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Abstract

At present, there is no consensus on the most
effective way to establish feature relevance
for Gaussian process models. The most com-
mon heuristic, Automatic Relevance Deter-
mination, has several downsides; many al-
ternate methods incur unacceptable compu-
tational costs. Existing methods based on
sensitivity analysis of the posterior predic-
tive distribution are promising, but are bi-
ased and show room for improvement. This
paper proposes Feature Collapsing as a novel
method for performing GP feature relevance
determination in an effective, consistent, unbi-
ased, and computationally-inexpensive man-
ner compared to existing algorithms.

1 INTRODUCTION

Recent years have seen major advances in the predictive
capability of machine learning algorithms, but efforts to
increase model interpretability have lagged behind (Lip-
ton, 2018). Gaussian processes (GP) are no exception
to this trend. GPs have seen widespread, successful
application in domains ranging from climate prediction
to biomedical data, and as a probabilistic framework,
can offer invaluable confidence estimates of their own
predictions (Salter and Williamson, 2016; Clifton et al.,
2013). Yet, it remains unclear how to reliably answer
the simple question: Which input features are most
influential to a GP’s prediction?

In real-world applications, identifying feature relevance
is essential for developing useful models. For exam-
ple, a patient deemed at critical risk for heart disease
must know the most important factors in this assess-
ment. The most common method for determining GP
feature importance is Automatic Relevance Determina-
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tion (ARD), a heuristic of inferring feature relevance
directly from the optimized kernel hyperparameters.
ARD is convenient in that it requires no additional com-
putation after model training (Paananen et al., 2019),
though the method suffers from multiple drawbacks as
discussed in section 2.1.

Several methods have been developed to more effec-
tively rank GP features, but often incur immense
computational costs (Paananen et al., 2019). For
example, Savitsky et al. (2011) proposed a feature-
selection method for Gaussian processes using a
sparsity-inducing spike-and-slab prior. Under this
framework, variable relevance can be determined by
the estimated posterior probability of inclusion of each
feature following MCMC sampling. While effective, the
sampling involved in this method is notoriously slow
(Park et al., 2020). Similarly, Piironen and Vehtari
(2016) proposed a feature-selection method that finds
the features included in the optimal “submodel pro-
jection,” using a subset of variables, that most closely
mimics the behavior of the full model. Yet, with a com-
plexity of O

(
p2n3

)
, where p is the number of features

and n the number of observations, the computational
cost of this method is high for nearly all real-world
applications (Paananen et al., 2019).

More recently, promising work using sensitivity analysis
of a GP’s posterior predictive distribution has sought
to combine the computational feasibility of ARD with
the efficacy of methods such as submodel projection.
Paananen et al. (2019) proposed two such methods,
the ‘KL’ and ‘VAR’ relevance scores. Yet, these two
methods show room for improvement; for example,
like ARD, these feature selection methods are biased
towards features with nonlinear effects (Paananen et al.,
2019).

In this paper, we propose a novel method for deter-
mining GP feature relevance, henceforth referred to as
the Feature Collapsing (FC) method. The FC method
builds on the KL relevance method proposed by Paana-
nen et al. (2019). Extending a previously-described
toy synthetic dataset, we demonstrate that, unlike
ARD and the methods proposed by Paananen et al.
(2019), the FC method is almost completely unbiased
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Figure 1: Visualization of the transformation be-
tween linear and nonlinear latent functions used in
toy datasets. Each latent function is equally relevant
to the target variable with respect to both mean and
variance, while displaying increasing nonlinearity corre-
sponding to sinusoidal, cubic, or exponential patterns.

towards features with nonlinear behavior. We then dis-
cuss the relationship between pointwise FC relevance
scores, KL relevance scores, and the latent mean of a
studied variable. Finally, we rigorously compare the
performance of FC, KL, and ARD rankings on eight
widely-studied real-world datasets. We observe that
the FC method ranks input features as or more ef-
fectively than the ARD and KL algorithms across all
eight datasets and generally demonstrates higher consis-
tency in its relevance rankings. These results suggests
that Feature Collapsing presents a straightforward and
promising new method for performing feature selection
using Gaussian processes.

Details on code availability and implementation can be
found in the Supplementary Materials.

2 THEORETICAL BACKGROUND

2.1 Automatic Relevance Determination

One of the most popular covariance functions is the Ex-
ponentiated Quadratic (EQ) kernel. When performing
Automatic Relevance Determination (ARD), a modi-
fied version of the EQ kernel is used wherein a different
length-scale hyperparameter `i is optimized for each
input dimension. The resulting ARD-EQ kernel takes
the following form:

kARD−EQ (x,x′) = σ2 exp

(
−

p∑
i=1

(xi − x′i)
2

2`2i

)
.

After the GP is trained, the ARD relevance of each
input feature i is defined as 1

`i
. Intuitively, this defini-

tion is built on the assumption that if a dimension has

a small value of `i, small changes in the feature would
lead to relatively large responses in the target.

While convenient, ARD has several drawbacks. For
instance, Piironen and Vehtari (2016) demonstrate that
ARD is heavily biased towards nonlinear effects; in
other words, ARD will not rank two equally-relevant
features as such if one exhibits more nonlinear behavior
than the other. Moreover, ARD does not naturally
extend to GPs where alternative kernels are needed
(e.g. linear, composite, periodic, etc.), which limits its
general applicability. However, ARD remains the most
commonly used method for ranking feature relevance
using Gaussian processes.

2.2 Sensitivity Analysis of the Posterior
Predictive

Paananen et al. (2019) propose a novel approach to
feature ranking for Gaussian Processes using sensitivity
analysis of the posterior predictive distribution. In
essence, the approach seeks to determine which features
have the largest impact on the predictive distribution
when evaluated at points near the training observations.

This approach has several advantages. Unlike ARD,
ranking methods that use sensitivity analysis are appli-
cable to Gaussian processes with any kernel function –
not just the ARD-EQ kernel described above. More-
over, they can provide pointwise estimates of feature
relevance in addition to aggregate measures, which of-
fer a sense of how important each feature is within
each local region of its domain (Paananen et al., 2019).
Finally, in contrast to methods such as spike-and-slab
priors (Savitsky et al., 2011) and submodel projection
(Piironen and Vehtari, 2016), sensitivity analysis is
computationally cheap.

Paananen et al. (2019) propose two variants – the VAR
and the KL methods. The complexities of the two
methods are O

(
pn2
)

for VAR and O
(
pn3
)

for KL,

which are reasonable costs given the O
(
n3
)

complexity
of GP inference (Paananen et al., 2019).1 The VAR
method appears to offer no appreciable gain in perfor-
mance over KL, and is much less intuitively defined.
Thus in this paper, we focus primarily on the proposed
KL relevance measure, only including the VAR score
to recreate existing results on the toy dataset (Section
3).

The intuition behind the KL relevance score is as fol-
lows: after a GP is trained, the predictive distribution
at each training point is determined. Then, for each
training observation, a small perturbation is applied to

1The use of approximation methods to reduce the com-
plexity of GP inference would also reduce the cost of feature
ranking methods that rely on sensitivity analysis.
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each dimension separately, and the distance between
the new predictive distribution and the unperturbed
version is calculated. A high KL relevance indicates
that a small perturbation in the observation at di-
mension j leads to a large change in the predictive
distribution at that point.

More formally, Paananen et al. (2019) define a distance
measure as follows based on Kullback-Leibler (KL)
divergence, taking the square root to more easily detect
and linearly approximate minuscule changes:

d(p‖q) =
√

2DKL(p‖q).

Then, for a given point x(i), the KL relevance of di-
mension j is calculated as

r(i, j,∆) =
d
(
p
(
y∗ | x(i),y

)
‖p
(
y∗ | x(i) + ∆j ,y

))
∆

,

where ∆j is a vector of zeros except at dimension j,
where it takes the small value ∆. Paananen et al. (2019)
use ∆ = 0.0001, but also show that the KL is relatively
insensitive to changes in the magnitude of ∆.

Finally, the total KL relevance of dimension j is defined
as the mean of all pointwise estimates.

2.3 Feature Collapsing

The Feature Collapsing (FC) method proposed in this
paper uses an adapted perturbation scheme to extend
the KL relevance method defined above. Rather than
applying a perturbation of a fixed ∆ to all inputs at
dimension j, the FC method instead sets all training
points to a constant value (zero) at j. By thus ‘collaps-
ing’ all training observations to the same value at j,
this process leads to varying levels of perturbation for
different training observations. Following this collaps-
ing process, a similar process of sensitivity analysis is
used to rank feature importance. The properties and
advantages of this collapsing scheme are investigated
in later sections.

Formally, similar to Paananen et al. (2019), we define
a distance measure as

d(p‖q) =
√
D(p‖q).

We then define the relevance of feature j at observation
x(i) to be the distance between the predictive distri-
bution before and after feature collapsing has been
applied:

r(i, j, δ) = d
(
p
(
y∗ | x(i),y

)
‖p
(
y∗ | x(i)(1− δ[j]),y

))
.

In the above, (1 − δ[j]) is a vector of ones except at
position j, where it takes the value of zero. Finally, we

define the FC relevance of feature j to be the average
over all training observations:

FCj =
1

n

n∑
i=1

r(i, j, δ).

For the distance function D(p‖q), we use the Bhat-
tacharyya distance between two normal distributions
(see, e.g., Nagino and Shozakai, 2006). We also con-
sidered using KL divergence as the distance function
which led to qualitatively identical results, available in
the Supplementary Materials.

Naturally, all input variables must be standardized in
order to have comparable FC relevance scores.

Why Collapse to Zero? The theoretical justifica-
tion for choosing to collapse features to zero (the mean
after standardization) is that this is the constant that
allows the perturbed data to most closely mirror the
true data by minimizing the expected squared perturba-
tion distance. This is somewhat intuitive, but to see it
mathematically, we are trying to find the value of c that
minimizes E

[
(X − (E[X] + c))2

]
, or more simply when

E[X] = 0, E
[
(X − c)2

]
= E

[
X2
]

+ c2. As E
[
X2
]
, is

always positive, it is clear that the minimum occurs
when c=0. Thus, collapsing to zero corresponds to the
FC perturbation scheme that most closely mirrors the
true data.

3 TOY DATASET

Previous work has illustrated the severe nonlinear bias
of ARD using an elegantly constructed toy dataset (Pi-
ironen and Vehtari, 2016; Paananen et al., 2019). In this
dataset, the target variable y is calculated as the sum of
the latent functions of p variables, f1(x1)+ · · ·+fp(xp),
plus random noise. All latent functions have equal
mean and variance, and thus are equally relevant to the
target variable in the L2 sense (which is the definition of
relevance implicitly used in this paper). However, they
each exhibit a varying amount of nonlinearity, as illus-
trated in Figure 1. A full specification of the dataset
construction is offered in the Supplementary Materials
as well as in the original publication by Paananen et al.
(2019).

In this work, we extended the toy dataset to include
increasing nonlinearity according to sinusoidal, cubic,
and exponential patterns (see Figure 1) in order to
demonstrate how different functions affect nonlinear
bias. We included eight features with all inputs x1 . . . x8
i.i.d∼ U(−1, 1).

Figure 2 shows the relevance scores for FC, KL, VAR,
and ARD for each of the inputs and type of nonlinearity,
averaged over 150 runs. The maximum relevance score
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(a) Sinusoidal (b) Cubic (c) Exponential

Figure 2: Results on the toy dataset, where the eight input features demonstrate increasing levels of a) sinusoidal,
b) cubic, or c) exponential nonlinearity while remaining equally relevant to the target. As shown, ARD, VAR,
and KL are heavily biased towards nonlinear variables, with the degree of bias greatly affected by the type of
nonlinearity. The FC ranking method shows little to no bias across all three studied function families. Shading
represents one standard error of the mean.

was scaled to one.2 In the plot of increasing sinusoidal
nonlinearity shown in Figure 2(a), the KL, VAR, and
ARD lines recreate the findings reported by Paananen
et al. (2019), who show that the KL and VAR feature
selection methods are less biased towards nonlinear
effects than ARD. Indeed, in this plot, ARD is clearly
most biased towards variables with nonlinear effect;
however, both KL and VAR are heavily biased as well,
if only to a slightly lesser extent. By contrast, FC
shows essentially no bias towards nonlinearity. These
results were replicated when the inputs x1 . . . x8 were

distributed
i.i.d∼ N (0, 0.32).

Interestingly, the type of the nonlinear latent function
has a large effect on the performance of KL, VAR, and
ARD. All three are most biased when the nonlinearity
is sinusoidal (Figure 2(a)), followed by cubic (Figure
2(b)) and exponential (Figure 2(c)). An explanation for
this behavior is offered in Section 3.1. Importantly, the
FC methods report similarly unbiased feature rankings
across all studied nonlinear function types.

Piironen and Vehtari (2016) show that their sub-
model projection approach is unbiased, but as dis-
cussed above, this method can be very slow on real
datasets. Thus, Feature Collapsing (with the same
complexity as the KL method) presents a promising
alternative to overcome the nonlinear biases present
in prior computationally-feasible GP variable ranking
methods.

2This toy example, alongside the KL/VAR relevance
methods, was implemented using a mildly adapted version
of the code developed by Paananen et al. (2019) at https:
//github.com/topipa/gp-varsel-kl-var.

3.1 Relationship to latent function

Why might the Feature Collapsing perturbation scheme
mitigate the nonlinear bias present in the conceptually-
similar KL method? One potential answer lies in ex-
amining the relationship between point-wise relevance
estimates for the two methods and the latent mean of
a given variable.

Paananen et al. (2019) demonstrate how the KL rele-
vance measure is directly related to the partial deriva-
tive of the latent mean of a given variable. This rela-
tionship is illustrated in Figure 3, where pointwise KL
estimates are clearly related to the absolute value of
the derivative of the latent mean for inputs x1 and x8
from the toy experiment using sinusoidal nonlinearity.
Intuitively, this makes sense; small, fixed perturbations
will have a larger effect if the latent mean has a steeper
slope in a given local region. This is an interesting
property of the KL, but is a source of bias towards
nonlinearity. In the toy example above, for example,
one explanation for the bias in the KL method shown
in Figure 2(a) is that the more nonlinear functions have
derivatives with much larger absolute value on average.
This also explains why different latent functions give
rise to different amounts of bias. For example, the cu-
bic and exponential functions used in Figures 2(b) and
2(c) are monotonic and the average absolute derivative
of the latent means do not vary as much, leading to
less-biased KL ranking estimates.

By contrast, pointwise FC estimates do not estimate
the derivative of a variable’s latent mean, but are rather
related to its absolute value as shown in Figure 3. This
property results from the altered perturbation scheme,
where all points are collapsed to a constant value; the

https://github.com/topipa/gp-varsel-kl-var
https://github.com/topipa/gp-varsel-kl-var
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Figure 3: Left column: latent function for all observa-
tions at features x1 and x8 with sinusoidal nonlinear-
ity. Middle column: pointwise relevance scores for FC.
Right column: corresponding pointwise KL relevance
scores.

Table 1: Summary of datasets used. p indicates the
number of variables.

Dataset p ntotal ntrain

Automobile 38 192 172
Banknote 4 1372 400
Boston Housing 13 506 300
Crime 102 1992 700
Concrete 8 1030 700
Liver 5 345 305
Pima 8 768 500
Wine 11 1599 500

latent function can thus be estimated in relation to a
common reference point. By estimating the effect of
the latent function, FC is able to largely avoid the bias
arising from the increased values of the derivative of
nonlinear relationships.

4 RESULTS

We next rigorously compared the efficacy and consis-
tency of FC, KL, and ARD feature-ranking methods
on eight benchmark datasets from the UCI dataset
repository: the Automobile, Banknote Authentica-
tion, Boston Housing, Concrete Compressive Strength,
Crime, Liver Disorders Pima Indians, and (Red) Wine
datasets (Dua and Graff, 2017). Several of these widely-
used datasets have been shown to be especially useful
in work on GP feature selection, (Piironen and Vehtari,
2016; Savitsky et al., 2011; Paananen et al., 2019), and
they include all five original datasets used to establish
the efficacy of the KL method by Paananen et al. (2019).

Figure 4: Results on classification datasets: Banknote
and Pima Indians. ROC AUC is shown using an in-
creasing number of variables, ranked by each method.
Shaded regions are one standard error of the mean.

Details on the exact tasks considered for each as well as
preprocessing steps are provided in the Supplementary
Materials.

4.1 Performance

Following the experimental setup from Paananen et al.
(2019), we investigated how effectively FC, KL, and
ARD could rank the features in each dataset, measured
by the predictive power of models trained on small
subsets of highly-ranked variables from each method.
First, we fit a GP to predict the target variables on
the complete datasets, including all input features. For
all models, we used a sum of an ARD-EQ kernel and
a constant kernel (equivalent to a bias term), and we
implemented all models using scikit-learn (Buitinck
et al., 2013) and GPy (GPy authors, 2012). To prevent
overfitting, we set a U(0.0001, 15) prior on the length-
scale hyperparameters. Moreover, all features were
standardized before training.

Next, we determined the feature importance rankings
using FC, KL, and ARD methods. For each method, we
fit new models using an increasing number of variables
until all features were used or the results plateaued.
We incorporated new features based on descending rel-
evance scores (i.e. the first variable included being
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Figure 5: Results on regression datasets: Boston Housing, Red Wine Quality, Automobile, Liver, Concrete, and
Crime. Mean absolute error is shown using an increasing number of variables, ranked by each method. Shaded
regions are one standard error of the mean.

the most important). We measured the mean absolute
error (MAE) between the predicted and true values of
an independent test dataset (or ROC AUC for classifi-
cation tasks) for each model over 20 random splits for
each dataset.3

The results of the two classification tasks are shown
in Figure 4, and those from the six regression tasks
are shown in Figure 5; we observe that FC matches
or outperforms KL and ARD across all eight studied
datasets. For six datasets, FC is able to identify the
most relevant inputs notably more effectively than
either KL or ARD, indicated by the higher performance
in terms of lower MAE or higher AUC at fewer numbers
of included variables. On the Automobile dataset, KL
and FC show similarly impressive improvements over
ARD, and on the Crime dataset, all feature selection
methods obtain comparable performance.

Interestingly, the results on the well-studied Boston
Housing dataset – in addition to the Banknote and
Liver datasets – showed a particularly clear advantage
of FC over the KL and ARD methods. As discussed by
Savistky et al. (2011), certain features in the Boston
Housing dataset exhibit interesting nonlinear behaviors
that make it particularly useful for studying feature
selection. For example, the fifth variable x5 represents
a neighborhood’s levels of nitrogen oxide, a compound

3For the Liver dataset, 100 random splits were used.

emitted by factories and cars. At low levels, x5 has a
positive correlation with median housing price, and a
negative correlation at high levels (Savitsky et al., 2011).
The lack of bias towards nonlinear effects exhibited by
FC methods, therefore, was likely a key factor in the
improvement over KL and ARD on this dataset.

4.2 Consistency

In addition to identifying important variables effec-
tively, it is vital for a feature-ranking algorithm to
determine relevance consistently given variation in the
training set due to different random data splits. Figure
6 offers a sense of the consistency of each of the feature
ranking scores applied to the three studied datasets.
The figure displays the mean pairwise cosine distance
between the relevance scores for each method across
all experimental runs. The FC method achieved the
highest consistency in four out of eight studied datasets
(Concrete, Boston Housing, Wine, Liver, and Pima),
was tied with KL for most consistent in two datasets
(Automobile and Concrete), was second most consistent
in one (Crime), and had the lower consistency in one
(Banknote).

Interestingly, while FC was least consistent on the
Banknote dataset, this was also perhaps the dataset
where the method’s improvement in performance was
most marked. Taken as a whole, these results suggest
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Figure 6: Consistency of each method, measured by
the mean cosine distance between relevance vectors
obtained on different runs.

that FC is highly consistent relative to the other studied
metric, and that any loss of consistency may be due
to FC sporadically identifying important patterns that
the other methods miss entirely.

4.3 Correlated features

Despite the advantages of FC ranking demonstrated so
far, the method contains one important theoretical risk:
in the case where features are very highly correlated,
setting one dimension to zero while leaving the others
unchanged may introduce unrealistic virtual observa-
tions that do not reflect real world data. By contrast,
local perturbation methods, such as KL, would largely
maintain the correlation structure of the perturbed
data since altered features would not stray far beyond
what is actually observed.

We visualized the correlation structure of the studied
datasets to ensure that the features contained within
demonstrated reasonable levels of collinearity. Fig-
ure 7(a) shows the particularly rich correlation matrix
for the Boston Housing dataset, which contains near-
perfectly correlated feature pairs and two clear feature
clusters. However, the improved performance of FC
on this dataset suggests that possibly using unreal-
istic virtual observations does not lead to degraded
performance. One possible reason for the good per-
formance is that the exponentiated quadratic kernel
used in the experiments is a local kernel, meaning that
it only captures short-range structure (Bengio et al.,
2006; Duvenaud et al., 2011). Because of this, its pre-
dictions tend to zero outside the observed data and
behave predictably. For this reason, one should be
more careful when using the FC method with other
kernels or models that model long-range effects.

(a) Feature correlations in the Boston
Housing dataset.

(b) Violinplot of off-diagonal entries in feature correlation
matrices for all studied datasets.

Figure 7: Visualization of the correlation structure
in the studied datasets, showing a) example of rich
correlation structure in the Boston Housing dataset
and b) large correlations present in the other studied
datasets as well.

Figure 7(b) indicates that all other datasets contained
varying distributions of pairwise feature correlations,
suggesting that the FC method remains robust across a
wide range of correlation structures. This observation
bodes well for FC’s generalizability; still, the potential
drawback of correlated features should be kept in mind
when FC is applied to new domains.

5 CONCLUSION

In this paper, we introduce the Feature Collapsing
method as a novel way to perform feature relevance
determination for Gaussian processes using sensitivity
analysis of the posterior predictive distribution. Us-
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ing a toy dataset, we demonstrate how FC rankings
are essentially unbiased to features with nonlinear ef-
fects, in contrast to both ARD and the related methods
proposed by Paananen et al. (2019), and propose an
explanation for this behavior by relating FC relevance
scores to features’ latent means. On eight real-world
datasets, we demonstrate that the FC methods can
identify relevant features as or more effectively com-
pared to the KL and ARD methods. Moreover, FC
rankings were generally more consistent than other
methods. Interestingly – if unsurprisingly – despite be-
ing the most commonly-used method, ARD showed the
worst results in terms of bias, predictive performance
and consistency.

It is important to note that the FC method is unlikely
to outperform feature selection methods such as the
submodel projection method developed by Piironen
and Vehtari (2016). However, such methods can be
very slow in real applications. For reference, Piironen
and Vehtari (2016) report that the submodel projection
method took over four hours to run on the Automobile
and Crime datasets; by contrast, the FC method took
less than one second to run on consumer hardware
for these datasets using the same number of training
points.

This paper suggests that the FC method could provide
a useful direction to guide future research in simple,
effective methods for feature relevance determination in
Gaussian processes. The theoretical risk of highly corre-
lated variables should be kept in mind, especially if ap-
plying FC to different models. However, at least when
using exponentiated quadratic Gaussian processes, the
results of this work show a clear gain in performance
in multiple real-world datasets. This suggests that FC
can be safely used even in the presence of correlated
variables.

Furthermore, it would be fruitful to more deeply inves-
tigate how best to estimate local feature relevance. One
of the advantages of feature relevance using sensitivity
analysis of the posterior predictive, noted by Paananen
et al. (2019), is that it can offer pointwise relevance
estimates, and therefore a sense of the local relevance
of a feature at particular regions in its domain. This
information could be invaluable – for example, in a
clinical setting, it would be hugely valuable to know
if a measurement such as weight is globally correlated
with higher risk for a certain disease, or only becomes
a risk factor beyond a certain threshold. However, the
KL and FC pointwise relevance estimates offer very
different estimates of local relevance. Thus, future re-
search is needed for real-world conclusions about local
feature relevance to become a reliable part of the GP
feature relevance determination pipeline.
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1 SUPPLEMENTAL RESULTS

1.1 Results comparing KL divergence as distance metric

In this section, we replicate all results in the paper (on the toy dataset and all eight UCI datasets, as well as the
plot of consistency corresponding to Figure 6) using KL divergence in addition to Bhattacharyya distance as the
distance metric in the FC algorithm. Nearly all results are qualitatively identical. The two versions of FC are
labeled FCKL and FCbhat, respectively. This section uses a GP with the ARD-EQ kernel discussed in the main
body.

(a) Sinusoidal (b) Cubic (c) Exponential

Figure 1: Results on the toy dataset, where the eight input features demonstrate increasing levels of a) sinusoidal,
b) cubic, or c) exponential nonlinearity while remaining equally relevant to the target.

(a) (b)

Figure 2: Results on classification datasets: Banknote and Pima Indians. ROC AUC is shown using an increasing
number of variables, ranked by each method. Shaded regions are one standard error of the mean.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Results on regression datasets: Boston Housing, Red Wine Quality, Liver, Concrete, Crime, and
Automobile. Mean absolute error is shown using an increasing number of variables, ranked by each method.
Shaded regions are one standard error of the mean.

Figure 4: Consistency of each method, measured by the mean cosine distance between relevance vectors obtained
on different runs.



1.2 Results using Matérn kernel

The following section reproduces the major results from the paper (results on toy and UCI datasets) when GPs were
trained using a ARD-Matérn 5/2 kernel (see https://gpy.readthedocs.io/en/deploy/GPy.kern.src.html

for details) instead of the ARD-EQ kernel used in the main body. In the toy dataset, the reduction in bias towards
nonlinear features remains clear under this change in kernel. The results on the UCI datasets also demonstrate a
highly similar pattern to the results discussed in the main text.

Figure 5: Results on the toy dataset with ARD-Matérn kernel.

(a) (b)

Figure 6: Results using ARD-Matérn kernel on classification datasets.

https://gpy.readthedocs.io/en/deploy/GPy.kern.src.html
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(a) (b) (c)

(d) (e) (f)

Figure 7: Results on regression datasets with ARD-Matérn kernel.



2 TOY DATASET CONSTRUCTION

We provide the details for how the toy dataset was constructed. Following the notation in Paananen et al. (2019),
we set the target variable to be the sum of functions of 8 features x1 . . . x8 of increasing nonlinearity as follows:

y = f1 (x1) + . . .+ f8 (x8) + ε

ε ∼ N
(
0, 0.32

)
.

Under the condition where the increasing nonlinearity is sinusoidal, we let fj (xj) = Aj sin (ρjxj), where ρj are
equally spaced between π/10 and π (Paananen et al., 2019). Aj is a scaling coefficient calculated so that the
variance of each fj (xj) is one, thereby ensuring equal relevance in the L2 sense for all features. We set all
xj ∼ U(−1, 1). For this sinusoidal case,

Aj =

√
4

(
2− sin(2ρj)

ρj

)−1

In the cubic case, fj (xj) = Aj

(
αjxj + (1− αj)x

3
j

)
, where αj is evenly spaced between 1 and 0. Here, the scaling

coefficient comes out to the following:

Aj =

√α2
j

3
+

(1− αj)2

7
+

2

5
αj(1− αj))

−1

Finally, in the exponential example, we let fj (xj) = Aj

(
αjxj + (1− αj) e

2xj
)
. In this example, the analytical

scaling coefficient is as follows:

Aj =

√α2
j

3
+ (1− αj)2ω + 2γαj(1− αj)

−1

,

ω =
e4 − e−4

8
− (e2 − e−2)2

16

γ =
1

2

(
cosh(2)− 1

2
sinh(2)

)
.

For all toy dataset experiments, we used 300 data points.

3 DATASET PREPROCESSING

In this section we provide details about the tasks considered for each of the eight UCI datasets, any preprocessing
steps considered, and links to where they can be accessed.

Automobile. Dataset was acquired from the original authors of Paananen et al. (2019); preprocessing details
are available in the original publication and include using log-price as the target and one-hot encoding categorical
variables. Based on the dataset available at https://archive.ics.uci.edu/ml/datasets/automobile.

Banknote. No pre-processing was applied, and the outcome features was an indicator variable repre-
senting forged or real banknotes. Accessible at https://archive.ics.uci.edu/ml/datasets/banknote+

authentication.

Boston Housing. No pre-processing was applied, and the outcome feature was median housing value. Accessible
at https://github.com/selva86/datasets/blob/master/BostonHousing.csv.

https://archive.ics.uci.edu/ml/datasets/automobile
https://archive.ics.uci.edu/ml/datasets/banknote+authentication
https://archive.ics.uci.edu/ml/datasets/banknote+authentication
https://github.com/selva86/datasets/blob/master/BostonHousing.csv
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Concrete. No pre-processing was applied, and the outcome feature was concrete compressive strength. Accessi-
ble at http://archive.ics.uci.edu/ml/datasets/concrete+compressive+strength.

Crime. Dataset was acquired from the original authors of Paananen et al. (2019); preprocessing details are
available in the original publication. Based on the dataset available at http://archive.ics.uci.edu/ml/

datasets/communities+and+crime.

Liver Disorders. Features 2-5 were log transformed. The target variable used was the number of drinks
(equivalent to half-pints) consumed per day. Accessible at https://archive.ics.uci.edu/ml/datasets/liver+disorders.

Pima. No pre-processing was applied. The target variable used was an indicator outcome variable rep-
resenting the presence or absense of diabetes per subject. Accessible at https://www.kaggle.com/uciml/

pima-indians-diabetes-database?select=diabetes.csv.

Wine. No pre-processing was applied, and the outcome feature was wine quality (ranked 1-10). Only the red
wine dataset was used. Accessible at https://archive.ics.uci.edu/ml/datasets/wine+quality.

4 CODE AND DATA AVAILABILITY

Code associated with this paper can be accessed at https://github.com/isebenius/FeatureCollapsing, and
includes an implementation of the feature collapsing method using GPy (GPy authors, 2012).
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