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Abstract

Directed Acyclic Graphs and trees are
widely prevalent in several real-world appli-
cations. These hierarchical structures show
intriguing properties such as scale-free and
bipartite nature, with fine-grained tem-
poral irregularities among nodes. Build-
ing on advances in geometrical deep learn-
ing, we explore a time-aware neural net-
work to model trees and Directed Acyclic
Graphs in multiple Riemannian manifolds
of varying curvatures. To jointly utilize
the strength of these manifolds, we pro-
pose Multi-Manifold Recursive Interaction
Learning (MRIL) on Directed Acyclic
Graphs where we introduce an inter-
manifold learning mechanism that recur-
sively enriches each manifold with rep-
resentations from sibling manifolds. We
propose the integration of the Stiefel or-
thogonality constraint which stabilizes the
training process in Riemannian manifolds.
Through a series of quantitative and ex-
ploratory experiments, we show that our
method achieves competitive performance
and converges much faster on data span-
ning several domains.

1 Introduction

Abundant information in the form of graphs has
been made available due to the explosive growth of

* Indicates equal contribution. Proceedings of the
25th International Conference on Artificial Intelligence and
Statistics (AISTATS) 2022, Valencia, Spain. PMLR: Vol-
ume 151. Copyright 2022 by the author(s).

social media (Fink et al., 2015; Tambuscio et al.,
2015). Along with the individual event informa-
tion, various patterns in events such as dialogues
(Qiu et al., 2021; Zahiri and Choi, 2018; Poria et al.,
2018), tweets (Zubiaga et al., 2016; Ma et al., 2017)
etc., can be analyzed where the dependencies within
such events can give us more information than the
individual event. Many real-world structures such
as social media networks (Tambuscio et al., 2015),
retweet propagation trees (Ma et al., 2017), disease
propagation trees (Chami et al., 2019) etc., can be
studied and analyzed along with the intra-event de-
pendencies and represented in the form of directed
acyclic graphs (DAGs) or trees (Jiang et al., 2021).
These graph structures provide additional structure
over the individual node representations. In many of
these applications, the graphs are characterized by
irregular structures as well as distinct time-stamps
of the events. To illustrate our intuition, Figure 1 ex-
emplifies fake news detection in tweets with tempo-
ral context along with cardinality information. The
users’ preferences, their influence, and time of occur-
rence of the posts may provide useful context about
the original post. Hence, the cardinality and tempo-
ral variation among the graph nodes are potentially
useful in learning generalized node representations
for such applications (Dou et al., 2021).

Graph structures such as retweet propagation trees
(Ma et al., 2017), dependency parse trees (Socher
et al., 2013) etc., have hierarchical and scale-free
nature (see Figure 1). Due to the scale-free nature,
these structures with their node representations em-
bedded in the Euclidean space may suffer major dis-
tortions (Aparicio et al., 2015; Chen et al., 2012a).
The quality of such learned representations is deter-
mined by whether the geometry of embedding space
of the representations matches with the structure
of the data (Gu et al., 2019). Spherical embed-
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Figure 1: Illustration of the cardinal influence and
temporal context, specifically in fake news detection
with scale-free network settings. The original doc-
ument is a news article and other nodes depict the
retweets to the original post.

dings perform well under noisy conditions with low
distortion on real-world data (Wilson et al., 2014).
Poincaré embeddings capture hyperbolic properties
in real-world graphs by learning shallow embeddings
with hyperbolic distance metrics and Riemannian
optimization (Nickel and Kiela, 2017). In real-world
applications, graph data may have varying struc-
ture, and single-manifold embeddings may not cap-
ture the graph information with minimum distortion
(Krioukov et al., 2010). Hence, an interaction mech-
anism among different manifolds such as Euclidean,
Poincaré, and Spherical will capture a wider range of
curvatures than single-manifold embeddings. More-
over, for many applications such as retweet prop-
agation (Ma et al., 2017), conversation trees, and
dialogue structures (Shen et al., 2021), a challenge
may arise due to exploding and vanishing gradients
while learning in these manifolds due to long-term
dependencies in the graphs.

Building on previous work (Gu et al., 2019),
we propose Multi-Manifold Recursive Interaction
Learning (MRIL) on Directed Acyclic Graphs (§2).
Here, we introduce an inter-manifold learning mech-
anism (§2.2) that produces enriched node repre-
sentations from Euclidean, Poincaré, and Spherical
manifolds for learning non-trivial geometric proper-
ties from dynamically changing manifolds along with
the Stiefel manifold constraint (§2.3). To account
for the influence of every predecessor of the given
node, we introduce a cardinality preserving atten-
tion mechanism in each of the manifolds (§2.1). We
also add a time-aware component to capture tem-

poral irregularities between nodes (§2.1). We eval-
uate our model on various tasks such as emotion
recognition in conversations, fake news detection, ru-
mour detection, and fine-grained sentiment classifi-
cation to demonstrate the effectiveness of our model
(§4). Through ablative qualitative and quantitative
analyses, we validate the importance of each model
component such as manifold combinations (§4.3),
gated recursive interaction (§4.4), and cardinality
and time-aware components (§4.2). We summarize
our contributions as follows:

• We propose MRIL: Multi-Manifold Recursive
Interaction Learning over directed acyclic graphs
and trees, where we introduce an inter-manifold
learning mechanism to produce enriched node
representations through gated recursive interac-
tion learning.

• To address cardinality and temporal irregular-
ities, we integrate a cardinality preserving at-
tention along with time-aware components dur-
ing recursive information flow through a gener-
alized Recursive Riemannian Transition (RRT)
Network.

• To stabilize the training process, we integrate the
Stiefel manifold constraint during multi-manifold
learning, which helps to mitigate the explod-
ing and vanishing gradient problem, and achieve
faster convergence.

• Through extensive experiments on various tasks
such as emotion recognition in conversations, fake
news detection, rumour detection, fine-grained
sentiment classification, we show the applicability
of MRIL that achieves competitive performance
on these tasks.

2 Methodology

Let t = (V,E) denote a directed acyclic graph with
nodes V and edges E, where the directed edge ejk =
(k, j) connects the node k with its successor node j.
The set of direct predecessors of node j is given by
C(j) and feature vector as xMj . Let a subgraph of t
be denoted by tj having a node j without outgoing
edges.

2.1 Recursive Riemannian Transitions

The role of the Riemannian Recursive Transition
Network (RRT) is described by its ability to recur-
sively encode information about every single node in
tj through bottom-up message passing. As shown in
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Figure 2: An overview of the model components of MRIL: Riemannian Recursive Transition Network (RRT)
and the Gated Recursive Interaction Learning mechanism. For a given manifold, RRT takes a node and its
predecessor nodes’ representation as input and returns a cardinality and time-aware manifold-specific node
representation. In the Gated Recursive Interaction mechanism, we introduce an inter-manifold enriching
mechanism for each manifold over a shared set of weight matrices which gives enriched node representations
for downstream tasks.

Figure 2, starting with the nodes with no incoming
edges, every node j is processed using its predecessor
nodes C(j) in a recursive manner. To capture diverse
structural properties of the graph, we model them in
three component spaces: Poincaré (P), Spherical (S),
and Euclidean (R), which can be considered as Rie-
mannian manifolds in the gyrovector space. We will
first briefly describe general mathematical prelim-
inaries on Riemannian manifolds before describing
the network architecture and transition equations.

Riemannian Manifolds and Gyrovector
Spaces: A Riemannian manifold in the gyrovec-
tor space is a smooth manifold denoted by (M, gMx ),
defined by M = {x ∈ Rn| − ω‖x‖22 < 1} where
ω is the sectional curvature, and gMx is termed
as the Riemannian metric. In order to perform
mathematical operations in the manifold M, any
operand must be first projected onto the manifold.
The mapping of a given tangent vector v ∈ TxM
to a point expMx (v) on the manifold M is called
the exponential map expMx (v) . The inverse of this
operation is the logarithmic map logMx (y), which
maps a point y ∈ M to a point logMx (y) on the
tangent space at x. The gyrovector space provides

an algebra characterized by Möbius Addition (⊕ω),
Möbius Matrix Multipliction (⊗ω), and Möbius
Pointwise Multiplication (�ω)1. We obtain Poincaré
ball (P), Euclidean (R) and Spherical (S) geometries
when ω < 0, ω = 0 and ω > 0 respectively. Using
the above preliminaries, we will first define our
network on a generalized gyrovector space M.

Using different values of the curvature ω, the gen-
eralized RRT can be instantiated in the Poincaré,
Spherical, and Euclidean manifolds. Hence, the
RRT can be abstracted as a single step in the
bottom-up traversal (Figure 2), which takes in a
node j, its predecessors C(j), the parameter ω, and
returns the hidden state hMj and cell memory cMj of
j in the manifold M∈ {P,S,R}, given by,

hMj , cMj = RRT(j,C(j);ω) (1)

We will now describe each individual component of
the RRT in detail.

Cardinality Preserving Attention: Across sev-
eral domains such as dialogue modelling, sentiment

1We define mathematical operations in detail in the
Appendix.
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analysis and conversation threads, each node j may
show varied number of interactions and relations
(Shen et al., 2021; Zubiaga et al., 2016), where each
predecessor node k ∈ C(j) may exert diverse influ-
ences on node j. Let hMk , cMk = RRT(k,C(k);ω)
denote the previous hidden and memory states of
node k, ∀k ∈ C(j). We seek to aggregate the final
hidden states hMk of each predecessor, to obtain a
combined representation of all the predecessors of
node j. To do so, we use a Cardinality Preserving
Attention mechanism to simultaneously capture the
cardinality information (Zhang and Xie, 2020) of the
direct predecessor set C(j). We compute the atten-
tion coefficients αjk,∀k ∈ C(j) based on the geodesic
distance dM between node j and node k, given as,

αjk = softmax
k∈C(j)

(−λdM(hMk , xMj )⊕) (2)

where λ is a learnable parameter. To calculate the
weighted aggregation of predecessor hidden states,
we integrate the cardinality preserving mechanism
with the generalization of weighted averages over gy-
rovector spaces. The cardinality-aware aggregated
hidden state h̃j is obtained based on the Möbius gy-
romidpoint (Ungar, 2008), given by,

h̃j
M

= |C(j)|
∑

k∈C(j)

1

2
�ω

αjkγ(hMk )∑
l∈C(j)

αjl(γ(hMl )− 1)
hMk (3)

where |C(j)| is the cardinality of the predeces-
sor set, �ω is Möbius scalar multiplication, and
γ(·) = ( 2

1−ω‖·‖2 ) is called the conformal factor. We

will now describe how the the aggregated hidden
state h̃Mj is integrated with time-aware components
to obtain a final time and cardinality aware hidden
representation for node j using a set of transition
functions.

Time-Aware Component: Several domains,
such as conversation trees, and information cas-
cades on social media, are characterized by intri-
cate temporal patterns and irregularities between
nodes (Backstrom et al., 2013; Zubiaga et al., 2016).
Let ∆τjk denote the difference in timestamps τj
and τk of nodes j and k,∀k ∈ C(j) respectively
(such as timestamps of posts in conversation threads
on social media). We follow existing work (Baytas
et al., 2017) and use a time-aware heuristic function
g(∆τjk) = 1/∆τjk. Using this heuristic, we get the
time-aware adjusted memory state ∗cMk ,∀k ∈ C(j),
given by,

ScMk =expo
M(tanh(logo

M(W (c) ⊗ω cMk ))) (4)
∗cMk =− ScMk ⊕ω cMk ⊕ω ScMk �ω g(∆τjk) (5)

Figure 3: Gated Recursive Interaction Learning

where W (.) is a learnable parameter.

Using the aggregated predecessor hidden state h̃j ,
we define the input gate ij , output gate oj and inter-
mediate cell state uj . We then implement multiple
forget gates fjk to selectively incorporate informa-
tion for each predecessor node k. We represent these
equations as,

iMj =σ(logo
M(W (i) ⊗ω x

M
j ⊕ω U (i) ⊗ω h̃j

M
)) (6)

oMj =σ(logo
M(W (o) ⊗ω x

M
j ⊕ω U (o) ⊗ω h̃j

M
)) (7)

uMj =tanh(logo
M(W (u) ⊗ω x

M
j ⊕ω U (u) ⊗ω h̃j

M
)) (8)

fMjk =σ(logo
M(W (f) ⊗ω x

M
j ⊕ω U (f) ⊗ω h

M
k ) (9)

Finally, we selectively incorporate information from
forget gates fMjk of the predecessor nodes with the
temporal information from the adjusted cell mem-
ories ∗cMk , by combining the forget gates and the
adjusted cell memories of predecessor nodes to ob-
tain the cell memory state cMj . The hidden state
of node j in the manifold M is obtained using the
output gate oMj and cell memory state cMj , given by,

cMj = iMj �ω uMj ⊕ω
∑
k

fMjk �ω ∗cMk (10)

hMj =oMj � tanh(logo
M(cMj )) (11)

2.2 Gated Recursive Interaction Learning

To characterize varied spatial and structural features
shown by real-world graphs (Chen et al., 2012b;
Saito et al., 2012; Gu et al., 2019), we seek to
learn rich structural representations at each level
of the graph on multiple manifolds. With this
motive, we instantiate the Recursive Riemannian
Transitions over 3 manifolds, namely Euclidean (R),
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Poincaré (P) and Spherical (S), over a shared set
of weight matrices W (.). Let M = {P,S,R} rep-
resent the set of available manifolds . Using the
hidden states hMk ,∀M ∈ M obtained as hMk , cMk =
RRT(k,C(k);ω) of the predecessor nodes k,∀k ∈
C(j), we recursively enrich subgraph tj in each man-
ifold with varied representations from every other
manifold before applying RRT operations, as shown
in Figure 3. To control the influence of each mani-
fold, we first apply a sigmoid gating function on the
hidden states of the Poincaré (hPk), Euclidean (hRk )
and Spherical (hSk) manifolds to obtain gated tan-

gent hidden states ĥMk ,∀k ∈ C(j),∀M ∈M as,

ĥMk = logo
M(σ(W (p) ⊗ hMk )� hMk ) (12)

Next, we adaptively enrich predecessor hidden states
from every manifold with diverse representations
from sibling manifolds. By using sigmoid gates, each
hidden state is then adaptively weighted with hid-
den states from every other sibling manifold through
the Möbius gyromidpoint to obtain an enriched rep-
resentation of hMk ,∀M ∈M, given as,

hMk = |M|
∑
M′∈M

1

2
�ω

γ(expo
M(ĥM

′
k ))expo

M(ĥM
′

k )∑
M′′∈M

(γ(expo
M(ĥM

′′
k ))− 1)

(13)

These hidden states are then used in the Rieman-
nian Recursive Transition network to obtain hidden
states of parent node j, given as,

hPj , c
P
j = RRT(j,C(j);ω < 0)

hRj , c
R
j = RRT(j,C(j);ω = 0)

hSj , c
S
j = RRT(j,C(j);ω > 0)

(14)

The final hidden state hFj ,∀j ∈ t is obtained by pool-
ing the logarithmic projections of the 3 manifold hid-
den states. We refer to the full model as MRIL:
Multi-Manifold Recursive Interaction Learning on
Directed Acyclic Graphs, given as,

hFj = MRIL(tj) (15)

where tj is the subgraph of t with j as a sink node.

2.3 Stiefel Constrained Optimization

Modelling dialogue structures and online conversa-
tion threads require recursively capturing informa-
tion over long-term dependencies (Majumder et al.,
2019; Aragón et al., 2017). As a consequence, a well-
documented challenge arises in the form of exploding
and vanishing gradients, which has been observed

in recursive models such as RNNs (Hochreiter and
Schmidhuber, 1997), GRUs (Wolter and Yao, 2018),
and even LSTMs (Kanuparthi et al., 2019). A sim-
ilar problem arises for the RRT, wherein the cell
state update in eq. (10) evolves through a linear re-
cursive equation, while all other states are bounded
by sigmoid and tanh activations, causing an imbal-
ance in gradient magnitudes leading to vanishing
and exploding gradients over long-term dependen-
cies (Kanuparthi et al., 2019). This vanishing prob-
lem can be controlled by keeping network weight ma-
trices W close to orthogonal (Arjovsky et al., 2016).

The Stiefel manifold is a Riemannian manifold con-
sisting of orthogonal matrices, given by V = {X ∈
Rm×n : XTX = In}. Contrary to existing work
on Riemannian manifolds and hyperbolic learning,
every network weight matrix W in MRIL is con-
strained to the Stiefel manifold. We use QR de-
composition (Absil et al., 2009) to obtain an initial
random weight matrix on the Stiefel manifold. QR
decomposition is the decomposition of a given ma-
trix A into the product of an orthogonal matrix Q
and upper triangular matrix R. The decomposition
equation is formally stated as A = QR. For net-
work matrix initialization, a random weight matrix
A is first initialized. Next, it is decomposed into
A = WR using QR decomposition to obtain W ,
the initialized weight matrix on the Stiefel manifold.

The optimization for MRIL proceeds through gra-
dient descent, wherein the computed gradient vec-
tors are projected onto the Stiefel manifold before
the gradient update step. Let G = ∂L

∂W denote the
computed gradient of the objective function L with
respect to weight matrix W . During gradient de-
scent, the euclidean gradient is first projected onto
the manifold before the weight matrix is updated
(Meghwanshi et al., 2018) . The projection of the
gradient G on the tangent space at W is denoted as
follows,

Gproj = G− W

2

(
W TG + GTW

)
(16)

3 Experiments

3.1 Datasets

In this section, we explore various classification tasks
involving DAGs and trees. We present a summary of
dataset properties in Table 2. We explore two kinds
of tasks, namely node classification and sink (root)
node classification.
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Table 1: Performance comparison over graph and non-graph based methods, averaged over 5 independent
runs. * indicates that the result is significantly (p < 0.005) better than the existing state-of-the-art methods
under Wilcoxon’s signed rank test. Bold and italics denotes best and second best performance respectively.

Type Models MELD IEMOCAP EmoryNLP UPFD-Pol UPFD-Gos SST-5 Disease PHEME Twitter16

No Structure
MLP 0.37 0.44 0.21 0.76 0.75 0.42 0.31 0.60 0.63
LSTM 0.41 0.46 0.22 0.71 0.86 0.47 0.33 0.62 0.70

Graph Structure

GCN 0.61 0.61 0.35 0.80 0.92 0.45 0.70 0.70 0.68
GAT 0.61 0.62 0.34 0.81 0.91 0.44 0.70 0.71 0.71
HGCN 0 .63 0 .63 0.39 0.81 0 .94 0.45 0.74 0.71 0.71
HGAT 0 .63 0.67 0.33 0.82 0.93 0.45 0 .72 0 .73 0.72
TreeLSTM 0.57 0.58 0 .36 0.79 0.84 0.50 0.52 0.71 0.69
AttnTreeLSTM 0.59 0.60 0 .36 0 .83 0.87 0 .54 0.59 0.72 0 .71
MRIL(Ours) 0.64* 0.67 0.39 0.85* 0.97* 0.57* 0.74 0.77* 0.79*

Table 2: Dataset Statistics

Dataset Nodes Edges Avg. Graph Size # Classes

MELD 13.7k 29.6k 9.57±5.79 7
IEMOCAP 10k 19.7k 66.8±22.32 6
EmoryNLP 12.6k 33.9k 14.05±5.61 7
UPFD-Pol 41k 40.7k 130.74±130.55 2
UPFD-Gos 314.2k 308.7k 57.51±45.23 2
SST 442.6k 430.7k 37.33±18.41 5
Disease 1k 1k 1k 2
PHEME 90.5k 83.8k 13.63±16.56 2
Twitter16 6.8k 6.6k 16.62±24.73 2

Node Classification: MELD (Poria et al., 2018)
, IEMOCAP (Busso et al., 2008) and EmoryNLP
(Zahiri and Choi, 2018) are datasets which contain
dialogues from TV shows structured as DAGs, where
the task is to predict the emotion of each dialogue.
We evaluate these tasks using Weighted F1 score.
Disease (Chami et al., 2019) dataset shows a dis-
ease propagation tree, where node represents a state
of being infected or not by SIR disease. For this task
we use Macro F1 score. SST-5 (Socher et al., 2013)
is a corpus with fully labelled parsed trees. It allows
fine-grained sentiment classification of the sentences
based on their compositional structures. The metric
for SST is accuracy. By following recursive topolog-
ical bottom-up traversal, a label ŷj is predicted for
every single node j in the graph by passing the out-
put hidden state to a multi-layer perceptron (MLP),
where the prediction step is given as,

ŷj = MLP(MRIL(tj)) (17)

Root Classification: UPFD-Pol and UPFD-
Gos (Dou et al., 2021) consist of retweet propaga-
tion trees where the root node is a news piece and
other nodes are users who retweeted it. The task
is to predict whether the news piece is fake or not.
Additional context in terms of reply tree structure
with the time of posting is used. PHEME (Zubi-
aga et al., 2016) and Twitter16 (Ma et al., 2017)
are rumour prediction tasks on claims made on so-

cial media, where each arising conversation tree with
the time of posting forms the claim, labelled as either
a true or a false rumour. Following existing work,
macro F1 is used as the metric for these tasks. The
label ŷ0 is only predicted for the root at the end
of the bottom-up recursive traversals, with the final
root node prediction step given as,

ŷ0 = MLP(MRIL(t)) (18)

Baselines: We compare MRIL2 with various ex-
isting methods. Without regard to graph topology,
MLP serves as the traditional feature-based neu-
ral network method. LSTM uses weak graph in-
formation in the from of a flattened graph struc-
ture. In tree/DAG-like methods, we compare per-
formance of our model with Tree-LSTM (Tai et al.,
2015) and Attentive Tree-LSTM (Ahmed et al.,
2019). Further we also take graph-based struc-
tures in Euclidean space such as GCN (Kipf and
Welling, 2017), GAT (Veličković et al., 2018) and
their hyperbolic versions HGCN (Chami et al.,
2019), HGAT (Gulcehre et al., 2019).

4 Results

4.1 Performance Comparison

We evaluate MRIL over various domains span-
ning dialogue modelling, social networks, and sen-
timent analysis in Table 1. We first observe that
the graph-based approaches outperform MLP and
LSTM methods, emphasizing the importance of
structural information for improved feature repre-
sentations for such tasks (Wu et al., 2020; Shen et al.,
2021). Among approaches which leverage graph
structure, models which utilize hyperbolic learning
(HGCN, HGAT, MRIL) generally perform better

2We release the code at https://github.com/
atutej/MRIL

https://github.com/atutej/MRIL
https://github.com/atutej/MRIL
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Table 3: Ablation study over manifold components of MRIL over 5 independent runs. Bold and italics
denotes best and second best performance respectively. * and † indicate that the result is significant (p <
0.005) with respect to euclidean and non-euclidean single-manifold models, respectively under Wilcoxon’s
signed rank test.

Model MELD IEMOCAP EmoryNLP UPFD-Pol UPFD-Gos SST-5 Disease PHEME Twitter16

Euclidean RRT 0.56 0.63 0.35 0.78 0.91 0.52 0.61 0.69 0.71
Poincare RRT 0.61* 0.64* 0.36* 0 .82* 0.92* 0.53* 0 .73* 0.72* 0.75*
Stiefel RRT 0.61* 0.62 0.35 0.81* 0.92* 0 .56* 0.64* 0.72* 0.73*

Euclidean + Spherical + Stiefel 0.62† 0.63 0.36* 0.77 0.93† 0.55* 0.63* 0.73† 0.72*
Euclidean + Poincare + Stiefel 0 .63† 0 .65† 0 .37† 0.81* 0 .96† 0.55* 0.70* 0 .75† 0 .77†

MRIL 0.64† 0.67† 0.39† 0.85† 0.97† 0.57† 0.74† 0.77† 0.79†

than euclidean methods due to improved represen-
tations of scale-free structures (Nekovee et al., 2007;
Sala et al., 2018; Leskovec et al., 2007). We further
observe that recursive approaches (TreeLSTM,
AttnTreeLSTM, MRIL) perform better for root
node classification tasks which have long-term de-
pendencies. MRIL significantly (p < 0.005) outper-
forms existing methods on most tasks. We attribute
the performance of MRIL to the following aspects:
1) Cardinality and Time Aware Components for
capturing individual (Shen et al., 2021; Wu et al.,
2020) and cardinal (Zhang and Xie, 2020; Zubiaga
et al., 2016) influences of predecessor nodes, along
with delicate temporal granularities (Wu et al., 2020;
Fourney et al., 2017) and 2) Ability to learn repre-
sentations in 3 diverse manifolds - Poincaré, Spher-
ical, and Euclidean, for capturing diverse structural
characteristics of real-world directed graphs (Wil-
son et al., 2014; Fushimi et al., 2011; Huang and Li,
2007) and 3) Gated Recursive Interaction Learning
Mechanism which helps in recursively obtaining rich
representations through controlled enriching of each
manifold with sibling manifolds. We describe the
effectiveness of these individual factors in the next
sections.

4.2 Impact of Cardinalty and Temporal
Components

We will now examine the individual impact of the
cardinality aware attention mechanism and time
aware component of MRIL in Figure 4. We first
analyze the effect of the time-aware (TA) compo-
nent, followed by cardinality preserving attention
(CA), and finally both CA and TA. We observe sig-
nificant (p < 0.005) improvements on incorporating
the time-aware component, validating the ability of
MRIL in capturing irregularities in temporal infor-
mation existing in various domains such as rumour
and fake-news detection (Fourney et al., 2017; Zubi-
aga et al., 2016). We next observe how the cardinal-
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Figure 4: Confidence intervals over cardinality pre-
serving attention (C) and time-aware (T) compo-
nents. Results are averaged over 5 independent runs
with the p-value under Wilcoxon’s signed rank test.

ity attention mechanism impacts the overall perfor-
mance of the model. We observe significant perfor-
mance improvements on incorporating the cardinal-
ity aware component, due to its ability to capture
varied influences and rich representations of each
predecessor node (Kaligotla et al., 2016), while si-
multaneously preserving varied cardinality of inter-
actions between each node and its predecessor nodes
(Zhang and Xie, 2020). Finally, we observe that
the fully augmented MRIL achieves the best per-
formance. This observation suggests that temporal
and feature influences may have independent influ-
ences, and MRIL adaptively learns the best repre-
sentations by dynamically utilizing information from
both components to an extent.

4.3 Ablation Study

We probe the performance variations over individ-
ual manifolds in Table 3. We first observe that
the Poincaré manifold offers significant (p < 0.005)
improvements in performance across all tasks, em-
phasizing its effectiveness in capturing intricate
scale-free dynamics observed in real-world graphs
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Figure 5: Performance sensitivity of gated interac-
tion learning over increasing values of node depth
cutoff (d) for which interaction is enabled. Shaded
region indicates first standard deviation.

(Leskovec et al., 2007). We observe that inducing the
Stiefel constraint on top of the Euclidean RRT of-
fers further improvements, by providing a regulariz-
ing effect and further accelerating training (Arjovsky
et al., 2016). The improvements can be attributed
to each manifold component performing indepen-
dent functions, wherein the interaction between Eu-
clidean, Poincaré, or Spherical manifolds provide im-
proved feature representations, while the Stiefel con-
straint stabilizes activations (Huang et al., 2018) in
these manifolds for accelerated training. Finally, the
significant performance improvement in full MRIL
emphasizes the strength of MRIL through Stiefel-
optimized dynamic learning of optimal representa-
tions of nodes at each level of the graph by controlled
information flow from each manifold.

4.4 Impact of Gated Recursive Interaction

In Figure 5, we analyze the sensitivity of MRIL
over the gated interaction mechanism. We study
the performance changes by gradually enabling the
recursive interaction mechanism only for nodes with
depth less than some cutoff d. In particular, prede-
cessor nodes with depth >= d are not enriched with
representations from sibling manifolds. When d = 1,
MRIL degenerates into a simple ensemble over all
the manifolds. We note that the increase in perfor-
mance correlates with the depth cutoff d, showing
that the enriching has a positive effect on the rep-
resentational capacity of the network. Our observa-
tions on the positive impact of manifold enriching
tie up with existing work (Gu et al., 2019). The
best performance for almost all datasets is obtained
when the interaction is enabled for all nodes, indi-
cating the ability of MRIL to dynamically combine
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Figure 6: Performance sensitivity curves with in-
creasing epochs for MRIL, MRIL without Stiefel,
and the Euclidean RRT. Results are averaged over
5 independent runs. Shaded region indicates first
standard deviation.

and learn rich representations over highly-influential
long-term dependencies at each level of the graph
through controlled information flow augmented from
sibling manifolds.

4.5 Computational Complexity

We analyze the impact of the Stiefel constraint from
an optimization perspective in Figure 6. We observe
that MRIL indeed converges much quicker than
its counterpart without the Stiefel constraint. Per-
formance of the Euclidean RRT worsens for larger
epochs, demonstrating the regularizing properties of
the Stiefel manifold (Huang et al., 2018) and our pro-
posed enriching mechanism. Our observations em-
pirically confirm that the Stiefel constraint acceler-
ates training, and we observe that MRIL converges
56% faster on average when compared to standard
Riemannian optimization.

5 Conclusion

In this paper, we introduced MRIL, an approach
to recursively learn enriched representations of deep
structures such as trees and DAGs. We first ex-
plored the incorporation of time-aware components
for capturing irregularities in time elapsed between
nodes. To capture the size and diverse influences
of each predecessor set on various manifolds, we
proposed a generalized cardinality preserving atten-
tion on the gyrovector space. We then introduced
a recursive gated interaction mechanism for con-
trolled enrichment of contrasting representations be-
tween manifolds at each level of the graph. We
demonstrated how MRIL captures long-term de-
pendencies in deep structures by mitigating the van-
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ishing gradient problem through constrained opti-
mization on the Stiefel manifold. Through a series
of exploratory experiments, we then showed that
MRIL achieves competitive performance and con-
verges faster than existing recursive and graph-based
methods over various real-world datasets.
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Aragón, P., Gómez, V., and Kaltenbrunner, A.
(2017). To thread or not to thread: The impact
of conversation threading on online discussion. In
Proceedings of the International AAAI Conference
on Web and Social Media, volume 11.

Arjovsky, M., Shah, A., and Bengio, Y. (2016). Uni-
tary evolution recurrent neural networks. In Inter-
national Conference on Machine Learning, pages
1120–1128. PMLR.

Backstrom, L., Kleinberg, J., Lee, L., and Danescu-
Niculescu-Mizil, C. (2013). Characterizing and
curating conversation threads: expansion, focus,
volume, re-entry. In Proceedings of the sixth ACM
international conference on Web search and data
mining, pages 13–22.

Baytas, I. M., Xiao, C., Zhang, X., Wang, F., Jain,
A. K., and Zhou, J. (2017). Patient subtyping via
time-aware lstm networks. In Proceedings of the
23rd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 65–
74.

Busso, C., Bulut, M., Lee, C.-C., Kazemzadeh, A.,
Mower, E., Kim, S., Chang, J. N., Lee, S., and
Narayanan, S. S. (2008). Iemocap: Interactive
emotional dyadic motion capture database. Lan-
guage resources and evaluation, 42(4):335–359.
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dat, A., and Boguñá, M. (2010). Hyperbolic
geometry of complex networks. Phys. Rev. E,
82:036106.

Leskovec, J., McGlohon, M., Faloutsos, C., Glance,
N., and Hurst, M. (2007). Patterns of cascading
behavior in large blog graphs. In Proceedings of
the 2007 SIAM international conference on data
mining, pages 551–556. SIAM.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and
Dollár, P. (2017). Focal loss for dense object de-
tection. In Proceedings of the IEEE international
conference on computer vision, pages 2980–2988.

Ma, J., Gao, W., and Wong, K.-F. (2017). Detect ru-
mors in microblog posts using propagation struc-

ture via kernel learning. Association for Compu-
tational Linguistics.

Majumder, N., Poria, S., Hazarika, D., Mihalcea,
R., Gelbukh, A., and Cambria, E. (2019). Dia-
loguernn: An attentive rnn for emotion detection
in conversations. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
6818–6825.

Meghwanshi, M., Jawanpuria, P., Kunchukuttan,
A., Kasai, H., and Mishra, B. (2018). Mctorch,
a manifold optimization library for deep learning.
arXiv preprint arXiv:1810.01811.

Nekovee, M., Moreno, Y., Bianconi, G., and Mar-
sili, M. (2007). Theory of rumour spreading in
complex social networks. Physica A: Statistical
Mechanics and its Applications, 374(1):457–470.

Nickel, M. and Kiela, D. (2017). Poincaré embed-
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Supplementary Material:
Orthogonal Multi-Manifold Enriching of Directed Networks

A Riemannian Manifolds and
Gyrovector Spaces

A Riemannian manifold in the gyrovector space is
a smooth manifold denoted by (M, gMx ), defined by
M = {x ∈ Rn| − ω‖x‖22 < 1} where ω is the sec-
tional curvature, and gMx is termed as the Rieman-
nian metric.

Möbius Addition (⊕ω) The Möbius addition for
a pair of points x, y in M is defined as:

x⊕ω y =
(1 + 2ω〈x, y〉+ ω‖y‖2)x+ (1− ω‖x‖2)y

1 + 2ω〈x, y〉+ ω2‖x‖2‖y‖2
(19)

In particular, for ω=0, the formula recovers the ad-
dition formula in Euclidean space.

Exponential Map maps a tangent vector v in the
tangent space TxM to a point expx(v) on the man-
ifold, given by:

expx(v) := x⊕ω

(
tanh

(√
ωλx‖v‖

2

)
v√
ω‖v‖

)
(20)

Logarithmic Map maps a point y ∈M to a point
logx(y) on the tangent space at x,

logx(y) :=
2

√
ωλx

tanh
−1

(
√
ω‖ − x⊕ω y‖)

−x⊕ω y

‖ − x⊕ω y‖
(21)

Möbius Vector Multiplication (⊗ω) The
Möbius Vector Multiplication multiplies features x ∈
Mn by matrix M ∈ Rn′×n, defined as:

M ⊗ω x =
1
√
w

tanh(
‖Mx‖
‖x‖

tanh
−1

(
√
w‖x‖))

Mx

‖Mx‖
(22)

Möbius Pointwise Multiplication (�ω) The
Möbius Pointwise Multiplication multiplies x, y ∈
Mn element-wise, given by:

x�ω y = diag(logMx (x))⊗ω y (23)

Möbius Scalar Multiplication (�ω) The
Möbius scalar multiplication with scalar r and
vector x ∈Mn is given by the following formula:

r �ω x =
1√
w

tanh(rtanh−1(
√
w‖x‖)) x

‖x‖
(24)

B Experimental Settings

B.1 Baselines

• MLP: Features of each labelled node are indi-
vidually fed to fully-connected layers without
considering any underlying structural informa-
tion.

• LSTM: DAG structures are flattened into a lin-
earized stream and fed to an LSTM before clas-
sification.

• GCN: Graphs along with node features are fed
to a Graph Convolutional Network followed by
classification layers.

• GAT: Graphs along with node features are fed
to a Graph Attention Network followed by clas-
sification layers.

• HGCN: Graphs along with node features are fed
to a Hyperbolic Graph Convolutional Network
followed by classification layers.

• HGAT: Graphs along with node features are fed
to a Hyperbolic Graph Attention Network fol-
lowed by classification layers.

• TreeLSTM: Each graph is fed to a TreeLSTM
which recursively encodes each node starting
with nodes with no incoming edges and ending
with nodes with no outgoing edges.

• AttnTreeLSTM: Variant of TreeLSTM where
an attentive mechanism is applied during child
state aggregation.

B.2 Datasets and Preprocessing

• MELD(Poria et al., 2018) is an Emotion Recog-
nition dataset from the TV show Friends. There
are 7 emotion labels which include neutral, hap-
piness, surprise, sadness, anger, disgust, and
fear. The conversation graph is given as t =
(V,E) where each labelled node vj ∈ V is con-
sidered an utterance in the conversation. As de-
scribed in Shen et al. (2021), the directed edge
ekj connects node vk to node vj if vk is a previ-
ous utterance by the same speaker, representing
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remote information. The directed edge elj con-
nects node vl to node vj if vl is an utterance by
a different speaker after vk but before vj , repre-
senting local information. The node vk and all
nodes vl satisfying the above constraints make
up the predecessor set C(j) of node vj (node j
for simplicity). We only use textual information
for each node and encode node features using
RoBERTa. We use an 70-20-10 train-val-test
split.

• IEMOCAP(Busso et al., 2008) is an emotion
recognition dataset where each conversation in
IEMOCAP comes from the performance by ac-
tors based on a script. There are 6 types of
emotion, namely neutral, happiness, sadness,
anger, frustrated, and excited. The conversa-
tion graph is constructed in the same manner
as described for MELD. Node features are en-
coded using RoBERTa. Since this dataset has
no validation split, we use the last 20 dialogues
from the training set for validation (Shen et al.,
2021).

• EmoryNLP(Zahiri and Choi, 2018) consists of
TV show scripts as conversations collected from
Friends, but is different from MELD in terms of
scenes and emotion labels. Labels include neu-
tral, sad, mad, scared, powerful, peaceful, and
joyful. The conversation graph is constructed in
the same manner as described for MELD. Node
features are encoded using RoBERTa. We use
an 80-10-10 train-val-test split.

• UPFD-Pol and UPFD-Gos consist of retweet
propagation trees arising from a news article.
As described in Dou et al. (2021), each node
feature of the retweets is the averaged BERT en-
codings of the historical posts of the user who
retweeted it. The news is also encoded using
BERT. We only use this arising tree structure
for our tasks, where t = (V,E) is the graph and
the directed edge ekj connects node vk to node
vj based on the scheme defined by Dou et al.
(2021). We use the same 70-20-10 train-val-test
split.

• SST-5 (Socher et al., 2013) is a corpus with fully
labelled parsed trees. It allows fine-grained sen-
timent classification of sentences based on their
compositional trees (Tai et al., 2015), given as
t = (V,E). We use a 70-10-20 train-val-test
split. Node features are 100-dimensional Glove
embeddings.

• Disease consists of a disease propagation tree

simulated by Chami et al. (2019) using the SIR
disease spreading model, where the label of a
node is whether the node was infected or not.
Based on the model, they build a tree network
t = (V,E), where node features indicate the sus-
ceptibility to the disease. Due to the unavail-
ability of the inductive variant, we only use the
transductive variant of this dataset. We use the
same 30-10-60 split described by Chami et al.
(2019).

• PHEME (Zubiaga et al., 2016) is a rumour clas-
sification dataset, where the goal is to classify
whether a tweet is a true or false rumour. The
tree structure is given as t = (V,E) where the
directed edge ekj connects a reply node vk with
the node it vj which it replies too. The labelled
root node hence has no outgoing edges. Node
features are RoBERTa embeddings. We use a
70-10-20 train-val-test split.

• Twitter16(Ma et al., 2017) is also a rumour clas-
sification task. The propagation tree for this
dataset also contains retweet and reply propa-
gation information, but we only use the tree cre-
ated by replies as described for PHEME. Node
features are RoBERTa embeddings. We use a
70-10-20 train-val-test split.

B.3 Loss Function

To mitigate class imbalance in certain tasks, we ap-
ply Class-Balanced loss (Cui et al., 2019) along with
Focal Loss (Lin et al., 2017) to train MRIL, which
introduces a weighting factor that is inversely pro-
portional to the number of samples per class, yield-
ing the loss L as:

L(ŷi, yi) = CBfocal(ŷi, yi;β, γ) (25)

where β and γ are hyperparameters.
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