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Abstract
Treatment effect estimation from
observational data is a fundamental
problem in causal inference. There are

two very different schools of thought that
have tackled this problem. Omn the one
hand, the Pearlian framework commonly
assumes structural knowledge (provided by
an expert) in the form of directed acyclic
graphs and provides graphical criteria such
as the back-door criterion to identify the
valid adjustment sets. On the other hand,
the potential outcomes (PO) framework
commonly assumes that all the observed
features satisfy ignorability (i.e., no hidden
confounding), which in general is untestable.
In prior works that attempted to bridge
these frameworks, there is an observational
criteria to identify an anchor variable and
if a subset of covariates (not involving the
anchor variable) passes a suitable conditional
independence criteria, then that subset is a
valid back-door. Our main result strengthens
these prior results by showing that under a
different expert-driven structural knowledge
— that one variable is a direct causal parent
of the treatment variable — remarkably,
testing for subsets (not involving the known
parent variable) that are valid back-doors is
equivalent to an invariance test. Importantly,
we also cover the non-trivial case where the
entire set of observed features is not ignorable
(generalizing the PO framework) without
requiring the knowledge of all the parents of
the treatment variable. Our key technical
idea involves generation of a synthetic
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sub-sampling (or environment) variable that
is a function of the known parent variable.
In addition to designing an invariance test,
this sub-sampling variable allows us to
leverage Invariant Risk Minimization, and
thus, connects finding valid adjustments
(in non-ignorable observational settings) to
representation learning. We demonstrate the
effectiveness and tradeoffs of these approaches
on a variety of synthetic datasets as well as
real causal effect estimation benchmarks.

1 INTRODUCTION

Estimating the impact of a treatment (or an action)
is fundamental to many scientific disciplines (e.g.,
economics (Imbens and Rubin, 2015), medicine (Shalit
et al., 2017; Alaa and van der Schaar, 2017), policy
making (LaLonde, 1986; Smith and Todd, 2005)).
In most of these fields, randomized clinical trials
(RCT) is a common practice for estimating treatment
effects.  However, conducting a RCT could be
unethical or costly, and we may only have access to
observational data. Estimating treatment effects with
only observational data is a challenging task and is of
central interest to causal inference researchers.

A fundamental question in treatment effect estimation
is: Which subset of observed features should be adjusted
for while estimating treatment effect from observational
data? Simpson’s paradox (Pearl, 2014), which is
a phenonmenon that is observed in many real-life
studies on treatment effect estimation, underscores the
value of selecting appropriate features for treatment
effect estimation. Over the years, two schools of
thoughts have formed on how to tackle treatment
effect estimation. The Pearlian framework (Pearl,
2009) commonly assumes that an expert provides us
with the causal generative model in the form of a
directed acyclic graph (DAG) that relates unobserved
exogenous variables to observed features, treatment
variable, and outcome variables. With the knowledge
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of the DAG available, the framework provides different
graphical criteria (e.g., back-door criterion (Pearl,
1993), front-door criterion (Pearl, 1995)) that answers
whether a subset is valid for adjustment. The DAG
framework allows for the existence of confounders —
unobserved variables that affect multiple observed
variables. The potential outcomes (PO) framework
(Rubin, 1974) makes an untestable assumption called
ignorability — the assumption (in a rough sense)
requires potential outcomes under different treatments
be independent of the treatment conditioned on all
(or a known subset of) observed features. In other
words, ignorability implies that a subset of observed
features is a valid adjustment and is known. The PO
framework provides various techniques (e.g., inverse
propensity weighing (Swaminathan et al., 2016), doubly
robust estimation (Funk et al., 2011)) for treatment
effect estimation under ignorability. One can view
the Pearlian DAG framework as providing graphical
criteria implying ignorability of certain subsets.

In summary, the Pearlian framework requires the
knowledge of the DAG and the PO framework
assumes ignorability with respect to the observed
features. Motivated by the limitations of both of these
frameworks we ask: can we significantly reduce the
structural knowledge required about the DAG under
non-ignorability of observed features and yet find valid
adjustment sets?

1.1 Owur Contributions

We assume the following minimal expert-driven local
structural knowledge: a known observed feature is
a direct causal parent of the treatment. Given this,
we propose a simple invariance test, and show that
it is equivalent to testing if a subset not involving
the known parent satisfies the back-door criterion
(without requiring ignorability) when the features are
pre-treatment. To design our invariance test, we use
the known parent to create ‘fake environment variables’.
We then test for invariance (across these environments)
of the outcome conditioned on subsets of observed
features (not containing the known parent) and the
treatment. If a subset passes this invariance test, then
it satisfies the back-door criterion (and therefore is
a valid adjustment set) allowing for treatment effect
estimation. Crucially, our result also goes in the other
direction, i.e., if there exists a set (not containing the
known parent) that satisfies the back-door criterion,
then it will pass our invariance test.

We propose two algorithms based on this equivalence
result to identify valid adjustments. In the first
algorithm, we use a subset based search procedure
that exploits conditional independence (CI) testing to
check our invariance criterion. As is standard with

any subset based search approach, the application
of our first algorithm is limited to small dimensional
datasets. To overcome this, in our second algorithm, we
leverage Invariant Risk Minimization (IRM) (Arjovsky
et al., 2019), originally proposed to learn causal
representations for out-of-distribution generalization,
to act as a continuous optimization based scalable
approximation for CI testing. We demonstrate the
effectiveness of our algorithms in treatment effect
estimation on both synthetic and benchmark datasets.
In particular, we also show that IRM based algorithm
scales well with dimensions in contrast to the subset
search based approach. The source code of our
implementation is available at https://github.com/
AbhinO2/invariance-via-subsampling.

1.2 Related Work

Next, we provide an overview of related work that
directly concerns finding valid adjustment in treatment
effect estimation. See Appendix B for an overview of
prior work related to potential outcomes and usage of
representation learning to debias treatment effect.

Finding valid adjustment with global
knowledge. Finding valid adjustment sets for
general interventional queries has been extensively
studied in the Pearlian framework (Tian and Pearl,
2002). Given the complete knowledge of the DAG,
a sound and complete algorithm to find wvalid
adjustments was proposed by Shpitser and Pearl
(2008). When only the observational equivalence class
is known, i.e., partial ancestral graph or PAG (Zhang,
2008), Perkovic et al. (2018) provided a sound and
complete algorithm for finding valid adjustments.
VanderWeele and Shpitser (2011) showed that if a
valid adjustment set exists amongst the observed
features, then the union of all observed parents of
outcome and all observed parents of treatment is also
a valid adjustment set. However, they required global
knowledge i.e., information about ewvery observed
feature while our work requires knowledge about only
one observed parent of treatment i.e., local knowledge.

Finding valid adjustment with local knowledge.
As opposed to the works described in the previous
paragraph, another line of work (e.g., Entner et al.
(2013); Cheng et al. (2020); Gultchin et al. (2020))
focused on finding valid adjustment sets by exploiting
local knowledge of the DAG. In Entner et al. (2013),
a two-step approach was proposed. First, an anchor
variable is characterized by an observational criteria
that is testable. Next, a conditional independence
test is performed on the subsets not involving the
anchor variable to find the valid adjustment set. In
the reverse direction, if a valid adjustment set exists
that does not contain the anchor variable, their test
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is shown to succeed only if the anchor variable has no
observed or unobserved parents. As a result, even if it
were possible to carry out consistent treatment effect
estimation based on adjustment sets not involving the
anchor, their procedure need not necessarily enable it.
In contrast, in these settings, under the assumption
that the anchor variable (direct causal parent of the
treatment) is specified by the expert, our invariance
test enables consistent treatment effect estimation. On
the other hand, in Cheng et al. (2020), the anchor
variable is characterized by topological properties of
the PAG. We provide examples where our procedure
can correctly declare that consistent treatment effect
is not possible but they cannot.

Following Entner et al. (2013), Gultchin et al. (2020)
proposed a fully-differentiable optimization framework
to find a representation of the features that passes
the conditional independence criteria analogous to
Entner et al. (2013). While their approach avoids
the brute-force subset search required by Entner
et al. (2013), their approach is as limited in the
reverse direction as Entner et al. (2013). Further,
their continuous optimization framework assumes the
outcome is binary or the whole system (including
the treatment) is linear Gaussian. Additionally, they
use partial correlation as a proxy for conditional
independence. = This proxy is correct when the
underlying distribution is Gaussian and in the
worst-case constrains only the second moment. In
other words, their framework doesn’t provide formal
guarantees even if one of the variables (e.g. treatment)
isn’t Gaussian. In contrast, our approach doesn’t make
these assumptions and is more general.

Invariance principle. The invariance principle
(also known as modularity condition) is fundamental
to causal bayesian networks (Bareinboim et al.,
2012; Scholkopf, 2019).  Arjovsky et al. (2019)
proposed a continuous optimization framework called
invariant risk minimization (IRM), to search for causal
representations which satisfy invariance principle, that
achieves out-of-distribution generalization. A recent
line of work (e.g., Shi et al. (2020); Shah et al.
(2021)) has focused on using IRM for treatment
effect estimation. Shi et al. (2020) assumed (i)
that there are no unmeasured confounders and (ii)
access to interventional data is available (similar
to IRM). We significantly differ from this as we
allow unmeasured confounders and do not require
interventional data — we create artificial environments
by sub-sampling observational data — and leverage
IRM to find valid adjustment sets that satisfy our
criterion. On the other hand, while Shah et al. (2021)
created environments artificially (similar to ours), their
sub-sampling procedure lacks theoretical justification.

Further, they focus primarily on the setting where there
is little support overlap between the control and the
treatment group, and lack formal guarantees on finding
valid adjustment sets.

2 PROBLEM FORMULATION

Notations. For a sequence of deterministic variables
S1,°*" ,Sn, we let s:={s1, -+ ,s,}. For a sequence of
random variables s;,--- ,s,, we let s == {s1,---,s,}.
Let 1 denote the indicator function.

2.1 Semi-Markovian Model, Effect
Estimation, Valid Adjustment

Consider a causal effect estimation task with x as the
feature set, t as the observed treatment variable and
y as the observed potential outcome. For the ease
of exposition, we focus on binary t. However, our
results apply to non-binary t as well. Further, while we
consider discrete x and y, our framework applies equally
to continuous or mixed x and y. Let G denote the
underlying DAG over the set of vertices W = {x, t, y}.
For any variable w € W, let w(w) denote the set of
parents of w i.e., m(w) = {wy : wy — w}.

To estimate the causal effect of treatment t on outcome
y, a Markovian causal model requires the specification
of the following three elements : (a) W — the set of
variables, (b) G — the DAG over the set of vertices W,
and (¢) P(w|mr(w)) — the conditional probability of w
given its parents w(w) for every w € W. Given the
DAG G, the causal effect of t on y can be estimated
from observational data since P(w|r(w)) is estimable
from observational data whenever W is observed.

Our ability to estimate the causal effect of t on y
from observational data is severely curtailed when some
variables in a Markovian causal model are unobserved.
Let x(©) C x be the subset of features that are observed
and x(*) = x \ x(?) be the subset of features that are
unobserved. For any variable w € W, let 7()(w) C
7m(w) denote the set of parents of w that are observed
and let 7" (w) == 7(w) \ 7(®(w) denote the set of
parents of w that are unobserved. We focus on the
semi-Markovian causal model (Tian and Pearl, 2002),
defined below, since any causal model with unobserved
variables can be mapped to a semi-Markovian causal
model while preserving the dependencies between the
variables (Verma and Pearl, 1990; Acharya et al., 2018).

Definition 1. (Semi-Markovian Causal Model.)
A semi-Markovian causal model M is a tuple
VU, G, P(v|r(v), 7 (v)),PU)) where:

1.V is the set of observed wvariables, i.e. V =
{X(O), t7 y}7
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2. U is the set of unobserved (or exogenous) features,
ie. U =W\ V=xW,

8. G is the DAG owver the set of vertices W such that
each member in U has no parents and at-most two
children.

4. P(v|z@ (v), 7" (v)) Vv € V is the set of unobserved
conditional distributions of the observed variables,
and

5. P(U) is the unobserved joint distribution over the
unobserved features.

In a semi-Markovian model, unobserved variables with
only one or no children are omitted entirely. See Figure
1 for a toy example of a semi-Markovian model with

V= {Xl,XQ,Xg, tay}7 U= {u17 uz, uz, u4}7 and g = gtOy.
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Figure 1: The toy example Gt°Y.

In observational data, we observe samples of V from
P(V) which is related to the semi-Markovian model by
the following marginalization (Tian and Pearl, 2002):
PV) = Eyw [Hvev ]P(v|7r(°)(v),7r(“)(v))]. Next, we

define the notion of causal effect using the do-operator.

Definition 2. (Causal Effect.) The causal effect of
the treatment t on the outcome y is defined as

Byldo(t =1) = 3.

t=t’ 7)((0) =g (0)

[ I P (v),n ()]

veV\{t}

]]-t/:tEx(u)

The do-operator forces t to be t in the causal model
M, i.e the conditional factor P(t = t'|7(®)(t), w(¥)(t))
is replaced by the indicator 1;—4 and the resulting
distribution is marginalized over all possible realizations
of all observed variables except y. Next, we define
average treatment effect and valid adjustment.

Definition 3. (Average Treatment Effect.) The
average treatment effect (ATE) of a binary treatment
t on the outcome y is defined as ATE = Ely|do(t =
1)] = E[y|do(t = 0)].

Definition 4. (Valid Adjustment.) A set of variables
z C x s said to be a wvalid adjustment relative to
the ordered pair of variables (t,y) in the DAG G if
P(y|do(t =1)) = E,[P(y|z = 2, t = 1))].

If z C x(©) is a valid adjustment relative to (t,y), then
the ATE can be estimated from observational data by
regressing the factual outcomes for the treated and the

untreated sub-populations on zi.e., ATE = E,[E, [y|t =
1,z - E,[y|t =0,z]].

For any variables wy, wp € W, and a set w C W, (a)
let wy L, wa|z denote that wy and ws are conditionally
independent given z and (b) let wy 1L 4 wa|w denote that
wi and wy are d-separated by w in G. For completeness,
we provide the definition of d-separation in Appendix
D as well as review potential outcomes (PO) framework
(Imbens and Rubin (2015)), discuss ignorability and
connect it with valid adjustment in Appendix C.

2.2 Back-door Criterion

We now discuss the back-door criterion (Pearl et al.,
2016) — a popular sufficient graphical criterion for
finding valid adjustments i.e., any set satisfying the
back-door criterion is a valid adjustment (Pearl (1993)).

Definition 5. (Back-door criteria.) A set of variables
z C x satisfies the back-door criterion relative to the
ordered pair of variables (t,y) in G if no node in z is a
descendant of t and z blocks every path between t and
y in G that contains an arrow into t.

Often, G is represented without explicitly showing
elements of U but, instead, using bi-directed edges
(Tian and Pearl (2002)) to represent confounding effects
of U. For example, Figure 2(a) uses bi-directed edges
to represent unmeasured confounders (i.e., elements of
U that influence two variables in V) in the DAG G'°v.

Definition 6. (A Bi-directed Edge.) A bi-directed
edge between nodes vi € V and vo €V (ie., vi «-3 vo)
represents the presence (in G) of a divergent path vy «--
u--+ vy where u € U.

In this work, we make the following structural
assumption on the DAG G under the semi-Markovian
model M. This assumption is analogous to the common
assumption that all observed features are pre-treatment
variables. As an example, consider the DAG G%Y in
Figure 2(a) that satisfies this assumption.

Assumption 1. Let the DAG G be such that the
treatment t has the outcome y as its only child. Further,
the outcome y has no child.

3 MAIN RESULTS

In this section, we state our main results relating
sub-sampling and invariance testing to the back-door
criteria. First, we define the notions of sub-sampling
and invariance. Next, we provide : (a) a sufficient
d-separation condition (that can be realized by our
invariance test under sub-sampling) for a class of
back-door criteria (Theorem 3.1) and (b) a necessary
d-separation condition (that can be realized by our
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Figure 2: The toy example G*: (a) with bi-directed edges; (b) where e has been sub-sampled using x; and t; (c)

where e has been sub-sampled using x3 and t.

invariance test under sub-sampling) implied by a class
of back-door criteria (Theorem 3.2). Combining these,
we show equivalence between an invariance based
d-separation condition and a class of back-door criteria
(Corollary 1). Finally, we propose an algorithm to
find all subsets of the observed features that satisfy the
back-door criteria when all the parents of the treatment
variable are known and observed (Appendix I).

Sub-sampling. = We create a sub-sampling (or
environment) variable e from the observed distribution
P(V). Formally, we use a specific observed variable
x; € x(© and a subset of the observed variables
v C V\ {x,y} to sub-sample e ie., e = f(xt,v,n)
where 7 is a noise variable independent of W, and f
is a function of x;,v and 7. The choices of x; and v,
which differ for the sufficient condition (Theorem 3.1)
and the necessary condition (Theorem 3.2), are made
clear in the respective theorem statements. We let the
sub-sampling variable e be discrete and think of the
distinct values of e as identities of distinct artificial
environments created via sub-sampling. While the
case where e is continuous is similar in spirit, we
postpone the nuances for a future work. Graphically,
sub-sampling variable introduces a node e, an edge from

x; to e and edges from every v € v to e in the DAG G.

For example, see Figure 2(b) where e is sub-sampled
in toy example G with x; = x; and v = {t}.

Invariance testing. Our main results relate the
back-door criterion to d-separation statements of the
type elly ylz for some z C V \ {y}. While our
goal is to infer sets satisfying the back-door criterion
from observational data, such d-separation statements
cannot be tested for from observational data. To tackle
this, we propose the notion of invariance testing. An
invariance test is a conditional independence test of the
form e L, y|z for some z C V' \ {y} i.e., an invariance
test tests if the sub-sampling variable is independent

of the outcome conditioned on z for some z C V' \ {y}.

For our results involving invariance testing, we require
the following limited set of faithfulness assumptions
to ensure invariance testing with e is equivalent to
d-separation statements involving e.

Assumption 2. (Sub-sampling Faithfulness) If e L,

ylz, then elly y|z, Yz C V\ {y}.

Thus, in effect, we create synthetic environments and
show that a class of back-door criterion either implies
or is equivalent to a suitable invariance test. For our
framework to work, we only require the knowledge of
x; from an expert. This is in contrast to any detailed
knowledge of the structure of the DAG G.

Sufficient condition. Suppose an expert provides us
with an observed feature that has a direct edge or a
bi-directed edge to the treatment. Let e be sub-sampled
using this feature as x; and any v C V' \ {x;,y}. The
following result shows that any subset of the remaining
observed features satisfying a d-separation involving e
(or an invariance test under Assumption 2) also satisfies
the back-door criterion. See Appendix F for a proof.

Theorem 3.1. Let Assumption 1 be satisfied.
Consider any x; € x© that has a direct edge or a
bi-directed edge to t i.e., either xy — t, x; «-» t or
xe €22 t. Let e be sub-sampled using x; and v for any
vCV\ {x,y}ie, e= f(x,v,n). Let zC x\ {x;}.
If e is d-separated fromy byz and t in G i.e., el 4 y|z,t
in G, then z satisfies the back-door criterion relative to
(t,y) in G.

Remark 1. A stronger result that subsumes Theorem
3.1 was proven in Entner et al. (2013); we provide our
theorem for clarity of exposition and completeness.

Necessary condition. Suppose an expert provides us
with an observed feature that has a direct edge to the
treatment. Let e be sub-sampled using this variable
as x; and any v C {t}. The following result shows
that any subset of the remaining observed features
satisfying the back-door criterion satisfies a specific
d-separation involving e (as well as an invariance test).
See Appendix G for a proof.

Theorem 3.2. Let Assumption 1 be satisfied.
Consider any x. € x©) that has a direct edge to t
i.e., Xe — t orxy 23 t. Let e be sub-sampled using
x¢ and v for any v C {t} i.e., e = f(x,v,n). Let
z C x\ {x;}. If z satisfies the back-door criterion
relative to (t,y) in G, then e is d-separated from y by
zand tin G ie., elly ylz,t inG.

Remark 2. Theorem 3.2 is useful to find out (some)
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sets that cannot be valid adjustments (see comparison
with Entner et al. (2013) and Gultchin et al. (2020)
as well as comparison with Cheng et al. (2020) below).
Knowing whether a given set of features is valid for
adjustment or not is crucial — especially in healthcare
and social sciences — to avoid using decisions based on
biased estimates from observational studies.

Remark 3. We note that Theorem 3.2 requires x; to be
a parent of t (i.e., a direct edge to t) whereas Theorem
3.1 requires x; to be a parent of t or a spouse of t (i.e.,
a direct or a bi-directed edge to t).

Equivalence. Suppose an expert provides us with a
feature that has a direct edge to the treatment. Let
e be sub-sampled using this variable as x; and any
v C {t}. Combining Theorem 3.1 and Theorem 3.2, we
have the following Corollary showing equivalence of the
back-door criterion and a specific d-separation involving
e (as well as an invariance test under Assumption 2).

Corollary 1. Let Assumption 1 be satisfied. Consider
any x¢ € x(©) that has a direct edge to t i.e., Xy — t or
xe 23 t. Let e be sub-sampled using x; and v for any
vC {t}ie,e= f(x,v,n). Letz C xO\{x;}. Then, z
satisfies back-door criterion relative to the ordered pair
of variables (t,y) in G if and only if e is d-separated
fromy byz andt in G ie., elly ylz,t inG.

Remark 4. While our framework captures a broad
class of back-door criteria, it does not cover all the
back-door criteria. For erxample, our method cannot
capture that the M-bias problem (Liu et al., 2012;
Imbens, 2020) where no observed feature is a parent of
the treatment. (see Appendiz H for details).

Illustrative examples. First, we illustrate Corollary
1 with our toy example G!Y. We let x; = x; and
sub-sample e using x; and t (see Figure 2(b)). For this
example, z C {xg, x3} i.e., z € {@&, {xa}, {x3}, {xa2, x5} }.
It is easy to verify that z = {x2} satisfies the back-door
criterion relative to (t,y) in G*Y but z = @, z =
{x3}, and z = {x2,x3} do not. Similarly, it is easy
to verify that elly y|xo,t but el yy|t , ell y|xe,t,
and ell ;y|x2,x3t in G*Y. See Appendix F.2 for an
illustration tailored to Theorem 3.1.

Next, we illustrate the significance of the criteria that
qualifies x; to our results. In Figure 2(b), we let x; = x;
(x1 has a direct or bi-directed edge to t). Here, the
d-separation e 1l 5 y|x2, t holds implying that xo satisfies
back-door relative to (t,y). In Figure 2(c), we let
xr = x3 (x3 does not have a direct or bi-directed edge
to t). Here, the d-separation e ll 5 y|x3, t holds but x3
does not satisfy the back-door relative to (t,y).

Comparison with Entner et al. (2013) and
Gultchin et al. (2020). In Entner et al. (2013),
X, 1s an anchor variable if it satisfies the observational

criterion x, L ;y|z for some x, and some z not containing
Xq. Further, if the CI test implied by (the d-separation
condition) x, 1l 4 y|z,t is satisfied, then z is shown to
be a valid adjustment. While our sufficient condition in
Theorem 3.1 is implied by this result, we provide a proof
tailored to our condition and notations in Appendix F
for completeness.

However, the reverse direction in Entner et al. (2013)
is as follows: if some z (not containing x,) is a valid
adjustment, then x, 1l 4 y|z, t, only when x, does not
have any (observed or unobserved) parent in addition
to satisfying the criteria for the anchor variable. Under
our criterion, if x; is a direct parent of t, the reverse
direction can be shown in generality (our Theorem 3.2).

As a concrete example, in G*Y, Entner et al. (2013)
cannot conclude that 0, {x3}, {x2, x3} are not admissible
i.e.,, not valid back-doors (because x, = x; has an
unobserved parent) while our Theorem 3.2 can be used
to conclude that. See the empirical comparison in
Appendix K.7. Likewise, Gultchin et al. (2020), which
build on Entner et al. (2013), also cannot conclude that
0,{x3}, {x2, x3} are not valid adjustment sets in G*°¥.

Comparison with Cheng et al. (2020). In Cheng
et al. (2020), the anchor variable x, is a COSO variable
i.e., either a parent or a spouse of the treatment but
neither a parent or a spouse of the outcome in the true
maximal ancestral graph (MAG). Our criteria for x; is
different from this, and our result is neither implied by
nor implies the result of Cheng et al. (2020).

Consider an example which is obtained by adding the
edge x1 — y to G¥Y in Figure 2. The results of
Cheng et al. (2020) are not applicable since the anchor
variable x; is a parent of the outcome in the true DAG
(and thereby in the MAG). However, x; is a parent of
the treatment (i.e., it satisfies our criteria), and our
Theorem 3.2 is applicable. It can be used to conclude
that 0, {x2}, {x3} and {x2, x3} are not admissible sets.
See the empirical comparison in Appendix K.8.

Connections to Instrument Variable (IV). While
our anchor (i.e., x;) may look similar to IV, this is
not the case: (i) An IV needs to satisfy the exclusion
restriction i.e., it needs to be d-separated from y in
G_: (i-e., the graph obtained by removing the edge
from t to y in G). However, we do not require x; to be
d-separated from y in G_;. (ii) Unlike our work, IVs
can only provide bounds on ATE in non-parametric
models; they provide perfect identifiability of ATE only
in linear models (Balke and Pearl, 1997).

4 ALGORITHMS

Our invariance criterion in Corollary 1 requires us to
find a z such that e L, y|z,t. In this section, given
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n observational samples, we propose two algorithms
that enable finding valid adjustment sets that pass our
invariance criterion as well as use it to estimate ATE.

4.1 Invariance Testing and Subset Search

First, we propose an algorithm (Algorithm 1) based on
conditional independence (CI) testing and it works as
follows. The algorithm takes the sub-sampling variable
e that is a function of x; (e could also be a function of
both x; and t). The algorithm considers the set X of all
candidate adjustment sets that do not contain x;. For
every candidate adjustment set z in X', our algorithm

checks for CI between e and y conditioned on z and t.

If this CI holds, then z satisfies the back-door criterion
and is a valid adjustment set (see Corollary 1 and
Assumption 2). The ATE estimated by our algorithm
is the average of the ATE estimated by regressing on
such valid adjustment sets. On actual datasets, we use
the following criterion as acceptance for CI: a p-value
threshold pyqive is used to check if the p-value returned
by the CI tester is greater than this threshold. We use
the RCoT CI tester (see Appendix K.1).

Similar to Entner et al. (2013), the computational
complexity of Algorithm 1 grows exponentially in the
dimensionality of x(®). This makes it impractical for
high dimensional settings.

Algorithm 1: ATE estimation using subset search.

InplIt: n,ny, t,y,e, vavalue

Output: ATE(X)

Initialization: ATE(X) =0,¢; =0

forr=1,---,n, do // Use a different
train-test split in each run

co = 0; ATE4q = 0;
for z € X do
if CI(e L, y|z,t) > Pyaiue then
co =co+1;

ATEq = ATEq + L 377" | (Ely|z =
20 t=1] - E[y|lz=29,t =0));
if ¢ > 0 then
cp=c1+ ].;

ATE(X) = ATE(X) + ATEq/co;

ATE(X) = ATE(X) /e

4.2 IRM based Representation Learning

To alleviate these concerns, we propose a second
algorithm based on invariant risk minimization (IRM).
This leverages our use of the subsampling variable
and creation of synthetic environments. IRM was
proposed to address out-of-distribution generalization
for supervised learning tasks and is aimed at learning

a predictor that relies only on the causal parents of the
label y and ignore any other spurious variables. IRM
takes data from different environments indexed as e and
learns a representation ® that transforms the features
x such that e L y|®(x). Given that our invariance
criterion is of a similar form, and involves checking
invariance of the outcome y conditioned on the feature
set z and the treatment t across environments e, IRM
is a perfect fit to test this criterion.

Our IRM based procedure leverages IRMvl from
Arjovsky et al. (2019) with linear representation ®. We
take the data in treatment group t =1 (or the control
group t = 0) and divide it into different environments
based on e and pass it as input to IRMv1. From the
theory of IRM it follows that if the absolute value of
some coefficient of ® is low, then the corresponding
component is unlikely to be a part of the subset
that satisfies the invariance criterion. Following this
observation, we define a vector of absolute values of
® and denote it as |®|. We divide the values in |®|
into two clusters using k-means clustering with k£ = 2.
We select the subset of the features that correspond
to the cluster with a higher mean absolute value. We
estimate the treatment effect by adjusting over this
selected subset. Further details of the procedure can
be found in Algorithm 2 (we describe the algorithm for
treatment group and can run a similar procedure for
control group). While the computational complexity
of IRMv1 (and hence Algorithm 2) is unclear yet, in
practice, Algorithm 2 is much faster and scales better
(see Figure 3(c)) than Algorithm 1.

Algorithm 2: ATE estimation using IRM

Input: n,n,,t,y, e x©\ x

Output: ATE

Initialization: ATE =0,k = 2

forr=1,--- ,n, do // Use a different
train-test split in each run

® < IRMv1(y,x( \ x;, e, t = 1)

Zirm — kmeans(|fI)|,k) // zZym is the subset of
variables in the cluster with higher mean
absolute value

ATE = ATE + 1 " | (Ely|zim = 2, t =

L 1] = Ely|zim = 2, £ =0))
ATE = ATE/n,;

5 EXPERIMENTS

ATE estimation and performance metrics: To
test how successful our method is with respect to finding
valid adjustments, we consider estimating the ATE of t
on y. When the ground truth ATE is known, we report
the absolute error in ATE prediction (averaged over n,.
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Figure 3: Validating our theoretical results and our algorithms on the toy example G*°Y: (a) Sets not satisfying
back-door ({x1, xa,x3}, {x2, x3}) result in high ATE error; sets satisfying back-door ({x1, x2}, {x2}) result in low
ATE error. (b) Performance of Algorithm 1 and 2 on G*¥. (c) Performance of Algorithm 2 in high dimensions.

runs). When the ground truth ATE is unknown, we
report the estimated ATE (averaged over n, runs).

As described in Section 2.1, ATE can be estimated from
observational data by regressing y for the control and
the treatment sub-populations on a valid adjustment
set. We note that our work is complementary to works
on ATE estimation as our focus is on finding valid
adjustments. Once we select a valid adjustment, any of

the available ATE estimation methods could be used.

We use ridge regression with cross-validation as the
regression model for baseline as well as our method.

Environment variable and parameters. For all
of our experiments, we let n, = 100 and pyaiue =
{0.1,0.2,0.3,0.4,0.5}. For our experiments we create
an environment variable as being a random function
of x; and t (i.e., e = f(x;, t)). Exact details of their
generation and alternate settings, such as the case of
e = f(x) (i.e.,, v=0), are given in Appendix K.

Algorithms. We compare the following algorithms:

1. Baseline: This uses regression on all of the
observed features i.e., x(°) to estimate ATE. In
other words, it assumes x(°) is ignorable. See
Appendix J for a pseudo-code of Baseline.

2. Exhaustive: Given x;, this applies Algorithm 1
with X' being the set of all subsets of x(%) \ x,.

3. Sparse: Given x;, this applies Algorithm 1 with
X being the set of all subsets of x(®) \ x; of size at
most k (which is determined in the context).

4. IRM-t: Given x;, this applies Algorithm 2 to the
samples from the treatment group.

5. IRM-c: Given x;, this applies Algorithm 2 to the
samples from the control group.

5.1 Synthetic Experiment

Description. Consider the toy example Qw?{ from
Figure 2 with unobserved features u; € R, us € ]Rd~7 us €
Rdj uy € R and observed features x; € R, xo € R?. x5 €
R? ie., xX = {uy, up,u3,us} € R and x(0) =

{x1,x2,x3} € R2*L. Let d = 2d + 1 i.e., the dimension
of the observed features. For dimension d, we generate
a dataset (with n = 50000) using linear structural
equation models for u’s, x’s and y and a logistic linear
model for t and e. See Appendix K.2 for details

Results. First, we validate our theoretical results
for d = 5,15,25 (see Figure 3(a)): (a) the ATE error
for adjusting on {xi, xa, x3} is high since we are in a
setting where x(°) is not ignorable, (b) the ATE error
for adjusting on {x1,xo} is low since it satisfies the
back-door criterion, (c) the ATE error for adjusting
on {x2,x3} is high since el ;y|xa,x3,t, (d) the ATE
error for adjusting on {xz} is low since elly y|xa, t.
Next, we validate our algorithms via Figure 3(b). With
X; = X1, our algorithms Exhaustive, IRM-t, and IRM-c
significantly outperform Baseline for d = 3,5,7 even
for multiple p,qiue thresholds for Exhaustive. We note
that IRM based algorithms significantly outperform
the testing based algorithm even in moderately high
dimensions (d = 7) and performs very well even for
d = 65 as seen through in Figure 3(c).

5.2 Semi-synthetic Dataset : Infant Health
and Development Program (IHDP)

Description. IHDP (Hill, 2011) is generated based on
a RCT targeting low-birth-weight, premature infants.
The 25-dimensional feature set (comprising of 17
different features) is pre-treatment i.e., it satisfies
Assumption 1. The features measure various aspects
about the children and their mothers e.g., child’s
birth-weight, the number of weeks pre-term that the
child was born. See Appendix K.4 for details. In the
treated group, the infants were provided with both
intensive high-quality childcare and specialist home
visits. A biased subset of the treated group is typically
removed to create imbalance leaving 139 samples with
t = 1 and 608 samples with t = 0. The outcome,
typically simulated using setting “A” of the NPCI
package (Dorie, 2016), is infants’ cognitive test score.
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Analysis. The outcome depends on all observed
features. Therefore, the set of all observed features
satisfies back-door (see Appendix K.4). To test our
method, we drop 7 features and denote the resulting
16-dimensional feature set (comprising of 10 features)
by x(°) to create a challenging non-ignorable case. We
use child’s birth-weight as x;. Therefore, we keep this
feature in x(?). See Appendix K.4 for the choice of
other features in x(?).

Results. We compare Baseline, Exhaustive, Sparse
with & = 5, IRM-c and IRM-t. All our algorithms
except IRM-c significantly outperform Baseline (see
Figure 4). The intuition behind k& = 5 is the belief that
valid adjustments of size 5 exist (see Appendix K.4)!.
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Figure 4: Performance on IHDP dataset.

5.3 Real Dataset : Cattaneo2

Description. Cattaneo2 (Cattaneo, 2010) studies the

effect of maternal smoking on babies’ birth weight.

The 20 observed features measure various attributes

about the children, their mothers and their fathers.

See Appendix K.5 for details. The dataset considers
the maternal smoking habit during pregnancy as the
treatment i.e., t = 1 if smoking (864 samples) and
t = 0 if not smoking (3778 samples).

Analysis. Out of the features we have access to (see
Appendix K.5), we pick mother’s age to be x;.

Results. The ground truth ATE is unknown (because
for every sample either yy or y; is observed). However,
the authors in Almond et al. (2005) expect a strong
negative effect of maternal smoking on the weights of
babies — about 200 to 250 grams lighter for a baby with
a mother smoking during pregnancy. We compare all
the algorithms except Exhaustive with x; = mother’s
age. For the sparse algorithm, we set £ = 5 to ensure
a reasonable run-time. As seen in Figure 5, the ATE
estimated using all our algorithms fall in the desired
interval (i.e., (-250,-200)) and suggest a larger negative

!"We note that Sparse still has to perform Z?:o (?) =
382 tests to estimate ATE. Therefore, Sparse performs not
very differently from Exhaustive.

effect compared to the Baseline.
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Figure 5: Performance on Cattaneo2 dataset.

6 CONCLUSION AND DISCUSSION

We showed that it is possible to find valid adjustment
sets under non-ignorability with the knowledge of a
single causal parent of the treatment. We achieved this
by providing an invariance test that exactly identifies
all the subsets of observed features (not involving this
parent) that satisfy the back-door criterion.

Knowledge of a causal parent of the treatment.
Our invariance test depends on the causal parent of
the treatment i.e., x; via the environment variable
i.e., e. Therefore, our approach works even when the
expert knowledge of x; is not available or samples of
Xx; are not observed so long as we have samples of e
directly. Investigating the application of this insight is
an interesting question for future research.

Assumption 1 and 2. Assumption 1 and faithfulness
(a stronger version of Assumption 2) are commonly
used in data-driven covariate selection works (Entner
et al., 2013; Gultchin et al., 2020; Cheng et al., 2020).
While settings beyond Assumption 1 are interesting
for future research, finding valid adjustments under
Assumption 1 is non-trivial and important in both PO
and Pearlian framework (see the first paragraph in
VanderWeele and Shpitser (2011)). Further, we note
that Assumption 1 holds for some benchmark causal
effect estimation datasets (e.g., IHDP, Twins). Lastly,
while it is common to assume faithfulness with respect
to conditional independencies involving the entire DAG,
we assume faithfulness only with respect to conditional
independencies involving the sub-sampling variable.

Alternate minimal DAG knowledge. As discussed
in Remark 4, our method doesn’t cover all back-door
criteria (e.g., the M-bias problem).  Therefore,
exploring alternate minimal DAG knowledge sufficient
to test for a broader/different family of valid
adjustments could be fruitful.
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Supplementary Material:
Finding Valid Adjustments under Non-ignorability
with Minimal DAG Knowledge

Organization. In Appendix A we briefly discuss any potential societal impacts of our work. In Appendix B, we
discuss prior work related to potential outcomes and usage of representation learning to debias treatment effect.
In Appendix C, we review potential outcomes (PO) framework, discuss ignorability and connect it with valid
adjustment. In Appendix D, we provide the definition of d-separation as well as a few related definitions. In
Appendix E, we provide a few additional notations. In Appendix F, we provide a proof of Theorem 3.1 and also
provide an illustrative example for Theorem 3.1. In Appendix G, we provide a proof of Theorem 3.2. In Appendix
H, we provide a discussion on the M-bias problem. In Appendix I, we provide an Algorithm (Algorithm 3) that,
when all the parents of the treatment are observed and known, finds all subsets of the observed features satisfying
the back-door criterion relative to (t,y) in G as promised in Section 3. We also provide an example illustrating
Algorithm 3 and the associated result via Corollary 2. In Appendix J, we provide an implementation of the
Baseline ATE estimation routine considered in this work. In Appendix K, we discuss the usage of real-world CI
testers in Algorithm 1, provide more discussions on experiments from Section 5, specify all the training details, as
well as provide more details regarding the comparison of our method with Entner et al. (2013), Gultchin et al.
(2020), and Cheng et al. (2020).

A SOCIETAL IMPACT

In health-care scenarios, since it is sometimes difficult /unethical to do randomized control trials (RCTs), sometimes
the consensus treatment protocol is decided based on observational studies. Our algorithm could pick out a
correct valid adjustment set when some existing methods assume ignorability due to lack of expert knowledge
about the causal model.

On the flip side, due to lower testing power at finite samples or mis-identification of a feature as a direct parent
of the treatment (a local causal knowledge required in our work), our algorithm could pick an incorrect valid
adjustment set. This, in turn, could potentially result in miscalculation of the treatment effect. The consensus
treatment protocols based on such observational conclusions could prove detrimental. However, we emphasize
that this is a risk associated with most (if not all) observational studies and effect estimation algorithms.

B ADDITIONAL RELATED WORK

Potential Outcomes framework. Potential outcomes (PO) framework formalizes the notion of ignorability as
a condition on the observed features that is sufficient (amongst others) for valid adjustment in treatment effect
estimation (Imbens and Rubin, 2010). Various methods like propensity scoring (Rosenbaum and Rubin (1983)),
matching (Rosenbaum and Rubin (1985)) of the treatment group and the control group based on features that
satisfy ignorability, and synthetic control methods (Abadie et al. (2010)) have been used to debias effect estimation.
In another line of work (Wager and Athey (2018); Kiinzel et al. (2019); Alaa and van der Schaar (2017)), treatment
effect was estimated by regressing the outcome on the treated and the untreated sub-populations. While this list
of works on the PO framework is by no means exhaustive, in a nutshell, these methods can be seen as techniques
to estimate the treatment effect when a valid adjustment set is given.

Representation learning based techniques. Following the main idea behind matching (Rubin (1973); Abadie
et al. (2004); Rosenbaum (1989)), recent methods inspired by deep learning and domain adaptation, used a neural
network to transform the features and then carry out matching in the representation space (Shi et al. (2019);
Shalit et al. (2017); Johansson et al. (2016); Yoon et al. (2018); Kallus (2020)). These methods aimed to correct
the lack of overlap between the treated and the control groups while assuming that the representation learned is
ignorable (i.e., a valid adjustment).
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C REVIEW OF POTENTIAL OUTCOMES AND IGNORABILITY

We briefly review the potential outcomes (PO) framework in the context of treatment effect estimation (Imbens
and Rubin, 2015). In the PO framework, there are exogenous variables called units. With a slight abuse of
notation, we denote them by x(*) as well. When x(*) is fixed to say (*), the observed variables (including y)
are deterministically fixed i.e., only the randomness in the units induces randomness in the observed variables.
The PO framework typically studies the setup where the observed features x(°) are pre-treatment (similar to
semi-Markovian model under Assumption 1). Every observational sample ((°),#,y) has an associated unit x(,
For t' € {0,1}, the potential outcome yp is the resulting outcome for the unit (™ when the treatment t is set
(by an intervention) to t'.

Definition 7. (Ignorability.) Any z C x\©) satisfies the ignorability condition if yy, y1 1, tz.

In the above definition, the potential outcomes yy and y;, the observed treatment t, and the features z are all
deterministic functions of the units x(*). Therefore, the conditional independence criterion makes sense over the
common probability measurable in the space of the units x(*). As mentioned in Section 1, ignorability cannot be
tested for from observational data since for every observational sample either yg or y; is observed (and not both).

In the PO framework, the ATE is defined as E, ) [y1 — yo]. When z C x(©) is ignorable, it is also a valid adjustment
relative to (t,y) in G and therefore the ATE can be estimated by regressing on z.

The Pearlian framework provides a generative model for this setup i.e., a semi-Markovian model (specifying a
DAG that encodes causal assumptions relating exogenous and observed variables) as well as specifies graphical
criterions that imply existence of valid adjustments relative to (¢,y) in G.

D D-SEPARATION

In this section, we define d-separation with respect to a semi-Markovian DAG G. The d-separation or
directed-separation is a commonly used graph separation criterion that characterizes conditional independencies
in DAGs. First, we will define the notion of a path.

For any positive integer k, let [k] .= {1,--- ,k}.

Definition 8. (Path) A path P(v1,v) is an ordered sequence of distinct nodes vy ... vy and the edges between
these nodes such that for any i € [k], v; € V and for any i € [k—1], either v; — Vi41, Vi $— Vip1 OF V; <=3 Viiq.
For example, in Figure 2(a), P(x1,x3) = {x1 — x2 ¢-» xg} and P(t,y) ={t «-» x3 — x2 ¢-» x3 «—» y} are
two distinct paths. Next, we will define the notion of a collider.

Definition 9. (Collider) In a path P(vi, v), for anyi € {2,--- ,k—1}, a collider at v; mean that the arrows (or
edges) meet head-to-head (collide) at v; i.e. either vi_1 —> Vi $— Vi1, Vie1 €=% Vi $— Vig1, Vi1 —> V; €=+ Vi
or Vi—1 €= V; €-> V1.

For example, in P(x1, x3) defined above, there is a collider at xo. Next, we define the notion of a descendant path.

Definition 10. (Descendant path) A path P(vi,vk) is said to be an descendant path from vy to vy, if Vi € [k—1],
Vi — Vit1-

For example, in Figure 2(a), P(x1,y) = {x1 — xo — y} is an descendant path from x; to y. Next, we define the
notion of a descendant.

Definition 11. (Descendant) A variable vy, is a descendant of a variable vy if there exists an descendant path
P(va, vi) from vy to vg.

For example, in Figure 2(a), y is a descendant of x;.

Definition 12. (Blocking path) For any variables vi,vo € W, a set v C W, and a path P(v1, va), v blocks the
path P(v1, va) if there exists a variable v in the path P(vy, va) that satisfies either of the following two conditions:

(1) v €v and v is not a collider.
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(2) neither variable v nor any of it’s descendant is in v; and v is a collider.

For example, in Figure 2(a), {x2} blocks the path P(x1,y) = {x1 — xo — y} because x2 € {x2} and x; is not a
collider. Further, {x2} also blocks the path P(x1,y) = {x1 — xa «-» x3 «-» y} because x3 ¢ {x2} and x3 is a
collider..

Definition 13. (D-separation) For any variables vi,va € W, and a set v CW, vi and vo are d-separated by v in
G if v blocks every path between vi and vo in G.

For example, in Figure 2(a), x; and y are d-separated by {xa}.

E ADDITIONAL NOTATIONS

In this section, we will look at a few additional notations that will be used in the proofs of Theorem 3.1, Theorem
3.2, and Corollary 2.

E.1 g_t

Often it is favorable to think of the back-door criterion in terms of the graph obtained by removing the edge from
t to y in G. Let G_; denote this graph. The following (well-known) remark connects the back-door criterion to
G+

Remark 5. Under Assumption 1, a set of variables z C x satisfies the back-door criterion relative to the ordered
pair of variables (t,y) in G if and only if t and y are d-separated by z in G_;.

Proof. Under Assumption 1, y is the only descendant of t i.e., no node in x is a descendant of t. Therefore, from
Definition 5, z satisfying the back-door criterion relative to (t,y) in G is equivalent to z blocking every path
between t and y in G that contains an arrow into t. Further, under Assumption 1, there are no paths between t
and y in G that contain an arrow out of t apart from the direct path t — y. However, this direct path t — y
does not exist in G_;. Therefore, z blocking every path between t and y in G that contains an arrow into t is
equivalent to z blocking every path between t and y in G_;. Thus, z satisfying the back-door criterion relative to
(t,y) in G is equivalent to z blocking every path between t and y in G_; i.e., tll 4 y|z in G_;. O

E.2 Subset of a path

Now, we will define the notion of a subset of a path.

Definition 14. (Subset of a path) A path P’(y1,y;) is said to be a subset of the path P(x1,xy) (denoted by
P'(y1,y;) C P(xi,xx)) if j < k, 31 € [k+1—j| such that x; = y1, Xit1 = Yo, -+ ,Xiyj—1 = ¥; and the edge
between x;11—1 and x;1; is same as the edge between y; and y;11 VI € [j — 1].

For example, in Figure 2(a) P(x1,x3) = {x1 — X2 ¢-» x3} is a subset of the path P(t,y) = {t ¢«-» x3 —
Xo «-» x3 <-» y}ie, P(x1,x3) C P(t,y). For a path P(x1,x), it is often convenient to represent the subset
obtained by removing the nodes at each extreme and the corresponding edges by P(x1, xi) \ {x1, xx }. For example,

P(x1,x3) = P(t,y) \ {t,y}.
F PROOF OF THEOREM 3.1 AND AN ILLUSTRATIVE EXAMPLE

In this section, we will prove Theorem 3.1 and also provide an illustrative example for Theorem 3.1. Recall
the notions of path, collider, descendant path, blocking path and d-separation from Appendix D. Also, recall the
notions of subset of a path and G_; as well as Remark 5 from Appendix E.

F.1 Proof of Theorem 3.1

We re-state the Theorem below and then provide the proof.?

2We say that z satisfies the backdoor criterion if it blocks all the backdoor paths between t and y in G i.e., paths
between t and y in G that contains an arrow into t. Please see Definition 5 in the main paper.
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Theorem 3.1. Let Assumption 1 be satisfied. Consider any x; € x(°) that has a direct edge or a bi-directed edge
tot i.e., either xy — t, Xy «-> t orx, =3 t. Let e be sub-sampled using x; and v for anyv C V\ {x,y}
i.e., e = f(xt,v,n). Let zC x(O\ {x;}. If e is d-separated from y by z and t in G i.e., ell 4 y|z,t in G, then z
satisfies the back-door criterion relative to (t,y) in G.

Proof. We will prove this by contradiction. Suppose z does not satisfy the back-door criterion relative to (t,y) in
G. From Remark 5, under Assumption 1, this is equivalent to t and y not being d-separated by z in G_;. This is
further equivalent to saying that there exists at least one unblocked path (not containing the edge t — y) from
t to y in G when z is conditioned on. Let P(t,y) denote the shortest of these unblocked paths. We have the
following two scenarios depending on whether or not P(t,y) contains x;. First, we will show that in both of these
cases there exists an unblocked path® P’(x;, y) from x; to y in G when z, t are conditioned on.

Note : All bi-directed edges in G are unblocked because (a) none of the unobserved feature is conditioned on and
(b) there is no collider at any of the unobserved feature.

(i) x¢ € P(t,y): This implies that there is an unblocked path P”(x;,y) C P(t,y) from x; to y in G when z is
conditioned on. Suppose we now condition on t in addition to z. The conditioning on t can affect the path
P"(x¢,y) only” if a) there is an unblocked descendant path from some x5 € P (x;,y) \ {x:, ¥} to t and b) x, is
a collider in the path P”(x¢, y) \ {xt,y} . However, conditioning on such a t cannot block the path P”(x, y).
Thus, there exists an unblocked path P’(x;,y) = P”(x¢,y) in G when z,t are conditioned on.

(ii) x ¢ P(t,y): Under Assumption 1, G cannot contain the edge t <— y (because a DAG cannot have a cycle).
Furthermore, under Assumption 1, t has no child other than y. Therefore, in this case, the path P(t,y)
takes one of the following two forms : (a) t <— xs---y or (b) t ¢-» xs---y for some x5 # x;. In either case,
there is a collider at t (i.e., either x; — ¢ +— X5, Xt —> t €=+ X, Xp €¢-% L $— X5 OF X; ¢-3 b ¢-3 Xg)
in the path P"”'(x;, x5) from x; to xs. Suppose we now condition on t in addition to z. The conditioning
on t unblocks the path P”'(x, xs) because there is a collider at t. Also, similar to the previous case, the
conditioning on t cannot block the path P(t,y) from t to y (passing through x,). Therefore, we see that there
is an unblocked path P’(x, y) from x; to y (passing through t and x;s) in G when z, t are conditioned on (i.e.,
either xp, — t¢— Xg-+ ¥, Xt —>t €= Xg-- Y, Xt ¢-% Lé— Xg+--Y O Xp ¢-+ t «-» XS~~~y).

Now, in each of the above cases, there is an edge from x; to e because e is sub-sampled using x;. Therefore, there
exists an unblocked path P""(e,y) D P’(x¢, y) of the form e «— x;---y in G when z, t are conditioned on because
x¢ ¢ z i.e., x; is not conditioned on. This is true regardless of whether x; is an ancestor of z or not since the
edge e «— x; cannot create a collider at x;. The existence of the path P"””(e,y) contradicts the fact that e is
d-separated from y by z and t in G. This completes the proof. O

F.2 An illustrative example for Theorem 3.1

Now, we will look into an example illustrating Theorem 3.1. Consider the DAG G” in Figure 6. We let
x¢ = x1 (because x; «-» t) and sub-sample e using x; and t (see Figure 6). For this example, z C {x2, x3} i.e.,
zc {2, {x}, {x3}, {x2, x3}}. It is easy to verify that ell 4 y|xo, t but ell ;y|t, el ;y|x3,t, and el zy|x2, x3t in G*.
Given these, Theorem 3.1 implies that z = {xp} should satisfy the back-door criterion relative to (t,y) in G*.
This is indeed the case and can be verified easily. Thus, we see that our framework has the potential to identify
valid adjustment sets ({x2} for G%) in the scenario where no causal parent of the treatment variable is known but
a bi-directed neighbor of the treatment is known.

Note : Theorem 3.1 does not comment on whether &, {x3} and {x2, x3} satisfy or do not satisfy the back-door
criterion relative to (t,y) in G”.

3Note: There is no possibility of an unblocked path from x; to y in G containing the edge t — y when z,t are
conditioned on. This is because t is conditioned on and any such path to y cannot form a collider at t.

4t ¢ P"(xc,y) because P(t,y) is the shortest unblocked path (not containing the edge t — y) from t to y in G when z
is conditioned on.
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Figure 6: The DAG G” where e has been sub-sampled using x; and t.

G PROOF OF THEOREM 3.2

In this section, we will prove Theorem 3.2. Recall the notions of path, collider, descendant path, descendant,
blocking path and d-separation from Appendix D. Also, recall the notions of subset of a path and G_; as well as
Remark 5 from Appendix E.

We re-state the Theorem below and then provide the proof.®

Theorem 3.2. Let Assumption 1 be satisfied. Consider any x; € x\°) that has a direct edge to t i.e., xp — t or
x; €23 t. Let e be sub-sampled using x; and v for any v C {t} i.e., e = f(x;,v,n). Let z C x(9\ {x;}. If z
satisfies the back-door criterion relative to (t,y) in G, then e is d-separated from y byz and t in G i.e., ell 4 y|z, t

ing.

Proof. We will prove this by contradiction. Suppose el ;y|z,t in G i.e., e and y are not d-separated by z,t in
G. In other words, there exists at least one unblocked path from e to y in G when z, t are conditioned on. Let
P(e,y) denote the shortest of these unblocked paths.

Depending on the choice of v, we have the following two cases. In each of this cases, we will show that the path
P(e,y) is of the form e «— x;-- - y.

e v={t}: eis sub-sampled using t and x;. Therefore, the path P(e, y) can take one of the following two forms
:(a) e<—t---yor (b) e<— x;---y. However, t is conditioned on and the path e «— t---y cannot form a
collider at t (because of the edge e «— t). Therefore, the path P(e,y) cannot be of the form e «— t---y and
has to be of the form e +— x;--- y.

e v= 0 : eis sub-sampled using only x;. Therefore, the path P(e, y) has to be of the form e <— x; - y.

Now, observe that there is no collider at x; in the path e «— x;---y and x; is not conditioned on (because
xr ¢ z). Therefore, there exists at least one unblocked path from x; to y in G when z, t are conditioned on. Let
P’(xt,y) C P(e, y) denote the shortest of these unblocked paths from x; to y in G when z, t are conditioned on.
The path P’(x¢,y) cannot contain the edge t — y since t is conditioned on and the path cannot form a collider
at t (because of the edge t — y).

We have the following two scenarios depending on whether or not P’(x¢, y) contains t. First, we will show that in
both of these cases there exists an unblocked path P”(t,y) from t to y (that does not contain the edge t — y)
in G when z is conditioned on.

Note : All bi-directed edges in G are unblocked because (a) none of the unobserved feature is conditioned on and
(b) there is no collider at any of the unobserved feature.

(1) t ¢ P'(xt,y): Suppose we now uncondition on t (but still condition on z). We have the following two scenarios
depending on whether or not unconditioning on t blocks the path P’(x;,y) (while z is still conditioned on).

(i) Unconditioning on t does not block the path P’(x;, y): Consider the path P”(t,y) D P’(x, y) from t to y of
the form t <— x; - - - y. This path is unblocked in G when z is conditioned on because (a) by assumption the

SWe say that z satisfies the backdoor criterion if it blocks all the backdoor paths between t and y in G i.e., paths
between t and y in G that contains an arrow into t. Please see Definition 5 in the main paper.
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path P’(x¢, y) is unblocked in G when z is conditioned on and (b) there is no collider at x; in this path (in
addition to x; not being conditioned on since x; ¢ z). P”(t,y) does not contain the edge t — y because
P’(x¢,y) does not contain the edge t — y.

(ii) Unconditioning on t blocks the path P’(x¢,y) (Refer Figure 7 for an illustration of this case): We will first
create a set xs consisting of all the nodes at which the path P’(x, y) is blocked when t is unconditioned on
(while z is still conditioned on). Define the set xg C x(©) such that for any x, € xs the following are true:
(a) xs € P'(xt,¥) \ {xt,y}, (b) the path P’(x;,y) contains a collider at xs, (c) there is a descendant path
Pd(xs, t) from x, to t, (d) the descendant path P%(xg, t) is unblocked when z is conditioned on, (e) x; ¢ z,
and (f) there is no unblocked descendant path from x, to any x, € z.

Since the path P’(xt, y) is blocked when t is unconditioned on (while z is still conditioned on), we must
have that xs # @. Let x. € xs be that node which is closest to y in the path P’(x;, y). By the definition
of xs and the choice of x., unconditioning on t cannot block the path P"’(x.,y) C P'(xt,y) when z is still
conditioned on. Also, by the definition of xs, the descendant path P%(x,, t) from x. to t is unblocked when
z is conditioned on.

Now consider the path P”(t,y) of the form t +— -+ <— x. «— ---y ie., P’(t,y) D P"(x.,y) and
P"(t,y) D P%x.,t). The path P”(t,y) is unblocked when z is conditioned on since (a) P%(x,,t) is
unblocked when z is conditioned on, (b) P"'(x.,y) is unblocked when z is conditioned on, and (c) there is
no collider at x. and x,. is not conditioned on since x,. ¢ z. Furthermore, P”(t,y) does not contain the edge
t — y because P (x.,y) C P'(x¢,y) does not contain the edge t — y and P%(x, t) does not contain the
edge t — y.

(2) t € P'(xt,y): In this case, there is an unblocked path P""”'(t,y) C P’'(x¢, y) from t to y when z, t are conditioned
on. There are two sub-cases depending on whether or not unconditioning on t can block the path P (t, y)
(while z is still conditioned on).

(A) Unconditioning on t does not block the path P (t,y) : In this case, by assumption, the path P"(t,y) =
P""(t,y) in G is unblocked when z is conditioned on. Furthermore, since P”(t,y) C P'(xt,y), P’ (t,y)
does not contain the edge t — y.

(B) Unconditioning on t blocks the path P””(¢t,y): Let x be the node adjacent to t in the path P""(t,y).
Consider the path P (xy,y) C P""(t,y). Clearly, t ¢ P""(x,y) since the path P’(x;, y) was assumed
to be the shortest unblocked path from x; to y. Therefore, the only way unconditioning on t could block
the path P""'(t,y) is if it blocked the path P""'(xy,y). Now, this sub-case is similar to the case (1)(ii)
with x; = xp and P’ (x¢, y) = P""(x, ¥)®. As in (1)(ii), it can be shown that there exists an unblocked
path P”(t,y) in G (that does not contain the edge t — y) when z is conditioned on.
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Figure 7: Tllustrating the case (1)(ii) in the proof of Theorem 3.2

Now, in each of the above cases, there exists an unblocked path P”(t,y) in G when z is conditioned on and this
path does not contain the edge t — y. Therefore, there exists an unblocked path P”(t,y) in G_; when z is
conditioned on (since P”(t,y) does not contain the edge t — y) implying ti{ ;y|z in G_;. From Remark 5, under
Assumption 1, this is equivalent to z not satisfying the back-door criterion relative to (t,y) in G leading to a
contradiction. This completes the proof. O

5The choice of edge (— or «¢--») between x; and t does not matter in (1)(ii).
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H THE M-BIAS MODEL

In this section, we discuss the M-bias problem. It is a causal model under which although some observed features
(that are pre-treatment) are provided, one must not adjust for any of it. This model has been widely discussed
(Imbens, 2020; Liu et al., 2012) in the literature to underscore the need for algorithms that find valid adjustment
sets.

We illustrate the M-bias problem using the semi-Markov model (with the corresponding DAG GM) in Figure 8.

i i
O—®
Figure 8: The DAG G™ illustrating the M-bias problem.

The DAG G consists of the following edges: t — y,x; ¢-» t,x; «-» y. It is easy to verify that {x;} does
not satisfy the back-door criterion with respect to (t,y) in GM. Further, it is also easy to verify that the empty
set i.e., & satisfies the back-door criterion with respect to (t,y) in GM. In what follows, we will see how our
framework cannot be used to arrive at this conclusion.

There are no observed parents of t in GM. Therefore, Theorem 3.2 (i.e., the necessary condition) does not apply
here. For Theorem 3.1 to be applicable, there is only one choice of x; i.e., one must use x; = x;. Now, for
any v C {t} such that e is sub-sampled according to e = f(x1,v,n), e is not d-separated from y given only t.
Therefore, one cannot conclude whether or not z = & satisfies the back-door criterion with respect to (t,y) in
GM from Theorem 3.1 (i.e., the sufficiency condition). In summary, we see that our sufficient condition cannot
identify the set satisfying the back-door criterion (i.e., the null set) and necessity condition does not apply in the
case of the M-bias problem.

Therefore, there are models where sets satisfying the back-door criterion exist (for e.g., the empty set in the
M-bias problem) and our results may not be able to identify them.

I FINDING ALL BACK-DOORS

Building on Corollary 1, we provide an Algorithm (Algorithm 3) that, when all the parents of the treatment are
observed and known, finds the set of all the subsets of the observed features satisfying the back-door criterion
relative to (t,y) in G which we denote by Z. We initialize Algorithm 3 with the set Z; obtained by adding 7 (¢)
to every element of the power set of x(°) \ 7m(t). The set Z; can be constructed easily with the knowledge of x(©)
and 7(t) provided to Algorithm 3. Then, we repeatedly apply Corollary 1 to each parent in turn to identify all
back-doors. We state this result formally in Corollary 2 below.

Algorithm 3: Finding all back-doors
Input: 7(t),e,t,y,x
Output: Z
Initialization: Z = Z;
for x; € 7(t) do

for z C x(9\ {x;} do

if e L, y|z,t then
L L Z=ZUz

Remark: Algorithm 3 is based on two key ideas : (1) Any subset of the observed features that contains all the
parents of the treatment satisfies the back-door criterion relative to (t,y) in G. Formally, consider the set Z;
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obtained by adding 7(t) to every element of the power set of x(®) \ 7(t). Then, any z € Z; satisfies the back-door
criterion relative to (t, y) in G. We use the set Z; in the initialization step of Algorithm 3 as it can be constructed
easily with the knowledge of x(®) and 7 (t). (2) For any z ¢ Z; that satisfies the back-door criterion relative
to (t,y) in G, there exists x; € m(t) such that z C x(®) \ x,. In this scenario, Algorithm 3 captures z because
e L, y|z, t from Corollary 1 (under Assumption 2).

We now provide an example illustrating Algorithm 3, followed by Corollary 2 and its proof.

1.1 Example

We illustrate Algorithm 3 with an example. Consider the DAG G, in Figure 9. It is easy to verify that,
for Gea, Z = {{xs}, {x1,x3}, {xa2, x3}, {x1, %2}, {x1, X2, X3}, {x1, 2, xa }, {x1, x2, X3, x4} }. Now, Algorithm 3 takes
7(t) = {x1,x} and x(©) = {x1, x2, x3, x4} as inputs. Therefore, Z; = {x1,x2}, {x1, x0, X3}, {x1, X2, x4 }, {x1, X2, X3, X4 }
can be constructed by adding 7(t) to every element of the power set of x(°) \ 7(¢) i.e., to the power set of {x3,x4}).
Algorithm 3 is initialized with Z; and the only remaining sets to be identified are {xs}, {x1,x3}, and {x2, x3}.
When x; = x1, Algorithm 3 will identify {x3} and {x2,x3} as sets that satisfy the back-door criterion relative to
(t,y) in Gpq. Similarly, when x; = xo, Algorithm 3 will identify {x3} and {xi, x5} as sets that satisfy the back-door

criterion relative to (t,y) in Gpqg.
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Figure 9: The DAG G4 for illustrating Algorithm 3

1.2 Corollary 2

Recall the notions of path, collider, descendant path, descendant, blocking path and d-separation from Appendix D.
Also, recall the notions of subset of a path and G_; as well as Remark 5 from Appendix E.

Corollary 2. Let Assumptions 1 and 2 be satisfied. Let Z be the set of all sets z C x'°) that satisfy the back-door
criterion relative to the ordered pair of variables (t,y) in G. If all the parents of t are observed and known i.e.,
7(t) = 7w (t) is known, then Algorithm 3 returns the set Z.

Proof. From Remark 5, under assumption 1, z satisfying the back-door criterion relative to the ordered pair of
variables (t,y) in G is equivalent to t and y being d-separated by z in G_; i.e., t1ll 4 y|z in G_;. From Pearl
et al. (2016), w(t) always satisfies the back-door criterion relative to the ordered pair of variables (t,y) in G i.e.,
tll 4 y|m(t) in G_,. Consider any z C x(®) such that 7(t) C z. First, we will show that t1l4 y|z in G_; i.e., z
satisfies the back-door criterion relative to the ordered pair of variables (t,y) in G.

Suppose t§ ;y|z in G_; i.e., t and y are not d-separated by z in G_;. This is equivalent to saying that there
exists at least one unblocked path (not containing the edge t — y) from ¢ to y in G_; when z is conditioned
on. Without the loss of generality, let P(t,y) denote any one of these unblocked paths. The path P(t,y) has
to be of the form t <— x;---y where x; € w(t) because (a) under Assumption 1, G cannot contain the edge
t «+— y (because a DAG cannot have a cycle) and (b) under Assumption 1, t has no child other than y. However,
x; € 7(t) C z i.e., x; is conditioned on. Now since there is no collider at x; in the path P(t,y), it cannot be
unblocked and this leads to a contradiction. Therefore, z satisfies the back-door criterion relative to the ordered
pair of variables (t,y) in G.

Now, consider the set Z; obtained by adding 7(t) to every element of the power set of x(°) \ 7(t) i.e., Z; == {z C
x() : 7(t) C z}. From the argument above, we have Z; C Z. From the knowledge of 7(t) and x(°), one can easily
construct the set Z; and thus initialize Z in Algorithm 3 with Z;.
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Now, consider the set Z5 := Z\ Z;. Consider any set z € Z, satisfying the back-door criterion relative to the
ordered pair of variables (t,y) in G. By the definition of Z; (and Z5), there exists at least one parent of t not
present in the set z. In other words, there exists x; € 7(t) such that z C x(©) \ x¢. From Corollary 1, under
Assumption 2, this is equivalent to e L, y|z, t. Therefore, Algorithm 3 will capture the set z. Since the choice of
z was random, Algorithm 3 will capture every z € Z5 and return Z; U Z5. This completes the proof.

O

J THE BASELINE

In this section, we provide an implementation of the Baseline considered in Section 5. This routine estimates
the ATE from the observational data by regressing y for the treated and the untreated sub-populations on a given
set z. The Baseline we consider in this work is an instance of this routine. More specifically, for the Baseline,
we set z to be the set of all the observed features i.e., z = x(®). See Section 5 for details.

Algorithm 4: ATE estimation using z as an adjustment set

Input: n,n,, t,y,z

Output: ATE(z)

Initialization: ATE(z) =0

forr=1,--- ,n,. do // Use a different train-test split in each run
| ATE(z) = ATE(z) + £ 37 (Elylz = 29, t = 1] - E[y|z = 2V, t = 0));

ATE(z) = ATE(z)/n,;

K ADDITIONAL EXPERIMENTS

In this section, we briefly discuss the usage of real-world CI testers in Algorithm 1. We also provide in-depth
discussions on the synthetic experiment from Section 5.1, the experiments on IHDP from Section 5.2, and the
experiments on Cattaneo from Section 5.3. Additionally, we specify all the training details, as well as provide
more details regarding the comparison of our method with Entner et al. (2013), Gultchin et al. (2020), and Cheng
et al. (2020).

K.1 Usage of CI testers in Algorithm 1

In this work we use the RCot real-world CI tester (Strobl et al., 2019).

The real-world CI testers produce a p-value close to zero if the CI does not hold and produce a p-value uniformly
distributed between 0 and 1 if the CI holds. Since we use a non-zero p-value threshold, depending on the quality
of the CI tester, the false positive rate for valid adjustment sets may be non-zero.

Suppose, for a CI tester and for an increasing sample size n, we find a sequence of Type-I error rate («,,) and
Type-II error rate (3,,) going to zero i.e., ay,, B, — 0. Then, if there is a valid adjustment set, it is easy to see
that our algorithm will have zero bias in the estimated effect when the significance threshold «, is used as the
p-value threshold in our algorithm.

K.2 Synthetic experiment

In this sub-section, we provide more details on the synthetic experiment in Section 5.1.

Let Uniform(a, b) denote the uniform distribution over the interval [a, b] for a,b € R such that a < b. Let N'(u, 0?)
denote the Gaussian distribution with mean p and variance 0. Let Bernoulli(p) denote the Bernoulli distribution
which takes the value 1 with probability p. Let Sigmoid(-) denote the sigmoid function i.e., for any a € R,
Sigmoid(a) = 1/1 4+ e~®. Let Softmax(-) denote the softmax function.

Dataset Description. We generate different variables as below:

e u; ~ Uniform(1,2)
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o x; ~ O11u1 + O12us + N(0,0.01) where 611,012 € Uniform(1,2)

o x3 ~ 011 + Oaaus + O23u3 + N(0,0.01) where 631, 622, 023 € Uniform(1,2)
o x3 ~ 031u3 + O32uy + N(0,0.01) where 631,015 € Uniform(1, 2)

o t ~ Bernoulli(Sigmoid(6s51x1 + 052u1)) where 651,052 € Uniform(1,2)

o y ~ O41x2 + Os0uy + 043t + N(0,0.01) where 041,042,043 € Uniform(1,2)

We generate the weight vectors from Uniform(1,2) to ensure that the faithfulness assumption with respect to
the sub-sampling variable is satisfied (i.e., Assumption 2). This is because for smaller weights, it is possible
that conditionally dependent relations are declared as conditionally independent. See Uhler et al. (2013) for details.

For all our experiments, we use 3 environments i.e., e € {0,1,2} and generate the sub-sampling variable as below
with E denoting the empirical expectation. While other choices of sub-sampling function f could be explored, the
natural choice (for discrete e) of softmax with random weights suffices.

o e~ Softmax(8; (x1 — E[xi]) + 02 (t — E[t])) with 06, := (05,05, 05)) € R® and 0g2 = (053,053, 053)) € R?
such that 98)7 9(()-;) € Uniform(1, 2), 9((5?) = Hg) =0, and 98)7 Hég) € Uniform(—2, —1)

In other words, we keep separation between the weight vectors associated with different environments to make
sure that the environments look different from each other as expected by IRM.

Success Probability. For a given pyqjue threshold, we let the success probability of the set {x2} be the fraction
of times (in n, runs) the p-value of CI(e L, y|x2, t) is more than pyaiue. In Figure 10a below, we show how the
success probability of the set {x2} varies with different p,qye thresholds i.e., {0.1,0.2,0.3,0.4,0.5} for the dataset
used in Section 5.1. As we can see in Figure 10a, the success probability of the set {x2}, for the same pyaiye
threshold, is much lower in high dimensions compared to low dimensions. We believe this happens (a) because of
the non-ideal CI tester and (b) because the number of samples are finite. In contrast, our algorithms IRM-t and
IRM-c always pick the set {x2} to adjust on i.e., zy, = {x2} for both IRM-t and IRM-c for d = 3,5,7.
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Figure 10: Additional analysis on the toy example GY.

Sparse subset search. In Section 5.1, we validated our algorithm by letting X be the set of all subsets of
x(©\ {x,}. However, for this synthetic experiment, we do know that only x; € X satisfies the back-door criterion
relative to (t,y). Further, we know that x, is d-dimensional. Therefore, with this additional knowledge, we
could instead let X' be the set of all d-dimensional subsets of x(°) \ {x,}. In other words, we consider the Sparse
algorithm from Section 5 with & = d”. We show the performance of this algorithm for this choice of X, in
comparison to the Baseline (i.e. using all observed features) as well as IRM-t and IRM-c, in Figure 10b for
d = 3,5,7. With this restriction on the candidate adjustment sets, our algorithm performs better than it does in
Figure 3(b) where there are no restrictions on the candidate adjustment sets.

"More precisely, the Sparse algorithm considers subsets of size at-most k. Here, we consider subsets of size exactly
equal to k.
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Performance with dimensions. The gains of our testing and subset search based algorithm over the Baseline
are much more in the low dimensions compared to the high dimensions as seen in Figures 3(b) and 10b. We
believe there are two primary reasons behind this : (a) The CI tester leaks more false positive in high dimensions
compared to low dimensions (see Appendix K.1) and (b) The CI tester fails to consistently output a high p-value
for the set {x2} in high dimensions (see Figure 10a). The gains of our IRM based algorithm remain consistent
even in high dimensions as expected.

K.3 Generating the environment/sub-sampling variable

In all our experiments in Section 5, we let the sub-sampling variable depend on both x; and t. Now, we will look
into the case where the sub-sampling variable is generated as a function of only x; = x; i.e., e = f(x;). More
specifically, we generate the sub-sampling variable as below:

e e ~ Softmax(0s1(x1 — E[xl])) with Og1 = (9((311)7 9((3), 9((3)) € R3 such that Héll) € Uniform(1, 2), 0é21) =0, and
9((53{) € Uniform(—2, —1)

For this setting, we show the plots analogous to those in Figure 3(a), Figure 3(b), Figure 10a and Figure 10b in
Figure 11. As we can see in Figure 11a, Figure 11b, Figure 11c, and Figure 11d, the performance of our algorithm
with e = f(x;) is similar to (at a high level) its performance with e = f(x;, t). This should not be surprising
since Corollary 1 holds for any v C {t} i.e., for both v = @ and v = {t}. In other words, while theoretical
tradeoff between the choice of v i.e., @ or {t} is unclear, there is no major empirical difference. Note: We do not
show the performance of IRM based algorithms for e = f(x;) since it is exactly the same as the performance for

e = f(Xl, t).
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K.4 IHDP

In this section, we provide more details on experiments in Section 5.2 on the IHDP® dataset.

Dataset Description. First, we describe various aspects measured by the features available in this dataset. The
feature set comprises of the following attributes (a) 1-dimensional : child’s birth-weight, child’s head circumference
at birth, number of weeks pre-term that the child was born, birth order, neo-natal health index, mother’s age
when she gave birth to the child, child’s gender, indicator for whether the child was a twin, indicator for whether
the mother was married when the child born, indicator for whether the child was first born, indicator for whether
the mother smoked cigarettes when she was pregnant, indicator for whether the mother consumed alcohol when
she was pregnant, indicator for whether the mother used drugs when she was pregnant, indicator for whether the
mother worked during her pregnancy, indicator for whether the mom received any prenatal care, (b) 3-dimensional
: education level of the mother at the time the child was born, and (c) 7 -dimensional : site indicator.

The set of all observed features satisfies the back-door criterion for IHDP. As described in Section
5.2, the outcome simulated by the setting “A” of the NPCI package depends on all the observed features. In other
words, there is a direct edge from each of the observed feature to the outcome y in this scenario. Also, recall from
Section 5.2 that the feature set is pre-treatment (i.e., it satisfies Assumption 1). Therefore, from Remark 5, z C x
satisfies the back-door criterion relative to (t,y) in G if and only if t and y are d-separated by z in G_;. Here,
when z is the set of all observed features, it is easy to see that t and y are d-separated by z in G_;. Therefore,
the set of all observed features satisfies the back-door criterion.

Choices of features in x(°). As mentioned in Section 5.2, we keep the feature child’s birth-weight in x(®). In
addition to these, we also keep the number of weeks pre-term that the child, child’s head circumference at birth,
birth order, neo-natal health index, mother’s age when she gave birth to the child , child’s gender, indicator for
whether the mother used drugs when she was pregnant, indicator for whether the mom received any prenatal
care, and site indicator in x(?).

Existence of valid adjustment sets of size 5. Since x(°) comprises of only 10 different features, the set of
all subsets of x(?) \ {x;} comprises of 512 elements for any x;. Therefore, in principle, one could find the set
with lowest ATE error amongst these 512 candidate adjustment sets instead of the averaging performed by our
algorithm (Algorithm 1). In an attempt to do this for comparison with our algorithm, we accidentally came
across the following subset of features : x(™) = {child’s head circumference at birth, birth order, indicator for
whether the mother used drugs when she was pregnant, indicator for whether the mom received any prenatal
care, site indicator}. The ATE estimated using x("™ to adjust (termed as ‘the oracle’) significantly outperforms
the ATE estimated using x(®) to adjust (termed as ‘the baseline’ i.e., Baseline) as shown in Figure 12a.
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Figure 12: Additional analysis on ITHDP.

Therefore, we believe that there exist valid adjustment sets of size 5 (or adjustment sets better than x(°)) for this
dataset. Therefore, to curtail the run-time of Exhaustive, we consider Sparse with X' = subsets of x(*) \ {x;}
with size at-most 5 in Section 5.2. However, as mentioned in Section 5.2, the performance of Sparse is similar to

8https://github.com/vdorie/npci/blob/master/examples/ihdp_sim/data/ihdp.RData


https://github.com/vdorie/npci/blob/master/examples/ihdp_sim/data/ihdp.RData

Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge

that of Exhaustive since (a) Sparse has to perform 382 tests and (b) there is no guarantee that x("™) will be
picked as a valid adjustment set (as explained below). Finally, we point out that the performance of IRM-t is
closest to ‘the oracle’ as evident from Figure 4.

Success Probability. Similar to Section K.2, we consider the success probability of the set x("). For a given
Puatue threshold, we let the success probability of the set x("™) be the fraction of times (in n, runs) the p-value of
Cl(e L, y|x(m)7 t) is more than pyaue. In Figure 12b, we show how the success probability of the set x(™) varies
with different pyqiue thresholds i.e., {0.1,0.2,0.3,0.4,0.5} for IHDP.

K.5 Cattaneo

In this section, we provide more details on experiments in Section 5.3 on the Cattaneo® dataset.

Dataset Description. We describe various aspects measured by the features available in this dataset. The
feature set comprises of the following attributes : mother’s marital status, indicator for whether the mother
consumed alcohol when she was pregnant, indicator for whether the mother had any previous infant where the
newborn died, mother’s age, mother’s education, mother’s race, father’s age, father’s education, father’s race,
months since last birth by the mother, birth month, indicator for whether the baby is first-born, total number of
prenatal care visits, number of prenatal care visits in the first trimester, and the number of trimesters the mother
received any prenatal care. Apart from these, there are also a few other features available in this dataset for
which we did not have access to their description.

K.6 Training details

For all of our experiments, we split the data randomly into train data and test data in the ratio 0.8 : 0.2. We use
ridge regression with cross-validation and regularization strengths : 0.001,0.01,0.1,1 as the regression model. We
mainly relied on the following github repositories — (a) causallib!® (Shimoni et al., 2019), (b) RCoT (Strobl
et al., 2019), (c) ridgeCV!!, and (d) IRM'2.

For IRM, we use 15000 iterations. We train the IRM framework using 2 environments and perform validation on
the remaining environment. For validation, we vary the learning rate (of the Adam optimizer that IRM uses)
between 0.01 and 0.001 and vary the IRM regularizer between 0.1 and 0.001. During training, we use a step
learning rate scheduler which decays the initial learning rate by half after every 5000 iterations.

K.7 Comparison with Entner et al. (2013) and Gultchin et al. (2020)

As described in Section 3, Entner et al. (2013) and Gultchin et al. (2020) cannot be used to conclude that
0,{xs},{x2, x3} are not admissible i.e., not valid backdoors in G**Y (because the variable x; = x; has an unobserved
parent) while our Theorem 3.2 can be used to conclude that. Here, we provide the p-values (averaged over 100
runs) corresponding to these in Table 1. As we can see, our invariance test results in a very small p-value for
0,{x3}, and {x2, x3} leading to the conclusion that they are not valid backdoors in G*¥.

Table 1: p-value of CI(e L, y|z,t) for z =0, {x3}, or {x2,x3} in G*Y.

z =3 d=25 d=7
1] 1.3x1071% +29%x 10716 1.1x1075 +£1.5%x10716 19x 10715 + 6.7 x 10716
{x3} 1.4x1071% +£27%x 10716 12x1075 +£3.1x10716 1.0x 10715 +£2.7x 10716

{xo, x3} 1.8x107* £1.8x107%  51x1073+£36x10% 19x107* £1.3x107*

Ywww.stata-press.com/data/r13/cattaneo2.dta

https://github.com/ibm/causallib
Uhttps://github.com/scikit-learn/scikit-learn/tree/15a949460/sklearn/linear_model/_ridge.py
“https://github.com/facebookresearch/InvariantRiskMinimization
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K.8 Comparison with Cheng et al. (2020)

As described in Section 3, Cheng et al. (2020) cannot be used to conclude that 0, {x2}, {x3}, {x2,x3} are not
admissible i.e., not valid backdoors in the DAG obtained by adding the edge x; — y to G'°Y (because there is no
COSO variable) while our Theorem 3.2 can be used to conclude that. Here, we provide the p-values (averaged
over 100 runs) corresponding to these in Table 2. As we can see, our invariance test results in a very small p-value
for 0, {x2}, {x3}, and {x2, x3} leading to the conclusion that they are not valid backdoors.

Table 2: p-value of CI(e L, y|z,t) for z = 0, {x2}, {x3}, or {x2,x3} in the DAG obtained by adding the edge
x1 — y to GOV,

1] 1.2x1071% +£20x 10716 16x10715 +£32%x 10716 13 x 10715 + 2.1 x 10716
{xo} 88x 1077 £ 88 x 1077 53x107* +42x10~* 81x1073 +£4.8x 1073
{x3} 1.6 x 10715 £32x 10710 9.7x 1071 £ 1.6 x 10716 2.0 x 1071 + 3.8 x 1071¢

{x2,x3} 3.5x1077 £3.4x 1077 1.1 x 1073 + 7.8 x 107* 1.4 %1073 + 1.3 x 1073
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