τ=0,1,... implies X(τ + 1) −X(τ)) → 0 as τ → ∞. Then, by following

the same steps as St(d1, d2), the proof is completed.

E Proof of Theorem 3

E.1 Useful lemma

Let us define the objective function used in the Fréchet mean estimation as

f(X) =
1

2

n∑
i=1

widist2(X,Xi),

where wi denotes a weight such that 0 ≤ wi ≤ 1 and
∑n
i=1 wi = 1. The objective function f(X) is minimized

by applying a Riemannian gradient descent method whose iterative rule is given by

X(τ + 1) = expX(τ)(−tgrad(f(X(τ)))),

where t > 0 is a step size parameter. The following lemma provides sufficient conditions that f(X) is monoton-
ically decreased as τ increases:

Lemma 1 (Theorem 4.1 in Afsari et al. (2013)). Assume that {Xi}ni=1 ⊂ B(Xo,
1
3r∗) and X(0) ∈ B(Xo,

1
3r∗).

Then, for all t ∈
(

0, 2
cκ0 (4r∗/3)

)
,

f(X(τ))− f(X(τ + 1)) ≥ 0.

E.2 Main proof

Proof. Since grad(dist2(X,Xi)) = −2 logX(Xi) (Karcher, 1977), we express g(X) as

g(X) =

n∑
i=1

ai logX(Xi)φ
(
dist2(X,Xi)

)
=

1

2

n∑
i=1

aigrad
(
ϕ
(
dist2(X,Xi)

))
,

where we used φ(t) = − d
dtϕ(t). Substituting the model g(X) into the path integral (20) yields

Dg[X(τ)|X(τ + 1)] =

n∑
i=1

ai
2

∫ 1

0

〈Ċ(t), grad
(
ϕ
(
dist2(C(t),Xi)

))
〉C(t)dt

=

n∑
i=1

ai
2

[
ϕ
(
dist2(X(τ + 1),Xi)

)
− ϕ

(
dist2(X(τ),Xi)

)]
≥

n∑
i=1

ai
2
φ
(
dist2(X(τ),Xi)

) [
dist2(X(τ),Xi)− dist2(X(τ + 1),Xi)

]
,

where we applied the inequality (31) to ϕ(·) on the second line. By defining wi(τ) := aiφ
(
dist2(X(τ),Xi)

)
, we

express the right-hand side as

Dg[X(τ)|X(τ + 1)] ≥

(
1

2

n∑
i=1

wi(τ)

)
{fτ (X(τ))− fτ (X(τ + 1))}, (52)
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where with w̃i(τ) := wi(τ)∑n
k=1 wk(τ) ,

fτ (X) :=

n∑
i=1

w̃i(τ)dist2(X,Xi).

We note that 0 ≤ w̃i(τ) ≤ 1 and
∑n
i=1 w̃i(τ) = 1 by Assumptions (C3-4).

Next, we show that the right-hand side on (52) is nonnegative based on Lemma 1. The update rule (7) is
equivalently expressed as the exponential map of the Riemannian gradient of fτ (X) at X = X(τ) as follows:

X(τ + 1) = expX(τ)

(∑n
i=1 ai logX(Xi)φ

(
dist2(X,Xi)

)∑n
i=1 aiφ

(
dist2(X,Xi)

) )

= expX(τ)

(
n∑
i=1

w̃i(τ) logX(Xi)

)
= expX(τ)

(
−1

2
grad(fτ (X(τ))

)
. (53)

By Assumptions (C1-2), Lemma 1 ensures that for each τ ,

fτ (X(τ))− fτ (X(τ + 1)) ≥ 0, (54)

under the update rule (53). Thus, combining (54) with (52), it is established Dg[X(τ)|X(τ+1)] ≥ 0. As done in
S+(d), the convergence of {Dg[X(τ)|X(τ + 1)]}τ=0,1,... can be also confirmed. Thus, the proof is completed.

F Proof of Theorem 4

Proof. We follow the proof of Theorem 2.5 in Yao and Li (2014). We start by the following simple fact:

dist(M ,M ′) ≤ dist(M ,Xi) + dist(M ′,Xi).

This indicates that dist(M ,M ′) is bounded if dist(M ′,Xi) is bounded for all i = 1, . . . , n. Let us express
ãi := ai/amax and ϕ∗(t) = ϕ(t)/ϕ(0). Thus, we have ãi ≤ 1 and ϕ∗(t) ≤ 1, and note that the following holds:

M ′ := argmax
X∈M

[
n+m∑
i=1

ãiϕ
∗ (dist2(X,Zi)

)]
.

Here, without loss of generality, we assume that

Zi =

{
Xi i = 1, . . . , n
X ′i i = n+ 1, . . . , n+m.

Since the coefficients ai are assumed to be nonnegative, we first obtain

m+n∑
i=1

ãiϕ
∗ (dist2(M ,Zi)

)
=

n∑
i=1

ãiϕ
∗ (dist2(M ,Zi)

)
+

m+n∑
i=n+1

ãiϕ
∗ (dist2(M ,Zi)

)
≥

n∑
i=1

ãiϕ
∗ (dist2(M ,Xi)

)
= R. (55)

Next, we prove that dist(M ′,Xi) is bounded if m < R, which implies that there exist some ξ > 0 and C > 0
such that Anξ + m < R with An :=

∑n
i=1 ãi and ϕ∗(t) ≤ ξ for |t| ≥ C, respectively. For Y ∈ M satisfying

dist(Y ,Xi) ≥ C for i = 1, . . . , n,

m+n∑
i=1

ãiϕ
∗ (dist2(Y ,Zi)

)
≤ ξ

n∑
i=1

ãi +
m+n∑
i=n+1

ãiϕ
∗ (dist2(Y ,Zi)

)
≤ ξ

n∑
i=1

ãi +

m+n∑
i=n+1

ãi

≤ Anξ +m, (56)
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where ãi ≤ 1 and ϕ∗
(
dist2(Y ,Xi)

)
≤ 1 for all i. Combining (55) with (56) under m+Anξ < R yields

m+n∑
i=1

ãiϕ
∗ (dist2(Y ,Xi)

)
<

m+n∑
i=1

ãiϕ
∗ (dist2(M ,Xi)

)
. (57)

Substituting Y = M ′ in (57) contradicts to the definition of M ′. Thus, if m < R, it must be dist(M ′,Xi) < C
for some Xi, which means that dist(M ′,M) is bounded.

Next, we assume that m > R/Ā′m which implies there exist some ξ > 0 and C such that mĀ′m > R + mĀ′mξ
and ϕ∗(t) ≤ ξ for |t| ≥ C, respectively. For Y satisfying dist2(Y ,Zi) ≥ C for all i = n+ 1, . . . , n+m,

m+n∑
i=1

ãiϕ
∗ (dist2(Y ,Zi)

)
=

n∑
i=1

ãiϕ
∗ (dist2(Y ,Xi)

)
+

n+m∑
i=n+1

ãiϕ
∗ (dist2(Y ,Zi)

)
≤

n∑
i=1

ãiϕ
∗ (dist2(M ,Xi)

)
+

n+m∑
i=n+1

ãiξ

= R+mA′mξ. (58)

By assuming that Zn+i (i.e., X ′i) are same for all i = 1, . . . ,m and there exists M∗ such that dist(M∗,X ′i) = 0,
we obtain

m+n∑
i=1

ãiϕ
∗ (dist2(M∗,Zi)

)
=

n∑
i=1

ãiϕ
∗ (dist2(M∗,Xi)

)
+

n+m∑
i=n+1

ãiϕ
∗ (0)

≥ mA′m
> R+mA′mξ (59)

Eqs (58) and (59) yield

m+n∑
i=1

ãiϕ
∗ (dist2(M∗,Zi)

)
>

m+n∑
i=1

ãiϕ
∗ (dist2(Y ,Zi)

)
. (60)

When Y = M ′, (60) contradicts to the definition ofM ′. Thus, dist2(M ′,Zi) < C for some i ∈ {n+1, . . . ,m+n}.
The triangle inequality,

dist(O,Zi) < dist(O,M ′) + dist(M ′,Zi),

implies that dist(O,M ′) diverges if dist(O,Zi)→∞. This means that dist(M ,M ′)→∞ if m > R
Ā′m

.

Finally, we confirm that there exits some m∗ satisfying (24) from the results that dist(M ,M ′) is bounded if
m < R and dist(M ,M ′) diverges if m > R

Ā′m
,

G Details of the Riemannian gradient estimator

This section gives the details of our Riemannian gradient estimator on the Grassmann manifold Gr(d1, d2), SPD
matrices S+(d) and unit sphere Ωd1−1. We follow the direct approach in Ashizawa et al. (2017) and employ the
empirical version of the Fisher divergence as

Ĵ(g) :=
1

n

n∑
k=1

[〈g(Xk), g(Xk)〉Xk
+ 2div(g(Xk))] .

G.1 Gradient estimator on Gr(d1, d2) and S+(d)

Here, X is a d1 by d2 matrix for Gr(d1, d2), while it is a square matrix for S+(d) in d = d1 = d2. When the
Euclidean metric is employed, it can be written as

〈g(X), g(X)〉X = tr(g(X)>g(X)), div(g(X)) =

d1∑
l=1

d2∑
m=1

∂lm[g(X)]lm,
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where ∂lm denotes the partial derivative with respect to the (l,m)-th element in X. Substituting these into the

empirical divergence Ĵ(g) yields

Ĵ(g) =
1

n

n∑
k=1

[
tr(g(Xk)>g(Xk)) + 2

d1∑
l=1

d2∑
m=1

∂lm[g(Xk)]lm

]
.

When (35) and (41)4 are adapted for g(X) in Gr(d1, d2) and S+(d) respectively, Ĵ(g) simply takes a quadratic
form of the coefficient vector a = (a1, a2, . . . , an)> as

Ĵ(a) = a>Ha+ 2a>h. (61)

Regarding Gr(d1, d2), H and h are given by

[H]ij =
1

n

n∑
k=1

tr(PX(XiX
>
i Xk)>PX(XjX

>
j Xk))φGr

i (Xk)φGr
j (Xk)

[h]i =
1

n

n∑
k=1

d1∑
l=1

d2∑
m=1

∂lm
{

[PX(XiX
>
i Xk))]lmφ

Gr
i (Xk)

}
.

where φGr
i (X) = φ

(
tr(XX>XiX

>
i )

σ2

)
, and we recall that PX(Z) = Z −XX>Z. On the other hand, for S+(d),

[H]ij =
1

n

n∑
k=1

tr((Xi −Xk)>(Xj −Xk))φ

(
‖Xk −Xi‖2F

σ2

)
φ

(
‖Xk −Xj‖2F

σ2

)

[h]i =
1

n

n∑
k=1

d∑
l=1

d∑
m=1

{
[Xi −Xk]2lm

σ2
− 1

}
φ′
(
‖Xk −Xj‖2F

σ2

)
,

where φ′(t) := d
dtφ(t). After applying the `2-regularization and adding the nonnegative constraint on a, the

optimal coefficient vector â is determined by solving a quadratic optimization problem as follows:

min
a

[
a>(H + λIn)a+ 2a>h

]
s.t. a ≥ 0, (62)

where In denotes the n by n identity matrix and λ > 0 is the regularization parameter. Finally, by substituting
the optimal vector â into the model g(X), we obtain our estimator for the Riemannian gradient.

G.2 Gradient estimator on Ωd1−1

Here, we focus on the unit sphere Ωd1−1 which is a special case of d2 = 1 in St(d1, d2). Thus, we express data
points and samples as vectors x ∈ Rd1 and xi ∈ Rd1 , respectively. With the Euclidean metric 〈y, z〉x = y>z
and our model for the Riemannian gradient,

g(x) =

n∑
i=1

ai(xi − xx>xi)φ
(
x>xi
σ2

)
, (63)

we reach Ĵ(a) with the exactly same quadratic form as (61). Note that (63) is a special case of the model (28)
for St(d1, d2) in d2 = 1. The (i, j)-th and i-th elements in H and h are given by

[H]ij :=
1

n

n∑
k=1

{
x>i xj − (x>k xi)(x

>
k xj)

}
φ

(
x>k xi
σ2

)
φ

(
x>k xj
σ2

)

[h]i :=
1

n

n∑
k=1

[
1− (x>k xi)

2

σ2
φ′
(
x>k xi
σ2

)
− (d1 + 1)(x>k xi)φ

(
x>k xi
σ2

)]
,

respectively. By apply the `2-regularization and adding the nonnegative constraint on a, the optimal coefficient
vector â is determined by solving the same form of the problem as (62). Finally, the substitution of the optimal
vector â into the model g(X) yields our estimator for the Riemannian gradient on Ωd1−1.

4Note that it is supposed to be σ = 1 in (35) and (41) just for notational simplicity.
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H Experimental details

This section describes the experimental details in Section 6. For the proposed methods, in all of experiments,
we fixed the regularization parameter as λ = n−0.9 as suggested in Kanamori et al. (2012), while the width
parameter σ was determined by the five-hold cross validation with respect to the empirical Fisher divergence
Ĵ(g). In addition, to decrease the computational cost, as in the Nyström approximation (Rudi et al., 2015), we
used a subset of data samples as the center points in φ(·) by randomly choosing B samples from n data samples
where B = min(100, n).

H.1 Clustering for directional data Ωd1−1

The following methods were applied to directional data for clustering:

• Proposed method: We employed the direct Riemannian gradient estimator described in Section G.2 where

φ
(

tr(x>xi)
σ2

)
= exp

(
−1+tr(x>xi)

σ2

)
. After the gradient model was estimated, we substituted the estimated

coefficients âi and applied the update rule (13) to all data samples until they converge.

• DMRrot: Directional mean shift (DMR) employs the following kernel density estimation:

p̂KDE(x) =
1

nZh

n∑
i=1

L

(
1− x>xi

h2

)
, (64)

where Zh denotes the normalizing constant and L is the von Mises kernel given by L
(

1−x>xi
h2

)
∝

exp
(

x>xi
h2

)
. Based on p̂KDE(x), the following update rule was proposed in Zhang and Chen (2020):

x(τ + 1) = −

∑n
i=1 xiL

′
(

1−x(τ)>xi
h2

)
∥∥∥∑n

i=1 xiL
(

1−x(τ)>xi
h2

)∥∥∥ , (65)

where L′(t) := d
dtL(t). Following Zhang and Chen (2020), the bandwidth parameter was selected based on

the rule of thumb for directional data (Garćıa-Portugués, 2013).

• DMRcv: DMRcv used the same update rule as (65), but the bandwidth parameter h was cross-validated
based on the log-likelihood of p̂KDE(x).

Data was sampled based on Von Mises densities as follows5: The first angle of data samples was drawn from a
mixture of three Von Mises densities (Fig.1(a)), while the other angles are independently from an identical Von
Mises density. The performance was measured by adjusted Rand index (ARI) (Hubert and Arabie, 1985): ARI
is less than or equal to one, and a larger value of ARI means a better clustering result.

H.2 Clustering on Gr(d1, d2)

For clustering on the Grassmann manifold Gr(d1, d2), we followed the experimental setting in Ashizawa et al.
(2017)6. Each data sample Xi was generated as

Xi=

cos τi − sin τi
sin τi cos τi

O2,d1−2

Od1−2,2 Id1−2

S(cos ηi − sin ηi
sin ηi cos ηi

)
, (66)

5The MATLAB code for generating random numbers from a Von Mises density was available at https://jp.
mathworks.com/matlabcentral/fileexchange/37241-vmrand-fmu-fkappa-varargin.

6The MATLAB code is available at https://t-sakai-kure.github.io/software-ja.html.
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where Od,d′ denotes the d × d′ null matrix, S is the d1 by d2 orthonormal matrix obtained by applying the
singular value decomposition to a random matrix, and ηi and τi are samples as follows:

ηi ∼ N
(
0, (π/2)2

)
, τi ∼


N
(

0, π
2

152

)
for i = 1, . . . , n3 ,

N
(

2π
3 ,

π2

152

)
for i = n

3 + 1, . . . , 2n
3 ,

N
(

4π
3 ,

π2

152

)
for i = 2n

3 + 1, . . . , n,

(67)

where N(µ, σ2) is the normal distribution with mean µ and variance σ2. Thus, in the data samples, there exist
three clusters according to τ in (67).

We applied the following two methods in clustering to the data samples on Gr(d1, d2):

• Proposed method: In our gradient model (35), we employed

φGr
i (X) = exp

(
−d2 − tr(XX>XiX

>
i )

2σ2

)
. (68)

Then, the Riemannian gradient model was estimated as in Section G.1. The estimated coefficients âi were
substituted in our update rule (16), and the data samples were updated toward the modes on Gr(d1, d2).

• Geodesic (Ashizawa et al., 2017): In the Riemannian gradient model (6), the logarithm map was given by
logX(Z) = (Id1 −XX>)ZZ>X and the same function as (68) was employed for φ(·) because the geodesic
distance is given by

dist2(X,Y ) = d2 − tr(Y >XX>Y ).

The estimation procedure for the gradient model is essentially the same as described in Section G.1. As
in the proposed method, the regularization parameter was fixed at λ = n−0.9, while the width parameter
σ was determined by cross validation with respect to the empirical Fisher divergence Ĵ(g). Regarding the
update rule (7), the exponential map was computed as follows:

expX Z = (XV cos Σ +U sin Σ)V >,

where U ,Σ, and V come from the singular value decomposition of Z ∈ Rd1×d2 , i.e., Z = UΣV >, and
“cos” and “sin” are applied element-wisely to the diagonal of Σ.

H.3 Outlier robustness on S+(d)

We generated data samples of symmetric positive definite matrices from

Xi = B>B + diag(βi),

where B is a d by d random matrix drawn from the normal density, diag(βi) is the diagonal matrix with the
elements of βi on the diagonal, and βi is a d-dimensional vector and sampled from a contaminated exponential
density as

(1− ε)µ−1eβ/µ + εµ−1
o e(β+5)/µo .

The samples from µ−1
o e(β+5)/µo can be regarded as outliers and ε denotes the outlier ratio. Here, we set µ = 0.5

and µo = 0.1. The total number of samples was n = 500.

In order to investigate the outlier robustness, we applied the the following methods to the generated data samples:

• Proposed method: In the gradient model (41), we employed

φi

(
‖X −Xi‖2F

σ2

)
= exp

(
−‖X −Xi‖2F

2σ2

)
.

After estimating the coefficients ai in the Riemannian gradient model as described in Section G.1, the
estimated ones used in our update rule (18), and the data samples were updated toward the modes.
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• Mean shift (MS): Based on the Euclidean gradient of the kernel density estimation,

p̂KDE(X) =
1

nZh
exp

(
−‖X −Xi‖2F

2h2

)
,

where h and Zh denote the width parameter and normalizing constant respectively, the following update
rule was derived as in Section 3.3:

X(τ + 1) =

∑n
i=1Xi exp

(
−‖X(τ)−Xi‖2F

2h2

)
∑n
i=1 exp

(
−‖X(τ)−Xi‖2F

2h2

) ,

where the bandwidth parameter h was determined by the five-hold cross validation based on the log-likelihood
of p̂KDE.

• Karcher mean (KMean)7 (Karcher, 1977): Karcher mean was estimated by minimizing
1
n

∑n
i=1 dist2(X,Xi).

• Geometric median (GMed)7 (Fletcher et al., 2009): Geometric median was estimated by minimiz-
ing 1

n

∑n
i=1 dist(X,Xi).

Regarding the proposed method and MS, the estimate from the geometric median was used for X(0) (i.e., the
initial point). The performance was measured by

‖B>B − M̂‖F,

where M̂ denotes an estimated mode.

H.4 Application to EEG data

EEG data was measured from four human subjects performing a cued motor imagery task. A total of 200
task trials per subject were provided, each labeled with two classes of motor imagery, either left/right-hand
movements (two subjects) or left-hand/foot movements (other two subjects). The data was given in 59 channels,
downsampled at 100 Hz, and further band-pass filtered (8-30Hz) and then re-referenced to the common average.
Finally, we computed sample covariance matrices for every trial, using 1-3s after the cued onset.

Since the data samples lie on S+(d), in addition to the proposed method, we applied KMean, GMed and MS
which were used as described in Section H.3.

7 We used the Maopt package (Boumal et al., 2014).


