
Learning and Generalization in Overparameterized Normalizing Flows

Kulin Shah Amit Deshpande Navin Goyal
Microsoft Research India Microsoft Research India Microsoft Research India

Abstract

In supervised learning, it is known that over-
parameterized neural networks with one hid-
den layer provably and efficiently learn and
generalize, when trained using stochastic gra-
dient descent with a sufficiently small learning
rate and suitable initialization. In contrast,
the benefit of overparameterization in unsu-
pervised learning is not well understood. Nor-
malizing flows (NFs) constitute an important
class of models in unsupervised learning for
sampling and density estimation. In this pa-
per, we theoretically and empirically analyze
these models when the underlying neural net-
work is a one-hidden-layer overparametrized
network. Our main contributions are two-fold:
(1) On the one hand, we provide theoretical
and empirical evidence that for constrained
NFs (this class of NFs underlies most NF con-
structions) with the one-hidden-layer network,
overparametrization hurts training. (2) On
the other hand, we prove that unconstrained
NFs, a recently introduced model, can effi-
ciently learn any reasonable data distribution
under minimal assumptions when the underly-
ing network is overparametrized and has one
hidden-layer.

1 Introduction

Neural network models trained using gradient-based
algorithms have been very effective in both supervised
and unsupervised learning. This is surprising for two
reasons: First, the optimization of training loss is typ-
ically non-smooth and non-convex and yet gradient-
based methods often succeed in making the training
loss very small. Second, even large neural networks

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

whose number of parameters are more than the size
of training data often generalize well on the unseen
test data, instead of overfitting the seen training data.
Recent work in supervised learning attempts to theo-
retically analyze these phenomena.

In supervised learning, the empirical risk minimization
with quadratic or cross-entropy loss is a non-convex
optimization problem even for one hidden layer fully
connected network. In the last few years, it was real-
ized that when the network is overparametrized, i.e.
the hidden-layer size is large compared to the dataset
size or some measure of complexity of the data, one
can provably show efficient training and generalization
for these networks. This hinges on the fact that over-
parametrization makes the optimization problem close
to a convex one. See, e.g., Jacot et al. [2018], Du et al.
[2018], Allen-Zhu et al. [2019], Zou et al. [2020], Arora
et al. [2019].

The role of overparameterization and its effect on prov-
able training and generalization guarantees for neural
networks is far less understood in unsupervised learn-
ing. Generative modeling of a probability distribution
when we are given samples drawn from that distribu-
tion is an important, classical problem in statistics and
unsupervised learning. The goal of a generative model
is to generate new samples from the distribution and
give a probability density estimate at any queried point.
Popular categories of generative models based on neu-
ral networks include Generative Adversarial Networks
(GANs) Goodfellow et al. [2014], Variational AutoEn-
coders (VAEs) (e.g., Kingma and Welling [2014]), and
Normalizing Flows (NFs) (e.g., Rezende and Mohamed
[2015]). All categories of models, especially GANs, have
shown an impressive capability to generate samples of
photo-realistic images but GANs and VAEs cannot give
probability density estimates for new data points. All
categories present various challenges in training such as
mode collapse, posterior collapse, training instability,
etc., e.g., Bowman et al. [2016], Salimans et al. [2016],
Arora et al. [2018], Lucic et al. [2018].

Unlike GANs and VAEs, NFs can do both sampling and
density estimation, leading to a potentially wider range
of applications; see, e.g., the surveys Kobyzev et al.

Learning and Generalization in Overparameterized Normalizing Flows

[2020], Papamakarios et al. [2019]. Theoretical under-
standing of learning and generalization in generative
models remains a natural and important open ques-
tion even after some recent work (Buhai et al. [2020],
Kong and Chaudhuri [2020], Koehler et al. [2020], Lee
et al. [2021]). Appendix J contains further literature
review. In this paper, we focus on the theoretical anal-
ysis of NFs. For constrained NFs which underlies a
large class of NF constructions, we show that theoreti-
cal analysis in the overparametrized regime runs into
difficulties. This is also seen in experiments where over-
parametrization hurts the performance of constrained
NFs in many settings. In contrast, a recent class of
NFs called unconstrained NFs, admits provable training
and generalization guarantees in the overparametrized
setting. Before stating our contributions in detail, we
introduce NFs followed by a very brief discussion of
overparametrized supervised learning to provide the
necessary context.

Normalizing Flows. The general idea behind normal-
izing flows (NFs) is as follows: let X ∈ Rd be a random
variable coming from the data distribution and Z ∈ Rd
be a random variable associated with base distribution
which can be the standard Gaussian or exponential
distribution. Given i.i.d. samples of X, the goal is to
learn a differentiable invertible map fX : Rd → Rd that
transports the distribution of X to the distribution of
Z: in other words, the distribution of f−1

X (Z) and X
are same. (We tacitly assume that the distribution ofX
is nice enough to allow for the existence of fX .) We as-
sume that function fX is autoregressive, means fX is of
the form fX(x) =

(
fX,1(x1), fX,2(x1:2), . . . , fX,d(x1:d)

)
where fX,i : Ri → R and x1:i is first i dimension of a
data sample x from X (i.e., if x = (x1, x2, . . . , xd), then
x1:i = (x1, . . . , xi)). The nice thing about autoregres-
sive functions is that their invertibility is easily ensured
by making fX,i(x1:i) a strictly monotonically increasing
function in xi for any fixed value of x1:(i−1). We will
call such an f monotonic autoregressive function. Such
a function is also called a Knothe–Rosenblatt map and
is known to exist and be unique under very general
conditions sufficient for our purposes, in particular for
any pair of probability measures on Rd with density;
see Chapter 2 in Santambrogio [2015].

Learning of fX is done by representing a monotonic
autoregressive map f by neural networks, setting up
an appropriate loss function, and doing gradient-based
training with the aim of achieving f = fX . A num-
ber of approaches have been suggested for carrying
out this general plan. We distinguish between two
classes of approches: (1) Represent f directly using
neural networks. In this approach there are d neural
networks N1, . . . , Nd with fi(x1:i) = Ni(x1:i). Since
the functions represented by standard neural networks

are not necessarily monotone, the design of the neu-
ral network is constrained to make it monotone. For
example, if {ar, wr, br}mr=1 are the parameters of the
neural networks, with ar, wr, br ∈ R for each r, and ρ
is a monotonically increasing activation function, then
the univariate one-hidden layer network of the form∑m
r=1 ar ρ (wrx+ br) can be made monotonically in-

creasing by ensuring positivity of ar and wr. This
can be done in multiple ways: for example, instead of
ar, wr, one can use a2

r, w
2
r in the above expression; see,

e.g., [Huang et al., 2018, Cao et al., 2019a]. (2) Repre-
sent the Jacobian matrix ∂f(x)

∂x using neural networks.
In this approach, we model diagonal entries of the Jaco-
bian by neural networks ∂fi(x1:i)

∂xi
= φ(Ni (x1:i)) where

φ : R→ R+ takes on only positive values. Positivity of
∂fi(x1:i)
∂xi

implies monotonicity of fi (x1:i) with respect
to xi. Note that the parameters are unconstrained in
this approach. This approach is used by Wehenkel and
Louppe [2019].

We will refer to the models in the first class as con-
strained normalizing flows (CNFs) and those in the sec-
ond class as unconstrained normalizing flows (UNFs).

Most existing analyses for overparametrized neural net-
works in the supervised setting consider a linear approx-
imation of the neural network, termed pseudo-network
in Allen-Zhu et al. [2019]. The convexity property of
loss function for pseudo-network and closeness between
neural network and pseudo network help in proving
convergence and generalization of neural network.

1.1 Our Contributions

In this paper, we study both CNFs and UNFs theoreti-
cally when the underlying network has one hidden-layer
and empirically validate our theoretical findings. We
now describe our contributions.

Architectural variants. The practical CNF and
UNF architectures can be quite detailed involving mul-
tiple layer neural networks and stacking of flows. It is
difficult to get a theoretical handle on such models—
presently there are no satisfactory results even for
two-hidden layers networks in the supervised learn-
ing setting. In this paper, we identify very simple and
natural NF models (gleaned from the existing architec-
tures) reducing the architecture to the essentials and
yet providing satisfactory results in experiments. These
models are the starting point of our analyses. A natu-
ral approach to analyze NFs is to adapt the successful
techniques from supervised learning to NFs. While
there is a natural definition of pseudo-network in the
case of CNFs, for UNFs this is not clear. We are able to
define linear approximations of the neural network to
analyze the training of both CNFs and UNFs. However,
one immediately encounters some new roadblocks: the

Kulin Shah, Amit Deshpande, Navin Goyal

loss surface of the pseudo-networks is non-convex in
both CNFs and UNFs for the simple NF models men-
tioned above. Therefore, analyzing pseudo-networks
still remains difficult. Barring a major breakthrough
in non-convex optimization for deep learning, one way
to proceed is to find architectural variants of simple
NFs that may lead to pseudo-networks with convex
optimization problems without adverse effect on their
empirical performance. We follow this path and identify
novel variations that make the optimization problem
for associated pseudo-network convex. It is pertinent
that our variations are arguably natural.

Architectural variants for CNFs. To resolve the
non-convexity arising from using a2

r, w
2
r as parameters,

we simply impose the constraints ar ≥ ε and wr ≥ ε
for all r ∈ [m] where [m] = {1, . . . ,m}. To solve this
constrained optimization problem, we use projected
SGD, which in this case incurs essentially no extra
cost over SGD due to the simplicity of the constraints.
In our experiments, this variation slightly improves
the training of NFs compared to the reparametrization
approach mentioned above and may be of a separate
interest in practical settings.

Architectural variants for UNFs. Similarly, for
UNFs we identify two problems in the model of We-
henkel and Louppe [2019] that make the theoretical
analysis difficult. We resolve these as follows: (1)
Change in numerical integration method. Instead of
Clenshaw–Curtis quadrature method for numerical in-
tegration employed in Wehenkel and Louppe [2019],
we use the simple rectangle quadrature. This change
makes the model slightly slower (in our experiments, it
typically uses twice as many samples and time to get
similar performance). (2) Change in the base distribu-
tion. We use the exponential distribution as the base
distribution instead of the standard Gaussian distribu-
tion. In experiments, this does not cause any changes
in performance. Note that NFs require only efficient
sampling and density estimation from the base distribu-
tion but the Gaussian is far from the only distribution
to have those properties.

Our results about these variants point to a dichotomy
between these two classes of NFs:

Overparametrization hurts CNFs. Our theoreti-
cal findings provide evidence that overparametrization
makes training slower. To be more precise, we show
that in a bounded number of training iterations or for
bounded change in weights such that neural networks
and pseudo networks are close, overparameterized CNFs
can not learn the target function. We also point out the
reasons that lead overparametrization to adversely af-
fect the training of CNFs. Our experimental results also
validate our theoretical results and confirm that over-

parameterization in CNF makes training slower. Note
that in supervised learning, it is known that overpa-
rameterization makes training faster [Neyshabur et al.,
2015, Allen-Zhu et al., 2019]. Therefore, the finding
that overparametrization is significantly detrimental
to CNFs is novel and we are not aware of any other
settings where overparametrization has such a strong
negative effect. Thus, for theoretical analysis of CNFs,
one must work with moderate-sized networks. But this
is likely to be difficult as analysis of such networks has
remained open even for supervised learning leading us
to a “barrier”.

Analysis of overparametrized UNFs. We theoret-
ically analyze UNFs and prove that overparameterized
networks for UNFs indeed learn the data distribution.
To our knowledge, this is the first “end-to-end’ ’ analysis
of an NF model—and in fact for any neural generative
model using gradient-based algorithms for a sufficiently
large class of distributions (please see Appendix J for
additional extensive related work). This proof, while
following the high-level scheme of supervised learning
proofs, requires several new ideas, conceptual as well as
technical, due to different settings and will be discussed
in the sequel.

To summarize, our contributions include:

• We identify difficulties in the theoretical analysis
of existing NF models. We resolve these by propos-
ing new versions of these models without loss of
experimental efficacy.

• We identify a “barrier” to the training conver-
gence and generalization analysis of CNFs: over-
parametrization is detrimental to CNFs.

• We provide efficient training convergence and gen-
eralization analysis for UNFs. To our knowledge,
this is the first result on training and generaliza-
tion of NFs.

• We experimentally validate our theoretical claims.

Paper outline. Sec. 2 contains preliminaries, Sec. 3
contains our results on CNFs and Sec. 4 contains results
on UNFs. Sec. 5 briefly describes our empirical studies.
We conclude in 6. Appendix A contains outline of the
appendix.

2 Preliminaries

In this section, we will continue our description of the
problem of learning probability distributions using NFs
and introduce necessary notation.

Learning and Generalization in Overparameterized Normalizing Flows

2.1 Problem of learning distributions in
Normalizing Flows

Recall that the goal of NFs is to learn a probability
distribution given via i.i.d. samples from the distribu-
tion. Let X be the random variable corresponding to
the data distribution we want to learn. We denote the
probability density (we often just say density) of X
at u ∈ Rd by pX(u). We will work with distributions
whose densities have a finite support.1 We will further-
more assume pX(u) = 0 when ‖u‖2 ≥ 1, without loss
of generality. Let Z be a random variable with either
standard Gaussian or the standard exponential distri-
bution. There seems to be no well-accepted definition
of multidimensional exponential distribution; for our
purposes the following natural definition will serve well.
The density of the standard exponential distribution
at z = (z1, z2, . . . , zd) ∈ Rd is given by e−

∑d
i=1 zi when

all zi ≥ 0, and by 0, otherwise. We will refer to the
distribution of Z as the base distribution.

Let f : Rd → Rd be monotonic autoregressive as de-
fined previously; thus, f is invertible. Let pf,Z(·) be the
density of the random variable f−1(Z). Let z = f(x).
Then the standard change of density formula using the
invertibility of f gives

pf,Z(x) = pZ(f(x))
∣∣∣det

(
∂f(x)

∂x

) ∣∣∣. (2.1)

We would like to choose f so that pf,Z = pX . As men-
tioned before, such an f always exists and is unique
and we will denote it by F ∗. If we can find F ∗, then
we can generate samples of X using F ∗−1(Z) since gen-
erating the samples of Z is easy and so is the inversion
of F ∗ using monotonic autoregressive property. Sim-
ilarly, we can evaluate density pX(x) using standard
change of variable with F ∗ because pF∗,Z(x) = pX(x).
To find F ∗ from the data, we set up the maximum
log-likelihood objective:

max
f

1
n

∑
x∈X

log pf,Z(x)

= max
f

1
n

[∑
x∈X

log pZ(f(x)) +
∑
x∈X

log
(

det
(∂f(x)

∂x

))]
,

(2.2)

where training set X ⊂ Rd contains n i.i.d. samples of
X, and the maximum is over differentiable invertible
functions. When Z is standard exponential and f is

1This is often without any real loss of generality because,
for most purposes, light-tailed distribution (e.g., the Gaus-
sian distribution) can be assumed to have a finite support.
(Exception to this are heavy-tailed distributions which are
seldom encountered; we believe our work here could be
extended to deal with such distributions too.)

monotonic autoregressive, then (2.2) simplifies to

min
f
L(f,X) = 1

n

∑
x∈X

L(f, x) and

L(f, x) =
d∑
i=1

(
fi(x1:i)− log

(∂fi(x1:i)
∂xi

))
. (2.3)

We denote average loss by L(f,X) = 1
n

∑
x∈X L(f, x).

Informally, we expect that as n → ∞, the opti-
mum fn in the above optimization problem satisfies
pfn,Z → pX . To make the above optimization problem
tractable, instead of f we work with d neural networks
N1, N2, . . . , Nd as previously touched upon in our brief
description of CNFs and UNFs. All our networks will
have one hidden layer with the following basic form:

N (x; θ) =
m∑
r=1

ār ρ(〈w̄r + wr, x〉+ (b̄r + br)).

Here m is the size of the hidden layer, ρ is a strictly
increasing activation function, the weights ār, w̄r, b̄r are
the initial weights chosen at random according to some
distribution specified later, and wr, br are offsets from
the initial weights. We only train wr and br, and the
outer weights remain frozen at their initial values. Let
θ̄ = (w̄1, . . . , w̄m; b̄1, . . . , b̄m) denote the vector of initial
parameters and similarly θ = (w1, . . . , wm; b1, . . . , bm)
denote the matrix of offsets from the initial weights.
Similarly, we denote offsets at time step t by θ(t) and
the corresponding network by N (t)(x) or N(x; θ(t)).

2.2 Supervised learning analysis

We now very briefly outline a proof technique for ana-
lyzing training and generalization for one-hidden layer
neural networks for supervised learning (e.g. Allen-
Zhu et al. [2019]). For simplicity, we restrict the
discussion to the realizable setting. Data x ∈ Rd
is generated by some distribution D and the labels
y = h(x) are generated by some unknown function
h : Rd → R. The function h is assumed to have
small “complexity” Ch which (informally speaking) mea-
sures the required size of a one-hidden-layer neural
network with smooth activations to approximate h.
The loss function is the square loss on the training
set X , that is, Ls(N (t),X) = 1

n

∑
x∈X Ls(N

(t), x) with
Ls(N

(t), x) = (N(x; θ(t)) − y)2. The training is done
using SGD to update the parameters θ of the neural
network.

The problem of optimizing the square loss is non-convex
even for one-hidden layer networks. One instead works
with the pseudo-network P (x; θ) which is the linear

Kulin Shah, Amit Deshpande, Navin Goyal

approximation of N(x; θ):

P (x; θ) =
m∑
r=1

ār(ρ(〈w̄r, x〉+ b̄r)

+ ρ′(〈w̄r, x〉+ b̄r)
(
〈wr, x〉+ br

)
).

Similarly to N (t) and N(x; θ(t)), we can also define P (t)

and P (x; θ(t)) with parameters θ(t). When the network
is overparameterized, i.e. the network size m is suffi-
ciently large compared to Ch, and the learning rate
is small (η = O(1/m)), SGD iterates when applied to
Ls(N

(t), x(t)) and Ls(P (t), x(t)) remain close through-
out. Moreover, the problem of optimizing Ls(P (t),X)
is a convex problem in θ(t) for all t and thus can be
analyzed with the existing methods. An approxima-
tion theorem then states that there exist parameters
θ∗ with small norm such that the pseudo-network with
parameters θ∗ is close to the target function. This to-
gether with the analysis of SGD shows that the pseudo-
network, and hence the neural network too, achieves
small training loss. Then by a Rademacher complexity
argument that the neural network after T = O(Ch/ε2)
time steps has population loss within ε of the optimal
loss, thus obtaining a generalization result.

3 Constrained Normalizing Flow

In this section, we will first describe problems in analyz-
ing current CNF architectures. Then, we will describe
a new architectural variant which is easy to analyze
and our theoretical result on CNF.

3.1 Problems in analyzing CNF architectures

In CNFs, monotonic autoregressive functions f(x) =
(f1(x1:1), f2(x1:2), . . . , fd(x1:d)) are represented by d
neural networks via fi(x1:i) = Ni(x1:i) = N(x1:i; θi)
where N(x1:i; θi) is given by

N(x1:i; θi) = τ
m∑
r=1

āi,r ρ(〈w̄i,r + wi,r, x1:i〉+
(
b̄i,r + bi,r)

)
,

where τ is a normalization constant chosen to com-
pensate for the effect of overparameterization. We use
θi to denote parameters of Ni(x1:i) and θ to denote
parameters of all neural networks. To make fi(x1:i)
monotonically increasing in xi for each fixed x1:i−1, we
ensure that āi,r,i ≥ 0, w̄i,r,i + wi,r,i ≥ 0 for all r. One
way to do this is by replacing āi,r and w̄i,r,i +wi,r,i by
their functions that take on only positive values. For
example, the square function would give us the neural
network

Ni(x1:i) = τ
m∑
r=1

ā2
i,r ρ(〈ζ

(
w̄i,r + wi,r

)
, x1:i〉+ b̄i,r + bi,r),

where ζ : Ri → Ri is given by ζ (y1, y2, . . . , yi) =(
y1, . . . , yi−1, y

2
i

)
. After reparameterization, parame-

ters have no constraints, and so this network can be

trained using SGD. But we need to specify the (mono-
tone) activation ρ to complete our description of CNF.

Activation function. Unlike supervised learning,
the choice of the activation function needs more care
for CNFs as we will now see. Let σ(x) denote the ReLU
activation. If we choose ρ = σ, then in (2.3) we have

∂fi(x1:i)

∂xi
= τ

m∑
r=1

ā2
i,r (w̄i,r,i + wi,r,i)

2I[〈ζ(w̄i,r

+ wi,r), x1:i〉+ b̄i,r + bi,r ≥ 0].

The derivative ∂fi(x1:i)

∂xi
and consequently log(det(∂f(x)∂x))

are discontinuous functions of x and θ. Gradient-based
optimization algorithms are not applicable to problems
with discontinuous objectives, and indeed this is re-
flected in experimental failure of such models. By the
same argument, any activation with a discontinuous
derivative is not admissible. Convex activations with
continuous derivative (e.g. ELU(x)) also cannot be used
because then N(x1:i; θi) is also a convex function of xi,
which need not be the case for the optimal f . Hence
in such cases, N(x1:i; θi) can not approximate f . To
our knowledge, among the commonly used activations
tanh (and the closely-related sigmoid) is the only one
that does not suffer from either of these defects and
also works well in practice Cao et al. [2019b].

Non-convexity of pseudo-network. Pseudo-
network with activation tanh is given by

P (x1:i; θi) = τ
∑m
r=1ā

2
i,r

(
tanh(〈ζ

(
w̄i,r

)
, x1:i〉+ b̄i,r)

+ tanh′(〈ζ
(
w̄i,r

)
, x1:i〉+ b̄i,r) (〈ζ

(
w̄i,r + wi,r

)
− ζ

(
w̄i,r

)
, x1:i〉+ bi,r)

)
.

Note that P (x1:i; θi) is not linear in wi,r. Hence, it
is not obvious that the loss function for the pseudo-
network will remain convex in parameters; indeed, non-
convexity can be confirmed in experiments.

3.2 A variant of CNF architecture

To overcome the non-convexity issue, we propose an-
other formulation of CNFs. Here we use standard
form of the neural network, but ensure the constraints
āi,r > 0 and w̄i,r,i > 0 by the choice of the initialization
distribution and w̄i,r,i + wi,r,i ≥ ε by using projected
SGD for optimization.

N(x1:i; θi)

= τ
m∑
r=1

āi,r tanh
(
〈w̄i,r + wi,r, x1:i〉+ (b̄i,r + bi,r)

)
,

with constraints w̄i,r,i + wi,r,i ≥ ε, for all r.

ε > 0 is a small constant to ensure strict monotonicity
of N(x1:i; θi). These constraints are very simple and

Learning and Generalization in Overparameterized Normalizing Flows

projected SGD incurs very little overhead. The pseudo-
network in this formulation is given by

P (x1:i; θi) = Pc(x1:i) + P`(x1:i; θi)

with constraints w̄i,r,i + wi,r,i ≥ ε for all r, where

Pc(x1:i) = τ
m∑
r=1

āi,r tanh(〈w̄i,r, x1:i〉+ b̄i,r) and

P`(x1:i; θi) = τ
m∑
r=1

āi,r tanh′(〈w̄i,r, x1:i〉

+ b̄i,r)
(
〈wi,r, x1:i〉+ bi,r

)
.

Pseudo-network P (x1:i; θi) is linear in θi, therefore
the objective in (2.3) with fi replaced by P (x1:i; θi)
is convex in θi and hence, in θ. Note that Pc(x1:i)
does not change during training, therefore P`(x1:i; θi)
must approximate the target function with Pc(x1:i)
subtracted.

3.3 Theoretical analysis of CNF

Our results for CNFs are negative: we identify barriers
in the analysis of highly over-parameterized CNFs and
show that surmounting these barriers entails analyzing
moderately overparameterized neural networks—a long-
open problem even in supervised learning. Let F ∗
denote the target function and C(F ∗) denote some
complexity measure of F ∗. Initial weights āi,r and
w̄i,r,i are sampled from half-normal distribution with
parameters

(
0, ε2a

)
and

(
0, σ2

wb

)
, respectively. The half-

normal random variable Y with parameters
(
µ, σ2

)
is given by simply

∣∣Y ′∣∣ where Y ′ ∼ N (µ, σ2
)
. Here

N
(
µ, σ2

)
denote the Gaussian distribution with mean

µ and variance σ2. The bias term b̄i,r is sampled
from N

(
0, σ2

wb

)
. We divide our analysis into two cases

based on the value of σwb: (1) σwb is between 1√
m

and
ε

C(F∗)
√

log(md)
, (2) σwb is between ε

C(F∗)
√

log(md)
and 1. In

case (1) we have:
Theorem 3.1. For any ε > 0, for any i ∈ [d], any
hidden layer size m ≥ Ω

(
poly

(
C(F ∗), 1

ε

))
, by choosing

learning rate η = O
(

ε
mτε2a logm

)
and T = O(C(F∗)

ε2
), with

at least probability 0.9, there exist constants αi ∈ Ri
and β ∈ R for which projected SGD after T iterations
gives

|N(x1:i; θ
(T)
i)− (〈αi, x1:i〉+ β)| ≤ O (ε) , (3.1)

for all x with ‖x‖2 ≤ 1.

Theorem 3.1 tells us that if we choose η and T as
suggested in the theorem statement then the function
learned by overparametrized neural networks is close
to a linear function. Recall from Sec. 2.2 that choosing
similar values of η and T in supervised learning enables
the provable successful training of the neural network.

The same issue in approximation arises for all activa-
tions with continuous derivative. More details about
case (1) is given in Appendix H. The result in case (2)
is given by the next theorem.
Theorem 3.2. For any constant c > 0 and any η > 0,
T > 1, if norm of change in parameters ‖θ(T)‖1,2 ≤
O(1

εaσwbτm
c logm), then for all i ∈ [d] and for all x with

‖x‖2 ≤ 1, we have

|P`(x1:i; θ
(T)
i)| ≤ O

(
1

σwbmc
√

log(md)

)
.

Most extant theoretical analyses require that the
change in weights from initialization is small so that
the pseudo-network remains close to the neural net-
work. Small change implies |P`(x1:i; θ

(T)
i)| = O(1

mc) for
some constant c > 0. Therefore, P`(x; θ(T)) can not in
general approximate the target function (with Pc(x1:i)

subtracted). And the same happens with N(x1:i; θ
(T)
i)

because it is close to P (x1:i; θ
(T)
i). More details about

case (2) is provided in Appendix H.

We also show the negative effect of overparameteriza-
tion for CNF in experiments (Section 5).

4 Unconstrained Normalizing Flow

In this section, we first describe our UNF model that
we analyze and then present our main theoretical result
on training and generalization of the UNF model.

4.1 Our UNF model

Unlike the constrained case, where we model f(x) using
neural networks, here we model the Jacobian ∂f(x)

∂x using
d neural networks by setting

∂fi(x1:i)

∂xi
= φ(N(x1:i; θi)),

where φ is ELU + 1 function given by

φ(u) = eu I [u < 0] + (u+ 1) I [u ≥ 0] and

N(x1:i; θi) =
m∑
r=1

āi,r ρ(〈w̄i,r + wi,r, x̃1:i〉+
(
b̄i,r + bi,r)

)
with ρ = ReLU. In the expression for N(x1:i; θi) in-
stead of x1:i, we use x̃1:i ∈ Ri+1 to aid in analysis;
the extra coordinate is added to make ‖x̃1:i‖2 = 1.
No normalization factor is needed in the expression
for N(x1:i; θi) because of the choice of initialization
distribution specified later. We can reconstruct f by
integration:

f1(x1:1) =

∫ x1

−1

∂f1(t)

∂t
dt and

fi(x1:i) =

∫ xi

−1

∂fi(x1, x2, . . . , xi−1, t)

∂t
dt

Kulin Shah, Amit Deshpande, Navin Goyal

for i ∈ [d]. The lower limit in our integral is −1 because
‖x‖2 ≤ 1 by our assumption on the support of the data
distribution. We also denote ∂fi(x1:i)

∂xi
by ∇ifi (x1:i).

The monotonicity of f is achieved by ensuring that
∇ifi (x1:i) is positive for all x. Although positivity was
the only useful property of φ mentioned by Wehenkel
and Louppe [2019], it turns out to have several other
properties which we will exploit in our proof: it is 1-
Lipschitz and increasing, its derivative is 1-Lipschitz,
and its second derivative is non-negative (except at 0,
where it’s not defined).

Quadrature. To reconstruct f , from the Jacobian
we need to evaluate the integrals. While this cannot be
done exactly, good approximation can be obtained via
numerical integration (also known as quadrature). We
estimate fi(x1:i) via the general quadrature formula by

f̃i(x1:i) =
Q∑
j=1

qj∇ifi
(
τj (x1:i)

)
.

Here, Q is the number of quadrature points and the
q1, . . . , qQ are the corresponding coefficients. We use
simple rectangle quadrature, which arises in Riemann
integration, and uses only positive coefficients with qj =
∆xi := xi+1

Q and τj (x1:i) = (x1, . . . , xi−1,−1 + j∆xi).

Wehenkel and Louppe [2019] uses Clenshaw–Curtis
quadrature where the coefficients qi can be negative.
Compared to Clenshaw–Curtis quadrature, the rectan-
gle quadrature requires more points for similar accuracy
(about doubling the number of quadrature points in
our experiments). This is a small price to pay because
rectangle quadrature makes the problem of minimiz-
ing the loss of the pseudo-network (defined shortly)
easier to analyze via the positivity of the quadrature
coefficients.

Exponential base distribution. Taking the stan-
dard Gaussian as a base distribution as in Wehenkel
and Louppe [2019] causes two difficulties: it is not
clear that the loss function in the pseudo-network is
convex (see Remark F.2). Moreover, it is not clear that
throughout training the Lipschitz constant of the loss
function will remain bounded by an absolute constant
and hence independent of the parameters. (This issue
also arises in supervised learning, e.g. Allen-Zhu et al.
[2019], though the authors seem to have not realized
the problem and do not address it.) Both of these
difficulties with the Gaussian can be circumvented by
using the exponential as the base distribution. This
does not cause any negative effects in our experiments.

Learner network parameterization and train-
ing procedure. We initialize āi,r ∼ N (0, ε2a), w̄r ∼
N (0, 1

m) and b̄r ∼ N (0, 1
m), where εa = O(ε

logm) is

a small constant. Additionally, using the estimates
f̃i(x1:i), we get approximate loss function

L̃ (∇f, x) =
d∑
i=1

f̃i(x1:i)−
d∑
r=1

log
(
∇ifi (x1:i)

)
.

Define average approximated loss as L̃ (∇f,X) =
1
n

∑
x∈X L̃ (∇f, x) and expected approximated loss ass

L̃ (∇f,D) = Ex∼DL̃ (∇f, x) . The parameters of neu-
ral networks are updated using SGD:

θ(t+1) = θ(t) − η∇θL̃(∇f, x(t))

where ∇ifi = φ(N(x1:i; θ
(t)
i)), and x(t) ∈ X is chosen

uniformly at random from the training set at each
step. We assume that our data is generated from a tar-
get function F ∗ =

(
F ∗1 (x1:1) , F ∗2 (x1:2) , . . . , F ∗d (x1:d)

)
,

where F ∗i : Ri → R. Thus, F ∗−1 (Z) = X.

Target function class. We consider target func-
tions whose derivative are given by

∂F ∗i (x1:i)

∂xi
= φ

(
pi∑
r=1

µ∗i,rψi,r(〈u∗i,r, x̃1:i〉

)
where |µ∗i,r| ≤ 1,‖u∗i,r‖2 ≤ 1 for all i ∈ [d] and ψi,r :
R → R are smooth functions with Taylor expansion
and pi are positive integers. Our target function class
is rich: the argument of φ is two-layer neural network
with smooth activations.

Target function complexity. We need to quantify
the complexity of the functions: more complex func-
tions allow representing more distributions but are also
harder to learn. We begin by defining the complexity
of univariate smooth functions used in the definition
of target functions. Let ψ : R→ R have Taylor expan-
sion ψ(y) =

∑∞
j=0 cjy

j , then, for ε > 0, its complexity
C0(ψ, ε) is given by

C0(ψ, ε) = O

(∞∑
i=0

(i+ 1)1.75|ci|

)
poly

(
1

ε

)
which is a weighted norm of the Taylor coefficients.
For example, when ψ(y) is one of poly(y), sin(y), ey −
1, tanh(y), it is known that C0(ψ, ε) = O(poly(1

ε))
[Arora et al., 2019, Allen-Zhu et al., 2019]. Very
roughly, C0(ψ, ε) captures how many samples are
needed to learn ψ up to error ε. For F ∗ in our
target class, complexity C(F ∗, ε) is defined to be
poly(d,maxi∈[d] pi,maxi∈[d],r∈[pi] C0(ψi,r, ε)).

4.2 Theoretical analysis of UNF

We state the main theorem for UNFs informally. (For
the complete version, see Theorem G.6 in the ap-
pendix.)

Learning and Generalization in Overparameterized Normalizing Flows

Figure 1: Effect of over-parameterization on training of CNF and UNF on mixture of Gaussian (left figure) and
mixture of Beta (right figure) dataset

Theorem 4.1. For any ε > 0 and for any target func-
tion F ∗ with finite ∂F∗i (x1:i)

∂xi
for all i ∈ [d], hidden layer

size m ≥ C(F∗,ε)
ε2

, the number of samples n ≥ C(F∗,ε)
ε2

,
the number of quadrature points Q ≥ O(C(F∗,ε)

ε) and
total time steps T ≥ O(C(F∗,ε)

ε2
) with probability at least

0.9, we have

Esgd

[
1
T

T−1∑
t=0

Ex∼DL(f (t), x)
]
− Ex∼D

[
L(F ∗, x)

]
= O(ε).

Recall that KL(pF∗,Z ||pf(t),Z) = EX log
pF∗,Z (X)

p
f(t),Z

(X)
,

which gives Esgd[1
T

∑T−1
t=0 KL(pF∗,Z ||pf(t),Z)] = O(ε).

Using Pinsker’s inequality, we can also bound the to-
tal variation distance between the learned and data
distributions pft,Z and pF∗,Z . The theorem can be
interpreted as saying that the target density pF∗,Z
of X = F ∗−1(Z) is close to the density given by the
learned function, namely pf(t),Z (which is the density of
(f (t))−1(Z)). Note that Theorem 4.1 gives the learning
guarantee for all probability distributions which has a
two-layer low complexity neural network with smooth
activation as the derivative of the target function F ∗.
An example of such functions is any positive low degree
polynomial with small coefficients.

Proof Outline. The general outline of the proof
follows that for supervised learning mentioned earlier,
but details differ substantially and require new ideas.
First, unlike prior work which only works with one
neural network, NFs have d neural networks which are
trained jointly. But we show that each neural network
behaves essentially independently which allows us to
analyze each neural network separately. Therefore, for
each neural network ∇ifi (x1:i), we define its pseudo-
network by

∇igi (x1:i) =
∂gi (x1:i)

∂xi
= φ(P (x1:i; θi)).

Note that our definition of pseudo-network is not a
straightforward generalization from the supervised case:
∇igi (x1:i) is not a linear approximation of ∇ifi (x1:i)
because we are not taking linear approximation of final
activation φ. For every i ∈ [d], we show the existence
of pseudo-networks close to the target function

∂F ∗i (x1:i)

∂x1:i
≈ φ

(
P (x1:i; θ

∗
i)
)

for some parameters θ∗i and for all x (Lemma E.8).
However, for this we cannot directly use prior work:
since our pseudo-network approximation is used in
quadrature, it needs to be pointwise (close in L∞)
unlike only on average (close in L1) as in the prior work.
Next, we show that for each i ∈ [d], the corresponding
neural network and pseudo-network remain close during
optimization and the same holds for the gradients of
their respective loss functions (Section D on coupling).
Specifically, for all i ∈ [d], all t ∈ [T] and all x, we show
that

∇if (t)
i (x1:i) ≈ ∇ig(t)

i (x1:i) (Lemma D.4)

∇θi
(
∇if (t)

i (x1:i)
)
≈ ∇θi

(
∇ig(t)

i (x1:i)
)
(Lemma D.6)

L̃
(
∇f (t), x

)
≈ L̃

(
∇g(t), x

)
(Lemma D.5)

∇θL̃
(
∇f (t), x

)
≈ ∇θL̃

(
∇g(t), x

)
(Lemma D.7).

Using coupling and independence of neural networks
mentioned above, we show that SGD achieves near-
minimum training loss (Theorem F.3), that is, for suf-
ficient large T ,

1

T

T−1∑
t=0

Esgd[L̃(∇f (t),X)] ≤ L̃(∇F ∗,X) +O(ε).

Compared to the supervised setting the details in these
sections are considerably more involved due to the
presence of ∇f and f̃ and other features of the loss
function. Finally, the full generalization result is proven

Kulin Shah, Amit Deshpande, Navin Goyal

in Theorem G.6 showing that for sufficiently large T ,
population loss L(f (T),D) is close to L(F ∗,D):

1

T

T−1∑
t=0

Esgd

[
L(f (t),D)

]
≤ L(F ∗,D) +O(ε).

This is proven by stringing together several approxi-
mate equalities. First, we show that the loss L̃(∇F ∗, x)
(and L̃(∇f (t), x)) using the approximation via quadra-
ture is close to the true loss L(F ∗, x) (respectively
L(f (t), x)):

L̃(∇F ∗, x) ≈ L(F ∗, x) and L̃(∇f (t), x) ≈ L(f (t), x)

It is also shown that the empirical and population
versions of approximate loss are close:

L̃(∇f (t),X) ≈ L̃(∇f (t),D) (Lemma G.3)

L̃(∇F ∗,X) ≈ L̃(∇F ∗,D) (Lemma G.4).

These results together with the optimization result
mentioned earlier give Theorem G.6.

5 Experiments

In Sec. 3, we theoretically show that overparameter-
ized neural networks in CNFs can not approximate the
target function in the bounded time steps or in the
bounded change in weights, and in Sec. 4, we show
that highly overparameterized neural networks prov-
ably learn target distribution. We now give empirical
evidence of these claims. In Fig. 1, we plot training
error after a fixed number of training iterations for
a different amount of over-parameterization for both
CNF and UNF models on a mixture-of-Gaussian and
a mixture-of-Beta distribution datasets. The left and
right y-axes represent training error in CNF and UNF
models, respectively. CNF-SNWB and CNF-NNWB
denote CNF models with standard normal and nor-
malized normal (N (0, 1

m)) initialization of parameters,
resp. We see that as we increase overparameterization
in CNF models, training error becomes larger after a
fixed number of training iterations, which means that
larger CNF models need larger number of training it-
erations to learn the target function. But in UNFs,
by increasing overparameterization, training error be-
comes smaller, which means that larger UNF models
need smaller number of training iterations to learn the
target function. Thus, our experimental results sug-
gest that overparameterization in CNFs makes training
slower and overparameterization in UNFs makes train-
ing faster. These experiments were done for a fixed
learning rate. Similar patterns were observed for var-
ious different settings of learning rates except when
training becomes unstable in CNFs. Since results in
supervised learning also suggest that overparameteriza-
tion makes training faster Neyshabur et al. [2015], our

results on CNF are novel and surprising. Results on
CNFs as well as results on UNFs on additional synthetic
and real datasets, deeper models, various initializations,
different learning rates and full experimental setup are
given in Appendix I.

6 Conclusions and Limitaions

We gave the first end-to-end theoretical analysis of nor-
malizing flows. We introduced the dichotomy between
CNFs and UNFs: overparametrization seems to be hurt-
ing training of CNFs but for UNFs overparametrization
does not hurt and we can analyze UNFs when the
underlying network has one hidden-layer. We also pro-
posed NF variants with desirable properties and these
may find use in future work.

The main limitations of our work are the following
which also suggests the main open problems: (1) A
clear theoretical and empirical understanding of the role
of overparameterization in CNFs remains an interesting
open direction. As shown by our negative theoretical
results, it seems necessary to analyze CNFs in the mod-
erately overparametrized setting. However, this setting
is not well-understood even in the supervised case. (2)
For UNFs our analysis requires the overparametrized
setting. (3) For the analysis we distill NF architec-
tures to essentials—while this permits us to zero in on
the main phenomena the more practical architectures
are far more elaborate and performant and pose new
theoretical challenges. (4) Our work assumes the au-
toregressive structure of the flow models. However, the
role of overparameterized neural networks in other nor-
malizing flow models such as coupling flows, residual
flows, and other generative models such as VAEs is
not well understood. (5) Our theoretical results have a
one-hidden layer flow model but invertible flow models
can be sequentially composed to construct an invert-
ible map and in practice, flows models are sequentially
composed to learn flexible target distributions. Extend-
ing our theoretical results for such models is an open
problem.

References

Arthur Jacot, Clément Hongler, and Franck Gabriel.
Neural tangent kernel: Convergence and generaliza-
tion in neural networks. In Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman,
Nicolò Cesa-Bianchi, and Roman Garnett, editors,
Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, 3-8
December 2018, Montréal, Canada, pages 8580–

Learning and Generalization in Overparameterized Normalizing Flows

8589, 2018. URL http://papers.nips.cc/paper/
8076-neural-tangent-kernel-convergence-and-generalization-in-neural-networks.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti
Singh. Gradient descent provably optimizes over-
parameterized neural networks. In Proceedings of
the 35th International Conference on Learning Rep-
resentations, 2018. URL https://arxiv.org/abs/
1810.02054.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang.
Learning and generalization in overparameterized
neural networks, going beyond two layers. In Ad-
vances in neural information processing systems,
pages 6158–6169, 2019.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan
Gu. Gradient descent optimizes over-parameterized
deep relu networks. Machine Learning, 109:1–26, 03
2020. doi: 10.1007/s10994-019-05839-6.

Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, and
Ruosong Wang. Fine-grained analysis of optimization
and generalization for overparameterized two-layer
neural networks. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th In-
ternational Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Re-
search, pages 322–332. PMLR, 2019. URL http:
//proceedings.mlr.press/v97/arora19a.html.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C.
Courville, and Yoshua Bengio. Generative adver-
sarial nets. In Zoubin Ghahramani, Max Welling,
Corinna Cortes, Neil D. Lawrence, and Kilian Q.
Weinberger, editors, Advances in Neural Information
Processing Systems 27: Annual Conference on Neu-
ral Information Processing Systems 2014, December
8-13 2014, Montreal, Quebec, Canada, pages 2672–
2680, 2014. URL http://papers.nips.cc/paper/
5423-generative-adversarial-nets.

Diederik P. Kingma and Max Welling. Auto-encoding
variational bayes. In Yoshua Bengio and Yann LeCun,
editors, 2nd International Conference on Learning
Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings,
2014. URL http://arxiv.org/abs/1312.6114.

Danilo Rezende and Shakir Mohamed. Variational in-
ference with normalizing flows. volume 37 of Proceed-
ings of Machine Learning Research, pages 1530–1538,
Lille, France, 07–09 Jul 2015. PMLR. URL http:
//proceedings.mlr.press/v37/rezende15.html.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew
Dai, Rafal Jozefowicz, and Samy Bengio. Generating
sentences from a continuous space. In Proceedings
of The 20th SIGNLL Conference on Computational

Natural Language Learning, pages 10–21, Berlin,
Germany, August 2016. Association for Computa-
tional Linguistics. doi: 10.18653/v1/K16-1002. URL
https://www.aclweb.org/anthology/K16-1002.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba,
Vicki Cheung, Alec Radford, Xi Chen, and
Xi Chen. Improved techniques for train-
ing gans. In Advances in Neural Informa-
tion Processing Systems, pages 2234–2242.
2016. URL http://papers.nips.cc/paper/
6125-improved-techniques-for-training-gans.
pdf.

Sanjeev Arora, Andrej Risteski, and Yi Zhang. Do
GANs learn the distribution? some theory and em-
pirics. In International Conference on Learning Rep-
resentations, 2018. URL https://openreview.net/
forum?id=BJehNfW0-.

Mario Lucic, Karol Kurach, Marcin Michalski, Olivier
Bousquet, and Sylvain Gelly. Are gans created equal?
a large-scale study. In Proceedings of the 32nd Inter-
national Conference on Neural Information Process-
ing Systems, NIPS’18, page 698–707, 2018.

I. Kobyzev, S. Prince, and M. Brubaker. Normalizing
flows: An introduction and review of current meth-
ods. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2020.

George Papamakarios, Eric T. Nalisnick,
Danilo Jimenez Rezende, Shakir Mohamed,
and Balaji Lakshminarayanan. Normalizing flows
for probabilistic modeling and inference. ArXiv,
abs/1912.02762, 2019.

Rares-Darius Buhai, Andrej Risteski, Yoni Halpern,
and David Sontag. Empirical study of benefits of
overparameterization in single-layer latent variable
generative models. In Proceedings of the 37th In-
ternational Conference on Machine Learning, 2020.
URL https://proceedings.icml.cc/static/
paper_files/icml/2020/5645-Paper.pdf.

Zhifeng Kong and Kamalika Chaudhuri. The expres-
sive power of a class of normalizing flow models.
volume 108 of Proceedings of Machine Learning Re-
search, pages 3599–3609, Online, 26–28 Aug 2020.
PMLR. URL http://proceedings.mlr.press/
v108/kong20a.html.

Frederic Koehler, Viraj Mehta, and Andrej Ris-
teski. Representational aspects of depth and con-
ditioning in normalizing flows. arXiv preprint
arXiv:2010.01155, 2020.

Holden Lee, Chirag Pabbaraju, Anish Sevekari, and
Andrej Risteski. Universal approximation for log-
concave distributions using well-conditioned normal-
izing flows, 2021.

http://papers.nips.cc/paper/8076-neural-tangent-kernel-convergence-and-generalization-in-neural-networks
http://papers.nips.cc/paper/8076-neural-tangent-kernel-convergence-and-generalization-in-neural-networks
https://arxiv.org/abs/1810.02054
https://arxiv.org/abs/1810.02054
http://proceedings.mlr.press/v97/arora19a.html
http://proceedings.mlr.press/v97/arora19a.html
http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://arxiv.org/abs/1312.6114
http://proceedings.mlr.press/v37/rezende15.html
http://proceedings.mlr.press/v37/rezende15.html
https://www.aclweb.org/anthology/K16-1002
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf
https://openreview.net/forum?id=BJehNfW0-
https://openreview.net/forum?id=BJehNfW0-
https://proceedings.icml.cc/static/paper_files/icml/2020/5645-Paper.pdf
https://proceedings.icml.cc/static/paper_files/icml/2020/5645-Paper.pdf
http://proceedings.mlr.press/v108/kong20a.html
http://proceedings.mlr.press/v108/kong20a.html

Kulin Shah, Amit Deshpande, Navin Goyal

Filippo Santambrogio. Optimal Transport for Applied
Mathematicians. Calculus of Variations, PDEs and
Modeling. Birkhäuser, 2015.

Chin-Wei Huang, David Krueger, Alexandre Lacoste,
and Aaron C. Courville. Neural autoregressive flows.
In Jennifer G. Dy and Andreas Krause, editors, Pro-
ceedings of the 35th International Conference on
Machine Learning, ICML 2018, volume 80 of Pro-
ceedings of Machine Learning Research, pages 2083–
2092. PMLR, 2018. URL http://proceedings.mlr.
press/v80/huang18d.html.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Block neu-
ral autoregressive flow. In Proceedings of the Thirty-
Fifth Conference on Uncertainty in Artificial Intelli-
gence, UAI 2019, Tel Aviv, Israel, July 22-25, 2019,
page 511. AUAI Press, 2019a. URL http://auai.
org/uai2019/proceedings/papers/511.pdf.

Antoine Wehenkel and Gilles Louppe. Unconstrained
monotonic neural networks. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett,
editors, Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, 8-14
December 2019, Vancouver, BC, Canada, pages 1543–
1553, 2019. URL http://papers.nips.cc/paper/
8433-unconstrained-monotonic-neural-networks.

Behnam Neyshabur, Ryota Tomioka, and Nathan Sre-
bro. In search of the real inductive bias: On the role
of implicit regularization in deep learning. In ICLR
(Workshop), 2015.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Block
neural autoregressive flow. In Amir Globerson and
Ricardo Silva, editors, Proceedings of the Thirty-Fifth
Conference on Uncertainty in Artificial Intelligence,
UAI 2019, Tel Aviv, Israel, July 22-25, 2019, page
511. AUAI Press, 2019b. URL http://auai.org/
uai2019/proceedings/papers/511.pdf.

Gilad Yehudai and Ohad Shamir. On the power and
limitations of random features for understanding
neural networks. In Advances in Neural Information
Processing Systems, pages 6598–6608, 2019.

Shai Shalev-Shwartz and Shai Ben-David. Understand-
ing machine learning: From theory to algorithms.
Cambridge university press, 2014.

Vaishnavh Nagarajan and J Zico Kolter. Generalization
in deep networks: The role of distance from initial-
ization. arXiv preprint arXiv:1901.01672, 2019.

Dheeru Dua and Casey Graff. UCI machine learning
repository, 2017. URL http://archive.ics.uci.
edu/ml.

Rianne van den Berg, Leonard Hasenclever, Jakub
Tomczak, and Max Welling. Sylvester normalizing

flows for variational inference. In proceedings of the
Conference on Uncertainty in Artificial Intelligence
(UAI), 2018.

Jakub M Tomczak and Max Welling. Improving varia-
tional auto-encoders using householder flow. arXiv
preprint arXiv:1611.09630, 2016.

George Papamakarios, Theo Pavlakou, and Iain Murray.
Masked autoregressive flow for density estimation.
In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17,
page 2335–2344, 2017. ISBN 9781510860964.

Takeshi Teshima, I. Ishikawa, Koichi Tojo, Kenta Oono,
M. Ikeda, and M. Sugiyama. Coupling-based invert-
ible neural networks are universal diffeomorphism
approximators. ArXiv, abs/2006.11469, 2020.

Qi Lei, Jason D. Lee, Alexandros G. Dimakis, and Con-
stantinos Daskalakis. SGD learns one-layer networks
in WGANs. In In Proceedings of the 37th Interna-
tional COnference on Machine Learning, 2020. URL
https://proceedings.icml.cc/static/paper_
files/icml/2020/4998-Paper.pdf.

Yogesh Balaji, Mohammadmahdi Sajedi, Neha Mukund
Kalibhat, Mucong Ding, Dominik Stöger, Mahdi
Soltanolkotabi, and Soheil Feizi. Understanding over-
parameterization in generative adversarial networks.
In International Conference on Learning Representa-
tions, 2021. URL https://openreview.net/forum?
id=C3qvk5IQIJY.

Yuanzhi Li and Zehao Dou. Making method of mo-
ments great again? – how can GANs learn the target
distribution, 2020. URL https://arxiv.org/abs/
2003.04033.

Thanh V. Nguyen, Raymond K. W. Wong, and Chin-
may Hegde. On the dynamics of gradient descent for
autoencoders. In The 22nd International Conference
on Artificial Intelligence and Statistics, AISTATS
2019, 16-18 April 2019, Naha, Okinawa, Japan,
volume 89 of Proceedings of Machine Learning Re-
search, pages 2858–2867. PMLR, 2019a. URL http:
//proceedings.mlr.press/v89/nguyen19a.html.

Thanh V. Nguyen, Raymond K. W. Wong, and Chin-
may Hegde. Benefits of jointly training autoen-
coders: An improved neural tangent kernel anal-
ysis. CoRR, abs/1911.11983, 2019b. URL http:
//arxiv.org/abs/1911.11983.

Adityanarayanan Radhakrishnan, Mikhail Belkin, and
Caroline Uhler. Overparameterized neural networks
can implement associative memory, 2020. URL
https://arxiv.org/abs/1909.12362.

Martin J. Wainwright. High-Dimensional Statistics: A
Non-Asymptotic Viewpoint. Cambridge Series in Sta-
tistical and Probabilistic Mathematics. Cambridge
University Press, 2019. doi: 10.1017/9781108627771.

http://proceedings.mlr.press/v80/huang18d.html
http://proceedings.mlr.press/v80/huang18d.html
http://auai.org/uai2019/proceedings/papers/511.pdf
http://auai.org/uai2019/proceedings/papers/511.pdf
http://papers.nips.cc/paper/8433-unconstrained-monotonic-neural-networks
http://papers.nips.cc/paper/8433-unconstrained-monotonic-neural-networks
http://auai.org/uai2019/proceedings/papers/511.pdf
http://auai.org/uai2019/proceedings/papers/511.pdf
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://proceedings.icml.cc/static/paper_files/icml/2020/4998-Paper.pdf
https://proceedings.icml.cc/static/paper_files/icml/2020/4998-Paper.pdf
https://openreview.net/forum?id=C3qvk5IQIJY
https://openreview.net/forum?id=C3qvk5IQIJY
https://arxiv.org/abs/2003.04033
https://arxiv.org/abs/2003.04033
http://proceedings.mlr.press/v89/nguyen19a.html
http://proceedings.mlr.press/v89/nguyen19a.html
http://arxiv.org/abs/1911.11983
http://arxiv.org/abs/1911.11983
https://arxiv.org/abs/1909.12362

Learning and Generalization in Overparameterized Normalizing Flows

Justin Romberg. Maximum of a se-
quence of gaussian random variables.
2012. URL http://cnx.org/contents/
8bd316d8-6442-4f5a-a597-aef1d6202f87@1.

Yuan-Chuan Li and Cheh-Chih Yeh. Some equivalent
forms of bernoulli’s inequality: A survey. Applied
Mathematics, 4(07):1070, 2013.

Andreas Maurer. A vector-contraction inequality for
rademacher complexities. In International Confer-
ence on Algorithmic Learning Theory, pages 3–17.
Springer, 2016.

http://cnx.org/contents/8bd316d8-6442-4f5a-a597-aef1d6202f87@1
http://cnx.org/contents/8bd316d8-6442-4f5a-a597-aef1d6202f87@1

Supplementary Material:
Learning and Generalization in Overparameterized Normalizing Flows

A Outline

In this section, we give outline of details and proofs of supplementary. We define common notations between
Constrained Normalizing Flows results and Unconstrained Normalizing Flow results in Appendix B. Our results
on CNFs from Section 3 from the main paper are discussed in detail in Theorem H.5 (Section H.1) and Theorem
H.6 (Section H.2) and their proofs.

We give details about our result on UNFs (in Section 4) in Theorem G.6 and its proof (Section G). Our analysis
begins with showing that if change in weights and biases from the initialization is small for a neural network, then
training dynamics of the pseudo-network (linear approximation of neural network) is close to training dynamics of
the neural network in Section D. In Section E, we show that with high probability there exist a pseudo-network
which can approximate the derivative of target function. In Section F, we show that optimization problem for the
pseudo-network is convex; therefore, combining results from Section E and Section D will give us the result that
the loss of UNFs on the training data is close to the loss of target function. In section G, we prove generalization
guarantees to test datasets and complete the proof of Theorem H.5.

We also provide experimental results to verify our theoretical claims on UNFs and CNFs in Section 5 and Section
I. Discussion of related work is given in Section J.

B Notations

In this section, we define commonly used notations. We denote (ααα,βββ) as a concatenation of 2 vectors ααα and βββ.
For any 2 vectors ααα and βββ, ααα� βββ denotes element wise multiplication of ααα and βββ vector. We use ‖ααα‖1, ‖ααα‖2 and
‖ααα‖∞ to denote L1, L2 and L∞ norm of vector ααα. For any matrix M ∈ Rm×d, we denote matrix norm as

‖M‖p,q =

(∑
i∈[m]

‖mi‖qp

)1/q

,

where mi ∈ Rd denotes row vector of matrix M . We denote vector 1 = (1, 1, . . . , 1) ∈ Rm. Big-O and Big-Ω
notation to hide only constants. We use log to denote natural logarithm. For any constant n, [n] is denoted by set
{1, 2, . . . , n}. We use N (µ, σ) to denote Gaussian distribution with mean µ and variance σ. We use I [E] to denote
the indicator of the event E. We say a function f : Rd → R is L-Lipschitz continuous if

∣∣f(x)− f(y)
∣∣ ≤ L‖x− y‖2

for all x, y ∈ Rd.

C Preliminaries

Recall that X is the random variable corresponding to the data distribution and Z is a random variable with
standard Gaussian or multivariate exponential distribution. There seems to be no well-accepted definition of
standard exponential distribution; for our purposes the following natural defintion will serve well. The density of
the standard exponential distribution at z = (z1, z2, . . . , zd) ∈ Rd is given by e−

∑d
i=1 zi when all zi ≥ 0, and by

0, otherwise. Let flow f : Rd → Rd be an monotonic autoregressive function. Then standard change of density
formula using invertibility of f gives

pf,Z(x) = pZ(z) det

(
∂f(x)

∂x

)
.

To make f(x) = (f1(x1:1), f2(x1:2), . . . , fd(x1:d)) an monotonic autoregressive function, we force function fi(x1:i)
to be monotonic with respect to xi for any fixed x1:(i−1) where xi is ith dimension of x. Recall that x1:i represents
the vector including first i elements of vector x for any i ∈ [1, d].

Learning and Generalization in Overparameterized Normalizing Flows

Unlike the constrained case where we model f using a neural network, in unconstrained case we model derivative
of function using d neural networks. In normalizing flow, for all i ∈ [1, d], we model ∂fi(x1:i)

∂xi
using a neural

network N(x1:i; θi). To be specific,

∇ifi (x1:i) =
∂fi(x1:i)

∂xi
= φ

(
N(x1:i; θi)

)
.

We denote ∇f as
(
∇1f1 (x1:1) , . . . ,∇rfr (x1:r) , . . . ,∇dfd (x1:d)

)
. Here, φ is the ELU+1 function given by

φ(x) = exI [x ≤ 0] + (x+ 1) I [x > 0] for all x ∈ R. we use a one-hidden-layer neural network in N(x1:i; θi),
which is given by

N(x1:i; θi) =
m∑
r=1

āi,rσ
(
〈w̄i,r + wi,r, x̃1:i〉+

(
b̄i,r + bi,r

))
We construct x̃1:i ∈ Ri+1 = (x1, x2, . . . , xi,

√
1− ‖x1:i‖2) such that ‖x̃1:i‖2 = 1. We can reconstruct f by

integration:

f1(x1:1) =

∫ x1

−1

∂f1(t)
∂t dt and fi(x1:i) =

∫ xi

−1

∂fi(x1,x2,...,xi−1,t)

∂t dt for 1 < i ≤ d.

The lower limit in our integral is −1 because ‖x‖2 ≤ 1 by our assumption on the support of the data distribution.
Note that to reconstruct f from the Jacobian, we need to evaluate the integrals. While this cannot be done
exactly, good approximation can be obtained via numerical integration (also known as quadrature). We estimate
fi(x1:i) via the general quadrature formula by

f̃i(x1:i) =
Q∑
j=1

qj∇ifi
(
τj (x1:i)

)
.

Here, Q is the number of quadrature points and the q1, . . . , qQ are the corresponding coefficients. We use simple
rectangle quadrature, which arises in Riemann integration, and uses only positive coefficients with qj = ∆xi := xi+1

Q

and τj (x1:i) = (x1, . . . , xi−1,−1 + j∆xi). The loss function for normalizing flows is given by

L̃ (∇f, x) = − log

(
pZ

(
f̃(x)

))
− log

(
Πd
i=1∇ifi (x1:i)

)
Using standard exponential distribution as a base distribution, we get

L̃ (∇f, x) =
d∑
i=1

f̃i(x1:i)−
d∑
r=1

log
(
∇ifi (x1:i)

)
=

d∑
i=1

L̃i (∇f, x) (C.1)

where

L̃i (∇f, x) = f̃i(x1:i)− log
(
∇ifi (x1:i)

)
.

For our theoretical result, we consider target functions whose derivative are given by

∂F ∗i (x1:i)

∂xi
= φ(

pi∑
r=1

µ∗i,rψi,r(〈u∗i,r, x̃1:i〉)),

where |µ∗i,r| ≤ 1,‖u∗i,r‖2 ≤ 1 for all i ∈ [d] and ψi,r : R→ R are smooth functions with Taylor expansion and pi
are positive integers. Our target function class is rich: the argument of φ is two-layer neural network with smooth
activations.

We need to quantify the complexity of the functions: more complex functions allow representing more distributions
but are also harder to learn. We begin by defining the complexity of univariate smooth functions used in the
definition of target functions. Let ψ : R → R have Taylor expansion ψ(y) =

∑∞
j=0 cjy

j , then its complexity
C0(ψ, ε) for ε > 0 is given by O((

∑∞
i=0(i+ 1)1.75|ci|)poly(1

ε)) which is a weighted norm of the Taylor coefficients.
For example, when ψ(y) is one of poly(y), sin(y), ey−1, tanh(y), it is known that C0(ψ, ε) = O(poly(1

ε)) Allen-Zhu
et al. [2019]. Very roughly, C0(ψ, ε) captures how many samples are needed to learn ψ up to error ε. For F ∗ in
our target class, complexity C(F ∗, ε) is defined to be poly(d,maxi∈[d] pi,maxi∈[d],r∈[pi] C0(ψi,r, ε)).

Kulin Shah, Amit Deshpande, Navin Goyal

For each neural network ∇ifi (x1:i), we define its pseudo-network by ∇igi (x1:i) = ∂gi(x1:i)
∂xi

= φ(P (x1:i; θi))., where

P (x1:i; θi) =
m∑
r=1

āi,rσ
(
〈w̄i,r, x̃1:i〉+ b̄i,r

)
Note that our definition of pseudo-network is not the straightforward generalization from the supervised case:
∇igi (x1:i) is not a linear approximation of ∇ifi (x1:i) because we are not taking linear approximation of final
activation φ.

D Coupling

In this section, we will establish closeness between training dynamics of neural networks and pseudo network, which
we will call as coupling. First, we will establish the coupling between ∇ifi (x1:i) and ∇igi (x1:i) (Lemma D.4).
Using coupling between ∇ifi (x1:i) and ∇igi (x1:i), we prove coupling between L̃i

(
∇f (t), x

)
and L̃i

(
∇g(t), x

)
(Lemma D.5). We also prove coupling between gradient ∇θL̃

(
∇f (t), x

)
and ∇θL̃

(
∇g(t), x

)
in Lemma D.7,

which will be used in proving global optimization of neural network in Section F.

We define λ1 as

λ1 = sup
t∈[T],i∈[d],r∈[m],w

(t)
i,r,b

(t)
i,r,|x|≤1

φ′
(
N(x1:i; θ

(t)
i)
)

φ
(
N(x1:i; θ

(t)
i)
) , (D.1)

which will be used later in the proof of coupling between ∇ifi (x1:i) and ∇igi (x1:i). The upper bound on λ1 is
useful to bound derivative of L̃ (∇f, x) w.r.t. wi,r. We get the following upper bound on λ1:

λ1 = sup
t∈[T],i∈[d],r∈[m],w

(t)
i,r,b

(t)
i,r,|x|≤1

φ′
(
N(x1:i; θ

(t)
i)
)

φ
(
N(x1:i; θ

(t)
i)
)

= sup
t∈[T],i∈[d],r∈[m],w

(t)
i,r,b

(t)
i,r,|x|≤1

exp
(
N(x1:i; θ

(t)
i)
)
I
[
N(x1:i; θ

(t)
i) < 0

]
+ I
[
N(x1:i; θ

(t)
i) ≥ 0

]
exp

(
N(x1:i; θ

(t)
i)
)
I
[
N(x1:i; θ

(t)
i) < 0

]
+
(
N(x1:i; θ

(t)
i) + 1

)
I
[
N(x1:i; θ

(t)
i) ≥ 0

]
= sup
t∈[T],i∈[d],r∈[m],w

(t)
i,r,b

(t)
i,r,|x|≤1

I
[
N(x1:i; θ

(t)
i) < 0

]
+

I
[
N(x1:i; θ

(t)
i) ≥ 0

]
N(x1:i; θ

(t)
i) + 1

≤ 1. (D.2)

Define Λ̄ as

Λ̄ := 6c1εa
√

2 logm (D.3)

for any fixed constant c1 > 10.

Recall that loss function in case of CNFs is given by

L̃ (∇f, x) =
d∑
i=1

f̃i(x1:i)−
d∑
i=1

log
(
∇ifi (x1:i)

)
,

=
d∑
i=1

(
Q∑
j=1

∆x∇if (t)
i

(
τj (x1:i)

))
−

d∑
i=1

log
(
∇ifi (x1:i)

)
,

=
d∑
i=1

(
Q∑
j=1

∆xφ

(
N
(
τj (x1:i) , θ

(t)
i

)))
−

d∑
i=1

log

(
φ

(
N
(
x1:i, θ

(t)
i

)))
,

Learning and Generalization in Overparameterized Normalizing Flows

Lemma D.1. (Bound on change in weights) For every i ∈ [d], for all r ∈ [m], for any positive constant c1 ≥ 10
and for every x1:i with ‖x1:i‖2 ≤

1
2 , with at least 1− 1

c1
probability over random initialization, bound on change in

weights after t steps with learning rate η is given by∥∥∥w(t)
i,r

∥∥∥
2
≤ ηΛ̄t,∣∣∣b(t)i,r∣∣∣ ≤ ηΛ̄t.

Proof. By taking derivative of L̃ (∇f, x) w.r.t. wi,r, we get∥∥∥∥∥∥∥
∂L̃
(
∇f (t), x

)
∂wi,r

∥∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
(

Q∑
j=1

∆xφ
′
(
N
(
τj (x1:i) , θ

(t)
i

))
āi,rσ

′
(
〈w̄i,r + w

(t)
i,r , τ̃j (x1:i)〉+

(
b̄i,r + b

(t)
i,r

))
τ̃j (x1:i)

)∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥
1

φ
(
N(x1:i; θ

(t)
i)
) (φ′ (N(x1:i; θ

(t)
i)
)
āi,rσ

′
(
〈w̄i,r + w

(t)
i,r , x̃1:i〉+

(
b̄i,r + b

(t)
i,r

))
x̃1:i

)∥∥∥∥∥∥∥
2

≤
Q∑
j=1

∥∥∥∥∥∆xφ
′
(
N
(
τj (x1:i) ; θ

(t)
i

))
āi,rσ

′
(
〈w̄i,r + w

(t)
i,r , τ̃j (x1:i)〉+

(
b̄i,r + b

(t)
i,r

))
τ̃j (x1:i)

∥∥∥∥∥
2

+

∣∣∣∣∣∣∣∣∣
φ′
(
N
(
x1:i; θ

(t)
i

))
φ

(
N
(
x1:i; θ

(t)
i

))
∣∣∣∣∣∣∣∣∣
∥∥∥∥∥āi,rσ′

(
〈w̄i,r + w

(t)
i,r , x̃1:i〉+

(
b̄i,r + b

(t)
i,r

))
x̃1:i

∥∥∥∥∥
2

.

Using
∣∣qj∣∣ ≤ 2

Q , ‖τ̃j (x1:i) ‖ = 1, ‖x̃1:i‖ = 1 and |φ′
(
N(x1:i; θ

(t)
i)
)
/φ
(
N(x1:i; θ

(t)
i)
)
| ≤ 1 (by (D.2)), we get∥∥∥∥∥∥∥

∂L̃
(
∇f (t), x

)
∂wi,r

∥∥∥∥∥∥∥
2

≤ 3
∣∣āi,r∣∣ .

Using Lemma K.4, with probability at least 1− 1
c1

we get∥∥∥∥∥∥∥
∂L̃
(
∇f (t), x

)
∂wi,r

∥∥∥∥∥∥∥
2

≤ Λ̄ (D.4)

where Λ̄ is defined in (D.3). Using the same reasoning for bi,r, with probability at least 1− 1
c1

we get∣∣∣∣∣∣∣
∂L̃
(
∇f (t), x

)
∂bi,r

∣∣∣∣∣∣∣ =

∣∣∣∣∣ Q∑j=1

∆xφ
′
(
N
(
τj (x1:i) ; θ

(t)
i

))
āi,rσ

′
(
〈w̄i,r + w

(t)
i,r , τ̃j (x1:i)〉+

(
b̄i,r + b

(t)
i,r

))∣∣∣∣∣
+

∣∣∣∣∣∣∣
1

φ
(
N(x1:i; θ

(t)
i)
) (φ′ (N(x1:i; θ

(t)
i)
)
āi,rσ

′
(
〈w̄i,r + w

(t)
i,r , x̃1:i〉+

(
b̄i,r + b

(t)
i,r

)))∣∣∣∣∣∣∣
≤ 3
∣∣āi,r∣∣ .

≤Λ̄. (D.5)

Using (D.4), (D.5) and the fact that we are using SGD, we obtain∥∥∥w(t)
i,r

∥∥∥
2
≤ ηΛ̄t,∣∣∣b(t)i,r∣∣∣ ≤ ηΛ̄t.

(D.6)

Kulin Shah, Amit Deshpande, Navin Goyal

Lemma D.2. (Bound on the number of changes in activation patterns) For every i ∈ [d] and for all r ∈ [m],
suppose

∥∥wi,r∥∥2
≤ ∆i and

∣∣bi,r∣∣ ≤ ∆i. Then, for every x1:i such that ‖x1:i‖ ≤ 1
2 , with probability at least

1− exp
(
− 32(c4−1)2m2∆2

i

π

)
over random initialization, the number of activation patterns that change is at most

c4
4∆i
√
m√

π
. In other words, for at most c4 4∆i

√
m√

π
fraction of r ∈ [m], we have

I
[
〈w̄i,r + wi,r, x̃1:i〉+

(
b̄i,r + bi,r

)
≥ 0

]
6= I

[
〈w̄i,r, x̃1:i〉+ b̄i,r ≥ 0

]
for any positive constant c4 ≥ 1.

Proof. Define

Hi := {r ∈ [m] |
∣∣〈w̄i,r, x̃1:i〉+ b̄i,r

∣∣ ≥ 4∆i}. (D.7)

The set Hi contains indices of neurons for which indicator function doesn’t change its value if change in weights is
bounded by ∆i. For every x1:i such that ‖x1:i‖2 ≤ 1 and for all r ∈ [m],

∣∣〈w̄i,r, x̃1:i〉+ b̄i,r
∣∣ ≤ 2∆i. For all r ∈ Hi,

we have

I
[
〈w̄i,r + w

(t)
i,r , x̃1:i〉+

(
b̄i,r + b

(t)
i,r

)
≥ 0

]
= I

[
〈w̄i,r, x̃1:i〉+ b̄i,r ≥ 0

]
. (D.8)

Now, we need to bound the size of Hi. We know that for all x with‖x1:i‖2 ≤ 1, 〈w̄i,r, x̃1:i〉+ b̄i,r is Gaussian with
E
[
〈w̄i,r, x̃1:i〉+ b̄i,r

]
= 0 and Var

[
〈w̄i,r, x̃1:i〉+ b̄i,r

]
= 2

m . Using Lemma K.5, we get

Pr
(∣∣〈w̄i,r, x̃1:i〉+ b̄i,r

∣∣ ≤ 4∆i

)
≤ 4∆i

√
m√

π
.

Using Fact K.7 (Hoeffding’s inequality) for Hi (where Hi = [m]\Hi) for any positive constant c4 ≥ 1, we get

Pr

(∣∣∣Hi∣∣∣ ≥ c4m4∆i
√
m√

π

)
≤ exp

−2m

(c4 − 1)

(
4∆i
√
m√

π

)2
 ,

≤ exp

(
−32(c4 − 1)2m2∆2

i

π

)
,

which gives

Pr

|Hi| ≥ m(1− c4
4∆i
√
m√

π

) ≥ 1− exp

(
−32(c4 − 1)2m2∆2

i

π

)
.

Lemma D.3. (Bound on the difference between ∇if (t)
i (x1:i) and ∇ig(t)

i (x1:i)) For every i ∈ [d], for all x with
‖x‖2 ≤

1
2 and for every time step t ≥ 1, with probability at least 1− 1

c1
over random initialization, for any positive

constants c1 > 10, we have∣∣∣∣φ(N(x1:i; θ
(t)
i)
)
− φ

(
P (x1:i; θ

(t)
i)
)∣∣∣∣ ≤ 24c1εa∆i

∣∣∣∣H(t)

i

∣∣∣∣√2 logm.

Proof. Using 1-Lipschitz continuity of φ, we get∣∣∣φ (N(x1:i; θi)
)
− φ

(
P (x1:i; θi)

)∣∣∣ ≤ ∣∣N(x1:i; θi)− P (x1:i; θi)
∣∣ .

Learning and Generalization in Overparameterized Normalizing Flows

We bound
∣∣N(x1:i; θi)− P (x1:i; θi)

∣∣:
∣∣N(x1:i; θi)− P (x1:i; θi)

∣∣ ≤∣∣∣∣∣ ∑r∈[m]

āi,r

(
〈w̄i,r + wi,r, x̃1:i〉+

(
b̄i,r + bi,r

))
I
[
〈w̄i,r + wi,r, x̃1:i〉+

(
b̄i,r + bi,r

)
≥ 0

]

−
∑
r∈[m]

āi,r

(
〈w̄i,r + wi,r, x̃1:i〉+

(
b̄i,r + bi,r

))
I
[
〈w̄i,r, x̃1:i〉+ b̄i,r ≥ 0

] ∣∣∣∣∣
≤

∣∣∣∣∣ ∑
r∈Hi

āi,r

(
〈w̄i,r + w

(t)
i,r , x̃1:i〉+

(
b̄i,r + b

(t)
i,r

))(
I
[
〈w̄i,r + wi,r, x̃1:i〉+

(
b̄i,r + bi,r

)
≥ 0

]

− I
[
〈w̄i,r, x̃1:i〉+ b̄i,r ≥ 0

])∣∣∣∣∣
(i)
≤
∣∣∣∣H(t)

i

∣∣∣∣ (2c1εa
√

2 logm
)

(4∆i + 2∆i) (2)

≤24c1εa∆i

∣∣∣∣H(t)

i

∣∣∣∣√2 logm, (D.9)

where inequality (i) uses Lemma K.4 to upper bound |āi,r| with probability at least 1− 1
c1
.

Lemma D.4. (Final bound on the difference between ∇if (t)
i (x1:i) and ∇ig(t)

i (x1:i)) For every i ∈ [d], for all x
with ‖x‖2 ≤ 1 and for every time step t ≥ 1, with probability at least 1− 1

c1
− exp

(
− 32(c4−1)2η2m2Λ̄2t2

π

)
over the

random initialization, and some positive constants c1 > 10 and c4 ≥ 1, we have∣∣∣∣φ(N(x1:i; θ
(t)
i)
)
− φ

(
P (x1:i; θ

(t)
i)
)∣∣∣∣ ≤ ∣∣∣N(x1:i; θ

(t)
i)− P (x1:i; θ

(t)
i)
∣∣∣ ≤ 192η2m1.5Λ̄2c1c4εat

2
√

logm√
π

. (D.10)

Proof. Using Lemma D.2 and Lemma D.3, we get∣∣∣∣φ(N(x1:i; θ
(t)
i)
)
− φ

(
P (x1:i; θ

(t)
i)
)∣∣∣∣ ≤24c1εa∆i

∣∣∣∣H(t)

i

∣∣∣∣√2 logm

(i)
≤24c1εa∆i

(
c4m

4∆i
√
m√

π

)√
2 logm

=
96
√

2c1c4εa∆2
im

1.5
√

logm√
π

=
192η2m1.5Λ̄2c1c4εat

2
√

logm√
π

, (D.11)

where inequality (i) uses Lemma D.2 and the inequality follows with at least 1− 1
c1
− exp

(
− 32(c4−1)2η2m2Λ̄2t2

π

)
probability.

We denote the upper bound as Λ
(t)
np:

Λ(t)
np :=

192η2m1.5Λ̄2c1c4εat
2
√

logm√
π

.

Lemma D.5. (Coupling of the loss functions) For every i ∈ [d], for all x with ‖x‖2 ≤ 1 and for every time step
t ≥ 1, with probability at least 1− 1

c1
− exp

(
− 32(c4−1)2η2m2Λ̄2t2

π

)
over the random initialization, loss function of

neural network and pseudo-network are close for some positive constant c1 > 10 and c4 ≥ 1:∣∣∣∣L̃i (∇f (t), x
)
− L̃i

(
∇g(t), x

)∣∣∣∣ ≤ 3Λ(t)
np.

Kulin Shah, Amit Deshpande, Navin Goyal

Using eq. (C.1), with probability at least 1− d
c1
− d exp

(
− 32(c4−1)2η2m2Λ̄2t2

π

)
over the random initialization, we

have

∣∣∣∣L̃(∇f (t), x
)
− L̃

(
∇g(t), x

)∣∣∣∣ ≤ 3dΛ(t)
np.

Proof.

∣∣∣∣L̃i (∇f (t), x
)
− L̃i

(
∇g(t), x

)∣∣∣∣ ≤
∣∣∣∣∣ Q∑j=1

∆x

(
∇ifi

(
τj (x1:i)

))
−

Q∑
j=1

∆x

(
∇igi

(
τj (x1:i)

))∣∣∣∣∣
+
∣∣∣log

(
∇ifi (x1:i)

)
− log

(
∇igi (x1:i)

)∣∣∣
(i)
≤2

(
sup
i∈[Q]

∣∣∇ifi (x1:i)−∇igi (x1:i)
∣∣)+

∣∣∣N(x1:i; θ
(t)
i)− P (x1:i; θ

(t)
i)
∣∣∣

(ii)
≤ 3Λ(t)

np,

where inequality (i) follows from 1-Lipschitz continuity of log
(
φ(u)

)
with respect to u. Inequality (ii) uses Lemma

D.3. Using the definition of L̃, with at least probability 1− d
c1
− d exp

(
− 32(c4−1)2η2m2Λ̄2t2

π

)
, we get

∣∣∣∣L̃(∇f (t), x
)
− L̃

(
∇g(t), x

)∣∣∣∣ ≤ d∑
i=1

∣∣∣∣L̃i (∇f (t), x
)
− L̃i

(
∇g(t), x

)∣∣∣∣
≤ 3dΛ(t)

np

Lemma D.6. (Coupling of the gradients of functions) For every i ∈ [d], for all x with ‖x‖2 ≤ 1 and for every
time step t ≥ 1, with probability at least 1− 1

c1
over random initialization, gradient of derivative of neural network

function and derivative of pseudo-network function with respect to parameters are close for any positive constant
c1 > 10

∥∥∥∇θi (∇if (t)
i (x1:i)

)
−∇θi

(
∇ig(t)

i (x1:i)
)∥∥∥

2,1
≤ 4c1εa

(
mΛ(t)

np + 2

∣∣∣∣H(t)

i

∣∣∣∣
)√

2 logm.

Proof. Recall that θi is given by

θi =



θi,1
...
θi,r
...

θi,m


.

Learning and Generalization in Overparameterized Normalizing Flows

where θi,r =
(
wi,r, bi,r

)
∈ Ri+2.∥∥∥∇θi (∇if (t)

i (x1:i)
)
−∇θi

(
∇ig(t)

i (x1:i)
)∥∥∥

2,1
≤
∥∥∥φ′ (N(x1:i; θ

(t)
i)
)
∇θiN(x1:i; θ

(t)
i)

− φ′
(
P (x1:i; θ

(t)
i)
)
∇θiP (x1:i; θ

(t)
i)
∥∥∥

2,1

≤
∥∥∥φ′ (N(x1:i; θ

(t)
i)
)
∇θiN(x1:i; θ

(t)
i)− φ′

(
P (x1:i; θ

(t)
i)
)
∇θiN(x1:i; θ

(t)
i)
∥∥∥

2,1

+
∥∥∥φ′ (P (x1:i; θ

(t)
i)
)
∇θiN(x1:i; θ

(t)
i)− φ′

(
P (x1:i; θ

(t)
i)
)
∇θiP (x1:i; θ

(t)
i)
∥∥∥

2,1

≤
∣∣∣∣φ′ (N(x1:i; θ

(t)
i)
)
− φ′

(
P (x1:i; θ

(t)
i)
)∣∣∣∣ ∥∥∥∇θiN(x1:i; θ

(t)
i)
∥∥∥

2,1

+

∣∣∣∣φ′ (P (x1:i; θ
(t)
i)
)∣∣∣∣ ∥∥∥∇θiN(x1:i; θ

(t)
i)−∇θiP (x1:i; θ

(t)
i)
∥∥∥

2,1

≤
∣∣∣N(x1:i; θ

(t)
i)− P (x1:i; θ

(t)
i)
∣∣∣ ∥∥∥∇θiN(x1:i; θ

(t)
i)
∥∥∥

2,1

+
∥∥∥∇θiN(x1:i; θ

(t)
i)−∇θiP (x1:i; θ

(t)
i)
∥∥∥

2,1
,

where the last inequality follows from 1-Lipschitzness of φ′ and φ′(x) ≤ 1 for all x. Now, we will bound∥∥∥∇θiN(x1:i; θ
(t)
i)−∇θiP (x1:i; θ

(t)
i)
∥∥∥

2,1
:

∥∥∥∇θiN(x1:i; θ
(t)
i)−∇θiP (x1:i; θ

(t)
i)
∥∥∥

2,1
≤
∥∥∥[(1āi,r, āi,r)� (x̃1:i, 1)� (1I

[
〈w̄i,r + w

(t)
i,r , τ̃j (x1:i)〉+

(
b̄i,r + b

(t)
i,r

)
≥ 0

]
− 1I

[
〈w̄i,r, x̃1:i〉+ b̄i,r ≥ 0

]
, I
[
〈w̄i,r + w

(t)
i,r , τ̃j (x1:i)〉+

(
b̄i,r + b

(t)
i,r

)
≥ 0

]
− I
[
〈w̄i,r, x̃1:i〉+ b̄i,r ≥ 0

]
)
]r=1

m

∥∥∥
2,1

(i)
≤
(

8c1εa
√

2 logm
)∣∣∣∣H(t)

i

∣∣∣∣
≤ 8c1εa

∣∣∣∣H(t)

i

∣∣∣∣√2 logm, (D.12)

where inequality (i) follows from Lemma D.2 with atleast 1− 1
c1

probability. Now using Eq.(D.12), with atleast
1− 1

c1
probability, we get

∥∥∥∇θi (∇if (t)
i (x1:i)

)
−∇θi

(
∇ig(t)

i (x1:i)
)∥∥∥

2,1
≤
∣∣∣N(x1:i; θ

(t)
i)− P (x1:i; θ

(t)
i)
∣∣∣ ∥∥∥∥∥
[

(1āi,r, āi,r)� (x̃1:i, 1)�

(
1I
[
〈w̄i,r + w

(t)
i,r , τ̃j (x1:i)〉+

(
b̄i,r + b

(t)
i,r

)
≥ 0

]
, I
[
〈w̄i,r + w

(t)
i,r , τ̃j (x1:i)〉+

(
b̄i,r + b

(t)
i,r

)
≥ 0

])]r=1

m

∥∥∥∥∥
2,1

+
∥∥∥∇θiN(x1:i; θ

(t)
i)−∇θiP (x1:i; θ

(t)
i)
∥∥∥

2,1

(D.12)
≤ 8c1εamΛ(t)

np

√
2 logm+ 8c1εa

∣∣∣∣H(t)

i

∣∣∣∣√2 logm

= 8c1εa

(
mΛ(t)

np +

∣∣∣∣H(t)

i

∣∣∣∣
)√

2 logm.

Lemma D.7. (Coupling of the gradient of loss) For every i ∈ [d], for all x with ‖x‖2 ≤ 1 and for every time step
t ≥ 1, with probability at least 1− d

c1
− d exp

(
− 32(c4−1)2η2m2Λ̄2t2

π

)
over random initialization, gradient of loss

Kulin Shah, Amit Deshpande, Navin Goyal

function with neural network and loss function with pseudo-network are close for some positive constant c1 > 10
and c4 ≥ 1:

∥∥∥∥∇θL̃(∇f (t), x
)
−∇θL̃

(
∇g(t), x

)∥∥∥∥
2,1

≤ 192dηm1.5Λ̄c1c4εat
√

logm√
π

+ 24c1dεamΛ(t)
np

√
2 logm.

Proof. We have

∥∥∇θiL̃(∇f (t), x
)
−∇θiL̃

(
∇g(t), x

)∥∥
2,1

=

∥∥∥∥∥ Q∑
j=1

∆x∇θi
(
∇if (t)

i

(
τj (x1:i)

))
−
∇θi

(
∇if (t)

i (x1:i)
)

∇if (t)
i (x1:i)

−
Q∑
j=1

∆x∇θi
(
∇ig(t)

i

(
τj (x1:i)

))
+
∇θi

(
∇ig(t)

i

(
τj (x1:i)

))
∇ig(t)

i (x1:i)

∥∥∥∥∥
2,1

≤

∥∥∥∥∥ Q∑
j=1

∆x∇θi
(
∇if (t)

i

(
τj (x1:i)

))
−

Q∑
j=1

∆x∇θi
(
∇ig(t)

i

(
τj (x1:i)

)) ∥∥∥∥∥
2,1︸ ︷︷ ︸

I

+

∥∥∥∥∥∇θi
(
∇ig(t)

i (x1:i)
)

∇ig(t)
i (x1:i)

−
∇θi

(
∇if (t)

i (x1:i)
)

∇if (t)
i (x1:i)

∥∥∥∥∥
2,1︸ ︷︷ ︸

II

We first bound I using Lemma D.6:

I ≤
Q∑
j=1

∆x

∥∥∥∇θi (∇if (t)
i

(
τj (x1:i)

))
−∇θi

(
∇ig(t)

i

(
τj (x1:i)

)) ∥∥∥
1

≤ 16c1εa

(
mΛ(t)

np +

∣∣∣∣H(t)

i

∣∣∣∣
)√

2 logm,

Learning and Generalization in Overparameterized Normalizing Flows

Now, we bound II:

II =

∥∥∥∥∥∇θi
(
∇ig(t)

i (x1:i)
)

∇ig(t)
i (x1:i)

−
∇θi

(
∇if (t)

i (x1:i)
)

∇if (t)
i (x1:i)

∥∥∥∥∥
2,1

=

∥∥∥∥∥ exp
(
P (x1:i; θ

(t)
i)
)
I
[
P (x1:i; θ

(t)
i) < 0

]
+ I
[
P (x1:i; θ

(t)
i) ≥ 0

]
exp

(
P (x1:i; θ

(t)
i)
)
I
[
P (x1:i; θ

(t)
i) < 0

]
+
(
P (x1:i; θ

(t)
i) + 1

)
I
[
P (x1:i; θ

(t)
i) ≥ 0

]∇θiP (x1:i; θ
(t)
i)

−
exp

(
N(x1:i; θ

(t)
i)
)
I
[
N(x1:i; θ

(t)
i) < 0

]
+ I
[
N(x1:i; θ

(t)
i) ≥ 0

]
exp

(
N(x1:i; θ

(t)
i)
)
I
[
N(x1:i; θ

(t)
i) < 0

]
+
(
N(x1:i; θ

(t)
i) + 1

)
I
[
N(x1:i; θ

(t)
i) ≥ 0

]∇θiN(x1:i; θ
(t)
i)

∥∥∥∥∥
2,1

=

∥∥∥∥∥
I
[
P (x1:i; θ

(t)
i) < 0

]
+

I
[
P (x1:i; θ

(t)
i) ≥ 0

]
(
P (x1:i; θ

(t)
i) + 1

)
∇θiP (x1:i; θ

(t)
i)

−

I
[
N(x1:i; θ

(t)
i) < 0

]
+

I
[
N(x1:i; θ

(t)
i) ≥ 0

]
(
N(x1:i; θ

(t)
i) + 1

)
∇θiN(x1:i; θ

(t)
i)

∥∥∥∥∥
2,1

=

∥∥∥∥∇θiP (x1:i; θ
(t)
i)−∇θiN(x1:i; θ

(t)
i)

∥∥∥∥
2,1

I
[
P (x1:i; θ

(t)
i) < 0, N(x1:i; θ

(t)
i) < 0

]
︸ ︷︷ ︸

II1

+

∥∥∥∥∥∇θiP (x1:i; θ
(t)
i)− ∇θiN(x1:i; θ

(t)
i)

N(x1:i; θ
(t)
i) + 1

∥∥∥∥∥
2,1

I
[
P (x1:i; θ

(t)
i) < 0, N(x1:i; θ

(t)
i) ≥ 0

]
︸ ︷︷ ︸

II2

+

∥∥∥∥∥∇θiP (x1:i; θ
(t)
i)

P (x1:i; θ
(t)
i) + 1

−∇θiN(x1:i; θ
(t)
i)

∥∥∥∥∥
2,1

I
[
P (x1:i; θ

(t)
i) ≥ 0, N(x1:i; θ

(t)
i) < 0

]
︸ ︷︷ ︸

II3

+

∥∥∥∥∥∇θiP (x1:i; θ
(t)
i)

P (x1:i; θ
(t)
i) + 1

− ∇θiN(x1:i; θ
(t)
i)

N(x1:i; θ
(t)
i) + 1

∥∥∥∥∥
2,1

I
[
P (x1:i; θ

(t)
i) ≥ 0, N(x1:i; θ

(t)
i) ≥ 0

]
︸ ︷︷ ︸

II4

.

On simplifying II2, we get

II2 ≤

(∣∣∣∣∣ 1

N(x1:i; θ
(t)
i) + 1

∣∣∣∣∣
∥∥∥∥∇θiP (x1:i; θ

(t)
i)−∇θiN(x1:i; θ

(t)
i)

∥∥∥∥
2,1

+

∣∣∣∣∣ N(x1:i; θ
(t)
i)

1 +N(x1:i; θ
(t)
i)

∣∣∣∣∣
∥∥∥∥∇θiP (x1:i; θ

(t)
i)

∥∥∥∥
2,1

)
I
[
P (x1:i; θ

(t)
i) < 0, N(x1:i; θ

(t)
i) ≥ 0

]
(D.10)
≤

(∥∥∥∥∇θiP (x1:i; θ
(t)
i)−∇θiN(x1:i; θ

(t)
i)

∥∥∥∥
2,1

+ Λ(t)
np

∥∥∥∥∇θiP (x1:i; θ
(t)
i)

∥∥∥∥
2,1

)
I
[
P (x1:i; θ

(t)
i) < 0, N(x; θ(t)) ≥ 0

]
.

(D.13)

Kulin Shah, Amit Deshpande, Navin Goyal

Similarly, on simplifying II3, we get

II3 ≤

(∣∣∣∣∣ 1

P (x1:i; θ
(t)
i) + 1

∣∣∣∣∣
∥∥∥∥∇θiP (x1:i; θ

(t)
i)−∇θiN(x1:i; θ

(t)
i)

∥∥∥∥
2,1

+

∣∣∣∣∣ P (x1:i; θ
(t)
i)

1 + P (x1:i; θ
(t)
i)

∣∣∣∣∣
∥∥∥∥∇θiN(x1:i; θ

(t)
i)

∥∥∥∥
2,1

)
I
[
P (x1:i; θ

(t)
i) ≥ 0, N(x1:i; θ

(t)
i) < 0

]
(D.14)

≤

(∥∥∥∥∇θiP (x1:i; θ
(t)
i)−∇θiN(x1:i; θ

(t)
i)

∥∥∥∥
2,1

+ Λ(t)
np

∥∥∥∥∇θiN(x1:i; θ
(t)
i)

∥∥∥∥
2,1

)
I
[
P (x1:i; θ

(t)
i) ≥ 0, N(x1:i; θ

(t)
i) < 0

]
.

(D.15)

On simplifying II4, we get

II4 ≤

(∥∥∥∥∥∇θiP (x1:i; θ
(t)
i)

P (x1:i; θ
(t)
i) + 1

− ∇θiN(x; θ(t))

P (x1:i; θ
(t)
i) + 1

∥∥∥∥∥
2,1

+

∥∥∥∥∥∇θiN(x1:i; θ
(t)
i)

P (x1:i; θ
(t)
i) + 1

− ∇θiN(x1:i; θ
(t)
i)

N(x1:i; θ
(t)
i) + 1

∥∥∥∥∥
2,1

)
I
[
P (x1:i; θ

(t)
i) ≥ 0, N(x1:i; θ

(t)
i) ≥ 0

]

≤

(
1

P (x1:i; θ
(t)
i) + 1

∥∥∥∥∇θiP (x1:i; θ
(t)
i)−∇θiN(x1:i; θ

(t)
i)

∥∥∥∥
2,1

+

∥∥∇θiN(x1:i; θ
(t)
i)
∥∥

2,1
Λ

(t)
np(

P (x1:i; θ
(t)
i) + 1

)(
N(x1:i; θ

(t)
i) + 1

))I [P (x1:i; θ
(t)
i) ≥ 0, N(x1:i; θ

(t)
i) ≥ 0

]
≤
(∥∥∥∇θiP (x1:i; θ

(t)
i)−∇θiN(x1:i; θ

(t)
i)
∥∥∥

2,1
+ Λ(t)

np

∥∥∥∇θiN(x1:i; θ
(t)
i)
∥∥∥

2,1

)
I
[
P (x1:i; θ

(t)
i) ≥ 0, N(x1:i; θ

(t)
i) ≥ 0

]
.

(D.16)

Using (D.13), (D.14) and (D.16), we have

II ≤
∥∥∥∇θiP (x1:i; θ

(t)
i)−∇θiN(x1:i; θ

(t)
i)
∥∥∥

2,1
+ Λ(t)

np

∥∥∥∇θiN(x1:i; θ
(t)
i)
∥∥∥

2,1
I
[
P (x1:i; θ

(t)
i) ≥ 0

]
+ Λ(t)

np

∥∥∥∇θiP (x1:i; θ
(t)
i)
∥∥∥

2,1
I
[
P (x1:i; θ

(t)
i) < 0, N(x1:i; θ

(t)
i) ≥ 0

]
.

Using (D.12), we get

II ≤ 8c1εa

∣∣∣∣H(t)

i

∣∣∣∣√2 logm+ Λ(t)
np

(∥∥∥∇θiP (x1:i; θ
(t)
i)
∥∥∥

2,1
+
∥∥∥∇θiN(x1:i; θ

(t)
i)
∥∥∥

2,1

)
≤ 8c1εa

∣∣∣∣H(t)

i

∣∣∣∣√2 logm+ Λ(t)
np

(∥∥∥∥∥
[

(1āi,r, āi,r)� (x̃1:i, 1)�

(
1I
[
〈w̄i,r, x̃1:i〉+ b̄i,r ≥ 0

]
,

I
[
〈w̄i,r, x̃1:i〉+ b̄i,r ≥ 0

])]r=1

m

∥∥∥∥∥
2,1

+

∥∥∥∥∥
[

(1āi,r, āi,r)� (x̃1:i, 1)�

(
1I
[
〈w̄i,r + w

(t)
i,r , x̃1:i〉+

(
b̄i,r + b

(t)
i,r

)
≥ 0

]
, I
[
〈w̄i,r + w

(t)
i,r , x̃1:i〉+

(
b̄i,r + b

(t)
i,r

)
≥ 0

])]r=1

m

∥∥∥∥∥
2,1

)

≤ 8c1εa

∣∣∣∣H(t)

i

∣∣∣∣√2 logm+ Λ(t)
np

(
8c1εam

√
2 logm

)
= 8c1εa

(∣∣∣∣H(t)

i

∣∣∣∣+mΛ(t)
np

)√
2 logm. (D.17)

Learning and Generalization in Overparameterized Normalizing Flows

Combining bounds on I and II, we get∥∥∇θiL̃(∇f (t), x
)
−∇θiL̃

(
∇g(t), x

)∥∥
2,1
≤ 16c1εa

(
mΛ(t)

np +

∣∣∣∣H(t)

i

∣∣∣∣
)√

2 logm

+ 8c1εa

(∣∣∣∣H(t)

i

∣∣∣∣+mΛ(t)
np

)√
2 logm

≤ 24c1εa

(
mΛ(t)

np +

∣∣∣∣H(t)

i

∣∣∣∣
)√

2 logm.

Using Lemma D.1 and Lemma D.2, with at least 1− 1
c1
− exp

(
− 32(c4−1)2η2m2Λ̄2t2

π

)
probability, we get

∥∥∇θiL̃(∇f (t), x
)
−∇θiL̃

(
∇g(t), x

)∥∥
2,1
≤ 192ηm1.5Λ̄c1c4εat

√
logm√

π
+ 24c1εamΛ(t)

np

√
2 logm. (D.18)

We can upper bound
∥∥∥∥∇θL̃(∇f (t), x

)
−∇θL̃

(
∇g(t), x

)∥∥∥∥
2,1

as

∥∥∥∥∇θL̃(∇f (t), x
)
−∇θL̃

(
∇g(t), x

)∥∥∥∥
2,1

≤
d∑
i=1

∥∥∥∥∇θiL̃(∇f (t), x
)
−∇θiL̃

(
∇g(t), x

)∥∥∥∥
2,1

≤ 192dηm1.5Λ̄c1c4εat
√

logm√
π

+ 24c1dεamΛ(t)
np

√
2 logm

where last inequality follows from 1− d
c1
− d exp

(
− 32(c4−1)2η2m2Λ̄2t2

π

)
.

We define Γ as

Γ :=
192dηm1.5Λ̄c1c4εaT

√
logm√

π
+ 24c1dεamΛ(t)

np

√
2 logm.

Note that Γ is an upper bound on
∥∥∇θL̃(∇f (T), x

)
−∇θL̃

(
∇g(T), x

)∥∥
2,1

.

E Approximation

In this section, we will prove that each pseudo network can approximate any target function from target class
with small offset θ∗ from the weights of initialization. We first prove that expectation of multiplication of a fixed
ω function and I

[
〈w, x〉+ b ≥ 0

]
can approximate any smooth activation in target function (Lemma E.6). This is

used to prove that ∇ig∗i (x1:i) can approximate any target function in target class in L∞ norm. Using Lipschitz
continuity L̃ with respect to ∇ig∗i (x1:i), we prove that L̃(∇ig∗i , x) is close to L̃(∇iF ∗, x), where F ∗ is any target
function in the target class.

To prove results in this section, we require a number of new techniques on top of techniques from Allen-Zhu et al.
[2019]. The target functions in Allen-Zhu et al. [2019] are more restricted because L2−norm of weights in target
function is equal to 1 (i.e., |µ∗i,r| , ‖u∗i,r‖2 = 1). In our paper, we relax this condition and allow any weights with
their norm bounded by 1 (i.e., |µ∗i,r| , ‖u∗i,r‖2 ≤ 1). Our proof can easily be extended to weights bounded by any
constant. Additionally, our proof requires to bound L∞ approximation error between pseudo network ∇ig∗i (x1:i)
and target network, which is a stronger condition than L1 approximation error given in Allen-Zhu et al. [2019],
and requires a new proof technique.
Lemma E.1. For any fixed constant 0 < C ≤ 1 and even i > 0, for any x1 ∈ [0, C] and b, we have

Eα,β∼N (0,1)

hi(αx1 + β
√
C2 − x2

1

C

)
I [α ≥ b]

 = qix
i
1 where

qi =
(i− 1)!! exp

(
− b

2

2

)
Ci
√

2π

(i−1)∑
r=1,odd

(−1)
i−r−1

2

r!!

(
i/2− 1

(r − 1)/2

)
br.

Kulin Shah, Amit Deshpande, Navin Goyal

Similarly, for any fixed constant C > 0 and odd i > 0, for any x1 ∈ [0, C] and b, we have

Eα,β∼N (0,1)

hi(αx1 + β
√
C2 − x2

1

C

)
I [α ≥ b]

 = qix
i
1 where

qi =
(i− 1)!! exp

(
− b

2

2

)
Ci
√

2π

(i−1)∑
r=0,even

(−1)
i−r−1

2

r!!

(
i/2− 1

(r − 1)/2

)
br.

Proof. Using summation formula from Fact K.1, we have

hi

(
αx1 + β

√
C2 − x2

1

C

)
=

i∑
k=0

(
i

k

)(
αx1

C

)i−k
hk

(
β

√
1− x2

1

C2

)
.

Expanding hk
(
β

√
1− x2

1

C2

)
using multiplication formula of Hermite polynomial from Fact K.1, we get

hk

(
β

√
1− x2

1

C2

)
=
b k2 c∑
j=0

(
1− x2

1

C2

) k−2j
2
(
− x

2
1

C2

)j (
k

2j

)
(2j)!

j!
2−jhk−2j (β) . (E.1)

Using Fact K.2, for even k, we have

Eβ∼N (0,1)

hk(β√1− x2
1

C2

) =

(
− x

2
1

C2

)k/2
k!

(k/2)!
2−k/2, (E.2)

and for odd k,

Eβ∼N (0,1)

hk(β√1− x2
1

C2

) = 0. (E.3)

Using Eq. (E.1), Eq. (E.2) and Eq.(E.3), we get

Eβ∼N (0,1)

hi(αx1 + β
√
C2 − x2

1

C

) =
i∑

k=0,even

(
i

k

)(
αx1

C

)i−k(
− x

2
1

C2

)k/2
k!

(k/2)!
(−2)

−k/2

=
xi1
Ci

i∑
k=0,even

(
i

k

)
αi−k

k!

(k/2)!
(−2)

−k/2
.

Using I
[
α
C ≥ b

]
in the expectation, we have

Eα,β∼N (0,1)

hi(αx1 + β
√
C2 − x2

1

C

)
I [α ≥ b]

 =
xi1
Ci

i∑
k=0,even

(
i

k

)
Eα∼N (0,1)

[
αi−kI [α ≥ b]

] k!

(k/2)!
(−2)

−k/2
.

(E.4)

Define Bi,b as

Bi,b := Eα∼N (0,1)

[
αiI [α ≥ b]

]
.

Now, we divide our proof in two parts. In (a), we complete the proof for even i > 0 and in (b), we do it for odd i.

Learning and Generalization in Overparameterized Normalizing Flows

(a) Using Lemma E.2, for even i ≥ 0, we have

Bi,b = (i− 1)!!Φ (0, 1; b) + φ (0, 1; b)
i−1∑

j=1,jodd

(i− 1)!!

j!!
bj

Using Eq. (E.4), we have

Eα,β∼N (0,1)

hi(αx1 + β
√
C2 − x2

1

C

)
I [α ≥ b]


=
xi1
Ci

(
i∑

k=0,even

(
i

k

)
Bi−k,b

k!

(k/2)!
(−2)

−k/2

)

=
xi1
Ci

(
i∑

k=0,even

(
i

k

)
(i− k − 1)!!Φ (0, 1; b)

k!

(k/2)!
(−2)

−k/2

)

+
xi1
Ci
φ (0, 1; b)

 ∑
k=0,even

(
i

k

)(
i−k−1∑
j=1,odd

(i− k − 1)!!

j!!
bj

)
k!

(k/2)!
(−2)−k/2

 .

Using

i∑
k=0,even

(
i

k

)
(i− k − 1)!!

k!

(k/2)!
(−2)

−k/2
=

i∑
k=0,even

i! (i− k − 1)!!k! (−2)
−k/2

(i− k)!k!(k/2)!

=
i∑

k=0,even

i!(−1)k/2

(i− k)!!(k/2)!2k/2

= (i− 1)!!
i∑

k=0,even

i!!(−1)k/2

(i− k)!!(k/2)!2k/2

= (i− 1)!!
i∑

k=0,even

(
i/2

k/2

)
(−1)

k/2

= 0,

we get

Eα,β∼N (0,1)

hi(αx1 + β
√
C2 − x2

1

C

)
I [α ≥ b]

 =
xi1
Ci

(i− 1)!!φ (0, 1; b)
i−1∑

r=1,odd
crb

r (E.5)

Kulin Shah, Amit Deshpande, Navin Goyal

where cr is given by

cr :=
1

(i− 1)!!

i−r−1∑
k=0,even

(
i

k

)
(i− k − 1)!!k! (−2)

−k/2

r!!(k/2)!

=
1

(i− 1)!!

i−r−1∑
k=0,even

i! (i− k − 1)!!k! (−2)
−k/2

(i− k)!k!r!!(k/2)!

=
i−r−1∑
k=0,even

i!! (−2)
−k/2

(i− k)!! r!!(k/2)!

=
i−r−1∑
k=0,even

(
i/2

k/2

)
(−1)

k/2

r!!

=
(i−r−1)/2∑
j=0,even

(
i/2

j

)
(−1)

j

r!!

=
(i−r−1)/2∑
j=0,even

(
i/2

j

)
(−1)

j

r!!

=
(i−r−1)/2∑
j=0,even

(
j − i/2− 1

j

)
1

r!!

=
1

r!!

(
−i/2 + (i− r − 1) /2

(i− r − 1) /2

)
=

(−1)
(i−r−1)/2

r!!

(
i/2− 1

(i− r − 1) /2

)
=

(−1)
(i−r−1)/2

r!!

(
i/2− 1

(r − 1) /2

)
.

Using value of cr in Eq.(E.5), we get the required result.

(b) By Lemma E.2 for odd i > 0, we get

Bi,b = φ (0, 1; b)
i−1∑

j=0,even

(i− 1)!!

j!!
bj .

Using Eq.(E.4), we get

Eα,β∼N (0,1)

hi(αx1 + β
√
C2 − x2

1

C

)
I [α ≥ b]


=
xi1
Ci

i∑
k=0,even

(
i

k

)
Bi−k,b

k!

(k/2)!
(−2)

−k/2

=
xi1
Ci
φ (0, 1; b)

i∑
k=0,even

(
i

k

)(
i−k−1∑
j=0,even

(i− k − 1)!!

j!!
bj

)
k!

(k/2)!
(−2)

−k/2

=
xi1
Ci
φ (0, 1; b) (i− 1)!!

i−1∑
r=0,reven

crb
r (E.6)

where cr is given by

cr =
1

(i = 1)!!

i−r−1∑
k=0,even

(i− k − 1)!!

r!!

k!

(k/2)!
(−2)

−k/2
.

By a similar calculation given in part (a), we get

cr =
(−1)

(i−r−1)/2

r!!

(
i/2− 1

(r − 1) /2

)
.

Using value of cr in Eq.(E.6), we get the required result.

Learning and Generalization in Overparameterized Normalizing Flows

Lemma E.2. Define Bi,b as

Bi,b := Eα∼N (0,1)

[
αiI [α ≥ b]

]
.

and define Φ (0, 1; b) and φ (0, 1; b) as

Φ (0, 1; b) = Pr
α∼N (0,1)

[α ≥ b]

φ (0, 1; b) =
1√
2π

exp

(
−b2

2

)

For any b, we have

for even i ≥ 0 : Bi,b = (i− 1)!!Φ (0, 1; b) + φ (0, 1; b)
i−1∑

j=1,odd

(i− 1)!!

j!!
bj (E.7)

for odd i > 0 : Bi,b = φ (0, 1; b)
i−1∑

j=1,even

(i− 1)!!

j!!
bj (E.8)

Proof. The lemma follows from Lemma A.7 of Allen-Zhu et al. [2019].

We will use two different view of the randomness. Define w0 as w0 = (α1, β1) and x =
(
x1,
√
C2 − x2

1

)
where α1

and β1 are standard normal random variables and C is any positive constant. In alternative view of randomness,
we write w0 as

w0 =
〈w0, x〉
‖x‖2

x+
〈w0, x

⊥〉
‖x⊥‖2

x⊥

where x⊥ =
(√

C2 − x2
1,−x1

)
. Define α′ = 〈w0, x〉 and β′ = 〈w0, x

⊥〉 where α′ and β′ are normal random
variables with 0 mean and C2 variance. Using definitions of α′ and β′, we get

w0 =
α′

C2
x+

β′

C2
x⊥ =

α

C
x+

β

C
x⊥

where α and β are standard normal random variable.

Lemma E.3. For every integer i ≥ 1, there exists a constant q′i with
∣∣q′i∣∣ ≥ (i−1)!!

200i2Ci such that

for even i : xi1 =
1

q′i
Ew0∼N (0,I),b0∼N (0,1)

[
hi (α1) I

[
0 ≤ −b0 ≤ 1/(2i)

]
I
[
〈w0, x〉
C

+ b0 ≥ 0

]]

for odd i : xi1 =
1

q′i
Ew0∼N (0,I),b0∼N (0,1)

[
hi (α1) I

[
|b0| ≤ 1/(2i)

]
I
[
〈w0, x〉
C

+ b0 ≥ 0

]]

Proof. First, we will prove for even i. By Lemma E.1, we get

Ew0∼N (0,1),b0∼N (0,1)

[
hi (α1) I

[
0 ≤ −b0 ≤ 1/(2i)

]
I
[
〈w0, x〉
C

+ b0 ≥ 0

]]

= Eb0∼N (0,1)

Eα,β∼N (0,1)

hi(αx1 + β
√
C2 − x2

1

C

)
I [α ≥ −b0]

 I
[
0 ≤ −b0 ≤ 1/(2i)

]
= Eb0∼N (0,1)

[
qiI
[
0 ≤ −b0 ≤ 1/(2i)

]]
xi1 (E.9)

Kulin Shah, Amit Deshpande, Navin Goyal

where

qi =
(i− 1)!! exp

(
− b

2

2

)
Ci
√

2π

(i−1)∑
r=0,even

(−1)
i−r−1

2

r!!

(
i/2− 1

(r − 1)/2

)
(−b0)

r
.

Now, we try to bound the coefficient Eb0∼N (0,1)

[
qiI
[
0 ≤ −b0 ≤ 1/(2i)

]]
. Define cr as

cr :=
(−1)

i−r−1
2

r!!

(
i/2− 1

(r − 1)/2

)
.

For 0 ≤ −b0 ≤ 1/(2i) and for all odd r with 1 < r ≤ i− 1,

∣∣cr (−b0)
r∣∣ =

∣∣∣∣∣∣ (−1)
i−r−1

2

r!!

(
i/2− 1

(r − 1)/2

)
(−b0)

r

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ (−1)

i−r+1
2

(r − 2)!!

(
i/2− 1

(r − 3)/2

)
(−b0)

r

∣∣∣∣∣∣ ≤ 1

4

∣∣∣cr−2 (−b0)
r−2
∣∣∣ .

Using above relation, we get

∣∣∣∣∣ i−1∑
r=1,odd

cr (−b0)
r

∣∣∣∣∣ ≥
∣∣∣∣∣∣|c1b0| −

∣∣∣∣∣ ∑
r=3,odd

cr (−b0)
r

∣∣∣∣∣
∣∣∣∣∣∣

≥

∣∣∣∣∣∣|c1b0| −
∣∣∣∣∣ ∞∑r=1

1

4r
∣∣c1 (b0)

∣∣∣∣∣∣∣
∣∣∣∣∣∣

≥
∣∣∣∣|c1b0| − 1

3

∣∣|c1b0|∣∣∣∣∣∣
≥ 2

3
|c1b0| ,

and

sign

(
i−1∑

r=1,odd
cr (−b0)

r

)
= sign

(
c1 (−b0)

)
= sign (c1) .

Using Eq.(E.9), we get∣∣∣∣Eb0∼N (0,1)

[
qiI
[
0 ≤ −b0 ≤ 1/(2i)

]]∣∣∣∣
=

∣∣∣∣∣∣∣Eb0∼N (0,1)

 (i− 1)!! exp
(
− b

2

2

)
Ci
√

2π

(i−1)∑
r=0,even

cr (−b0)
r I
[
0 ≤ −b0 ≤ 1/(2i)

]
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣Eb0∼N (0,1)

 (i− 1)!! exp
(
− b

2

2

)
Ci
√

2π
sign

(
(i−1)∑

r=0,even
cr (−b0)

r

)∣∣∣∣∣ (i−1)∑
r=0,even

cr (−b0)
r

∣∣∣∣∣ I [0 ≤ −b0 ≤ 1/(2i)
]
∣∣∣∣∣∣∣

≥

∣∣∣∣∣∣∣Eb0∼N (0,1)

 (i− 1)!! exp
(
− b

2

2

)
Ci
√

2π
sign (c1)

2

3
|c1 b0| I

[
0 ≤ −b0 ≤ 1/(2i)

]
∣∣∣∣∣∣∣

≥ (i− 1)!!

100i2Ci
.

Learning and Generalization in Overparameterized Normalizing Flows

This completes the proof for even i. Similarly for odd i, using Lemma E.1, we get

Ew0∼N (0,1),b0∼N (0,1)

[
hi (α1) I

[
|b0| ≤ 1/(2i)

]
I
[
〈w0, x〉
C

+ b0 ≥ 0

]]

= Eb0∼N (0,1)

Eα,β∼N (0,1)

hi(αx1 + β
√
C2 − x2

1

C

)
I [α ≥ −b0]

 I
[
|b0| ≤ 1/(2i)

]
= Eb0∼N (0,1)

[
qiI
[
|b0| ≤ 1/(2i)

]]
xi1 (E.10)

where

qi =
(i− 1)!! exp

(
− b

2

2

)
Ci
√

2π

(i−1)∑
r=0,even

(−1)
i−r−1

2

r!!

(
i/2− 1

(r − 1)/2

)
br.

Now, we will try to bound Eb0∼N (0,1)

[
qiI
[
|b0| ≤ 1/(2i)

]]
. Define cr as

cr :=
(−1)

i−r−1
2

r!!

(
i/2− 1

(r − 1)/2

)
.

For |b0| ≤ 1/(2i) and for all even r with 1 < r ≤ i− 1, we get

∣∣cr (−b0)
r∣∣ =

∣∣∣∣∣∣ (−1)
i−r−1

2

r!!

(
i/2− 1

(r − 1)/2

)
(−b0)

r

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ (−1)

i−r+1
2

(r − 2)!!

(
i/2− 1

(r − 3)/2

)
(−b0)

r

∣∣∣∣∣∣ ≤ 1

4

∣∣∣cr−2 (−b0)
r−2
∣∣∣ .

Using above relation, we get∣∣∣∣∣ i−1∑
r=1,odd

cr (−b0)
r

∣∣∣∣∣ ≥
∣∣∣∣∣∣|c0| −

∣∣∣∣∣ ∑
r=2,even

cr (−b0)
r

∣∣∣∣∣
∣∣∣∣∣∣ ≥
∣∣∣∣∣∣|c0| −

∣∣∣∣∣ ∞∑r=1

1

4r
|c0|

∣∣∣∣∣
∣∣∣∣∣∣ ≥
∣∣∣∣|c0| − 1

3

∣∣|c0|∣∣∣∣∣∣ =
2

3
|c0| =

2

3

∣∣∣∣∣
(
i/2− 1

−1/2

)∣∣∣∣∣ > 1

2i
,

and

sign

(
i−1∑

r=1,odd
cr (−b0)

r

)
= sign (c0) .

Using the formula of qi in Eq. (E.10), we have∣∣∣∣Eb0∼N (0,1)

[
qiI
[
|b0| ≤ 1/(2i)

]]∣∣∣∣
=

∣∣∣∣∣∣∣Eb0∼N (0,1)

 (i− 1)!! exp
(
− b

2

2

)
Ci
√

2π

(i−1)∑
r=0,even

crb
rI
[
|b0| ≤ 1/(2i)

]
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣Eb0∼N (0,1)

 (i− 1)!! exp
(
− b

2

2

)
Ci
√

2π
sign

(
(i−1)∑

r=0,even
crb

r

)∣∣∣∣∣ (i−1)∑
r=0,even

crb
r

∣∣∣∣∣ I [|b0| ≤ 1/(2i)
]
∣∣∣∣∣∣∣

≥

∣∣∣∣∣∣∣Eb0∼N (0,1)

 (i− 1)!! exp
(
− b

2

2

)
Ci
√

2π
sign (c0)

1

2i
I
[
|b0| ≤ 1/(2i)

]
∣∣∣∣∣∣∣

≥ (i− 1)!!

100i2Ci

This completes the proof for odd i.

Kulin Shah, Amit Deshpande, Navin Goyal

Lemma E.4. For any constant C ≤ 1 and for any arbitary function ψ : [−C,C] 7→ R, we have

ψ (x1) = c0 +
∞∑
i=1

c′iEw0∼N (0,1),b0∼N (0,1)

[
hi (α1) I

[
Gi(b0)

]
I
[
〈w0, x〉
C

+ b0 ≥ 0

]]

where w0 = (α1, β1), ci = ith coefficient of taylor series of ψ function,

∣∣c′i∣∣ ≤ 200i2|ci|
(i− 1)!!

and Gi (b0) =

{
|b0| ≤ 1/(2i) if i is odd
0 < −b0 ≤ 1/(2i) if i is even

Proof. Using Taylor expansion of function ψ(x1), we get

ψ (x1) = c0 +
∞∑

i=1,odd
cix

i
1 +

∞∑
i=2,even

cix
i
1

= c0 +
∞∑
i=1

c′iEα,β,b0∼N (0,1)

[
hi (α1) I

[
Gi (b0)

]
I
[
〈x,w0〉
C

+ b0 ≥ 0

]]

where above relation follows from Lemma E.3 and c′i is given by

c′i =
ci
q′i
,

∣∣c′i∣∣ ≤ 200i2|ci|Ci

(i− 1)!!
and Gi (b0) =

{
|b0| ≤ 1/(2i) if i is odd
0 < −b0 ≤ 1/(2i) if i is even

Lemma E.5. For any ε ∈ (0, 1) and any positive integer i, setting Bi
def
= 100i1/2 + 10

√
log 1

ε , we have

1.
∑∞
i=1 Ez∼N (0,1)

[∣∣hi(z)∣∣ I [|z| ≥ Bi]] ≤ ε/8
2.
∑∞
i=1 Ez∼N (0,1)

[∣∣hi(Bi)∣∣ I [|z| ≥ Bi]] ≤ ε/8
3.
∑∞
i=1 Ez∼N (0,1)

[∣∣hi(z)∣∣ I [|z| ≤ Bi]] ≤ 1
2Cε (ψ)

The Lemma is same as Claim C.2 of Allen-Zhu et al. [2019].

Lemma E.6. For any positive integer d, for any ε ∈ (0, 1), for every function ψ, every ε ∈ (0, 1), every u∗, x ∈ Rd
with ‖u∗‖2 ≤ 1 and ‖x‖2 = 1, there exist a function ω : R3 → [−Cε (ψ) ,Cε (ψ)] such that∣∣∣∣Ew∼N (0,I),b0∼N (0,1)

[
ω
(
〈w, u∗〉, b0, ‖u∗‖

)
I
[
〈w, x〉+ b0 ≥ 0

]]
− ψ

(
〈u∗, x〉

)∣∣∣∣ ≤ ε. (E.11)

Proof. Define ĥi(α1)
def
= hi(α1)I

[
|α1| ≤ Bi

]
+ hi

(
sign(α1)Bi

)
I
[
|α1| > Bi

]
. From Lemma E.4, we get

ψ(x1) = c0 +
∞∑
i=1

c′iEα,β,b0∼N (0,1)

[
hi (α1) I

[
Gi (b0)

]
I
[
〈x,w0〉
C

+ b0 ≥ 0

]]

= c0 +R′(x1) +
∞∑
i=1

c′iEα,β,b0∼N (0,1)

[
ĥi (α1) I

[
Gi (b0)

]
I
[
〈x,w0〉
C

+ b0 ≥ 0

]]
.

where

R′(x1) =
∞∑
i=1

c′iEα,β,b0∼N (0,1)

[(
hi (α1) I

[
|α1| > Bi

]
− hi

(
sign(α1)Bi

)
I
[
|α1| > Bi

])
I
[
Gi (b0)

]
I
[
〈x,w0〉
C

+ b0 ≥ 0

]]
.

Learning and Generalization in Overparameterized Normalizing Flows

Using Lemma E.5, we have
∣∣R′(x1)

∣∣ ≤ ε/4. Define ω(α1, b0, C) as

ω(α1, b0, C) = 2c0 +
∞∑
i=1

c′iĥi(α1)I
[
Gi (b0)

]
.

Using definition of ω(α1, b0, C), we get∣∣∣∣∣∣Eα1,β1,b0∼N (0,1)

ω (α1, b0, C) I

[
α1x1 + β1

√
C2 − x2

1

C
+ b0 ≥ 0

]∣∣∣∣∣∣ ≤ ε/4.
Using Lemma E.5, we have ∣∣ω (α1, b0, C)

∣∣ ≤ 2c0 +
ε

8
+

1

2
Cε (ψ) ≤ Cε (ψ)

This proves that for every function ψ, every ε ∈ (0, 1), every constant C ∈ R and for every x1 ∈ [−C,C] , there
exist a function ω : R3 → [−Cε (ψ) ,Cε (ψ)] such that we have∣∣∣∣∣∣Eα1,β1,b0∼N (0,1)

ω (α1, b0, C) I

[
α1x1 + β1

√
C2 − x2

1

C
+ b0 ≥ 0

]− ψ(x1)

∣∣∣∣∣∣ ≤ ε. (E.12)

We denote u∗⊥i for 2 ≤ i ≤ d as d− 1 orthogonal vectors of u∗ with ‖u∗⊥i ‖ = ‖u∗‖. Now, using projection of w on
u∗, we get

w =
〈w, u∗〉
‖u∗‖2

u∗ +
d∑
i=2

〈w, u∗⊥i 〉
‖u∗⊥i ‖2

u∗⊥i =
α′1
‖u∗‖2

u∗ +
d∑
i=2

α′i
‖u∗‖2

u∗⊥i (E.13)

where α′i for any i such that 1 ≤ i ≤ d is a normal random variable with 0 mean and ‖u∗‖2 variance. Define x′1
as x′1 = 〈u∗, x〉. Similarly, define x′i = 〈u∗⊥i , x〉 for 2 ≤ i ≤ d. Now, dot product 〈w, x〉 can be written as

〈w, x〉 =
1

‖u∗‖2
〈α′1u∗ +

d∑
i=2

α′iu
∗⊥
i , x〉

=
1

‖u∗‖2

(
α′1x

′
1 +

d∑
i=2

α′ix
′
i

)

=
1

‖u∗‖2

(
α′1x

′
1 + β′1

√
‖u∗‖2 − x′21

)
=

1

‖u∗‖

(
α1x

′
1 + β1

√
‖u∗‖2 − x′21

)
(E.14)

where last inequality follows from
(∑d

i=1 x
′2
i

)
= ‖u∗‖2. Here α1 and β1 are standard normal random variables.

Setting C = ‖u∗‖ and using Eq.(E.12), Eq. (E.13) and Eq.(E.14), we get∣∣∣∣Ew∼N (0,I),b0∼N (0,1)

[
ω
(
〈w, u∗〉, b0, ‖u∗‖

)
I
[
〈w, x〉+ b0 ≥ 0

]]
− ψ

(
〈u∗, x〉

)∣∣∣∣ ≤ ε
Lemma E.7. For all i ∈ [d], for any ε ∈ (0, 1), for any derivative of target function ∂F∗i (x1:i)

∂x1:i
and for any x with

‖x‖ ≤ 1, there exist a set of parameters θ∗i such that we have∣∣∣∣∣Ew̄i,r,b̄i,r∼N(0, 1
m)
[
P`(x1:i; θ

∗
i)
]
− φ−1

(
∂F ∗i (x1:i)

∂x1:i

)∣∣∣∣∣ ≤ piε.
Moreover, L∞ norm of θ∗i is given by

‖θ∗i ‖2,∞ ≤
√
π
(∑pi

r=1 Uωi,r
)

mεa
√

2
.

Kulin Shah, Amit Deshpande, Navin Goyal

Proof. We denote pseudo network with parameters θ∗i as:

P`(x1:i; θ
∗
i) =

m∑
r=1

āi,r

(
〈w∗i,r, x̃1:i〉+ b∗i,r

)
I
[
〈w̄i,r, x̃1:i〉+ b̄i,r ≥ 0

]
.

Similarly, ∇ig∗i (x1:i) is given by φ
(
P`(x1:i; θ

∗
i)
)
. We will use function ωi,j to approximate a neuron of target

function ψi,j for all i ∈ [d], j ∈ [pi]. Setting w∗i,r and b∗i,r as

w∗i,r =

√
πsign

(
āi,r
)

mεa
√

2

pi∑
j=1

µ∗i,jωi,j

(√
m〈w̄i,r, u∗i,j〉,

√
mb̄i,r, ‖u∗i,j‖

)
v∗i,j ,

b∗i,r = 0,

we get∣∣∣∣∣Eāi,r∼N(0,ε2a),w̄i,r,b̄i,r∼N(0, 1
m)
[
P`(x1:i; θ

∗
i)
]
− φ−1

(
∂F ∗i (x1:i)

∂x̃1:i

)∣∣∣∣∣
=

∣∣∣∣∣mEāi,r∼N(0,ε2a),w̄i,r,b̄i,r∼N(0, 1
m)

[
āi,r

(
〈w∗i,r, x̃1:i〉+ b∗i,r

)
I
[
〈w̄i,r, x̃1:i〉+ b̄i,r ≥ 0

]]
− φ−1

(
∂F ∗i (x1:i)

∂x̃1:i

)∣∣∣∣∣
=

∣∣∣∣∣
√
π

εa
√

2
Eāi,r∼N(0,ε2a),w̄i,r,b̄i,r∼N(0, 1

m)

[
āi,rsign

(
āi,r
) pi∑
j=1

µ∗i,jωi,j

(√
m〈w̄i,r, u∗i,j〉,

√
mb̄i,r, ‖u∗i,j‖

)
〈v∗i,j , x̃1:i〉

I
[
〈w̄i,r, x̃1:i〉+ b̄i,r ≥ 0

]]
− φ−1

(
∂F ∗i (x1:i)

∂x̃1:i

) ∣∣∣∣∣
=

∣∣∣∣∣Ew̄i,r,b̄i,r∼N(0, 1
m)

[
pi∑
j=1

µ∗j,rωi,j

(√
m〈w̄i,r, u∗j,r〉,

√
mb̄i,r, ‖u∗j,r‖

)
〈v∗j,r, x̃1:i〉I

[
〈w̄i,r, x̃1:i〉+ b̄i,r ≥ 0

]]

−
pi∑
j=1

µ∗i,jψi,j

(
〈u∗i,j , x̃1:i〉

)(
〈v∗i,j , x̃1:i〉

) ∣∣∣∣∣
≤ piε

Bounding ‖w∗i,r‖, we get

‖w∗i,r‖2 =

∥∥∥∥∥
√
πsign

(
āi,r
)

mεa
√

2

pi∑
j=1

µ∗i,jωi,j

(√
m〈w̄i,r, u∗i,j〉,

√
mb̄i,r, ‖u∗i,j‖

)
v∗i,j

∥∥∥∥∥
2

≤
√
π
(∑pi

r=1 Uωi,r
)

mεa
√

2
.

Define upper bound on ‖w∗i,r‖2 as

Uw∗i =

√
π
(∑pi

r=1 Uωi,r
)

mεa
√

2

Lemma E.8. For any i ∈ [d], for any ε ∈ (0, 1), for any derivative of target function ∂F∗i (x1:i)
∂x1:i

, for any

m ≥ Ω

(
d10
(∑d

i=1

∑pi
r=1 Uhi,r

)12

ε2aε
8

)
and for any x with ‖x‖ ≤ 1

2 , there exist a set of parameters θ∗i such that, with

atleast 1− 1
c1
− 1

c2
− 1

c3
− exp

(
− ε2

2mC2
i

)
− exp

(
−

32(c4−1)2m2U2
w∗
i

π

)
probability, we have

∣∣∣∣∣φ−1

(
∂F ∗i (x1:i)

∂x1:i

)
− P (x1:i; θ

∗
i)

∣∣∣∣∣ ≤ (pi + 1) ε+
192c1c4εam

1.5U2
w∗i

√
2 logm

√
π

.

Learning and Generalization in Overparameterized Normalizing Flows

Proof. We divide
∣∣∣∣φ−1

(
∂F∗i (x1:i)
∂x1:i

)
− P (x1:i; θ

∗
i)

∣∣∣∣ into five parts as

∣∣∣∣∣φ−1

(
∂F ∗i (x1:i)

∂x1:i

)
− P (x1:i; θ

∗
i)

∣∣∣∣∣ ≤
∣∣∣∣∣φ−1

(
∂F ∗i (x1:i)

∂x1:i

)
− Eāi,r∼N(0,ε2a),w̄i,r,b̄i,r∼N(0, 1

m)
[
P`(x1:i; θ

∗
i)
]∣∣∣∣∣︸ ︷︷ ︸

I

+

∣∣∣∣Eāi,r∼N(0,ε2a),w̄i,r,b̄i,r∼N(0, 1
m)
[
P`(x1:i; θ

∗
i)
]
− Eāi,r∼N(0,ε2a),w̄i,r,b̄i,r∼N(0, 1

m)
[
P (x1:i; θ

∗
i)
]∣∣∣∣︸ ︷︷ ︸

II

+

∣∣∣∣Eāi,r∼N(0,ε2a),w̄i,r,b̄i,r∼N(0, 1
m)
[
P (x1:i; θ

∗
i)
]
− Eāi,r∼N(0,ε2a),w̄i,r,b̄i,r∼N(0, 1

m)
[
N(x1:i; θ

∗
i)
]∣∣∣∣︸ ︷︷ ︸

III

+

∣∣∣∣Eāi,r∼N(0,ε2a),w̄i,r,b̄i,r∼N(0, 1
m)
[
N(x1:i; θ

∗
i)
]
−N(x1:i; θ

∗
i)

∣∣∣∣︸ ︷︷ ︸
IV

+
∣∣N(x1:i; θ

∗
i)− P (x1:i; θ

∗
i)
∣∣︸ ︷︷ ︸

V

. (E.15)

We know that the first part I ≤ piε from Lemma E.7. Since Eāi,r∼N(0,ε2a),w̄i,r,b̄i,r∼N(0, 1
m)
[
Pc(x1:i; θ

∗
i)
]

= 0, the
second term II = 0. Using Lemma D.2 and Lemma D.3 for bounding the third term III, we get

III =

∣∣∣∣Eāi,r∼N(0,ε2a),w̄i,r,b̄i,r∼N(0, 1
m)
[
P (x1:i; θ

∗
i)
]
− Eāi,r∼N(0,ε2a),w̄i,r,b̄i,r∼N(0, 1

m)
[
N(x1:i; θ

∗
i)
]∣∣∣∣

=

∣∣∣∣Eāi,r∼N(0,ε2a),w̄i,r,b̄i,r∼N(0, 1
m)
[
P (x1:i; θ

∗
i)−N(x1:i; θ

∗
i)
]∣∣∣∣

≤ Eāi,r∼N(0,ε2a),w̄i,r,b̄i,r∼N(0, 1
m)

[∣∣P (x1:i; θ
∗
i)−N(x1:i; θ

∗
i)
∣∣]

≤ Eāi,r∼N(0,ε2a),w̄i,r,b̄i,r∼N(0, 1
m)

[
24c1εaUw∗i

∣∣∣Hi∣∣∣√2 logm

]
≤ 24c1εaUw∗i

(
c4m

4Uw∗i
√
m

√
π

)√
2 logm

=
96c1c4εam

1.5U2
w∗i

√
2 logm

√
π

. (E.16)

We will use technique from Yehudai and Shamir [2019] to bound the fourth term IV. Define a function Ni as

Ni = Ni

((
āi,1, w̄i,1, b̄i,1

)
, . . . ,

(
āi,m, w̄i,m, b̄i,m

))
= sup

x

∣∣∣∣Eāi,r∼N(0,ε2a),w̄i,r,b̄i,r∼N(0, 1
m)
[
N(x1:i; θ

∗
i)
]
−N(x1:i; θ

∗
i)

∣∣∣∣ .
We will now bound the expectation of Ni using McDiarmid’s inequality (Fact K.13). For every 1 ≤ r ≤ m, we get∣∣∣∣∣Ni

((
āi,1, w̄i,1, b̄i,1

)
. . .
(
āi,r, w̄i,r, b̄i,r

)
. . .
(
āi,m, w̄i,m, b̄i,m

))
−Ni

((
āi,1, w̄i,1, b̄i,1

)
. . .
(
ā′i,r, w̄

′
i,r, b̄

′
i,r

)
. . .
(
āi,m, w̄i,m, b̄i,m

)) ∣∣∣∣∣
= sup

x

∣∣∣∣∣āi,rσ
(
〈w̄i,r + w∗i,r, x̃1:i〉+

(
b̄i,r + b∗i,r

))
− ā′i,rσ

(
〈w̄′i,r + w∗i,r, x̃1:i〉+

(
b̄′i,r + b∗i,r

))∣∣∣∣∣
=
(

2c1εa
√

2 logm
)(2 (c2 + c3)

√
2 logm

m
+ 2Uw∗i

)
,

Kulin Shah, Amit Deshpande, Navin Goyal

where last inequality follows with atleast 1− 1
c1
− 1
c2
− 1
c3

probability by applying Lemma K.4 on
[
āi,r
]m
r=1

,
[
w̄i,r

]m
r=1

and
[
b̄i,r
]m
r=1

. Define Ci as

Ci =
(

2c1εa
√

2 logm
)(2 (c2 + c3)

√
2 logm

m
+ 2Uw∗i

)
Using Lemma 26.2 from Shalev-Shwartz and Ben-David [2014], we get

Eāi,r,w̄i,r,b̄i,r [Ni] ≤
2

m
Eāi,r,w̄i,r,b̄i,r

sup
x

∣∣∣∣∣ m∑r=1
ξrāi,rσ

(
〈w̄i,r + w∗i,r,

〉
+
(
b̄i,r + b∗i,r

)
)

∣∣∣∣∣


where ξ1, ξ2, . . . , ξm are independent Rademacher random variables. Using Lipschitz continuity of ReLU activation,
we get

Eāi,r,w̄i,r,b̄i,r [Ni] ≤
2

m
Eāi,r,w̄i,r,b̄i,r

sup
x

∣∣∣∣∣ m∑r=1
ξrāi,r

(
〈w̄i,r + w∗i,r, x̃1:i〉+

(
b̄i,r + b∗i,r

))∣∣∣∣∣


Using Lemma 26.10 from Shalev-Shwartz and Ben-David [2014], we get

Eāi,r,w̄i,r,b̄i,r [Ni] ≤ Eāi,r,w̄i,r,b̄i,r

maxr∈[m] ‖ai,r
(
w̄i,r + w∗i,r

)
‖2

√
m


+ 2Eāi,r,w̄i,r,b̄i,r

maxr∈[m] ‖ai,r
(
b̄i,r + b∗i,r

)
‖2

√
m


≤

2

(
2c1εa

√
2 logm

)
√
m

(
2c2
√

2 logm√
m

+ Uw∗i,r

)+ 2

(
2c1εa

√
2 logm

)
√
m

2c3
√

2 logm√
m

.

For m ≥ Ω

(
d10
(∑d

i=1

∑pi
r=1 Uhi,r

)12

ε2aε
8

)
, we have Uw∗i,r ≤

(c2+c3)
√

2 logm√
m

and therefore, we get

Eāi,r,w̄i,r,b̄i,r [Ni] ≤
24c1 (c2 + c3) εa logm√

m
.

Using McDiarmid’s inequality (Fact K.13), we get

Pr

(
Ni −

24c1 (c2 + c3) εa logm√
m

≥ ε

2

)
≤ Pr

(
Ni − E [Ni] ≥

ε

2

)
≤ exp

(
− ε2

2mC2
i

)

For m ≥ Ω

(
d10
(∑d

i=1

∑pi
r=1 Uhi,r

)12

ε2aε
8

)
, with at least 1 − 1

c1
− 1

c2
− 1

c3
− exp

(
− ε2

2mC2
i

)
probability, for all x with

‖x‖2 ≤ 1, we have ∣∣∣Eāi,r,w̄i,r,b̄i,r [N(x1:i; θ
∗
i)
]
−N(x1:i; θ

∗
i)
∣∣∣ ≤ ε (E.17)

To bound V, by Eq. (D.9), we know

V =
∣∣N(x1:i; θ

∗
i)− P (x1:i; θ

∗
i)
∣∣

(i)
≤24c1εaUw∗i,r

∣∣∣Hi∣∣∣√2 logm

(ii)
≤ 24c1εaUw∗i,r

(
c4m

4Uw∗i,r
√
m

√
π

)√
2 logm

=
96c1c4εam

1.5U2
w∗i,r

√
2 logm

√
π

, (E.18)

Learning and Generalization in Overparameterized Normalizing Flows

where inequality (i) follows from Eq. (D.9) with atleast 1− 1
c1

probability and inequality (ii) follows from Lemma

D.2 with atleast 1 − 1
c1
− exp

(
−

32(c4−1)2m2U2
w∗
i,r

π

)
. Using Lemma E.7, Eq.(E.15), Eq.(E.16), Eq.(E.17) and

Eq.(E.18), with atleast 1− 1
c1
− 1

c2
− 1

c3
− exp

(
− ε2

2mC2
i

)
− exp

(
−

32(c4−1)2m2U2
w∗
i,r

π

)
probability, we get

∣∣∣∣∣φ−1

(
∂F ∗i (x1:i)

∂x1:i

)
− P (x1:i; θ

∗
i)

∣∣∣∣∣ ≤ piε+
96c1c4εam

1.5U2
w∗i,r

√
2 logm

√
π

+ ε+
96c1c4εam

1.5U2
w∗i,r

√
2 logm

√
π

= (pi + 1) ε+
192c1c4εam

1.5U2
w∗i,r

√
2 logm

√
π

.

Lemma E.9. For any ε ∈ (0, 1), for any target function F ∗, for any m ≥ Ω

(
d10
(∑d

i=1

∑pi
r=1 Uhi,r

)12

ε2aε
8

)
and for

any x with ‖x‖2 ≤ 1, there exist a set of parameters θ∗ =
(
θ∗1 , θ

∗
2 , . . . , θ

∗
d

)
such that, with atleast 1 − d

c1
− d

c2
−

d
c3
− d exp

(
− ε2

2mC2
i

)
− d exp

(
−

32(c4−1)2m2U2
w∗
i

π

)
probability, we get

∣∣∣L̃ (∇g∗, x)− L̃ (∇F ∗, x)
∣∣∣ ≤ 3

(
d∑
i=1

pi + d

)
ε+

576c1c4εam
1.5
√

2 logm√
π

(
d∑
i=1

U2
w∗i

)
.

Proof. Using definition of L̃, we get∣∣∣L̃ (∇g∗, x)− L̃ (∇F ∗, x)
∣∣∣ ≤ ∣∣∣∣∣ d∑i=1

Q∑
j=1

∆x

(
∇ig∗i

(
τj (x1:i)

))
−

d∑
i=1

Q∑
j=1

∆x

(
∇iF ∗i

(
τj (x1:i)

))∣∣∣∣∣
+

∣∣∣∣∣ d∑i=1

log
(
∇ig∗i (x1:i)

)
−

d∑
i=1

log
(
∇iF ∗i (x1:i)

)∣∣∣∣∣
≤

d∑
i=1

Q∑
j=1

∆x

∣∣∣∣φ(P (τj (x1:i) , θ
∗
i

))
−
(
∇iF ∗i

(
τj (x1:i)

))∣∣∣∣
+

d∑
i=1

∣∣∣log
(
∇ig∗i (x1:i)

)
− log

(
∇iF ∗i (x1:i)

)∣∣∣
(i)
≤

d∑
i=1

Q∑
j=1

∆x

∣∣∣∣P (τj (x1:i) , θ
∗
i

)
− φ−1

(
∇iF ∗i

(
τj (x1:i)

))∣∣∣∣
+

d∑
i=1

∣∣∣P (x1:i; θ
∗
i)− φ−1

(
∇iF ∗i (x1:i)

)∣∣∣
≤ 2

(
d∑
i=1

pi + d

)
ε+

384c1c4εam
1.5
√

2 logm√
π

(
d∑
i=1

U2
w∗i

)

+

(
d∑
i=1

pi + d

)
ε+

192c1c4εam
1.5
√

2 logm√
π

(
d∑
i=1

U2
w∗i

)

≤ 3

(
d∑
i=1

pi + d

)
ε+

576c1c4εam
1.5
√

2 logm√
π

(
d∑
i=1

U2
w∗i

)
,

where inequality (i) follows from 1-Lipschitz continuity of φ(·) and log
(
φ (·)

)
. The upper bound on ‖θ∗‖2,∞ is

given by

‖θ∗‖2,∞ ≤
d∑
i=1

‖θ∗i ‖2,∞ ≤
d∑
i=1

√
π
(∑pi

r=1 Uωi,r
)

mεa
√

2
=

√
π
(∑d

i=1

∑pi
r=1 Uωi,r

)
mεa
√

2
.

Kulin Shah, Amit Deshpande, Navin Goyal

We define upper bound on ‖θ∗‖2,∞ as Uθ∗ :

Uθ∗ =

√
π
(∑d

i=1

∑pi
r=1 Uωi,r

)
mεa
√

2
.

F Optimization

This section shows that SGD on the loss of the neural network can be closely approximated by the SGD on
the loss of the pseudo-network (Theorem F.3). Since the loss function of the pseudo-network is convex in its
parameters (Lemma F.1), we get global optimization of the pseudo network, and hence, global optimization of
the neural network. Moreover, there exist a pseudo-network which can approximation the target function and
achieve training loss close to the trainign loss of the target function (Section E). Therefore, SGD on the loss of
the neural network can achieve training loss comparable to training loss of the target function (Theorem F.3).

First, we will start with proving convexity of the loss function of the pseudo-network.
Lemma F.1. (Convexity of the loss function of the pseudo-network) The loss function of the pseudo-network is
convex with respect to the parameters of the neural network, and therefore, loss L̃ satisfies first order condition of
convexity for all t ∈ [T] and for all x with ‖x‖2 ≤ 1:

L̃(∇g(t),X)− L̃(∇g∗,X) ≤ 〈∇θL̃(∇g(t),X), θ(t) − θ∗〉.

Proof. We decompose the loss function of the pseudo-network for each dimension into two parts:

L̃
(
∇g(t), x

)
=

d∑
i=1

(
Q∑
j=1

∆x∇ig(t)
i

(
τj (x1:i)

)
− log

(
∇ig(t)

i (x1:i)
))

=
d∑
i=1

(
L̃i,1(∇g(t), x) + L̃i,2(∇g(t), x)

)
,

where

L̃i,1(∇g(t), x) =
Q∑
j=1

∆x∇if (t)
i

(
τj (x1:i)

)
and L̃i,2(∇g(t), x) = − log

(
∇ig(t)

i (x1:i)
)
.

We prove convexity of both L̃i,1(∇g(t), x) and L̃i,2(∇g(t), x). We can write L̃i,1
(
∇g(t), x

)
as

L̃i,1

(
∇g(t), x

)
=

Q∑
j=1

∆xφ
(
P (x1:i; θ

(t)
i)
)
.

Note that φ
(
P (x1:i; θ

(t)
i)
)
is convex in P (x1:i; θ

(t)
i) and P (x1:i; θ

(t)
i) is linear in θ(t)

i . As composition of any convex

and linear function is convex, φ
(
P (x1:i; θ

(t)
i)
)
is convex. The first part of loss function L̃i,1

(
∇g(t), x

)
is convex

in θ(t)
i because sum of convex functions is also convex. By writing L̃i,2

(
∇g(t), x

)
in parts, we get

L̃i,2

(
∇g(t), x

)
= − log

(
φ
(
P (x1:i; θ

(t)
i)
))

= − log

(
exp

(
P (x1:i; θ

(t)
i)
)
I
[
P (x1:i; θ

(t)
i) ≤ 0

]
+
(
P (x1:i; θ

(t)
i) + 1

)
I
[
P (x1:i; θ

(t)
i) ≥ 0

])
= −P (x1:i; θ

(t)
i)I

[
P (x1:i; θ

(t)
i) ≤ 0

]
− log

(
P (x1:i; θ

(t)
i) + 1

)
I
[
P (x1:i; θ

(t)
i) ≥ 0

]
.

Using last equality in the above equation, we can see that L̃i,2 is convex in P (x1:i; θ
(t)
i) and we know that

P (x1:i; θ
(t)
i) is linear in θ(t)

i . Therefore, L̃i,2 is convex in θ(t)
i because composition of any convex and linear function

is a convex function. As L̃i,1 and L̃i,2 are convex, L̃ is also convex in θ(t)
i because sum of convex functions is a

convex function.

Learning and Generalization in Overparameterized Normalizing Flows

Remark F.2. When we use the standard Gaussian for the base distribution, then the loss function will be:

L̃
(
∇g(t), x

)
=

d∑
i=1

(Q∑
j=1

∆x∇ig(t)
i

(
τj (x1:i)

))2

− log
(
∇ig(t)

i (x1:i)
)

=
d∑
i=1

(
L̃i,1(∇g(t), x) + L̃i,2(∇g(t), x)

)
.

Note that the second term in the decomposition L̃i,2 is convex with same argument given in Lemma F.1 and the
first term L̃i,1 is given by

L̃i,1

(
∇g(t), x

)
=

(
Q∑
j=1

∆x∇ig(t)
i

(
τj (x1:i)

))2

.

Using the same argument given in Lemma F.1, we get that
∑Q
j=1 ∆x∇ig(t)

i

(
τj (x1:i)

)
is convex in θ(t)

i but each

summand in L̃i,1 is square of convex function, which may not be convex in θ(t)
i . Therefore, L̃i,1 can be non-convex

in θ(t)
i .

Recall that average loss of function f (t) on training set X is defined as L̃
(
∇f (t),X

)
:

L̃
(
∇f (t),X

)
=

1

|X |
∑
x∈X

L̃
(
∇f (t), x

)
.

Similarly, average loss for g(t) and average loss for F ∗ is denoted by L̃
(
∇g(t),X

)
and L̃ (∇F ∗,X), respectively.

Theorem F.3. (SGD achieves near-optimal loss) For every ε ∈ (0, 1), for every m > poly
(
Uθ∗ , d,

1
ε

)
, learning

rate η = Õ
(

1
mε

)
and number of steps T = O

(
U2
θ∗ logm
ε2

)
such that, with at least 0.94 probability, we get

1

T

T−1∑
t=0

Esgd[L̃(∇f (t),X)]− L̃(∇F ∗,X) ≤ O(ε).

Proof. Recall that ∇g∗ is a pseudo network which approximates the target function ∇F ∗. From Lemma F.1, we
know that L̃(∇g(t),X) is convex in parameters θ, which gives

L̃(∇g(t),X)− L̃(∇g∗,X) ≤ 〈∇θL̃(∇g(t),X), θ(t) − θ∗〉
≤ ‖∇θL̃(∇g(t),X)−∇θL̃(∇f (t),X)‖2,1‖θ(t) − θ∗‖2,∞

+ 〈∇θL̃(∇f (t),X), θ(t) − θ∗〉. (F.1)

Recall that SGD update at time t is given by

θ(t+1) = θ(t) − η∇θL̃(∇f (t), x(t)).

Using SGD update at time t, We have

‖θ(t+1) − θ∗‖22,2 = ‖θ(t) − η∇θL̃(∇f (t), x(t))− θ∗‖22,2
= ‖θ(t) − θ∗‖22,2 + η2‖∇θL̃(∇f (t), x(t))‖22,2 − 2η〈θ(t) − θ∗,∇θL̃(∇f (t), x(t))〉.

By taking expectation wrt xt, we get

Ex(t)

[
‖θ(t+1) − θ∗‖22,2

]
= ‖θ(t) − θ∗‖22,2 + η2Ex(t)

[
‖∇θL̃(∇f (t), x(t))‖22,2

]
− 2η〈∇θL̃(∇f (t),X), θ(t) − θ∗〉. (F.2)

Putting value of 〈∇θL̃(∇f (t),X), θ(t) − θ∗〉 from Eq.(F.2) to (F.1), we get

L̃(∇g(t),X)− L̃(∇g∗,X) ≤
∥∥∇θL̃(∇g(t),X)−∇θL̃(∇f (t), x)

∥∥
2,1
‖θ(t) − θ∗‖2,∞

+
‖θ(t) − θ∗‖22,2 − Ex(t)‖θ(t+1) − θ∗‖22,2

2η

+
η

2
Ex(t)‖∇θL̃(f ′(t), x(t))‖22,2.

Kulin Shah, Amit Deshpande, Navin Goyal

By (D.3), (D.4) and (D.5), with atleast 1− 1
c1

probability, we have∥∥∥∇θL̃(∇f (t), x(t))
∥∥∥2

2,2
≤ 2mΛ̄2.

Averaging from t = 0 to T − 1, we get

1

T

T−1∑
t=0

Esgd

[
L̃(∇g(t),X)

]
− L̃(∇g∗,X) ≤ 1

T

T−1∑
t=0

[∥∥∇θL̃(∇g(t),X)−∇θL̃(∇f (t), x)
∥∥

2,1
‖θ(t) − θ∗‖2,∞

]
+
‖θ(0) − θ∗‖22,2

2ηT

+
η

2

1

T

T−1∑
t=0

[
Ex(t)‖∇θL̃(f ′(t), x(t))‖22,2

]
.

1

T

T−1∑
t=0

Esgd[L̃(∇g(t),X)]− L̃(∇g∗,X) ≤ Γ

(
sup
t∈[T]

‖θ(t)‖2,∞ + ‖θ∗‖2,∞

)
+
‖θ(0) − θ∗‖22,2

2ηT
+ ηmΛ̄2

= Γ

(
sup
t∈[T]

‖θ(t)‖2,∞ + ‖θ∗‖2,∞

)
+
‖θ∗‖22,2

2ηT
+ ηmΛ̄2, (F.3)

where last inequality follows with atleast 1 − d
c1
− d exp

(
− 32(c4−1)2η2m2Λ̄2t2

π

)
. Recall that Γ was defined in

(D.18). The last equality also uses the fact that initial change in weights θ(0) is equal to (0, 0, . . . , 0). Using
Lemmas D.5 and E.9 respectively, with probability at least 1− d

c1
− d

c2
− d

c3
−
∑T
t=1 d exp

(
− 32(c4−1)2η2m2Λ̄2t2

π

)
−

d exp
(
− ε2

2mC2
i

)
− d exp

(
−

32(c4−1)2m2U2
w∗
i

π

)
we have

1

T

T−1∑
t=0

Esgd[L̃(∇f (t),X)]− L̃(∇g∗,X) ≤ Γ

(
sup
t∈[T]

‖θ(t)‖2,∞ + ‖θ∗‖2,∞

)
+
‖θ∗‖22,2

2ηT
+ ηmΛ̄2 + 3Λ(t)

np,

1

T

T−1∑
t=0

Esgd[L̃(∇f (t),X)]− L̃(∇F ∗,X) ≤ Γ

(
sup
t∈[T]

‖θ(t)‖2,∞ + ‖θ∗‖2,∞

)
+
‖θ∗‖22,2

2ηT
+ ηmΛ̄2

+ 3Λ(t)
np + 3

(
d∑
i=1

pi + d

)
ε+

576c1c4εam
1.5
√

2 logm√
π

(
d∑
i=1

U2
w∗i

)
.

We now choose values of η and T :
η =

ε

mΛ̄2

=
ε

m
(
6c1εa

√
2 logm

)2
=

ε

72c21mε
2
a logm

,

T :=
‖θ∗‖22,2

2ηε

≤ mU2
θ∗

72c21mε
2
a logm

2ε2

=
72c21m

2U2
θ∗ε

2
a logm

2ε2
,

(F.4)

where we use chosen value of η to get upper bound on T . Using above inequalities, we get the following equalities:

‖θ∗‖22,2
2ηT

=
‖θ∗‖22,2

2η

2ηε

‖θ∗‖22,2
= ε,

ηmΛ̄2 =
ε

mΛ̄2
mΛ̄2 = ε.

Learning and Generalization in Overparameterized Normalizing Flows

Using Lemma E.9, we get

‖θ∗‖2,∞ ≤ Uθ∗ ,
‖θ∗‖2,2 ≤

√
m‖θ∗‖2,∞ =

√
mUθ∗ .

To get value of m, we will first upper bound supt∈[T] ‖θ(t)‖∞, supt∈[T] ‖θ(t)‖∞ + ‖θ∗‖∞ and Γ:

sup
t∈[T]

‖θ(t)‖∞ = sup
t∈[T]

ηΛ̄t = ηΛ̄T =
‖θ∗‖22Λ̄

2ε
≤ mU2

θ∗

(
6c1εa

√
2 logm

)
2ε

=

(
3c1mU

2
θ∗εa
√

2 logm
)

ε

sup
t∈[T]

‖θ(t)‖∞ + ‖θ∗‖∞ ≤
(
3c1mU

2
θ∗εa
√

2 logm
)

ε
+ U2

θ∗ ≤
(
(1 + 3c1)mU2

θ∗εa
√

2 logm
)

ε

Γ =
192dηm1.5Λ̄c1c4εat

√
logm√

π
+ 24c1dεamΛ(t)

np

√
2 logm

≤ 192dηm1.5Λ̄c1c4εat
√

logm√
π

+ 24c1dεam
√

2 logm

(
192η2m1.5Λ̄2c1c4εat

2
√

logm√
π

)

≤192dηm1.5Λ̄c1c4εat
√

logm√
π

+
4608

√
2c21c4dε

2
aη

2t2m2.5 logmΛ̄2

√
π

≤ 192dm1.5c1c4εa
√

logm√
π

(
mU2

θ∗

2ε

)(
6c1εa

√
2 logm

)

+
4608

√
2c21c4dε

2
am

2.5 logm√
π

(
mU2

θ∗

2ε

)2 (
6c1εa

√
2 logm

)2

≤ 576
√

2dm2.5c21c4ε
2
aU

2
θ∗ logm

ε
√
π

+
82944

√
2c41c4dε

4
am

4.5U4
θ∗ (logm)

2

√
πε2

≤ 165888
√

2c41c4dε
4
am

4.5U4
θ∗ (logm)

2

√
πε2

.

Multiplication of Γ and
(

supt∈[T] ‖θ(t)‖∞ + ‖θ∗‖∞
)
will be

Γ

(
sup
t∈[T]

‖θ(t)‖∞ + ‖θ∗‖∞

)
≤ 165888

√
2c41c4dε

4
am

4.5U4
θ∗ (logm)

2

√
πε2

((
(1 + 3c1)mU2

θ∗εa
√

2 logm
)

ε

)

=
331776c41 (1 + 3c1) c4dε

5
am

5.5U6
θ∗ (logm)

2.5

√
πε3

=
331776c41 (1 + 3c1) c4dε

5
am

5.5 (logm)
2.5

√
πε3

√π
(∑d

i=1

∑pi
r=1 Uhi,r

)
mεa
√

2


6

=
41472π2.5c41 (1 + 3c1) c4d (logm)

2.5
(∑d

i=1

∑pi
r=1 Uhi,r

)6

√
mε3εa

.

Taking m as

m ≥ Ω

c81c24d2 (1 + 3c1)
2
(∑d

i=1

∑pi
r=1 Uhi,r

)12

ε2aε
8

 , (F.5)

Kulin Shah, Amit Deshpande, Navin Goyal

we get

Γ

(
sup
t∈[T]

‖θ(t)‖∞ + ‖θ∗‖∞

)
≤ ε.

Using (D.10), we get

Λ(t)
np =

(
192η2m1.5Λ̄2c1c4εat

2
√

logm√
π

)

≤

(
192m1.5c1c4εa

√
logm√

π

)(
mU2

θ∗

2ε

)2 (
6c1εa

√
2 logm

)2

=
3456m3.5c31c4ε

3
aU

4
θ∗ (logm)

1.5

ε2
√
π

. (F.6)

Using given choice of m from (F.5), we get

Λ(t)
np ≤

3456m3.5c31c4ε
3
a (logm)

1.5

ε2
√
π

√π
(∑d

i=1

∑pi
r=1 Uhi,r

)
mεa
√

2


4

=
864π1.5c31c4 (logm)

1.5

εaε2

(
d∑
i=1

pi∑
r=1

Uhi,r

)4

 ε2aε
8

c81c
2
4d

2 (1 + 3c1)
2
(∑d

i=1

∑pi
r=1 Uhi,r

)12


0.5

= O

 ε2 (logm)
1.5

c1 (1 + 3c1)
(∑d

i=1

∑pi
r=1 Uhi,r

)2


≤ O (ε) .

Similarly, using given choice of m from (F.5), we get

576c1c4εam
1.5
√

2 logm√
π

(
d∑
i=1

U2
w∗i

)
=

576c1c4εam
1.5
√

2 logm√
π

 d∑
i=1

(√
π
(∑pi

r=1 Uhi,r
)

mεa
√

2

)2


≤ 288
√
πc1c4

√
2 logm

m0.5εa

(
d∑
i=1

pi∑
r=1

Uhi,r

)2

≤ O (ε) .

Using Eq.(F.4) and Eq.(F.5), with at least 1− d
c1
− d
c2
− d
c3
−
∑T
t=1 d exp

(
− 32(c4−1)2η2m2Λ̄2t2

π

)
−d exp

(
− ε2

2mC2
i

)
−

d exp

(
−

32(c4−1)2m2U2
w∗
i

π

)
probability, we get

1

T

T−1∑
t=0

Esgd[L̃(∇f (t),X)]− L̃(∇F ∗,X) ≤ Γ

(
sup
t∈[T]

‖θ(t)‖2,∞ + ‖θ∗‖2,∞

)
+
‖θ∗‖22,2

2ηT
+ ηmΛ̄2

+ 3Λ(t)
np + 3

(
d∑
i=1

pi + d

)
ε+

576c1c4εam
1.5
√

2 logm√
π

(
d∑
i=1

U2
w∗i

)

≤O(ε) + 3

(
d∑
i=1

pi + d

)
ε.

Learning and Generalization in Overparameterized Normalizing Flows

Taking c1 = 100d, c2 = 100d, c3 = 100d, c4 = d+ 1, εa = ε
6000 logm ≤ ε and rescaling ε as ε/

(∑d
i=1 pi + d

)
, with

at least 0.97−
∑T
t=1 d exp

(
− 32d2η2m2Λ̄2t2

π

)
− d exp

(
− ε2

2mC2
i

)
− d exp

(
−

32d2m2U2
w∗
i

π

)
probability, we get

1

T

T−1∑
t=0

Esgd[L̃(∇f (t),X)]− L̃(∇F ∗,X) ≤ O (ε) .

To find the lower bound on probability, we use
∑T
t=1

1
t2 ≤

∑∞
t=1

1
t2 ≤ 2:

T∑
t=1

d exp

(
−32d2η2m2Λ̄2t2

π

)
(i)
≤

T∑
t=1

dπ

32d2η2m2Λ̄2t2
=

πΛ̄4

16dε2Λ̄2
≤ πΛ̄2

16dε2
≤ π

3200
≤ 0.01.

where inequality (i) follows from exp (−x) ≤ 1
x for all x ≥ 0. To find lower bound on d exp

(
− ε2

2mC2
i

)
, we use

same inequality:

d exp

(
− ε2

2mC2
i

)
≤ 2dmC2

i

ε2
=

2dm

ε2

(
2c1εa

√
2 logm

)(2 (c2 + c3)
√

2 logm

m
+ 2

√
π
(∑pi

r=1 Uhi,r
)

mεa
√

2

)2

≤ 0.01

where last inequality follows from given choice (Eq. (F.5)) of sufficiently high m. Now, we will lower bound

d exp

(
−

32d2m2U2
w∗
i

π

)
quantity:

d exp

(
−

32d2m2U2
w∗i

π

)
≤ πd

32d2m2U2
w∗i

=
πd

32d2m2

2m2ε2a

π
(∑pi

r=1 Uhi,r
)2 =

ε2a

16d
(∑pi

r=1 Uhi,r
)2 ≤ 0.01

where last inequality follows from the value of εa. Finally, we can say that, with at least 0.94 probability, we get

1

T

T−1∑
t=0

Esgd[L̃(∇f (t),X)]− L̃(∇F ∗,X) ≤ O(ε).

G Generalization

In this section, we prove generalization guarantees to complement our optimization result, and complete the proof
of our main theorem (Theorem G.6) about efficiently learning distributions using univariate normalizing flows.
Recall that L̃(∇f (t),X) denotes an empirical average of L̃(∇f (t),X) over training data and L̃(∇f (t),D) denotes
expectation with respect to underlying data distribution. The proof in this section can be broadly divided two
parts. First, we prove that empirical average L̃(∇f (t),X) and L̃(∇F ∗,X) are close to expectation L̃(∇f (t),D)
and L̃(∇F ∗,D), respectively (Lemma G.3 and Lemma G.4). Second, we prove that L̃(∇f (t),D) and L̃(∇F ∗,D)
are close to L(f (t),D) and L(F ∗,D), respectively (Theorem G.6).
Recall that the approximate loss function L̃ is given by

L̃
(
∇f (t), x

)
=

d∑
i=1

 Q∑
j=1

∆xφ

(
N
(
τj (x1:i) ; θ

(t)
i

))
− log

(
φ

(
N
(
x1:i; θ

(t)
i

))) ,

where

N(x1:i, θ
(t)
i) =

m∑
r=1

āi,rσ

(
〈w̄i,r + w

(t)
i,r , x̃1:i〉+

(
b̄i,r + b

(t)
i,r

))
.

Similarly, we define L̃ (∇F ∗, x) for the target function F ∗.

Kulin Shah, Amit Deshpande, Navin Goyal

Lemma G.1. (Empirical Rademacher complexity for two-layer neural network) For every constant B > 0,
for any number of training samples n ≥ 1, for any time t ≥ 1, with probability at least 1 − 1

c1
over random

initialization, the empirical Rademacher complexity is bounded by

1

n
Eξ∈{±1}n

 sup
maxr∈[m]

∥∥∥w(t)
i,r

∥∥∥,∣∣∣b(t)i,r∣∣∣≤B
n∑
j=1

ξjN
(

(x1:i)j , θ
(t)
i

) ≤ 8c1εaBm
√

2 logm√
n

,

where (x1:i)j denotes first i dimension of jth training example.

Proof. Using part (a) of Lemma K.16, we get that {x 7→ 〈w(t)
i,r , x̃1:i〉+b(t)i,r |

∥∥∥w(t)
i,r

∥∥∥
2
≤ B,

∣∣∣b(t)i,r∣∣∣ ≤ B} has Rademacher

complexity 2B√
n
. Using part (b) of Lemma K.16, we get that {x 7→ 〈w̄i,r + w

(t)
i,r , x̃1:i〉+

(
b̄i,r + b

(t)
i,r

)
|
∥∥∥w(t)

i,r

∥∥∥
2
≤

B,
∣∣∣b(t)i,r∣∣∣ ≤ B, w̄i,r ∼ N

(
0, 1

m1
)
, b̄i,r ∼ N

(
0, 1

m

)
} has Rademacher complexity 2B√

n
. Using part (c) of Lemma

K.16, we get that class of functions in F = {x 7→ N(x1:i; θ
(t)
i) | maxr∈[m]

∥∥∥w(t)
i,r

∥∥∥
2
≤ B,maxr∈[m]

∣∣∣b(t)i,r∣∣∣ ≤ B} has
Rademacher complexity

R̂ (X ;F) ≤ 2‖a‖1
2B√
n

(i)
≤ 8c1εaBm

√
2 logm√

n
,

where inequality (i) follows from Lemma K.4 with at least 1− 1
c1

probability over random initialization.

We denote M∇F∗ and m∇F∗ as maximum and minimum value of ∇F ∗:

M∇F∗ = max
i∈[d],x∈Rd

∇iF ∗i (x1:i) (x1:i) ,

m∇F∗ = min
i∈[d],x∈Rd

∇iF ∗i (x1:i) (x1:i) .

We find upper bound on maximum and lower bound on minimum value of the loss L̃ for the target function F ∗
in terms of M∇F∗ and m∇F∗ :

sup
x
L̃ (∇F ∗, x) = max

x

d∑
i=1

(
Q∑
j=1

∆x

(
∇iF ∗i (x1:i)

(
τj (x1:i)

))
− log∇iF ∗i (x1:i)

)
≤ 2dM∇F∗ − d log (m∇F∗) ,

inf
x
L̃ (∇F ∗, x) = min

x

d∑
i=1

(
Q∑
j=1

∆x

(
∇iF ∗i (x1:i)

(
τj (x1:i)

))
− log∇iF ∗i (x1:i)

)
≥ 2dm∇F∗ − d log (M∇F∗) ,

and define them respectively as ML̃ and mL̃:

ML̃ = 2dM∇F∗ − d log (m∇F∗) ,

mL̃ = 2dm∇F∗ − d log (M∇F∗) .
(G.1)

Lemma G.2. (Small value of neural network at initialization) For any dimension i ∈ [d], for any constant
c1 > 10, c2 > 10 and c3 > 10, with probability at least 0.99− 1

c1
− 1

c2
− 1

c3
, we have∣∣∣∣∣ m∑r=1

āi,rσ
(
〈w̄i,r, x̃1:i〉+ b̄i,r

)∣∣∣∣∣ ≤ 16
√

(d+ 1) log (d+ 1)c1c2εa (logm) + 16c1c3εa (logm) .

Proof. Suppose, for any given x, there are m′ indicators with value 1. Without loss of generality, we can assume

Learning and Generalization in Overparameterized Normalizing Flows

that indicators from r = 1 to r = m′ is 1. Then,∣∣∣∣∣ m∑r=1
āi,r

(
〈w̄i,r, x̃1:i〉+ b̄i,r

)
I
[
〈w̄i,r, x̃1:i〉+ b̄i,r ≥ 0

]∣∣∣∣∣ =

∣∣∣∣∣m
′∑

r=1
āi,r

(
〈w̄i,r, x̃1:i〉+ b̄i,r

)∣∣∣∣∣
=

∣∣∣∣∣〈x, m
′∑

r=1
āi,rw̄i,r〉+

m′∑
r=1

āi,r b̄i,r

∣∣∣∣∣
Now, applying Hoeffding’s inequality (Fact K.8) on any dimension j ∈ [d + 1] for the sum in first part of the
above equation, with atleast 1− 1

c1
− 1

c2
probability, we get

Pr

∣∣∣∣∣m
′∑

r=1
āi,rw̄i,r,j

∣∣∣∣∣ ≥ t
 ≤ exp

− 2t2m

m′
(
2c1εa

√
2 logm

)2 (
2c2
√

2 logm
)2


≤ exp

(
− t2

32c21c
2
2ε

2
a (logm)

2

)
. (G.2)

Using union bound, we get

Pr

 ⋃
j∈[d+1]

∣∣∣∣∣m
′∑

r=1
āi,rw̄i,r,j

∣∣∣∣∣ ≥ t

 ≤ (d+ 1) exp

(
− t2

32c21c
2
2ε

2
a (logm)

2

)

Using definition of L∞−norm, we have

Pr

∥∥∥∥∥m
′∑

r=1
āi,rw̄i,r

∥∥∥∥∥
∞

≥ t

 ≤ (d+ 1) exp

(
− t2

32c21c
2
2ε

2
a (logm)

2

)

Plugging t = 16
√

log (d+ 1)c1c2εa (logm) in above equation, with probability at least 1− exp (−8)− 1
c1
− 1

c2
, we

have ∥∥∥∥∥m
′∑

r=1
āi,rw̄i,r

∥∥∥∥∥
∞

≤ 16
√

log (d+ 1)c1c2εa (logm) ,

and using relation between L2 and L∞ norm, we have∥∥∥∥∥m
′∑

r=1
āi,rw̄i,r

∥∥∥∥∥
2

≤
√
d+ 1

∥∥∥∥∥m
′∑

r=1
āi,rw̄i,r

∥∥∥∥∥
∞

≤ 16
√

(d+ 1) log (d+ 1)c1c2εa (logm) . (G.3)

Similarly, using Hoeffding’s inequality (Fact K.8), with at least 1− 1
c1
− 1

c3
probability, we get

Pr

∣∣∣∣∣m
′∑

r=1
āi,r b̄i,r

∣∣∣∣∣ ≥ t
 ≤ exp

− 2t2m

m′
(
2c1εa

√
2 logm

)2 (
2c3
√

2 logm
)2


≤ exp

(
− t2

32c21c
2
3ε

2
a (logm)

2

)
.

Plugging t = 16c1c3εa (logm), with at least 1− exp (−8)− 1
c1
− 1

c3
probability, we get∣∣∣∣∣m

′∑
r=1

āi,r b̄i,r

∣∣∣∣∣ ≤ 16c1c3εa (logm) . (G.4)

Kulin Shah, Amit Deshpande, Navin Goyal

Using Eq.(G.3) and Eq.(G.4), with probability at least 0.99− 1
c1
− 1

c2
− 1

c3
, we have∣∣∣∣∣ m∑r=1

āi,r
(
〈w̄i,r, x̃1:i〉+ b̄i,r

)
I
[
〈w̄i,r, x̃1:i〉+ b̄i,r ≥ 0

]∣∣∣∣∣ =

∣∣∣∣∣〈x, m
′∑

r=1
āi,rw̄i,r〉+

m′∑
r=1

āi,r b̄i,r

∣∣∣∣∣ (G.5)

≤ 16
√

(d+ 1) log (d+ 1)c1c2εa (logm) + 16c1c3εa (logm) .

This completes the proof.

Lemma G.3. For any constant T , for any dimension i ∈ [d], any time 1 ≤ t ≤ T , any ε ∈ (0, 1), suppose that
the number of samples n satisfies

n ≥ O

(ML̃ −mL̃

)2
(Q+ 1)

2
d2 log (d) ε4aU

4
θ∗m

4 (logm)
2

ε4

 . (G.6)

Then, with at least 0.98 probability over random initialization, the population loss of any functions of the set
{x 7→ N(x1:i; θ

(t)
i) |

∥∥∥w(t)
i,r

∥∥∥
2
≤ ηΛ̄T,

∣∣∣b(t)i,r∣∣∣ ≤ ηΛ̄T ∀r ∈ [m]} is close to the empirical loss, i.e.∣∣∣∣∣Ex∈D
[
L̃
(
∇f (t), x

)]
− L̃

(
∇f (t),X

)∣∣∣∣∣ ≤ ε.
Proof. We know that the loss for ith dimension L̃i

(
∇f (t), x

)
depends on neural network N(x1:i; θ

(t)
i) through(

N
(
τ1 (x1:i) ; θ

(t)
i

)
, N
(
τ2 (x1:i) ; θ

(t)
i

)
, . . . , N

(
τQ (x1:i) ; θ

(t)
i

)
, N
(
x1:i; θ

(t)
i

))
vector. Using Fact K.17, with at

least 1− δ probability, we get

sup
N∈F

∣∣∣∣∣Ex∼D
[
L̃i

(
∇f (t), x

)]
− 1

n

n∑
i=1

L̃i

(
∇f (t), x

)∣∣∣∣∣ ≤ 2
√

2Ls (Q+ 1) R̂ (X ;F) + bi

√
log 1

δ

2n
(G.7)

where F = {x 7→ N(x1:i; θ
(t)
i) |

∥∥∥w(t)
i,r

∥∥∥
2
≤ ηΛ̄T,

∣∣∣b(t)i,r∣∣∣ ≤ ηΛ̄T ∀r ∈ [m]}. In the above equation,

constant bi denotes upper bound on the loss L̃i and Ls,i denote standard Lipschitz constant of L̃i with re-

spect to
(
N
(
τ1 (x1:i) ; θ

(t)
i

)
, N
(
τ2 (x1:i) ; θ

(t)
i

)
, . . . , N

(
τQ (x1:i) ; θ

(t)
i

)
, N
(
x1:i; θ

(t)
i

))
. We denote Lc,i,j as jth

coordinate-wise Lipschitz continuity of loss L̃i function as following:

Lc,i,j ≤ sup
N∈F,‖x‖2≤1

∣∣∣∣∣∆xφ
′
(
N
(
τj (x1:i) , θ

(t)
i

))∣∣∣∣∣
≤ sup
N∈F,‖x‖2≤1

2

Q

∣∣∣∣∣φ′
(
N
(
τj (x1:i) , θ

(t)
i

))∣∣∣∣∣
≤ 2

Q
∀j ∈ [Q],

Lc,i,Q+1 ≤ sup
N∈F,‖x‖2≤1

φ′
(
N(x1:i; θ

(t)
i)
)

φ
(
N(x1:i; θ

(t)
i)
)

= sup
N∈F,‖x‖2≤1

exp
(
N(x1:i; θ

(t)
i)
)
I
[
N(x1:i; θ

(t)
i) ≤ 0

]
+ I
[
N(x1:i; θ

(t)
i) ≥ 0

]
exp

(
N(x1:i; θ

(t)
i)
)
I
[
N(x1:i; θ

(t)
i) ≤ 0

]
+
(
N(x1:i; θ

(t)
i) + 1

)
I
[
N(x1:i; θ

(t)
i) ≥ 0

]
= sup
N∈F,‖x‖≤1

I
[
N(x1:i; θ

(t)
i) ≤ 0

]
+

1

N(x1:i; θ
(t)
i) + 1

I
[
N(x1:i; θ

(t)
i) ≥ 0

]
≤ 1

Learning and Generalization in Overparameterized Normalizing Flows

Using Lemma K.6, standard Lipschitz constant of L̃i is given by

Ls,i ≤

√
Q+1∑
j=1

L2
c,i,j ≤

√
4

Q
+ 1 ≤ 2 (G.8)

To get constant bi (i.e., upper bound on L̃i), we use Lipschitz property of L̃i. We construct f̃i such that(
∇if̃i

(
τ1 (x1:i)

)
,∇if̃i

(
τ2 (x1:i)

)
, . . . ,∇if̃i

(
τQ (x1:i)

)
,∇if̃i (x1:i)

)
= (1, 1, . . . , 1, 1).

∣∣∣∣L̃i (∇f (t), x
)
− L̃i

(
∇f̃ (t), x

)∣∣∣∣ =

∣∣∣∣∣ Q∑j=1

∆x∇if (t)
i

(
τj (x1:i)

)
−

Q∑
j=1

∆x∇if̃i
(
τj (x1:i)

)∣∣∣∣∣
+

∣∣∣∣∣∣log

(
φ
(
N(x1:i; θ

(t)
i)
))
− log

(
φ

(
N
(
x1:i, θ̃i

)))∣∣∣∣∣∣
≤

Q∑
j=1

∆x

∣∣∣∣∣φ
(
N
(
τj (x1:i) , θ

(t)
i

))
− φ

(
N
(
τj (x1:i) , θ̃i

))∣∣∣∣∣
+

∣∣∣∣∣log

(
φ
(
N(x1:i; θ

(t)
i)
))∣∣∣∣∣

≤
Q∑
j=1

∆x

∣∣∣∣N (τj (x1:i) , θ
(t)
i

)∣∣∣∣+
∣∣∣N(x1:i; θ

(t)
i)
∣∣∣ (G.9)

Note that L̃
(
∇f (t), x

)
depends upon

(
N
(
τ1 (x1:i) ; θ

(t)
i

)
, N
(
τ2 (x1:i) ; θ

(t)
i

)
, . . . , N

(
τQ (x1:i) ; θ

(t)
i

)
, N
(
x1:i; θ

(t)
i

))
vector and similarly, L̃

(
∇f̃ (t), x

)
depends upon (0, 0, 0, . . . , 0, 0). Finding upper bound N(x1:i; θ

(t)
i) for all

x ∈ Rd with ‖x‖2 ≤ 1, we get

sup
N∈F,‖x‖≤1

N(x1:i; θ
(t)
i) ≤ sup∥∥∥w(t)

i,r

∥∥∥
2
≤ηΛ̄T,

∣∣∣b(t)i,r∣∣∣≤ηΛ̄T,‖x‖2≤1

P (x1:i; θ
(t)
i) + Λ(T)

np

≤ sup∥∥∥w(t)
i,r

∥∥∥
2
≤ηΛ̄T,

∣∣∣b(t)i,r∣∣∣≤ηΛ̄T,‖x‖2≤1

m∑
r=1

āi,rσ
(
〈w̄i,r, x̃1:i〉+ b̄i,r

)
+

m∑
r=1

āi,r

(
〈w(t)

i,r , x̃1:i〉+ b
(t)
i,r

)
σ
(
〈w̄i,r, x̃1:i〉+ b̄i,r

)
+ Λ(T)

np

(i)
≤ 16

√
(d+ 1) log (d+ 1)c1c2εa (logm) + 16c1c3εa (logm)

+m
(

2c1εa
√

2 logm
) (

2ηΛ̄T
)

+ Λ(T)
np

(ii)
≤ 16

√
(d+ 1) log (d+ 1)c1c2εa (logm) + 16c1c3εa (logm)

+m
(

2c1εa
√

2 logm
)(

12c1εa
√

2 logm
)(mU2

θ∗

2ε

)
+ Λ(T)

np

= 16
√

(d+ 1) log (d+ 1)c1c2εa (logm) + 16c1c3εa (logm)

+m

24c21ε
2
a logm

(
mU2

θ∗

ε

)+ Λ(T)
np

≤ O

(
m2ε2aU

2
θ∗ logm

ε

)

where inequality (i) follows from Lemma G.2, Lemma K.4 and Eq.(D.6). The inequality (ii) uses our choices of η

Kulin Shah, Amit Deshpande, Navin Goyal

and T from Eq.(F.4). We define K as upper bound on supN∈F,‖x‖2≤1N(x1:i; θ
(t)
i):

K := O

(
m2ε2aU

2
θ∗ logm

ε

)
. (G.10)

Using value of K and Eq.(G.9), we get upper bound bi on L̃i:

bi = 2K +K + L̃i

(
∇f̃ (t), x

)
= 3K + 2.

Using value of bi in Eq.(G.7) and Lemma G.1, with at least 0.99− δ − 1
c1
− 1

c2
− 1

c3
probability, we get

sup
N∈F

∣∣∣∣∣Ex∈D
[
L̃i

(
∇f (t), x

)]
− 1

n

n∑
i=1

L̃i

(
∇f (t), xi

)∣∣∣∣∣
≤ 4
√

2 (Q+ 1)
8c1εaηΛ̄Tm

√
2 logm√

n
+ (3K + 2)

√
log 1

δ

2n
.

By summing over all dimension i ∈ [d], with atleast 0.99− dδ − d
c1
− d

c2
− d

c3
probability, we get

sup
N∈F

∣∣∣∣∣Ex∈D
[
L̃
(
∇f (t), x

)]
− 1

n

n∑
i=1

L̃
(
∇f (t), xi

)∣∣∣∣∣ ≤ d∑
i=1

sup
N∈F

∣∣∣∣∣Ex∈D
[
L̃i

(
∇f (t), x

)]
− 1

n

n∑
i=1

L̃i

(
∇f (t), xi

)∣∣∣∣∣ ,
≤ 4
√

2d (Q+ 1)
8c1εaηΛ̄Tm

√
2 logm√

n
+ (3K + 2) d

√
log 1

δ

2n
.

Using δ = 0.001
d and our choice of n given in (G.6), with probability at least 0.989, we have

sup
N∈F

∣∣∣∣∣Ex∈D
[
L̃i

(
∇f (t), x

)]
− 1

n

n∑
i=1

L̃i

(
∇f (t), xi

)∣∣∣∣∣ ≤ ε.

Lemma G.4. (Concentration on approximated loss of target function) Suppose n is sufficiently high such that it
satisfies

n ≥ O

(ML̃ −mL̃

)2
(Q+ 1)

2
d2 log (d) ε4aU

4
θ∗m

4 (logm)
2

ε4

 .

If n satisfies above condition, then with at least 0.9999 probability, population loss of target function F ∗′ is close
to empirical loss i.e. ∣∣∣∣Ex∼D [L̃ (∇F ∗, x)

]
− L̃ (∇F ∗,X)

∣∣∣∣ ≤ ε.
Proof. Using Hoeffding’s inequality (Fact K.8), we have

Pr

(∣∣∣∣Ex∼D [L̃ (∇F ∗,X)
]
− L̃ (∇F ∗,X)

∣∣∣∣ ≥ ε
)
≤ exp

− 2nε2(
ML̃ −mL̃

)2


Taking n as

n ≥ O

(ML̃ −mL̃

)2
(Q+ 1)

2
d2 log (d) ε4aU

4
θ∗m

4 (logm)
2

ε4

 ,

Learning and Generalization in Overparameterized Normalizing Flows

with at least probability 0.9999, we get∣∣∣∣Ex∼D [L̃ (∇F ∗, x)
]
− L̃ (∇F ∗,X)

∣∣∣∣ ≤ ε (G.11)

Corollary G.5. Under same setting as Theorem F.3 and

n ≥ O

(ML̃ −mL̃

)2
(Q+ 1)

2
d2 log (d) ε4aU

4
θ∗m

4 (logm)
2

ε4


then with at least 0.94 probability, we get

Esgd

[
1

T

T−1∑
t=0

Ex∼D
[
L̃(f ′(t), x)

]]
− Ex∼D

[
L̃(∇F ∗, x)

]
≤ O(ε).

Proof. The corollary follows from Theorem F.3, Lemma G.3 and Lemma G.4.

Before stating our main theorem, we recall and define necessary terms used in stating the theorem. Recall that

M∇F = max
i∈[d],x∈Rd

∇iFi (x1:i) = max
i∈[d],x∈Rd

∂Fi (x1:i)

∂xi
,

m∇F = min
i∈[d],x∈Rd

∇iFi (x1:i) = min
i∈[d],x∈Rd

∂Fi (x1:i)

∂xi
,

M∇2F = max
i∈[d],x∈Rd

∇2
iFi (x1:i) = max

i∈[d],x∈Rd
∂2Fi (x1:i)

∂x2
i

,

m∇2F = min
i∈[d],x∈Rd

∇2
iFi (x1:i) = min

i∈[d],x∈Rd
∂2Fi (x1:i)

∂x2
i

,

ML̃ = sup
x
L̃ (∇F ∗, x) = 2M∇F − log (m∇F) ,

mL̃ = inf
x
L̃ (∇F ∗, x) = 2m∇F − log (M∇F) .

Recall that for any function ψ : R→ R with Taylor expansion ψ(y) =
∑∞
j=0 cjy

j , then its complexity C0(ψ, ε) for
any ε > 0 is given by

C0(ψ, ε) = O((
∞∑
i=0

(i+ 1)1.75|ci|)poly(1
ε)),

which is a weighted norm of the Taylor coefficients. Recall that we define upper bound on complexity of learning
any ψ function as

Uψ = max
i∈[d],j∈[pi]

C0

(
ψi,j , ε

)
.

Now, we will state our main theorem.
Theorem G.6. (loss function is close to optimal) For every ε ∈ (0, 1), for every m >

poly

(
Uψ, d,

(
maxi∈[d] pi

)
, 1
ε

)
, η = Õ

(
1
mε

)
and T = O

(
d2(maxi∈[d] pi)

2
U2
ψ logm

ε2

)
, for any target function F ∗′

with finite second order derivative and number of quadrature points Q ≥ 2dM∇2F∗+2dK2

ε and number of training

points n ≥ O
(

(ML̃−mL̃)
2
(Q+1)2d6 log(d)(maxi∈[d] pi)

4
U4
ψm

4(logm)2

ε4

)
, with at least 0.94 probability, we have

Esgd

[
1

T

T−1∑
t=0

Ex∼D
[
L(f (t), x)

]]
− Ex∼D

[
L(F ∗, x)

]
≤ O(ε),

Kulin Shah, Amit Deshpande, Navin Goyal

where K2 is given by

K2 = O

m2U2
ψd

6
(

maxi∈[d] pi

)
ε

 .

Proof. First, we will try to bound for all x ∈ Rd with ‖x‖2 ≤
1
2 :

∣∣∣L̃(∇F ∗, x)− L(F ∗, x)
∣∣∣ ≤∣∣∣∣∣ d∑i=1

Q∑
j=1

∆x∇iF ∗i (x1:i)
(
τj (x1:i)

)
− F ∗i (x1:i)

∣∣∣∣∣
≤

d∑
i=1

∣∣∣∣∣ Q∑j=1

∆x∇iF ∗i (x1:i)
(
τj (x1:i)

)
− F ∗i (x1:i)

∣∣∣∣∣
≤2dM∇2F

Q
.

Similarly, bounding error for f ′(t) for all x ∈ Rd with ‖x‖2 ≤
1
2 , we will get

∣∣∣L̃(∇f (t), x)− L(f (t), x)
∣∣∣ ≤
∣∣∣∣∣∣
d∑
i=1

(
Q∑
j=1

∆x∇if (t)
i

(
τj (x1:i)

)
− f (t)

i (x1:i)

)∣∣∣∣∣∣
≤

2d
(

supx,i∈[d],t∈[T]∇2
i f

(t)
i (x1:i)

)
Q

.

Learning and Generalization in Overparameterized Normalizing Flows

To get supx,i∈[d],t∈[T]∇2
i f

(t)
i (x1:i), we will use Eq.(G.10).

sup
x,i∈[d],t∈[T]

∇2
i f

(t)
i (x1:i) = sup

x,i∈[d],t∈[T]

∣∣∣∣∣∂2f
(t)
i (x1:i)

∂x2
i

∣∣∣∣∣
= sup
x,i∈[d],t∈[T]

∣∣∣∣∣ ∂∂xi
(
φ
(
N(x1:i; θ

(t)
i)
))∣∣∣∣∣

≤ sup
x,i∈[d],t∈[T]

∣∣∣∣ ∂∂xiN(x1:i; θ
(t)
i)

∣∣∣∣
≤ sup
x,i∈[d],t∈[T]

∣∣∣∣∣ m∑r=1
āi,rσ

′
(
〈w̄i,r + w

(t)
i,r , x̃1:i〉+

(
b̄i,r + b

(t)
i,r

))((
w̄i,r,i + w

(t)
i,r,i

)
+
(
w̄i,r,i+1 + w

(t)
i,r,i+1

) xi√
1− ‖x1:i‖2

)∣∣∣∣∣
= sup
x,i∈[d],t∈[T]

∑
r∈Hi

āi,rI
[
〈w̄i,r, x̃1:i〉+ b̄i,r ≥ 0

]((
w̄i,r,i + w

(t)
i,r,i

)
+
(
w̄i,r,i+1 + w

(t)
i,r,i+1

) xi√
1− ‖x1:i‖2

)
+

∑
r∈H(t)

i

āi,rI
[
〈w̄i,r + w

(t)
i,r , x̃1:i〉+

(
b̄i,r + b

(t)
i,r

)
≥ 0

]
((

w̄i,r,i + w
(t)
i,r,i

)
+
(
w̄i,r,i+1 + w

(t)
i,r,i+1

) xi√
1− ‖x1:i‖2

)
(i)
≤ 32c1c2εa (logm) + 2m

(
2c1εa

√
2 logm

) (
ηΛ̄T

)
+

(
c4m

4ηΛ̄T
√
m√

π

)(
2c1εa

√
2 logm

)(2c2
√

2 logm√
m

)

+

(
c4m

4
√
m√
π

)(
2c1εa

√
2 logm

) (
ηΛ̄T

)2
≤ 32c1c2εa (logm) + 2m

(
2c1εa

√
2 logm

)((3c1mU2
θ∗εa
√

2 logm
)

ε

)

+

(
c4m

4
√
m√
π

)(
2c1εa

√
2 logm

)(2c2
√

2 logm√
m

)((
3c1mU

2
θ∗εa
√

2 logm
)

ε

)

+

(
c4m

4
√
m√
π

)(
2c1εa

√
2 logm

)((3c1mU2
θ∗εa
√

2 logm
)

ε

)2

(ii)
≤ O

(
d2ε
)

+O
(
d2m2U2

θ∗ε
)

+O
(
m2U2

θ∗d
4ε
)

+O
(
m3.5U4

θ∗ε
2
)

≤ O
(
m2U2

θ∗d
4ε
)
,

where inequality (i) follows by plugging t = 16c1c2εa logm in Eq.(G.2), with . Define K2 as upper bound on
∇2
i f

(t)
i (x1:i),

K2 = O
(
m2U2

θ∗d
4ε
)

= O

m2U2
ψd

6
(

maxi∈[d] pi

)
ε

 .

Taking Q as

Q ≥ 2dM∇2F∗ + 2dK2

ε
(G.12)

Kulin Shah, Amit Deshpande, Navin Goyal

Using given value of Q, we get that ∣∣∣L̃(∇F ∗, x)− L(F ∗, x)
∣∣∣ ≤ ε, (G.13)∣∣∣L̃(∇f (t), x)− L(f (t), x)
∣∣∣ ≤ ε. (G.14)

Using these relations, we get

Esgd

[
1

T

T−1∑
t=0

Ex∼D
[
L(f (t), x)

]]
− Ex∼D

[
L(F ∗, x)

]
≤ O(ε).

By the definition of KL divergence, we get

Esgd

[
1

T

T−1∑
t=0

KL
(
pF∗,Z ||pf(t),Z

)]
≤ O(ε).

H Problem in Training of Constrained Normalizing Flow

In this section, we provide details of why different initializations cause problems (described in section 3) in the
training of Constrained Normalizing Flows. Recall that the loss function of normalizing flow with Gaussian
distribution as base distribution is given by

LG (f, x) =
f(x)T f(x)

2
− log

∣∣∣∣∣det

(
∂f(x)

∂x

)∣∣∣∣∣
 ,

where function f(x) : Rd → Rd is parameterized using d neural networks N1, N2, . . . , Nd. The ith dimension of
the function fi(x1:i) = N(x1:i; θi). The neural network in CNF is defined as

N(x1:i; θi) = τ
m∑
r=1

āi,r tanh
(
〈w̄i,r + wi,r, x1:i〉+

(
b̄i,r + bi,r

))
,

with constraints w̄i,r,i + wi,r,i ≥ ε, for all r ∈ [m] and i ∈ [d].

Here, ε > 0 is a small constant and τ is a normalization constant which only depends on m. We use θi to
denote parameters of N(x1:i; θi) and θ to denote parameters of all neural networks. Initial weights āi,r and
w̄i,r,i are sampled from half-normal distribution with parameters

(
0, ε2a

)
and

(
0, σ2

wb

)
, resp. The half-normal

random variable Y with parameters
(
µ, σ2

)
is given by simply |X| where X ∼ N

(
µ, σ2

)
. Here N

(
µ, σ2

)
denote

the Gaussian distribution with mean µ and variance σ2. Other weights (b̄i,r, w̄i,r,j for j 6= i) are sampled from
N
(
0, σ2

wb

)
. We optimize the objective using projected SGD. Note that in this case, the constraints are very simple

and projected SGD incurs very little overhead.

The pseudo network function is given by g(x) =
(
g1(x1:1), g2(x1:2), . . . , gd(x1:d)

)
, where gi(x1:i) = P (x1:i; θi) is

given by

P (x1:i; θi) = τ
m∑
r=1

āi,r

(
tanh

(
〈w̄i,r, x̃1:i〉+ b̄i,r

)
+ tanh′

(
〈w̄i,r, x̃1:i〉+ b̄i,r

) (
〈wi,r, x1:i〉+ bi,r

))
with constraints w̄i,r,i + wi,r,i ≥ ε for all r. We decompose pseudo network in two parts:

P (x1:i; θi) = Pc(x1:i) + P`(x1:i; θi),

where Pc(x1:i) and P`(x1:i; θi) is given by

Pc(x1:i) = τ
m∑
r=1

āi,r tanh(〈w̄i,r, x1:i〉+ b̄i,r

P`(x1:i; θi) = τ
m∑
r=1

āi,r tanh′(〈w̄i,r, x1:i〉+ b̄i,r)
(
〈wi,r, x1:i〉+ bi,r

)
.

Learning and Generalization in Overparameterized Normalizing Flows

The loss function for pseudo network is given b

LG (g, x) =
g(x)T g(x)

2
− log

∣∣∣∣∣det

(
∂g(x)

∂x

)∣∣∣∣∣
 =

d∑
i=1

gi (x1:i)−
d∑
i=1

log

(
∂gi (x1:i)

∂xi

)

where g(x) =
(
gi (x1:1) , gi (x1:1) , . . . , gi (x1:n)

)
. The pseudo network P (x1:i; θi), which approximates the neural

network N(x1:i; θi), will be

P (x1:i; θi) = τ
m∑
r=1

āi,r

(
tanh(〈w̄i,r, x1:i〉+ b̄i,r) + tanh′(〈w̄i,r, x1:i〉+ b̄i,r)

(
〈wr, x1:i〉+ br

))
,

with constraints w̄i,r,i + wi,r,i ≥ ε, for all r ∈ [m]. We decompose P (x1:i; θi) into two parts: P (x1:i; θi) =
Pc (x1:i) + P`(x1:i; θi), where

Pc (x1:i) = τ
m∑
r=1

āi,r tanh(〈w̄i,r, x1:i〉+b̄i,r) and P`(x1:i; θi) = τ
m∑
r=1

āi,r tanh′(〈w̄i,r, x1:i〉+b̄i,r)
(
〈wr, x1:i〉+ br

)
.

Note that Pc (x1:i) only depends upon initialization and does not depend on parameters θi.

Let F ∗ denote the target function and C(F ∗) denote some complexity measure of F ∗. We devide our analysis into
two cases based on variance of w̄i,r and b̄i,r. (1) In the first case, standard deviation σwb satisfies ε2

C(F∗)
√

log(md)
≤

σwb ≤ 1. (2) In the second case, standard deviation σwb satisfies 1√
m
≤ σwb ≤ ε2

C(F∗)
√

log(md)
. We call the first

case larger variance initalization case and the second one smaller variance intialization case. Analysis for larger
variance case is given in Section H.2 and analysis for smaller variance case is given in Section H.1.

H.1 Problem in optimization for smaller variance initialization case

In this section, we will provide details about the problem in smaller variance initialization case for Constrained
Normalizing Flows (CNFs). We prove in Theorem H.5 that if we choose small learning rate η and number of
time steps T according to the theorem statement, then function learned by sufficiently overparameterized CNFs
is close to a linear function. To prove the theorem, we start by bounding maximum possible change in weights∥∥∥w(t)

i,r

∥∥∥ and biases
∣∣∣b(t)r ∣∣∣ during t = T iterations in Lemma H.1. Using bound on change in weights, we establish

closeness between function value given by neural networks and function value given by pseudo networks (Lemma
H.3). We, then, prove that for any t ∈ [T], pseudo network at time t is close to a linear function (Lemma
H.4). Using closeness between neural network and pseudo network and linearity of pseudo network, we get that
neural networks are close to a linear function for given small learning rate η and number of time steps T . Note
that choosing similar values of η and T in supervised learning enables the provable successful training of neural
network. The same issue in approximation arises for all activations with continuous derivative.

Recall that neural network N(x1:i; θ
(t)
i) is given by

N(x1:i; θ
(t)
i) =

m∑
r=1

āi,r tanh

(
〈w̄i,r + w

(t)
i,r , x1:i〉+

(
b̄i,r + b

(t)
i,r

))
,

and derivative ∂N(x1:i;θ
(t)
i)

∂xi
is given by

∂N(x1:i; θ
(t)
i)

∂xi
=

m∑
r=1

āi,r tanh′
(
〈w̄i,r + w

(t)
i,r , x1:i〉+

(
b̄i,r + b

(t)
i,r

))(
w̄i,r,i + w

(t)
i,r,i

)
.

We denote ∂N(x1:i;θ
(t)
i)

∂xi
as N ′(x1:i; θ

(t)
i).

Lemma H.1. (Bound on change in weights and biases) For every x with ‖x‖ ≤ 1, every i ∈ [d] and time step
t ≥ 1, upper bound on weights w(t)

i,r and biases b(t)i,r is given by following with at least 1− d
c1
− d

c2
probability for

Kulin Shah, Amit Deshpande, Navin Goyal

any constant c1 > 10, c2 > 10.

∥∥∥w(t)
i,r

∥∥∥
2
≤

(
L̃1 + L̃2 + 2c2L̃2σwb

√
2 log (md)

L̃2

)((
1 + 2ηc1εaτ

√
2 logmL̃2

)t
− 1

)
∣∣∣b(t)i,r∣∣∣ ≤ 2ηc1εaτ

√
2 logm

(
L̃1 + 2c2L̃2σwb

√
2 log (md)

)
t

+

(
L̃1 + L̃2 + 2c2L̃2σwb

√
2 log (md)

L̃2

)((
1 + 2ηc1εaτ

√
2 logmL̃2

)t
− 1

)

Proof. We first find upper bound on the derivative of loss function and wi,r and bi,r. We denote αααi =
(0, 0, . . . , 0, 1) ∈ Ri. By taking derivative of LG(f (t), x) with respect to wi,r, we get

∂LG(f (t), x)

∂wi,r
=τN(x1:i; θ

(t)
i)(āi,rx1:i tanh′(〈w̄i,r + w

(t)
i,r , x1:i〉+

(
b̄i,r + b

(t)
i,r

)
))

− τ

N ′(x1:i; θ
(t)
i)

(
αααiāi,r

(
tanh′(〈w̄i,r + w

(t)
i,r , x1:i〉+

(
b̄i,r + b

(t)
i,r

)
)

+
(
w̄i,r,i + w

(t)
i,r,i

)
x1:i tanh′′(〈w̄i,r + w

(t)
i,r , x1:i〉+

(
b̄i,r + b

(t)
i,r

)
)
))

.

We assume that LG(f (t), x) is L̃1-lipschitz continuous wrt N and L̃2-lipschitz continuous wrt N ′. Assuming
| tanh′(.)| ≤ 1 and ‖x‖2 ≤ 1, we have∥∥∥∥∥∂LG(f (t), x)

∂wi,r

∥∥∥∥∥
2

≤ τL̃1āi,r + τL̃2āi,r

(
1 +
∣∣∣w̄i,r,i + w

(t)
i,r,i

∣∣∣ | tanh′′(〈w̄i,r + w
(t)
i,r , x1:i〉+

(
b̄i,r + b

(t)
i,r

)
)|
)
.

Assuming | tanh′′(.)| ≤ 1, we get∥∥∥∥∥∂LG(f (t), x)

∂wi,r

∥∥∥∥∥
2

≤ τL̃1āi,r + τL̃2āi,r

(
1 +
∣∣∣w(t)
i,r,i

∣∣∣+
∣∣w̄i,r,i∣∣) .

Using Lemma K.4 for āi,r and w̄i,r,i, with probability at least 1− 1
c1
− 1

c2
, we have∥∥∥∥∥∂LG(f (t), x)

∂wi,r

∥∥∥∥∥
2

≤
(

2c1εaτ
√

2 logm
)(

L̃1 + L̃2

(
1 +
∣∣∣w(t)
i,r,i

∣∣∣+ 2c2σwb
√

2 log (md)

))
. (H.1)

For projected gradient descent, we get

∥∥∥w(t)
i,r

∥∥∥
2
≤ η

t−1∑
j=0

∥∥∥∥∥∂LG(f (j), x(j))

∂wi,r

∥∥∥∥∥
2

≤ η
t−1∑
j=0

((
2c1εaτ

√
2 logm

)(
L̃1 + L̃2 + 2c2σwbL̃2

√
2 log (md)

)
+
(

2c1εaτ
√

2 logm
)
L̃2|w(j)

i,r,i|
)

≤
(

2ηc1εaτ
√

2 logm
)(

L̃1 + L̃2 + 2c2L̃2σwb
√

2 log (md)
)
t+
(

2ηc1εaτ
√

2 logmL̃2

)(t−1∑
j=0

∥∥∥w(j)
i,r

∥∥∥
2

)
.

By defining α and β as

α =
(

2ηc1τεa
√

2 logm
)(

L̃1 + L̃2 + 2c2L̃2σwb
√

2 log (md)
)

β =
(

2ηc1εaτ
√

2 logmL̃2

)
,

Learning and Generalization in Overparameterized Normalizing Flows

we get

∥∥∥w(t)
i,r

∥∥∥
2
≤ αt+ β

(
t−1∑
j=0

∥∥∥w(j)
i,r

∥∥∥
2

)
, (H.2)

where
t−1∑
j=0

∥∥∥w(j)
i,r

∥∥∥
2
≤ α(t− 1) + (1 + β)

(
t−2∑
j=0

∥∥∥w(j)
i,r

∥∥∥
2

)

≤ α
(
(t− 1) + (1 + β)(t− 2)

)
+ (1 + β)2

(
t−3∑
j=0

∥∥∥w(j)
i,r

∥∥∥
2

)

≤ α
(

(t− 1) + (1 + β)(t− 2) + (1 + β)2(t− 3)
)

+ (1 + β)3

(
t−4∑
j=0

∥∥∥w(j)
i,r

∥∥∥
2

)
.

(H.3)

In general, for any t′ ∈ {0, 1, . . . , t− 1}, we can write

t−1∑
j=0

∥∥∥w(j)
i,r

∥∥∥
2
≤ α

(
t−t′−1∑
j=1

(1 + β)j−1(t− j)

)
+ (1 + β)(t−t′−1)

(
t′∑
j=0

∥∥∥w(j)
i,r

∥∥∥
2

)
.

By taking t′ = 0, we get

t−1∑
j=0

∥∥∥w(j)
i,r

∥∥∥
2
≤ α

(
t−1∑
j=1

(1 + β)j−1(t− j)

)
.

Note that
∑t−1
j=1(1 + β)(j−1)(t− j) is sum of an arithmetic-geometric progression (AGP). Using Fact K.14, we

can simplify the above sum as

t−1∑
j=0

∥∥∥w(j)
i,r

∥∥∥
2
≤ α

(
t−1∑
j=1

(1 + β)j−1(t− j)

)

= α

(
(t− 1)− (1 + β)t−1

−β
−

(1 + β)
(
1− (1 + β)t−2

)
β2

)

= α

(
β(1 + β)t−1 − β(t− 1)− (1 + β) + (1 + β)t−1

β2

)

= α

(
(1 + β)t − (1 + βt)

β2

)
(H.4)

Using Eq.(H.4) to bound
∥∥∥w(t)

i,r

∥∥∥
2
in Eq. (H.2), we get

∥∥∥w(t)
i,r

∥∥∥
2
≤ α

t+ β

(
(1 + β)t − (1 + βt)

β2

)
= α

(
(1 + β)t − 1

β

)

=

(
L̃1 + L̃2 + 2c2L̃2σwb

√
2 log (md)

L̃2

)((
1 + 2ηc1εaτ

√
2 logmL̃2

)t
− 1

)
.

This completes the proof of upper bounding
∥∥∥w(t)

i,r

∥∥∥
2
. We use a similar procedure for

∣∣∣b(t)i,r∣∣∣. By taking derivative

Kulin Shah, Amit Deshpande, Navin Goyal

∂LG(f(t),x)
∂bi,r

, we get

∂LG(f (t), x)

∂bi,r
=N(x1:i; θ

(t)
i)τ

(
āi,r tanh′(〈w̄i,r + w

(t)
i,r , x1:i〉+

(
b̄i,r + b

(t)
i,r

)
)

)
− τ

N ′(x1:i; θ
(t)
i)

(
āi,r(w̄i,r,i + w

(t)
i,r,i) tanh′′(〈w̄i,r + w

(t)
i,r , x1:i〉+

(
b̄i,r + b

(t)
i,r

)
)

)
.

We assume that LG(f (t), x) is L̃1-lipschitz wrt N and L̃2-lipschitz wrt N ′. Additionaly, using | tanh′(·)| ≤ 1 and
| tanh′′(·)| ≤ 1, we get ∣∣∣∣∣∂LG(f (t), x)

∂bi,r

∣∣∣∣∣ ≤ L̃1āi,rτ + L̃2āi,rτ
(
w̄i,r,i + |w(t)

i,r,i|
)
.

Using Lemma K.4 for āi,r and w̄i,r, with probability at least 1− 1
c1
− 1

c2
, we get∣∣∣∣∣∂LG(f (t), x)

∂bi,r

∣∣∣∣∣ ≤ (2c1εa
√

2 logm
)
τ
(
L̃1 + L̃2|w(t)

i,r,i|+ 2c2L̃2σwb
√

2 log (md)
)
. (H.5)

For projected gradient descent, summing from time step j = 0 to j = t− 1, we get

|b(t)i,r | ≤ η
t−1∑
j=0

∣∣∣∣∣∂LG(f (j), x(j))

∂br

∣∣∣∣∣
= 2ηc1εaτ

√
2 logm

(
L̃1 + 2c2L̃2σwb

√
2 log (md)

)
t+ 2ηc1εaτL̃2

√
2 logm

(
t−1∑
j=0

|w(j)
i,r,i|

)

≤ 2ηc1εaτ
√

2 logm
(
L̃1 + 2c2L̃2σwb

√
2 log (md)

)
t+ 2ηc1εaτL̃2

√
2 logm

(
t−1∑
j=0

∥∥∥w(t)
i,r

∥∥∥
2

)
.

Using Eq.(H.4), we get

|b(t)i,r | ≤ 2ηc1εaτ
√

2 logm
(
L̃1 + 2c2L̃2σwb

√
2 log (md)

)
t

+ 2ηc1εaL̃2

√
2 logm

(
L̃1 + L̃2 + 2c2L̃2σwb

√
2 log (md)

2ηc1εa
√

2 logmL̃2
2

)((
1 + 2ηc1τεa

√
2 logmL̃2

)t
− 1

)
= 2ηc1εaτ

√
2 logm

(
L̃1 + 2c2L̃2σwb

√
2 log (md)

)
t

+

(
L̃1 + L̃2 + 2c2L̃2σwb

√
2 log (md)

L̃2

)((
1 + 2ηc1εaτ

√
2 logmL̃2

)t
− 1

)
.

This completes the proof.

Define Λ
(t)
w and Λ

(t)
b as upper bound on

∥∥∥w(t)
i,r

∥∥∥
2
and

∣∣∣b(t)i,r∣∣∣:
Λ(t)
w =

(
L̃1 + L̃2 + 2c2L̃2σwb

√
2 log (md)

L̃2

)((
1 + 2ηc1εaτ

√
2 logmL̃2

)t
− 1

)
,

Λ
(t)
b = 2ηc1εaτ

√
2 logm

(
L̃1 + 2c2L̃2σwb

√
2 log (md)

)
t

+

(
L̃1 + L̃2 + 2c2L̃2σwb

√
2 log (md)

L̃2

)((
1 + 2ηc1εaτ

√
2 logmL̃2

)t
− 1

)
.

Learning and Generalization in Overparameterized Normalizing Flows

Lemma H.2. For any ε > 0 , target function F ∗ with some complexity measure C(F ∗), any σwb which satisfy
1√
m
≤ σwb ≤ ε

C(F∗)
√

log(md)
, any hidden layer size m ≥ Ω

(
poly

(
C(F ∗), d, 1

ε

))
, any learning rate η ≤ c9ε

mτε2a logm

and T ≤ c10C(F∗)
ε2 , with at least 1− d

c1
− d

c2
probability, we get

Λ(t)
w ≤

(
L̃1 + L̃2 + 2c2L̃2σwb

√
2 log (md)

)(4
√

2c1c9c10C(F ∗)

mεεa
√

logm

)

Λ
(t)
b ≤

(
3L̃1 + 2L̃2 + 6c2L̃2σwb

√
2 log (md)

)(2
√

2c1c9c10C(F ∗)

mεaε
√

logm

)

Proof. To simplify expression of Λ
(t)
w , we will use Fact K.12. First, we will check the condition for Fact K.12:

2ηc1εaτ
√

2 logmL̃2 (t− 1) ≤ 2ηc1εaτ
√

2 logmL̃2 (T − 1)

≤ 2

(
c9ε

mτε2a logm

)
c1εaτ

√
2 logm

(
c10C(F ∗)

ε2
− 1

)
=

2
√

2c1c9c10C(F ∗)

εaεm
√

logm
.

Choosing sufficiently high m such that m ≥ Ω
(
poly

(
C(F ∗), d, 1

ε

))
, we get

2ηc1εaτ
√

2 logmL̃2 (t− 1) ≤ 0.5.

By choosing sufficiently high m, the condition of Fact K.12 satisfies. Now, simplifying expression of Λ
(t)
w using

Fact K.12, we get

Λ(t)
w =

(
L̃1 + L̃2 + 2c2L̃2σwb

√
2 log (md)

L̃2

)((
1 + 2ηc1εaτ

√
2 logmL̃2

)t
− 1

)

≤

(
L̃1 + L̃2 + 2c2L̃2σwb

√
2 log (md)

L̃2

)(
4ηc1εaτ

√
2 logmL̃2t

)
≤

(
L̃1 + L̃2 + 2c2L̃2σwb

√
2 log (md)

L̃2

)(
4ηc1εaτ

√
2 logmL̃2T

)
≤

(
L̃1 + L̃2 + 2c2L̃2σwb

√
2 log (md)

L̃2

)(
4c1εaτL̃2

√
2 logm

(
c9ε

mτε2a logm

)(
c10C(F ∗)

ε2

))

=

(
L̃1 + L̃2 + 2c2L̃2σwb

√
2 log (md)

L̃2

)(
4c1εaτL̃2

√
2 logm

(
c9ε

mτε2a logm

)(
c10C(F ∗)

ε2

))

=
(
L̃1 + L̃2 + 2c2L̃2σwb

√
2 log (md)

)(4
√

2c1c9c10C(F ∗)

mεεa
√

logm

)
.

Kulin Shah, Amit Deshpande, Navin Goyal

Simplifying expression of Λ
(t)
b in simillar manner as Λ

(t)
w , we get

Λ
(t)
b = 2ηc1εaτ

√
2 logm

(
L̃1 + 2c2L̃2σwb

√
2 log (md)

)
t

+

(
L̃1 + L̃2 + 2c2L̃2σwb

√
2 log (md)

L̃2

)((
1 + 2ηc1εaτ

√
2 logmL̃2

)t
− 1

)
≤ 2c1εaτ

√
2 logm

(
L̃1 + 2c2L̃2σwb

√
2 log (md)

)(c9ε

mτε2a logm

)(
c10C(F ∗)

ε2

)
+

(
L̃1 + L̃2 + 2c2L̃2σwb

√
2 log (md)

L̃2

)(
4c1εaτ

√
2 logmL̃2

(
c9ε

mτε2a logm

)(
c10C(F ∗)

ε2

))

=
(
L̃1 + 2c2L̃2σwb

√
2 log (md)

)(2
√

2c1c9c10C(F ∗)

mεaε
√

logm

)

+
(
L̃1 + L̃2 + 2c2L̃2σwb

√
2 log (md)

)(4
√

2c1c9c10C(F ∗)

mεaε
√

logm

)

=

(
2
√

2c1c9c10C(F ∗)

mεaε
√

logm

)(
3L̃1 + 2L̃2 + 6c2L̃2σwb

√
2 log (md)

)
.

Lemma H.3. (Coupling between neural network and pseudo network) For every x with ‖x‖2 ≤ 1, every i ∈ [d]
and every time step t ≤ T , with probability at least 1− d

c1
− d

c2
over random initialization, we have

∣∣∣N(x1:i; θ
(t)
i)− P (x1:i; θ

(t)
i)
∣∣∣ ≤ 2c1εaτm

√
2 logm

((
Λ(t)
w

)2

+ Λ
(t)
b

2
)

Proof. Bounding difference between N(x1:i; θ
(t)
i) and P (x1:i; θ

(t)
i), we get

∣∣∣N(x1:i; θ
(t)
i)− P (x1:i; θ

(t)
i)
∣∣∣ =

∣∣∣∣∣τ m∑
r=1

āi,r tanh(〈w̄i,r + w
(t)
i,r , x1:i〉+

(
b̄i,r + b

(t)
i,r

)
)

− τ
m∑
r=1

āi,r

(
tanh(〈w̄i,r, x1:i〉+ b̄i,r) + āi,r tanh′(〈w̄i,r, x1:i〉+ b̄i,r)(〈w(t)

i,r , x1:i〉+ b
(t)
i,r)
) ∣∣∣∣∣

=

∣∣∣∣∣τ2 m∑
r=1

āi,r tanh′′(ξr)
(
〈w(t)

i,r , x1:i〉+ b
(t)
i,r

)2
∣∣∣∣∣

for some ξr ∈ R. Using | tanh′′(ξr)| ≤ 1 and (〈w(t)
i,r , x1:i〉+ b

(t)
i,r)

2 ≤ 2

(
〈w(t)

i,r , x1:i〉2 +
(
b
(t)
i,r

)2
)
, we get

∣∣∣N(x1:i; θ
(t)
i)− P (x1:i; θ

(t)
i)
∣∣∣ ≤ τ m∑

r=1
āi,r

(
〈w(t)

i,r , x1:i〉2 +
(
b
(t)
i,r

)2
)
.

Using Lemma K.4 and using ‖x‖2 ≤ 1, with at least 1− 1
c1

probability, we have

∣∣∣N(x1:i; θ
(t)
i)− P (x1:i; θ

(t)
i)
∣∣∣ ≤ 2c1εaτ

√
2 logm

m∑
r=1

(∥∥∥w(t)
i,r

∥∥∥2

2
+
(
b(t)r

)2
)

≤ 2c1εaτ
√

2 logm
(
‖W (t)

i ‖
2
2,2 + ‖B(t)

i ‖
2
2

)
≤ 2c1εaτm

√
2 logm

((
Λ(t)
w

)2

+
(

Λ
(t)
b

)2
)
.

Using union bound for all i ∈ [d], we complete the proof.

Learning and Generalization in Overparameterized Normalizing Flows

Lemma H.4. For any ε ∈ (0, 1
d3), every i ∈ [d] and every time step t ≤ T , any target function F ∗ with some

complexity measure of target function C(F ∗), any variance σwb with 1√
m
≤ σwb ≤ ε2

C(F∗)
√

log(md)
, any hidden layer

size m ≥ Ω
(
poly

(
C(F ∗), d, 1

ε

))
, choosing learning rate η = O

(
ε

mτε2a logm

)
and T = O

(
C(F∗)
ε2

)
, with probability

at least 1− d
c1
− d

c2
− d

c3
over random initialization, we get

∣∣∣∣∣P`(x1:i; θ
(t)
i)− τ

m∑
r=1

āi,r

(
〈w(t)

i,r , x1:i〉+ b
(t)
i,r

)∣∣∣∣∣ ≤ O(ε).

Proof. Recalling the definition of P`(x1:i; θ
(t)
i):

P`(x1:i; θ
(t)
i) = τ

m∑
r=1

āi,r

(
tanh′(〈w̄i,r, x1:i〉+ b̄i,r)

(
〈w(t)

r , x1:i〉+ b
(t)
i,r

))
.

Subtracting the linear function from P`(x1:i; θ
(t)
i) will give us the following:∣∣∣∣∣P`(x1:i; θ

(t)
i)− τ

m∑
r=1

āi,r

(
〈w(t)

i,r , x1:i〉+ b
(t)
i,r

)∣∣∣∣∣ ≤
∣∣∣∣∣τ m∑
r=1

āi,r

((
tanh′(〈w̄i,r, x1:i〉+ b̄i,r)− 1

) (
〈w(t)

i,r , x1:i〉+ b
(t)
i,r

))∣∣∣∣∣
≤ τ

m∑
r=1

āi,r
∣∣tanh′(〈w̄i,r, x1:i〉+ b̄i,r)− 1

∣∣∣∣∣〈w(t)
i,r , x1:i〉+ b

(t)
i,r

∣∣∣ . (H.6)

First, we will try to find upper bound on
∣∣tanh′(〈w̄i,r, x1:i〉+ b̄i,r)− 1

∣∣:
∣∣tanh′(〈w̄i,r, x1:i〉+ b̄i,r)− 1

∣∣ =
∣∣tanh′(〈w̄i,r, x1:i〉+ b̄i,r)− tanh′(0)

∣∣ (i)
≤
∣∣〈w̄i,r, x1:i〉+ b̄i,r

∣∣ ,
where inequality (i) follows from 1-Lipschitz continuity of tanh′(·) function. Using Lemma K.4 on w̄i,r and b̄i,r,
with probability at least 1− 1

c2
− 1

c3
, we get that

∣∣tanh′(〈w̄i,r, x1:i〉+ b̄i,r)− 1
∣∣ ≤ 2c2σwb

√
2 log (md) + 2c3σwb

√
2 logm.

Using above inequality in Eq. (H.6), with probability at least 1− 1
c1
− 1

c3
over random initialization, we get

∣∣∣∣∣P`(x1:i; θ
(t)
i)− τ

m∑
r=1

āi,r

(
〈w(t)

i,r , x1:i〉+ b
(t)
i,r

)∣∣∣∣∣ ≤ τ m∑
r=1

āi,r
∣∣tanh′(〈w̄i,r, x1:i〉+ b̄i,r)− 1

∣∣∣∣∣〈w(t)
i,r , x1:i〉+ b

(t)
i,r

∣∣∣
≤ τ

m∑
r=1

āi,r

(
2c2σwb

√
2 log (md) + 2c3σwb

√
2 logm

)∣∣∣〈w(t)
i,r , x1:i〉+ b

(t)
i,r

∣∣∣ .
Using Lemma K.4 and Lemma H.1, with probability at least 1− 1

c1
− 1

c2
− 1

c3
, we get

∣∣∣∣∣P`(x1:i; θ
(t)
i)− τ

m∑
r=1

āi,r

(
〈w(t)

i,r , x1:i〉+ b
(t)
i,r

)∣∣∣∣∣
≤ τ

m∑
r=1

āi,r
∣∣tanh′(〈w̄i,r, x1:i〉+ b̄i,r)− 1

∣∣∣∣∣〈w(t)
i,r , x1:i〉+ b

(t)
i,r

∣∣∣
≤ mτ

(
2c1εa

√
2 logm

)(
2c2σwb

√
2 log (md) + 2c3σwb

√
2 logm

)(
Λ(t)
w + Λ

(t)
b

)
≤ 8c1

(
c2
√

log (md) + c3
√

logm
)
εaσwbmτ

√
logm

(
Λ(t)
w + Λ

(t)
b

)
.

Kulin Shah, Amit Deshpande, Navin Goyal

Using bound on Λ
(t)
w and Λ

(t)
b from Lemma H.2, we get∣∣∣∣∣P`(x1:i; θ

(t)
i)− τ

m∑
r=1

āi,r

(
〈w(t)

i,r , x1:i〉+ b
(t)
i,r

)∣∣∣∣∣
≤ 8c1

(
c2
√

log (md) + c3
√

logm
)
εaσwbmτ

√
logm

((
2
√

2c1c9c10C(F ∗)

mεaε
√

logm

)(
5L̃1 + 4L̃2

+ 10c2L̃2σwb
√

2 log (md)
))

≤
16
√

2c21c9c10

(
c2
√

log (md) + c3
√

logm
)
σwbτC(F ∗)

ε

(
5L̃1 + 4L̃2 + 10c2L̃2σwb

√
2 log (md)

)
.

Using σwb ≤ ε2

C(F∗)
√

log(md)
and re-scaling ε by ε

d3 , we get∣∣∣∣∣P`(x1:i; θ
(t)
i)− τ

m∑
r=1

āi,r

(
〈w(t)

i,r , x1:i〉+ b
(t)
i,r

)∣∣∣∣∣ ≤ O (τε) .

Using τ ≤ 1 for σwb ≥ 1√
m
, we get∣∣∣∣∣P`(x1:i; θ

(t)
i)− τ

m∑
r=1

āi,r

(
〈w(t)

i,r , x1:i〉+ b
(t)
i,r

)∣∣∣∣∣ ≤ O (ε) .

Theorem H.5. For any ε ∈ (0, 1
d3), any i ∈ [d], any target function F ∗ with some complexity mea-

sure of target function C(F ∗), any σwb which satisfy 1√
m
≤ σwb ≤ ε

C(F∗)
√

log(md)
, any hidden layer size

m ≥ Ω
(
poly

(
C(F ∗), d, 1

ε

))
, choosing normalization constant τ such that

∣∣Pc(x)
∣∣ ≤ O(ε), learning rate

η = O
(

ε
mτε2a logm

)
and T = O

(
C(F∗)
ε2

)
, with probability at least 0.9 over random initialization, Projected

SGD on neural network after T iterations∣∣∣N(x1:i; θ
(T)
i)−

(
〈αi, x1:i〉+ βi

)∣∣∣ ≤ O (ε) , (H.7)

where αi and βi are given by

αi = τ
m∑
r=1

āi,rw
(T)
i,r and βi = τ

m∑
r=1

āi,rb
(T)
i,r .

Proof. By decomposing the difference between N(x1:i; θ
(T)
i) and

(
〈αi, x1:i〉+ βi

)
into two parts, we get∣∣∣N(x1:i; θ

(T)
i)−

(
〈α, x1:i〉+ β

)∣∣∣ ≤ ∣∣∣N(x1:i; θ
(T)
i)− P (x1:i; θ

(T)
i)

∣∣∣︸ ︷︷ ︸
I

+
∣∣∣P (x1:i; θ

(T)
i)−

(
〈αi, x1:i〉+ βi

)∣∣∣︸ ︷︷ ︸
II

. (H.8)

Using Lemma H.3, we can bound I:

I ≤ 2c1εaτm
√

2 logm

((
Λ(t)
w

)2

+
(

Λ
(t)
b

)2
)

≤ 2c1εaτm
√

2 logm

((
Λ(t)
w

)2

+
(

Λ
(t)
b

)2
)

≤ 2c1εaτm
√

2 logm

(
2
√

2c1c9c10C(F ∗)

mεεa
√

logm

)2(
4
(
L̃1 + L̃2 + 2c2L̃2σwb

√
2 log (md)

)2

+
(

3L̃1 + 2L̃2 + 6c2L̃2σwb
√

2 log (md)
)2
)
.

Learning and Generalization in Overparameterized Normalizing Flows

Choosing sufficienty high m such that m ≥ Ω
(
poly

(
C(F ∗), 1

ε

))
, we get

I ≤ O (ε)

To bound II, we use Lemma H.4.

II ≤
∣∣Pc(x1:i)

∣∣+
∣∣∣P`(x1:i; θ

(t)
i)−

(
〈αi, x1:i〉+ βi

)∣∣∣ ≤ O(ε)

Using Eq. (H.8), we get ∣∣∣N(x1:i; θ
(t)
i)−

(
〈αi, x1:i〉+ βi

)∣∣∣ ≤ O(ε)

H.2 Problem in optimization for larger variance initialization case

In this section, we will provide details about the problem for larger variance initialization case. Recall that
Pc (x1:i) only depends upon initialization and does not depend on θi. Hence, it can not approximate the target
function after the training, therefore P`(x1:i; θi) needs to approximate target function with Pc (x1:i) subtracted
but in this case, we prove in Theorem H.6 that if norm of change in weights ‖θ(T)‖2,1 is small then

∣∣P`(x1:i; θi)
∣∣

is very small for sufficiently large m; therefore, it can not approximate every target function. We also provide
reasons and details in Lemma H.7 about the requirement of small norm of change in weights ‖θ(T)‖2,1. In short,
small norm of change in weights is required to maintain coupling between neural networks and pseudo networks.
For large variance initialization case, we have
Theorem H.6. (small value of P`(x1:i; θ

(T)
i)) For any standard deviation ε2

C(F∗)
√

logm
≤ σwb ≤ 1, for any i ∈ [d],

any constant c8 > 0 and any η > 0, T > 1, if upper bound on norm of change of parameters is given by

‖θ(T)
i ‖2,1 ≤ O

(
1

d2εaσwbτmc8 logm

)
,

then for all x ∈ Rd with ‖x‖2 ≤ 1, with probabillity at least 0.99, we have∣∣∣P`(x1:i; θ
(T)
i)

∣∣∣ ≤ 1

3
√

2c2σwbmc8
√

logm
= O

(
1

dσwbmc8
√

log (md)

)
.

Given upper bound on ‖θ(T)‖2,1 is necessary to ensure closeness between neural network and pseudo network
(More details given in Lemma H.7).

Proof. Using the definition of P`(x1:i; θ
(t)
i), we get∣∣∣P`(x1:i; θ

(t)
i)
∣∣∣ =

∣∣∣∣∣τ m∑
r=1

āi,r tanh′
(
〈w̄i,r, x1:i〉+ b̄i,r

) (
〈w(t)

i,r , x〉+ b
(t)
i,r

)∣∣∣∣∣
(i)
≤ τ

(
2c1εa

√
2 logm

) m∑
r=1

(∥∥∥w(t)
i,r

∥∥∥
2

+
∣∣∣b(t)i,r∣∣∣)

≤ τ
(

2c1εa
√

2 logm
)(∥∥∥W (t)

i

∥∥∥
2,1

+
∥∥∥B(t)

i

∥∥∥
1

)
,

where inequality (i) follows from Lemma K.4 with at least 1− 1
c1

probability. Using upper bound on ‖θ(T)
i ‖2,1

from the theorem statement, with at least 1− 1
c1

probability, we get∣∣∣P`(x1:i; θ
(t)
i)
∣∣∣ ≤ τ (2c1εa

√
2 logm

)(
‖W (T)

i ‖2,1 + ‖B(T)
i ‖1

)
≤ τ

(
2c1εa

√
2 logm

)(
2‖θ(T)

i ‖2,1
)

≤ τ
(

2c1εa
√

2 logm
)(1

12c1c2εaσwbτmc8
√

logm log (md)

)

≤ 1

3
√

2c2σwbmc8
√

log (md)
.

Kulin Shah, Amit Deshpande, Navin Goyal

This completes the proof.

Recall that we denote derivative ∂fi(x1:i)
∂xi

as ∇ifi (x1:i). Similarly, we use ∇igi (x1:i) to derivative of gi (x1:i).

Lemma H.7. (Requirement of having small L2,1-norm of change in weights ‖θ(T)
i ‖2,1) For any constant c8 > 0,

for all i ∈ [d], if following bound either on ‖θ(T)
i ‖2,1 holds,

‖θ(T)
i ‖2,1 = ω

(
1

d2εaσwbτmc8
√

log (m) log (md)

)

then, with at least 0.98 probability, coupling between ∇if (t)
i (x1:i) and ∇ig(t)

i (x1:i) can be lost. More precisely,∣∣∣∇if (t)
i (x1:i)−∇ig(t)

i (x1:i)
∣∣∣ ≤ ω(1

mc8

)

Proof. First, we will find upper bound on difference between ∇if (t)
i (x1:i) and ∇ig(t)

i (x1:i):

∣∣∣∇if (t)
i (x1:i)−∇ig(t)

i (x1:i)
∣∣∣ =

∣∣∣∣∣τ m∑
r=1

āi,r
(
(w

(t)
i,r,i + w̄i,r,i)

(
tanh′(〈w̄i,r + w

(t)
i,r , x1:i〉+

(
b̄i,r + b

(t)
i,r

)
)

− tanh′(〈w̄i,r, x1:i〉+ b̄i,r)
)
− tanh′′(〈w̄i,r, x1:i〉+ b̄i,r)

(
w̄i,r,i(〈w(t)

i,r , x1:i〉+ b
(t)
i,r)
)) ∣∣∣∣∣

≤ τ
m∑
r=1

2āi,r

∣∣∣w(t)
i,r,i + w̄i,r,i

∣∣∣∣∣∣〈w(t)
i,r , x1:i〉+ b

(t)
i,r

∣∣∣+ τ
m∑
r=1

āi,rw̄i,r,i

∣∣∣〈w(t)
i,r , x1:i〉+ b

(t)
i,r

∣∣∣
= τ

m∑
r=1

āi,r

∣∣∣〈w(t)
i,r , x1:i〉+ b

(t)
i,r

∣∣∣ (2
∣∣∣w(t)
i,r,i + w̄i,r,i

∣∣∣+ w̄i,r,i

)
= τ

m∑
r=1

āi,r

∣∣∣〈w(t)
i,r , x1:i〉+ b

(t)
i,r

∣∣∣ (2|w(t)
i,r,i|+ 3w̄i,r,i

)
≤ τ

m∑
r=1

āi,r

(∥∥∥w(t)
i,r

∥∥∥
2

+
∣∣∣b(t)i,r∣∣∣)(2

∥∥∥W (t)
i

∥∥∥
∞,∞

+ 6c2σwb
√

2 log (md)

)
(i)
≤ τ

(
2c1εa

√
2 logm

)(∥∥∥W (t)
i

∥∥∥
2,1

+
∥∥∥B(t)

i

∥∥∥
1

)(
2
∥∥∥W (t)

i

∥∥∥
∞,∞

+ 6c2σwb
√

2 log (md)

)
,

where inequality (i) follows from Lemma K.4 with probability at least 1 − 1
c1
− 1

c2
. Using bounds on norm

‖θ(T)
i ‖2,1, we get∣∣∣∇if (t)
i (x1:i)−∇ig(t)

i (x1:i)
∣∣∣ ≤ τ (2c1εa

√
2 logm

)(∥∥∥W (t)
i

∥∥∥
2,1

+
∥∥∥B(t)

i

∥∥∥
1

)(
2
∥∥∥W (t)

i

∥∥∥
∞,∞

+ 6c2σwb
√

2 log (md)

)
≤ τ

(
2c1εa

√
2 logm

)(∥∥∥W (t)
i

∥∥∥
2,1

+
∥∥∥B(t)

i

∥∥∥
1

)
2
∥∥∥W (t)

i

∥∥∥
∞,∞

+ τ
(

2c1εa
√

2 logm
)(∥∥∥W (t)

i

∥∥∥
2,1

+
∥∥∥B(t)

i

∥∥∥
1

)
6c2σwb

√
2 log (md)

≤ τ
(

2c1εa
√

2 logm
)(∥∥∥W (t)

i

∥∥∥
2,1

+
∥∥∥B(t)

i

∥∥∥
1

)
2
∥∥∥W (t)

i

∥∥∥
∞,∞

+ τ
(

2c1εa
√

2 logm
)(

2
∥∥∥θ(T)
i

∥∥∥
2,1

)
6c2σwb

√
2 log (md)

≤ τ
(

2c1εa
√

2 logm
)(∥∥∥W (t)

i

∥∥∥
2,1

+
∥∥∥B(t)

i

∥∥∥
1

)
2
∥∥∥W (t)

i

∥∥∥
∞,∞

+ ω

(
1

mc8

)
≤ ω

(
1

mc8

)
.

Learning and Generalization in Overparameterized Normalizing Flows

Figure 2: Grid dataset

Using union bound on all i ∈ [d], with probability atleast 1− d
c1
− d

c2
, for all i ∈ [d], we get

∣∣∣∇if (t)
i (x1:i)−∇ig(t)

i (x1:i)
∣∣∣ ≤ ω(1

mc8

)
.

Taking c1 = 100d and c2 = 100d, with atleast 0.98 probability, for all i ∈ [d], we get

∣∣∣∇if (t)
i (x1:i)−∇ig(t)

i (x1:i)
∣∣∣ ≤ ω(1

mc8

)
.

I Additional experiments

In this section, we show experimental results for both CNF and UNF on different datasets. First, we describe
experimental setup in Subsection I.1. Then, we discuss our main observations for constrained normalizing
flow and unconstrained normalizing flow in Subsection I.2 and I.3. In Subsection I.5, we plot training curves
for both CNF and UNF for different learning rates and datasets. Codes for the experiments are available at
https://github.com/kulinshah98/overparam-NFs.

I.1 Experimental Setup

Datasets. We use five synthetic datasets for our experiments. All datasets contain 10,000 data points. The
details about the datasets are given below:

• Mixture of Gaussian Dataset: Data in this dataset lies in 1D and is generated from mixture of 2 Gaussians
with means at 2.5 and -2.5. The standard deviation of both Gaussians is 1.

• Mixture of Beta Dataset: Data in this dataset lies in 1D and is generated from mixture of 3 Beta distribution.
The parameters of Beta distributions are given by (5, 30), (30, 5) and (30, 30).

• Grid Dataset: Data in this dataset lies in 2D. Figure of the data is given in 2. Brightness at any point in
this 2D plot represents the unnormalized probability density of that point.

• 5D Mixture of Gaussian dataset: Data in this dataset lies in 5D and is generated from mixture of 10
Gaussians.

https://github.com/kulinshah98/overparam-NFs

Kulin Shah, Amit Deshpande, Navin Goyal

Architecture. We use similar architecture as described in Section 3 and Section 4 for both constrained and
unconstrained normalizing flows. In all our experiments, we fix the weights of the output layer and train the
weights and biases of the hidden layer. In UNFs, we use one-hidden layer network for all datasets while in
CNFs, we use one-hidden layer network for 1D datasets and use two-hidden layer network for Grid dataset
and three-hidden layer network for 5D Mixture of Gaussian dataset. We initialize weights of neural network as
described in Section 3 and Section 4. We choose εa (standard deviation of top layer of neural networks in both
UNF and CNF) from {0.15, 0.2, 0.25} using the training error after a fixed number of iteration as a metric to
evaluate.

Training Procedure. We use same training procedure for both constrained and unconstrained normalizing
flows as described in Section 3 and Section 4. We use same base distribution as used in theoretical results for
both CNF and UNF (i.e., standard Gaussian for CNFs and standard exponential for UNFs). Although, we believe
that our experimental result can hold for all common distributions as a base distribution. In all our experiments,
we use mini-batch SGD with batch size 32 for the training.

All our results are averaged over 5 different iterations. We used NVIDIA Tesla P100 GPU for approx 1000 hours
to generate our final experimental results. Our experimental results validate the dichotomy between constrained
and unconstrained normalizing flows which was established in Section 3 and Section 4.

I.2 Results for constrained normalizing flow

In Section 3, we suggested that high overparameterization may adversely affect training for constrained normalizing
flows . In this section, we give empirical evidence for our claims. We use Gaussian distribution as a base distribution
in all our experiments of constrained normalizing flow. We experiment with two different initialization for weights
and biases of the hidden layer. 1) Gaussian distribution with zero-mean and 1/m variance (σ2

wb = 1/m) where m is
number of neurons in hidden layer. We call CNF with this initialization as CNF-NNWB (CNF with Normalized
Normal initialization for Weights and Biases) and 2) Standard Gaussian distribution (σ2

wb = 1). We denote CNF
with this initialization as CNF-SNWB (CNF with Standard Normal initialization for Weights and Biases). We
observe training error and L2 distance of parameters from initialization after a fixed number of iterations for
both CNF-NNWB and CNF-SNWB. We made following two observations:

Effect of overparameterization on training speed of CNF. In Figure 3 and Figure 4, we plot width of
neural networks versus training error after a fixed number of iterations and for a fixed learning rate. We see that
training error for CNF models increases as we increase overparameterization of neural networks, which means
that to reach a fixed training error, larger models take more number of training updates. This shows that for any
fixed learning rate, as we increase overparameterization in CNF, training speed decreases. This phenomenon is
consistent across different datasets, different learning rates and different initializations. This result is novel and
surprising because in supervised learning, overparameterization helps in faster convergence for a fixed learning
rate Neyshabur et al. [2015] and we are not aware of any other settings where overparametrization has such
strong negative effect.

Effect of overparameterization on L2 distance of parameters from initialization. Figure 5 has plots
of width of neural networks versus L2 distance of parameters from the initialization after a fixed number of
training iterations. From the figure, we see that as we increase overparameterization in CNF models, L2 distance
from the initialization also increases. From our previous observation, we know that after a fixed number of training
iterations, training error increases as overparameterization increases. Combining experiment on L2 distance with
our previous observation, we get that to achieve same training error, more overparameterized model have larger
L2 distance compared to their smaller counterparts. This result is surprising because in supervised learning, it is
known that more overparameterized model have smaller distance of parameters from the initialization Nagarajan
and Kolter [2019].

I.3 Results for unconstrained normalizing flow

In Section 4, we prove that overparameterized neural network can efficiently learn the data distribution. In
this section, we will provide empirical evidence that overparameterization helps in training of UNF. Similar to
CNF, we study training error and L2 distance of parameters from initialization after a fixed number of training

Learning and Generalization in Overparameterized Normalizing Flows

Figure 3: Comparison between CNF and UNF of training error after a fixed number of training iterations

Figure 4: Training error of CNF-NNWB and CNF-SNWB after a fixed number of training iterations for different
learning rates

Kulin Shah, Amit Deshpande, Navin Goyal

Figure 5: Comparison of L2 distance from initialization between UNF and CNF models

iterations. We made following two observations:

Effect of overparameterization on training speed of UNF. In Figure 3, we see that training error after
a fixed number of iterations decreases with increasing width of neural networks in UNF, which means that to
reach a fixed training error, larger models need smaller number of training updates. This implies that for any
fixed learning rate, increasing overparameterization in UNF increases training speed. This trend is consistent
with supervised learning, where it is known that overparameterization helps in faster convergence for a fixed
learning rate Neyshabur et al. [2015].

Effect of overparameterization on L2 distance of parameters from initialization. Figure 5 shows that
as we increase overparameterization in UNF models, L2 distance of parameters from the initialization decreases.
Our previous observation was that after a fixed number of training iterations, training error decreases or remains
almost same as overparameterization increases. Combining our observation on L2 distance with our previous
observation, we get that to achieve a fixed training error, more overparameterized model require smaller L2

distance compared to their less overparameterized counterparts. This result is consistent with supervised learning,
where it is known that more overparameterized model have smaller distance of parameters from the initialization
Nagarajan and Kolter [2019].

I.4 Results on Miniboone dataset

To show experimental results on a real-world dataset, we use miniboone dataset [Dua and Graff, 2017]. The
dataset contains examples of electron neutrino and muon neutrino. This dataset contains around 30K examples
and lies in 43 dimensions. To test our phenomenon, we modify the official implementation of block neural
autoregressive flow (BNAF) [Cao et al., 2019b] for CNF and Unconstrained Monotonic Neural Network Flow
[Wehenkel and Louppe, 2019] for UNF. We use 3 hidden layers for CNF and 3 hidden layers for both embedding
network and derivative network. We use one flow model for both of them and use a mini-batch SGD optimizer
with a learning rate of 0.001. The figure to illustrate the change in training error by changing the width of the
network for each dimension is plotted in 6. From the figure, we see that the training error for CNFs increases
with an increase in width of the network whereas the training error for UNFs decreases with an increase in width
of the network. This observation supports our theoretical results.

Learning and Generalization in Overparameterized Normalizing Flows

Figure 6: Training error of CNF and UNF after a fixed number of training epochs.

Figure 7: Effect of over-parameterization on training of unconstrained normalizing flow on mixture of Gaussian
and mixture of beta distributions

Kulin Shah, Amit Deshpande, Navin Goyal

Figure 8: Effect of over-parameterization on training of CNF-NNWB on mixture of Gaussian dataset for number
of hidden nodes m = 1600, 6400

I.5 Training curves for Constrained and Unconstrained Normalizing Flow

To provide a complete picture, we provide training error and L2 distance of weights W (t) and biases B(t) from
the initialization for all time step t during the training. We first discuss results for CNFs and then move our
discussion to UNFs.

Constrained Normalizing Flow. In Figure 8, 9, 11, 10, 12 and 13, we plot number of epochs on x-axis and
y-axis can be training error, L2 distance of weights or L2 distance of biases from the initialization.

In all figures, we see that for any fixed learning rate, curve of training error for smaller m is always below than
curve of training for larger m, which proves our claim that increasing overparameterization hurts the training
speed of CNF models. This phenomenon is consistent for all datasets, different initializations and various learning
rates. Only exception to this phenomenon is results on mixture of Gaussian dataset for m = 1600 and m = 6400
and learning rate equal to 0.025 but note that in this case, the training of CNF for m = 6400 is very unstable
and therefore, at some time steps, m = 6400 curve has slightly smaller training error than m = 1600 because of
unstable training.

Apart from training error, we see that L2 distance for biases (that is, L2 norm of B(t)) is always larger for large
m. The difference is clearly visible and significant in comparison figures of large hidden layer nodes (m = 1600
and m = 6400). This is consistent across different initializations, datasets and learning rates. Only exception to
this trend is results on mixture of Gaussian dataset for m = 100 and m = 400. Even in this case, L2 distance is
comparable for m = 100 and m = 400.

Unconstrained Normalizing Flow. Similar to Constrained Normalizing Flows, we study the effect of
overparameterization on convergence speed and L2-norm of W (t) and B(t). The first row of Figure 14 contains

Learning and Generalization in Overparameterized Normalizing Flows

Figure 9: Effect of over-parameterization on training of small sized CNF-NNWB

Figure 10: Effect of over-parameterization on training of CNF-NNWB on mixture of beta distribution dataset for
number of hidden nodes m = 1600, 6400

Kulin Shah, Amit Deshpande, Navin Goyal

Figure 11: Effect of over-parameterization on training of small sized CNF-SNWB of weights and biases

Figure 12: Effect of over-parameterization on training of CNF-SNWB on mixture of Gaussian dataset for number
of hidden nodes m = 1600, 6400

Learning and Generalization in Overparameterized Normalizing Flows

Figure 13: Effect of over-parameterization on training of CNF-SNWB on mixture of Beta distribution dataset for
number of hidden nodes m = 1600, 6400

Kulin Shah, Amit Deshpande, Navin Goyal

Figure 14: Effect of over-parameterization on training of UNF on mixture of Gaussian and mixture of beta
distributions

results for mixture of Gaussians dataset and the second row contains results for mixtures of beta distributions
dataset. From the first column of Fig. 14, we see that the training speed for larger m is better or comparable
to smaller m. Additionally, we see that L2-norm of W (t) and B(t) decreases significantly with increasing m.
This results validate our theoretical finding that L2 distance of parameters from the initialization decreases with
increasing m.

J Related Work

Previous work on normalizing flows has studied different variants such as planar and radial flows in Rezende
and Mohamed [2015], Sylvester flow in van den Berg et al. [2018], Householder flow in Tomczak and Welling
[2016], masked autoregressive flow in Papamakarios et al. [2017]. Most variants of normalizing flows are specific
to certain applications, and the expressive power (i.e., which base and data distributions they can map between)
and complexity of normalizing flow models have been studied recently, e.g. Kong and Chaudhuri [2020] and
Teshima et al. [2020]. Invertible transformations defined by monotonic neural networks can be combined into
autoregressive flows that are universal density approximators of continuous probability distributions; see Masked
Autoregressive Flows (MAF) Papamakarios et al. [2017], UNMM-MAF by Wehenkel and Louppe [2019], Neural
Autoregressive Flows (NAF) by Huang et al. [2018], Block Neural Autoregressive Flow (B-NAF) by Cao et al.
[2019a]. Unconstrained Monotonic Neural Network (UMNN) models proposed by Wehenkel and Louppe [2019]
are particularly relevant to the technical part of our paper.

Koehler et al. [2020] theoretically study representation ability of affine couplings (a type of normalizing flow) and
particularly analyze several aspects such as depth of normalizing flows. Lei et al. [2020], Balaji et al. [2021] show
that when the generator is a two-layer tanh, sigmoid or leaky ReLU network, Wasserstein GAN trained with
stochastic gradient descent-ascent converges to a global solution with polynomial time and sample complexity.
Using the moments method and a learning algorithm motivated by tensor decomposition, Li and Dou [2020] show
that GANs can efficiently learn a large class of distributions including those generated by two-layer networks.
Nguyen et al. [2019a] show that two-layer autoencoders with ReLU or threshold activations can be trained with
normalized gradient descent over the reconstruction loss to provably learn the parameters of any generative
bilinear model (e.g., mixture of Gaussians, sparse coding model). Nguyen et al. [2019b] extend the work of
Du et al. [2018] on supervised learning mentioned earlier to study weakly-trained (i.e., only encoder is trained)
and jointly-trained (i.e., both encoder and decoder are trained) two-layer autoencoders, and show joint training
requires less overparameterization and converges to a global optimum. The effect of overparameterization in
unsupervised learning has also been of recent interest. Buhai et al. [2020] do an empirical study to show that
across a variety of latent variable models and training algorithms, overparameterization can significantly increase

Learning and Generalization in Overparameterized Normalizing Flows

the number of recovered ground truth latent variables. Radhakrishnan et al. [2020] show that overparameterized
autoencoders and sequence encoders essentially implement associative memory by storing training samples as
attractors in a dynamical system.

K Useful facts

Fact K.1. For any i ≥ 0, let hi denote the degree−i probabilists’ Hermite polynomial

hi(x) = i!
b i2 c∑
m=0

(−1)m

m!(i− 2m)!

xi−2m

2m
.

The Hermite polynomials satisfy following summation and multiplication formulas.

hi(x+ y) =
i∑

k=0

(
i

k

)
xi−khk(y),

hi(xy) =
b i2 c∑
k=0

yi−2k(y2 − 1)k
(
i

2k

)
(2k)!

k!
2−khi−2k(x).

Fact K.2. Let hi denote the degree−i probabilists’ Hermite polynomial, then for i > 0, we have

Eβ∼N (0,1)

[
hi (β)

]
= 0.

Lemma K.3. Suppose Zk ∼ N (0, σ2) and Y =
∑n
k=1 Z

2
k is chi-squared distribution with following property for

all t ∈ (0, 1).

Pr

∣∣∣∣∣ 1n n∑
k=1

Z2
k − σ2

∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
− nt

2

8σ4

)

Proof. From example 2.11 from Wainwright [2019], for Z ′k ∼ N (0, 1) and Y =
∑n
k=1 Z

′2
k is chi-squared distribution

with following property for all t ∈ (0, 1).

Pr

∣∣∣∣∣ 1n n∑
k=1

Z ′2k − 1

∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
−nt

2

8

)

Using above equation for Zk
σ ,

Pr

∣∣∣∣∣ 1n n∑
k=1

Z2
k

σ2
− 1

∣∣∣∣∣ ≥ t

σ2

 ≤ 2 exp

(
− nt

2

8σ4

)

Pr

∣∣∣∣∣ 1n n∑
k=1

Z2
k − σ2

∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
− nt

2

8σ4

)

Lemma K.4. Let X1, X2, ..., Xn be independent random variables from N (0, σ2), then with at least 1 − 1
c1

probability, following holds.

max
i∈{1,2,...,n}

|Xi| ≤ 2c1σ
√

2 log n

Proof. From Romberg [2012],

E

[
max

i∈{1,2,...,n}
|Xi|

]
≤ σ

(√
2 log n+ 1

)
≤ 2σ

(√
2 log n

)

Kulin Shah, Amit Deshpande, Navin Goyal

Assuming n ≥ 2, the last inequality follows. Using Markov’s inequality,

Pr

(
max

i∈{1,2,...,n}
|Xi| ≥ 2c1σ

(√
2 log n

))
≤ 1

c1

Pr

(
max

i∈{1,2,...,n}
|Xi| ≤ 2c1σ

(√
2 log n

))
≥ 1− 1

c1

s

Lemma K.5. For standard Gaussian random variable X from N (0, σ2), the following anti-concentration inequality
holds:

Pr
(
|X| ≤ R

)
≤ 2R

σ
√

2π
.

Proof. (From Du et al. [2018]) For the standard Gaussian random variable X
σ ,

Pr

(∣∣∣∣Xσ
∣∣∣∣ ≤ R

)
≤ 2R√

2π

Using R = R′

σ , we get the required result.

Lemma K.6. Suppose function f : Rd → R is Lg-Lipschitz continuous and Li-coordinate wise Lipschitz
continuous i.e. ∣∣f(a)− f(b)

∣∣ ≤Lg‖a− b‖
∀a,b ∈ Rd (Standard Lipschitz continuity)∣∣f(a1, a2, ..., ai, ..., ad)− f(a1, a2, ..., bi, ..., ad)

∣∣ ≤Li|ai − bi|
∀a1, a2, ..., ai, ..., ad, bi ∈ R and ∀i ∈ [d] (Coordinate-wise Lipschitz continuity)

If a function f satisfies Li-coordinate wise Lipschitz continuity for all i, then function f follows following
inequality. ∣∣f(a1, a2, ..., ad)− f(b1, b2, ..., bd)

∣∣ ≤ n∑
i=1

Li|ai − bi|

Moreover, the function f also satisfies standard Lipschitz continuity with Lg Lipschitz constant where inequality
between Lg and Li is as follows.

Lg ≤

√
d∑
i=1

L2
i

Proof. Define a = (a1, a2, ..., ad) and b = (b1, b2, ..., bd).∣∣f(a1, a2, ..., ad)− f(b1, b2, ..., bd)
∣∣ ≤∣∣f(a1, a2, ..., ad)− f(b1, a2, ..., ad)

∣∣
+
∣∣f(b1, a2, a3, ..., ad)− f(b1, b2, a3, ..., ad)

∣∣
+
∣∣f(b1, b2, a3, ..., ad)− f(b1, b2, b3, ..., ad)

∣∣
+ ...+

∣∣f(b1, b2, ..., bd−1, ad)− f(b1, b2, b3, ..., bd)
∣∣

≤L1|a1 − b1|+ L2|a2 − b2|+ ...+ Ld|ad − bd|

≤

√
d∑
i=1

L2
i ‖a− b‖2

where last inequality follows from Cauchy-Schwarz inequality.

Learning and Generalization in Overparameterized Normalizing Flows

Fact K.7. (Hoeffding’s inequality on Binomial random variable) If we have a binomial random variable with
parameters n (total number of trials) and p (probability of success). For k ≥ np, following inequality holds.

Pr (X ≥ k) ≤ exp

(
−2n

(
k

n
− p
)2
)

Fact K.8. (Hoeffding’s inequality) Let X1, X2, . . . , Xn be independent random variables where Xi is bounded in
the interval [ai, bi]. Then, for any t ≥ 0, we have

Pr
(∣∣(X1 +X2 + . . .+Xn)− E [X1 +X2 + . . .+Xn]

∣∣ ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1 (ai − bi)2

)
.

Fact K.9. (Half-normal distribution) If X follows a normal distribution with with mean 0 and variance σ2,
N
(
0, σ2

)
, then Y = |X| = Xsign (X) follows a half-normal distribution with mean E [Y] = σ

√
2√
π
.

Fact K.10. For a gaussian random variable X ∼ N (0, σ2), ∀t ∈ (0, σ), we have

Pr(|X| ≥ t) ≥ 1− 4t

5σ

Fact K.11. The sum of reciprocals of the squares of the natural numbers is given by

∞∑
n=1

1

n2
=
π2

6
≤ 2

Fact K.12. (Theorem 3.1(r
′

5) of Li and Yeh [2013]) For any α > 1 and x ∈
[
0, 1

α−1

)
,

(1 + x)
α ≤ 1

1− αx
1+x

= 1 +
αx

1− (α− 1)x

Fact K.13. (McDiarmid’s Inequality) Let V be some set and let f : V m 7→ R be a function such that for some
ci > 0, for all i ∈ [m] and for all x1, . . . , xm, x

′
i ∈ V , we have∣∣∣f (x1, . . . , xi, . . . , xm)− f

(
x1, . . . , x

′
i, . . . , xm

)∣∣∣ ≤ ci.
Let X1, X2, . . . Xm are independent random variables taking values in V . Then,

Pr
[
f(X1, X2, . . . , Xm)− E (X1, X2, . . . , Xm) ≥ ε

]
≤ exp

(
−2ε2∑m
i=1 c

2
i

)
.

Fact K.14. If Arithmetic-Geometric Progression(AGP) is as follows.

a, (a+ d)r, (a+ 2d)r2, (a+ 3d)r3,,
[
a+ (n− 1)d

]
rn−1

where a is the initial term, d is the common difference and r is the common ratio. The sum of the first n terms
of the AGP (Sn) is given by

Sn =
a−

[
a+ (n− 1)d

]
rn

1− r
+
dr
(
1− rn−1

)
(1− r)2

Definition K.15. Let F be a set of functions Rd → R and X = (x1, x2, ..., xn) be a finite set of samples. The
empirical Rademacher complexity of F with respect to X is defined by

R̂ (X ;F) = Eξ∼{±1}n

[
sup
f∈F

1

n

n∑
i=1

ξif(xi)

]
.

The following results are standard and can be found, e.g., in Allen-Zhu et al. [2019].

Kulin Shah, Amit Deshpande, Navin Goyal

Lemma K.16. Rademacher complexity has the following properties:

a. For any d ∈ R and x ∈ Rd with ‖x‖2 ≤ 1. The function class F = {x 7→ 〈w, x〉+ b | ‖w‖2 ≤ B,|b| ≤ B} has
Rademacher complexity R̂ (X ,F) ≤ 2B√

n
.

b. Given classes F1,F2 functions, R̂ (X ;F1 + F2) = R̂ (X ;F1) + R̂ (X ;F2).

c. Given classes F1,F2, ...,Fm of functions of type X → R and suppose w ∈ Rm is a fixed vector, then
F ′ = {x 7→

∑m
r=1 wrσ

(
fr(x)

)
| fr ∈ Fr} satisfies R̂

(
X ;F ′

)
≤ 2‖w‖1 maxr∈[m] R̂ (X ;Fr) where σ is a 1-

Lipschitz continuous function.

Proof. These are standard results and can be found in Allen-Zhu et al. [2019] and Shalev-Shwartz and Ben-David
[2014].

Fact K.17. (Rademacher Complexity) If F1,F2, ...,Fk are classes of functions of type Rd → R and Lx : Rd →
[−b, b] is a Lg-Lipschitz-continuous function for every x in the support of D, then

sup
f1∈F1,...,fk∈Fk

∣∣∣∣∣Ex∈D [Lx (f1(x), ..., fk(x)
)]
− 1

n

n∑
i=1

Lx
(
f1(xi), ..., fk(xi)

)∣∣∣∣∣ ≤ 2R̂ (X ;L) + b

√
log 1

δ

2n

where L is set of functions obtained by composing Lx with F1,F2, ...,Fk, that is L := {Lx ◦ (f1, . . . , f) | f1 ∈
F1, . . . , fk ∈ Fk}. Using vector contraction inequality from Maurer [2016], we get

sup
f1∈F1,...,fk∈Fk

∣∣∣∣∣Ex∈D [Lx (f1(x), ..., fk(x)
)]
− 1

n

n∑
i=1

Lx
(
f1(xi), ..., fk(xi)

)∣∣∣∣∣
≤ 2
√

2Lg

(
k∑
i=1

R̂ (X ;Fi)

)
+ b

√
log 1

δ

2n
.

	Introduction
	Our Contributions

	Preliminaries
	Problem of learning distributions in Normalizing Flows
	Supervised learning analysis

	Constrained Normalizing Flow
	Problems in analyzing CNF architectures
	A variant of CNF architecture
	Theoretical analysis of CNF

	Unconstrained Normalizing Flow
	Our UNF model
	Theoretical analysis of UNF

	Experiments
	Conclusions and Limitaions
	Outline
	Notations
	Preliminaries
	Coupling
	Approximation
	Optimization
	Generalization
	Problem in Training of Constrained Normalizing Flow
	Problem in optimization for smaller variance initialization case
	Problem in optimization for larger variance initialization case

	Additional experiments
	Experimental Setup
	Results for constrained normalizing flow
	Results for unconstrained normalizing flow
	Results on Miniboone dataset
	Training curves for Constrained and Unconstrained Normalizing Flow

	Related Work
	Useful facts

