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Abstract

Motivated by the tremendous success of boost-
ing methods in the standard centralized model
of learning, we initiate the theory of boost-
ing in the Federated Learning setting. The
primary challenges in the Federated Learning
setting are heterogeneity in client data and the
requirement that no client data can be trans-
mitted to the server. We develop federated
functional gradient boosting (FFGB) an algo-
rithm that is designed to handle these chal-
lenges. Under appropriate assumptions on the
weak learning oracle, the FFGB algorithm is
proved to efficiently converge to certain neigh-
borhoods of the global optimum. The radii of
these neighborhoods depend upon the level of
heterogeneity measured via the total variation
distance and the much tighter Wasserstein-1
distance, and diminish to zero as the setting
becomes more homogeneous. In practice, as
suggested by our theoretical findings, we pro-
pose using FFGB to warm-start existing Fed-
erated Learning solvers and observe significant
performance boost in highly heterogeneous
settings. The code can be found here.

1 Introduction

Federated learning (FL) is a machine learning paradigm
in which multiple clients cooperate to learn a model
under the orchestration of a central server [McMahan
et al., 2017b]. In FL, clients tend to have very hetero-
geneous data, and this data is never sent to the central
server due to privacy and communication constraints.
Thus, it is necessary to offload as much computation as
possible to the clients. The challenge in FL is to train
a single unified model via decentralized computation
even though the clients have heterogeneous data.
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In this paper, we initiate a study of boosting in the
FL setting. Boosting [Schapire and Freund, 2012] is a
classical ensemble method for building additive models
in a greedy, stagewise manner. Boosting can be viewed
as solving a non-parametric functional minimization
problem in an iterative manner. In each stage of boost-
ing, a new model from a certain base class of models is
added to the current ensemble to decrease the training
loss. The new model is found via functional gradient
descent, which involves finding an approximation to
the functional gradient of the loss in the base class via
a corresponding training procedure (see, e.g., [Mason
et al., 2000, Friedman, 2001a]). This training procedure
is commonly referred to as a “weak learning oracle”.

The power of boosting in the centralized setting arises
from the flexibility afforded by operating over arbitrary
base function classes equipped with such a weak learn-
ing oracle. In other words, boosting operates generically
over function classes which can be carefully designed
to encode expert domain knowledge. This flexibility
has manifested in tremendous practical success of spe-
cific boosting methods such as AdaBoost [Freund and
Schapire, 1997] and Gradient Boosted Decision Trees
[Friedman, 2001b]. Motivated by the success of central-
ized boosting methods, in this paper we aim to adapt
the theory of boosting to the FL setting. The primary
challenges in this adaptation are the heterogeneity of
client data, and the requirement that no client data be
transmitted to the server. Therefore, the server needs
to orchestrate the aggregation of the models learned
from clients (without having access to their data) while
at the same time guide the learning on the clients via
appropriate feedback. In this paper, we show how ag-
gregation and learning can be combined seamlessly in
order to construct a strong model by learning local
weak models in a federated model of computation.

Contributions. This paper formulates the federated
functional minimization problem and develops feder-
ated functional gradient boosting algorithms and con-
vergence analyses for various settings of client hetero-
geneity. The main contributions are as follows:

1. We propose a federated functional gradient boosting

https://github.com/shenzebang/Federated-Learning-Pytorch


Federated Functional Gradient Boosting

(FFGB) algorithm for solving functional minimization
under the federated learning paradigm. The algorithm
adapts to different data heterogeneity settings via ap-
propriate choices of weak learning oracles. The algo-
rithm relies on the clients running multiple restricted
functional gradient descent (RFGD) steps locally, but
augmented with residual variables that are crucial for
proving global convergence of the algorithm.

2. We consider the most general setting without spec-
ifying the loss function or the relations between the
marginal distributions of the feature vectors on the
clients. We show that FFGB converges to a neigh-
borhood centered around the global minimizer, whose
radius depends on the average Total Variation distance
between the local marginal distributions and the pop-
ulation marginal distribution. We also construct an
example that shows that convergence to the exact min-
imizer is not possible without further assumptions.

3. We improve the above convergence analysis under
the setting that the marginal distributions are identical
and heterogeneity arises due to differing conditional
distributions of labels. Under a weaker assumption
on the weak learning oracle, we show that FFGB
converges to the global minimizer in a sublinear rate.
Interestingly, our analysis suggests that the number of
local steps of FFGB should be Ω(

√
T ) in order to have

the best convergence rate where T is the number of
boosting stages. This is a rather surprising result that
shows the benefit of taking multiple local steps in FL.

4. We tighten the bound on the convergence radius
from the TV distance to Wasserstein-1 distance for
the special case of square loss. Such an improvement
can be significant especially when there are mismatches
between the support of the local marginal distributions.

5. From a practical perspective, we incorporate the
knowledge distillation technique in the model aggrega-
tion step of FFGB. Inspired by our theoretical analyses,
we propose to use the resulting method FFGB-distill
as a warm start for SOTA FL solvers. Our experiments
show clear evidence for the benefits of such a scheme
on practical datasets.

1.1 Related work

In the FL setting, FedAvg [McMahan et al., 2017b]
is the most popular algorithm for solving standard
parametric optimization problems. In every round of
FedAvg, the server sends a global average parameter
to the local machines, which then perform multiple
local steps (usually stochastic gradient descent) to up-
date the received parameters. These improved local
parameters are aggregated by the server for the next
round. It has been noted by several papers (see, e.g.

[Karimireddy et al., 2020b] and the references therein)
that FedAvg deteriorates in the presence of client het-
erogeneity. Federated optimization algorithms such
as SCAFFOLD [Karimireddy et al., 2020b], Fed-
Prox [Li et al., 2020b], Mime [Karimireddy et al.,
2020a], FedDyn [Acar et al., 2020] etc. were designed
to tackle this issue.

In the centralized setting of gradient boosting, rigorous
analysis with rates of convergence were given by Duffy
and Helmbold [2002], Rätsch et al. [2001], Zhang and
Yu [2005], Grubb and Bagnell [2011]. The algorithms
in this paper and their analyses build upon the prior
work of Grubb and Bagnell [2011].

In the FL setting, Li et al. [2020a] propose a stagewise
algorithm named SimFL that trains gradient Gradi-
ent Boosted Decision Trees. However, we note that
a prerequisite for the proposed method is the pair-
wise similarity over all the data points. The concept
of similarity is heavily task specific as it completely
depends on the data labelling, and requires strong do-
main knowledge. In contrast, in our work we focus
on methods that are agnostic to the data similarity in
order to have a broader applicability. We therefore did
not compare with SimFL in our experiment. Hamer
et al. [2020] have developed a method called FedBoost
which, despite its name, is not a boosting method in the
traditional sense, but rather a communication-efficient
method to learn a linear classifier over features pro-
vided by pre-trained classifiers in the FL setting. While
this linear classifier is an ensemble of the pre-trained
models, FedBoost doesn’t guide the training of new
models. Hence we do not provide further comparison
with this method.

2 Preliminaries

In this section, we define the necessary notation as well
as the federated functional minimization problem that
is solved via boosting algorithms.

2.1 Notation.

For a positive integer n, we define [n] := {1, 2, . . . , n}.
For a vector x ∈ Rd, we use xi to denote its ith entry.
We use 〈·, ·〉 to denote the standard Euclidean inner
product in Rd and use ‖ · ‖ for the corresponding
standard Euclidean norm.
Let X ⊆ Rd denote the input space, and M1

+(X )
denote the set of probability measures on X . For two
measures α, β ∈ M1

+(X ), let TV (α, β) denote their
total variation distance and Wp(α, β) denote their
Wasserstein-p distance (definitions in appendix).
For a fixed distribution α ∈ M1

+(X ), we de-
fine the corresponding weighted Lp space
(1 ≤ p < ∞) of functions from X to Rc as follows:
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Lp(α)
∆
={f : X → Rc |

(∫
X ‖f(x)‖pdα(x)

) 1
p < ∞}.

The space L2(α) is endowed with natural inner product
and norm: for two functions f, g ∈ L2(α), we have
〈f, g〉α =

∫
X 〈f(x), g(x)〉dα(x) and ‖f‖α =

√
〈f, f〉α.

In the limiting case when p → ∞, we define
L∞(α)

∆
=
{
f : X → Rc

∣∣∀x ∈ supp(α), ‖f(x)‖ <∞
}
,

where supp(α) denotes the support of α. We define
the α-infinity norm of a function f : X → Rc

by ‖f‖α,∞
∆
= supx∈supp(α) ‖f(x)‖. We will also use

L∞∆
=
{
f : X → Rc

∣∣ ∀x ∈ X , ‖f(x)‖ <∞
}
, and define

‖f‖∞
∆
= supx∈X ‖f(x)‖. We denote the Lipschitz

constant of a continuous function f : X → Rc as

‖f‖lip
∆
= inf{L : ∀x, x′ ∈ X , ‖f(x)−f(x′)‖ ≤ L‖x−x′‖}.

2.2 Functional Minimization in L2 Space

For some output space Y, let ` : Rc × Y → R be a
loss function that is convex in the first argument. An
important example of ` is the cross entropy loss, where
Y = [c], and

`(y′, y) = − log

(
exp(y′y)∑c
i=1 exp(y′i)

)
. (1)

Given a joint distribution P on X ×Y , we use α to de-
note the marginal distribution of P on X , and for every
x ∈ X , we let βx ∈ M1

+(Y) be the distribution on Y
under P conditioned on x. We then define the risk func-
tional R : L2(α) → R as R[f ]

∆
= E(x,y)∼P [`(f(x), y)].

We consider the following Tikhonov regularized func-
tional minimization problem:

min
f∈L2(α)

F [f ]
∆
= R[f ] +

µ

2
‖f‖2α. (2)

Here, µ ≥ 0 is some regularization parameter. To
solve such a problem, we define the subgradient ∇F [f ]
of F at f as the set of all g ∈ L2(α) such that
F [g] ≥ F [f ]+〈g−f,∇F [f ]〉α. Since L2(α) is a Hilbert
space, according to the Riesz representation theorem,
the subgradient can also be represented by a function
in L2(α). Concretely, the subgradient can be explic-
itly computed as follows: ∇F [f ] is the collection of
functions h ∈ L2(α), such that for any x ∈ supp(α),

h(x) = Ey∼βx [∇1`(f(x), y)] + µf(x), (3)

where ∇1`(y
′, y) = ∂`(y′, y)/∂y′. In particular, when

only empirical measures of α and βx are available,
i.e. when P is the empirical distribution on the set
{(x1, y1), . . . , (xM , yM ) ∈ X×Y}, the empirical version
of the above subgradient computation (3) is as follows:
tor all j ∈ [M ], h(xj) = ∇1`(f(xj), yj) + µf(xj).

Restricted Functional Gradient Descent (Boost-
ing). A standard approch to solve the functional min-
imization problem (2) is the functional gradient descent
method f t+1 := f t− ηtht, ht ∈ ∇F [f t]. In the empiri-
cal case described above, one can construct ht ∈ ∇F [f t]
by interpolating {xj ,∇1`(f

t(xj), yj) + µf t(xj)}Mj=1.
However, this choice of ht has at least two drawbacks: 1.
Evaluating ht at a single point requires going through
the whole dataset; 2. ht is constructed explicitly on
the data points (xj , yj) and thus cannot be transmit-
ted to the server in the FL setting. One alternative
to the explicit functional gradient descent method is
restricted functional gradient descent, also known as
Boosting [Mason et al., 2000]:

f t+1 := f t − ηthtweak, where htweak = Q2
α(∇F [f t]).

(4)
Here, Q2

α is a weak learning oracle such that for any
φ ∈ L2(α), the output h = Q2

α(φ) is a function in L2(α)
satisfying the following weak learning assumption:

‖h− φ‖α ≤ (1− γ)‖φ‖α, (5)

for some positive constant 0 < γ ≤ 1. Replacing the in-
terpolating ht with htweak alleviates the aforementioned
two drawbacks and the restricted functional gradient
descent can be proved [Grubb and Bagnell, 2011] to con-
verge to the global optimum under standard regularity
conditions.

Implementing the Weak Learning Oracle. Let
φ be the input to the oracle and let hθ be the candidate
weak learner, e.g. a neural network with parameter θ.
We can implement Q2

α by solving

min
θ

∑
x∈supp(α)

‖φ(x)− hθ(x)‖2. (6)

3 Federated Functional Minimization

In this paper, we consider the federated functional
minimization problem. We assume that there are N
client machines. Client machine i draws samples from
distribution Pi over X × Y. We denote the marginal
distribution of Pi on X by αi and the conditional distri-
bution on Y given x by βxi . Due to the heterogeneous
nature of the federated learning problems, the Pi’s dif-
fer across different clients.
We define α to be the “arithmetic" mean of the local
input probability measures1:

α
∆
=

1

N

N∑
i=1

αi. (7)

1More precisely, for any Borel subset of X , its measure
under α is the average of the measures under αi’s.
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Algorithm 1 Server procedure

1: procedure Server(f0, T , C)
2: for t← 0 to T − 1 do
3: Sample set St of clients.
4: f t+1 = 1

|St|
∑
i∈St Client(i, t, f t)

5: return fT .

It is easy to see that L2(α) ⊆ L2(αi) for all i. We
define Ri : L2(α)→ R to be

Ri[f ]
∆
= E(x,y)∼Pi [`(f(x), y)] (8)

and denote Fi[f ] = Ri[f ] + µ
2 ‖f‖

2
αi . The goal of feder-

ated learning is to minimize the average loss functional

min
f∈L2(α)

F [f ] =
1

N

N∑
i=1

Fi[f ]. (9)

In the rest of the paper, we use f∗ to denote the opti-
mizer of (9). We emphasize that in federated optimiza-
tion, due to the privacy requirement, the local inner
product structure 〈·, ·〉αi as well as the subgradient
cannot be shared with the server during training phase,
which constitutes the major challenge of the federated
functional minimization problem (9). In the follow-
ing, we first present the proposed federated functional
gradient boosting (FFGB) method and show that it con-
verges to certain neighborhoods of the global optimum
whose radii depend upon the level of heterogeneity.

The FFGB algorithm shares a similar structure as Fe-
dAvg. The Server procedure (Algorithm 1) performs
global variable aggregation in each round, and then
sends the global consensus function f t to the clients.
While in line 4 we aggregate the functions received
from the clients by averaging them, for a practical im-
plementation we can also use knowledge distillation, as
discussed in Section 5. The Client procedure (Algo-
rithm 2) performsK local steps of the RFGD update (4)
tracked via the local variable gk,ti , for k = 1, 2, . . . ,K,
with the initialization g1,t

i = f t. The crucial twist on
the RFGD update is the use of an additional residual
variable ∆i, which is initialized to the constant zero
function (Alg. 2, line 2). This residual variable accumu-
lates the approximation error of the descent direction
hk,ti incurred by the weak oracle (Alg. 2, line 6). Such
a residual is then used to compensate the next func-
tional subgradient (Alg. 2, line 4) and is used in the
query to the weak learning oracle. Since the gradient
of the Tikhonov’s regularization in Fi exactly known,
there is no need to approximate that part with the
weak learning oracle. The local variable function gk,ti is
then refined by the approximated functional gradient(
hk,ti + µgk,ti

)
(Alg. 2, line 5). Note that the residual

∆i only tracks the error of estimating ∇Ri since the

Algorithm 2 Client procedure for Federated Func-
tional Gradient Boosting (FFGB)

1: procedure Client(i, t, f)
2: ∆0,t

i = 0, g1,t
i = f t ;

3: for k ← 1 to K do
4: hk,ti := Q∗αi(∆

k−1,t
i +∇Ri[gk,ti ])

5: gk+1,t
i := gk,ti − ηk,t

(
hk,ti + µgk,ti

)
6: ∆k,t

i := ∆k−1,t
i +∇Ri[gk,ti ]− hk,ti

7: return gK+1,t
i .

rest of ∇Fi is exactly available. After K such updates,
the local function gK+1,t is communicated to the server
which aggregates these functions across the clients.

Residual. The residual ∆i used in FFGB (Algo-
rithm 2) is crucial to our convergence analysis which
smoothly interpolates different heterogeneous setting.
When we have homogeneous local input distributions,
i.e. ∀i ∈ [N ], αi = α, our goal is to show that FFGB
converges to the global minimizer (note that in this
case the conditional distributions may still be hetero-
geneous, i.e. βxi may not be equal to βxj for i 6= j).
However, such a result is not possible without the resid-
ual term: in its absence, the error accumulated by the
RFGD updates via the calls to the weak learning ora-
cle may not vanish since in FL the local subgradient
is non-zero even at the global optimal solution due
to client heterogeneity. This is in sharp contrast to
the single machine case where, at the global optimal
solution, the subgradient vanishes and so does the ap-
proximation error incurred by the weak oracle, leading
to convergence of RFGD. This technique has also been
applied for functional minimization in the much simpler
centralized setting [Grubb and Bagnell, 2011].
Weak Learning Oracle. Given the local input dis-
tribution αi, the description of FFGB in Algorithm 2
does not specify the implementation of the weak learn-
ing oracle Q∗αi in line 4. The ∗ in the superscript in
Q∗αi indicates that in our convergence analyses, three
types of weak learning oracle are used for different het-
erogeneous settings: `2 oracle Q2

α, `∞ oracle Q∞α , and
Lipschitz oracle Qlip

α , as listed in Table 1.

4 Convergence Analysis

In this section, we present the convergence results of
FFGB under different settings which are summarized
in Table 1. Note that we present the convergence rate
in the case when all N clients participate in each round.
The analysis easily extends to the case when only a few
clients are sampled in each round, incurring a penalty
for the variance in the sampling. Qualitatively the
convergence bound stays the same. Details can be
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found in the appendix.

4.1 General Setting

First, we consider the most general setting where we
assume no specific form of the loss functional ` in
the objective (8) and the local input distributions are
potentially heterogeneous, i.e. ∃ i, j ∈ [N ] such that
αi 6= αj . To analyze the convergence of FFGB, we
make the following standard regularity assumption,
which is satisfied e.g. by the cross entropy loss (1).

Assumption 4.1. The subgradients of Ri[f ] are G-
bounded under the L∞(αi) norm, i.e.

∀f ∈ L∞(αi), ‖∇Ri[f ]‖αi,∞ ≤ G.

Additionally, we make the following assumption on the
weak learning oracle Q∞αi which is slightly stronger than
the standard L2 weak learning oracle (see (5)): for any
h ∈ L∞(αi), we assume that

‖Q∞αi(h)− h‖αi,∞ ≤ (1− γ)‖h‖αi,∞, (10)

for some positive constant 0 < γ ≤ 1 and that

‖Q∞αi(h)‖∞ ≤ Ḡγ , (11)

for ‖h‖αi,∞ ≤ Ḡγ , where Ḡγ is some constant that
depends on both G and γ and will be determined in
the following analysis.

The following theorem states that FFGB.C converges
to a neighborhood of the global minimizer, with a radius
proportional to the average TV distance between the
local input distribution αi and the arithmetic mean α:

Theorem 4.1. Let f0 be the initializer function. We
define a proxy of the heterogeneity among the local input
distributions α’s in the TV distance as

ωTV
∆
=

1

N

N∑
i=1

TV(α, αi). (12)

Under Assumption 4.1, and supposing the weak learn-
ing oracle Q∞α satisfies (10) and (11) with constant
γ and Ḡλ = 2G/λ, using the step sizes ηk,t =
4/(µ(tK + k + 1)), the output of FFGB satisfies

‖fT − f∗‖2α = O

(
‖f0 − f∗‖2α

KT
+
KG2log(KT )

Tµ2γ2

+
(1− γ)2G2

Kµ2γ2
+
G2ωTV

µγ2

)
.

The key to prove the above theorem is to ensure that
the local variable function gk,ti remains bounded during
the entire optimization procedure, which allows us to
exploit the variational formulation of the total variation

Table 1: Convergence results and oracle assumptions un-
der different heterogeneous settings. The radii ωTV and ωW1

are defined in (12) and (16) respectively. These two quanti-
ties measure the degree of the data heterogeneity under the
Total-Variation and the Wasserstein-1 norm respectively.
The capability of a weak learning oracle is measured by
the corresponding constant γ, which appears in the require-
ments (5), (10), and (15). For the three settings below, the
quantities γ’s of the listed oracles are obtained under the L2

norm, the L∞ norm, and a Sobolev-type norm respectively.

Setting Oracle Result
αi = α

(general loss)
Q2
αi ,

see (5) ‖fT − f∗‖2α
T→∞−→ 0

αi 6= α
(general loss)

Q∞αi ,
see (10) ‖fT − f∗‖2α

T→∞−→ O(ωTV)

αi 6= α
(square loss)

Qlip
αi ,

see (15) ‖fT − f∗‖2α
T→∞−→ O(ωW1)

(TV) distance in order to relate the local inner product
structure to the global one:

|〈f, g〉αi − 〈f, g〉α| ≤ 2‖f‖∞‖g‖∞TV (α, αi).

This is the reason we need the stronger weak learner
oracle (10): while the standard L2(α) oracle (5) ensures
the residual is reduced in average, it may still have large
spiky values on supp(αi).

For sufficiently large K and T , the first three terms of
Theorem 4.1 diminishes to zero. However, the last term
that depends on ωTV, the heterogeneity of the local
input distributions, will not vanish, which prevents
FFGB converging to the global minimizer f∗. The
following example shows that it is impossible to reach
the exact minimizer without further assumptions for a
large class of deterministic algorithms.
Theorem 4.2. Consider the federated functional min-
imization problem (9). For any deterministic algorithm
A such that its output f t is the affine combination of
outputs of the weak learning oracle Q∞αi . There exists an
instance of the problem (9) with G = O(1) and ωTV = 1
and an adversarial weak learning oracle Q∞αi = Q∞αi(A)
constructed according to the update rule of A with γ = 1
such that f t(x) = 0 for any t and x ∈ supp(α).

As a consequence of the above example, the output of
algorithm A is independent of the conditional distribu-
tions βxi which is clearly not optimal.

4.2 Special Case: Homogeneous αi’s

A direct implication of Theorem 4.1 is that, when
the input distributions are homogeneous, i.e. ∀i ∈
[N ], αi = α, FFGB converges to the global minimizer
of the federated functional minimization problem (9).
Note that, in this case, the conditional distribution βxi
can still vary among different clients and so does the
joint distributions Pi. In the following, we show that,
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as long as the input distributions are homogeneous,
we can obtain the global convergence of FFGB under
weaker regularity and oracle assumptions: We relax
Assumption 4.1 to the following one.
Assumption 4.2. For all i ∈ [N ], the subgradients of
Ri[f ] are G-bounded under the L2(αi) norm, i.e. for
any f ∈ L2(α), we have ‖∇Ri[f ]‖αi ≤ G.

and we relax the oracle assumption (10) to the standard
one (5), i.e. the one in the L2 sense.
Theorem 4.3 (Convergence result of FFGB). Let f0

be the initializer function. Suppose that Assumption
4.2 holds, and suppose the weak learning oracle Q2

α

satisfies (5) with constant γ. Using the step size ηk,t =
2

µ(tK+k+1) , the output of FFGB satisfies

‖fT − f∗‖2α = O

(
‖f0 − f∗‖2α

KT
+
KG2 log(KT )

Tγ2µ2

+
(1− γ)G2

Kµ2γ2
+

(1− γ)G2 log(KT )

KTµγ2

)
.

In the limit case when γ = 1, the weak oracle exactly
approximates its input and hence the above result
degenerates to the one of FedAvg [Li et al., 2019]:
‖fT − f∗‖2α = O

(
‖f0−f∗‖2α

KT + KG2 log(KT )
Tµ2

)
. Note that

when γ < 1, in order to have the best convergence rate
(up to log factors), we need to set the number of local
steps K = Ω(

√
T ), leading to the following corollary.

Corollary 4.1. Under the conditions of Theorem 4.3,
when γ < 1, the best convergence rate (up to log factors)
is ‖fT − f∗‖2α = O(1/

√
T ) by choosing K = Ω(

√
T ).

4.3 Special Case: Square Loss

We show that when the loss ` in the local objective
functional (8) is the square loss `(y′, y) = 1

2‖y
′−y‖2 for

y, y′ ∈ Y ⊆ Rc, we can improve the bound on radius
of convergence by replacing the TV distance with the
Wasserstein-1 distance, if the optimal solution f∗ is
L-Lipschitz continuous. Note that the Wasserstein dis-
tance usually provides a better characterization for the
distance between two distributions with mismatched
supports. The purpose of this section is to show that at
least for certain problems the TV norm type result can
be further strengthened. The following improved con-
vergence radius heavily relies on the special structure
of the functional gradient ∇Ri and the choice of the
weak learning oracle. For simplicity, we assume that
the domain Y ⊆ R, the extension to Rc is analogous.

Assumption on local dataset. In this special case,
we assume that Pi is the empirical measure on a fi-
nite set of client data {(xi,j , yi,j) : j ∈ [M ]}. We
also assume that the labels are generated from the

inputs via the L-Lipschitz optimal solution f∗ with
no additive noise, i.e., the data satisfies the following
Lipschitzness property: for any j, j′ ∈ [M ], we have
|yi,j − yi,j′ | ≤ L‖xi,j − xi,j′‖. This assumption is cru-
cial to our choice of subgradient in order to obtain a
improved convergence radius.

Choice of subgradient. Note that the functional
subgradient ∇Ri[g] at g is any function h satisfying
that for all j ∈ [M ], h(xj) = g(xi,j) − yi,j . The
above assumption allows us to construct an L-Lipschitz
function ui : Rd → R that interpolates the data
{(xi,j , yi,j) : j ∈ [M ]}: specifically, this Lipschitz
extension is defined as2

ui(x)
∆
= min

j∈[M ]
(yi,j + L‖x− xi,j‖) . (13)

Importantly, the function h = g − ui is one such sub-
gradient ∇Ri[g] and will be used when querying the
weak learning oracle.

Choice of weak learning oracle. To obtain the
desired convergence radius, the weak learning oracle
needs to exploit the special structure of the functional
gradient ∇Ri[g] = g − ui. Specifically, let g be the
variable function which is explicitly known. Upon the
query φ+ g with ‖φ‖lip <∞, the weak learning oracle
Qlip
αi outputs h + g such that ‖h‖lip ≤ ‖φ‖lip and the

following two conditions hold simultaneously

‖h− φ‖α,∞ ≤ (1− γ)‖φ‖α,∞ (14)
‖h− φ‖lip ≤ (1− γ)‖φ‖lip, (15)

for some positive constant 0 < γ ≤ 1. Note that, in
the notation, we use the superscript “lip” to emphasize
that we measure the quality the oracle’s output with
additional consideration on its Lipschitz continuity. We
can implement this oracle using the Sobolev training
[Czarnecki et al., 2017]. This is further discussed in
the appendix.

Before we present the convergence result of FFGB in
this special case, we need the following boundedness
assumptions:

Assumption 4.3. All labels are B-bounded: i.e. ∀i ∈
[N ], j ∈ [M ],−B ≤ yi,j ≤ B, for some B > 0. For
every pair of measures αi and αi′ , ∀xi,j ∈ supp(αi),
∃xi′,j′ ∈ supp(αi′) such that ‖xi,j − xi′,j′‖ ≤ D.

Theorem 4.4. Consider the special case of the feder-
ated functional minimization problem with square loss.
Assume that the optimal solution f∗ is L-Lipschitz con-
tinuous. Let f0 be the initializer. We define a proxy
of the heterogeneity among the local input distributions

2If the output domain Y is high dimensional, i.e. Y ⊆
Rc, then the construction of ui follows from Kirszbaum’s
Lipschitz extension theorem [Schwartz, 1969].
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α’s in the Wasserstein-1 distance as

ωW1
=

1

N

N∑
i=1

W1(α, αi) (16)

Define G2 = 2L2

N2

∑N
i,s=1 W2

2(αs, αi) + 2B2. Under As-
sumption 4.3, and supposing the weak learning ora-
cle Qlip

α satisfies (14) and (15) with constant γ, using
the step sizes ηk,t = 4/(µ(tK + k + 1)), the output of
FFGB satisfies

‖fT − f∗‖2α = O

(
K
(
L(LD +B)ωW1

+G2
)
log(KT )

Tµ2γ2

+
‖f0 − f∗‖2

KT
+

(1− γ)2B2

µ2γ2K
+
L(LD +B)ωW1

γ2µ

)
.

The key component in the above analysis is to ensure
that the variable function remains Lipschitz continu-
ous along the entire optimization trajectory. However,
maintaining such a property of the variable is sub-
tle and heavily relies on the structure of the chosen
subgradient. We elaborate this in the appendix.

5 Practical Usage of FFGB

Reducing memory and communication costs via
knowledge distillation. While the FFGB algorithm
has theoretical convergence guarantees, it does have
two drawbacks for a direct practical implementation.
The first is that aggregating the client functions via
the direct averaging scheme in line (4) of Algorithm 1
causes the ensemble model to grow in size. A solution
to this issue in settings where an unlabeled dataset that
is very similar to the client data is publicly available, is
the knowledge distillation technique [Hinton et al., 2015,
Bucila et al., 2006]. Suppose ρ denotes the empirical
distribution that describes the distillation dataset and
let hθ be the candidate model, e.g. a neural network
with parameter θ. An alternative implementation of
the client aggregation is to solve:

min
θ

∑
x∈supp(ρ)

‖hθ(x)− 1

|S|
∑
i∈S

gi(x)‖2, (17)

and return hθ as the output of Aggregate ({gi}i∈S).
We note that Lin et al. [2020] has also explored the
idea of exploiting knowledge distillation in FL, though
with a distillation loss function different from (17). The
other drawback is that the function returned by the
clients is also an ensemble of size K. This increases
communication complexity, and hence, in our experi-
ments, we simply use K = 1.

FFGB as Warm Start. The example in Theorem
4.2 shows that fundamental barrier in the federated

functional minimization problem under the fully hetero-
geneous setting, which precludes the exact convergence
to the global minimizer. On the other hand, the con-
vergence result in Theorem 4.1 suggests that FFGB
is able to quickly converge to a neighborhood of the
global minimizer. These theoretical findings inspire us
to use FFGB to warm start the existing FL solvers:
few rounds of FFGB can be used to give a very good
initial model to optimize further with other standard
FL methods like FedAvg.

6 Experiments

In this section, we show how FFGB can be used with
knowledge distillation to improve the performance of
the baseline algorithms on the computer vision task
of multiclass classification. The implementation of
knowledge distillation requires the access to a unla-
belled public dataset, which is usually available for
vision tasks. We use FFGB-distill to denote the
method that distills the global ensemble into a sin-
gle model after every FFGB round. Consequently,
the per-round communication cost of FFGB-distill
is reduced to K which is significantly smaller than
O(TNK) in FFGB. Moreover, to have the best perfor-
mance under communication budgets, we fix K = 1 in
our current experiments. Note that while the boosting
method produces ensemble models with high testing
accuracy in the centralized setting, it is excluded from
comparison since such a setting is never available in
FL. Our code is available here https://github.com/
shenzebang/Federated-Learning-Pytorch.

Datasets. Three datasets are used in our experiment,
CIFAR10, CIFAR100 [Krizhevsky et al., 2009], and
EMNIST [Cohen et al., 2017]. We use CIFAR100 as
the distillation dataset for CIFAR10 and vice versa. For
EMNIST, we use the digits as the distillation dataset
for the letters and vice versa. These two subsets of
EMNIST, letters and digits, are denoted by EMNIST-L
and EMNIST-D respectively. In all experiments, the
labels of the distillation dataset are never used.

Heterogeneous client distributions The hetero-
geneity across local datasets is controlled by dividing
the dataset among N clients in the following manner:
we choose s ∈ [0, 1] as the degree of homogeneity. We
then randomly select a portion s× 100% of the data
from the dataset and allocate them equally to all clients;
for the remaining (1− s)× 100% portion of the data,
we sort the data points by their labels and assign them
to the clients sequentially. This is the same scheme
as employed in [Karimireddy et al., 2020b, Hsu et al.,
2020] to induce heterogeneity. In our experiment, we
are interested in the heterogeneous setting and s takes

https://github.com/shenzebang/Federated-Learning-Pytorch
https://github.com/shenzebang/Federated-Learning-Pytorch
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Table 2: Number of transmitted models for different methods to reach a moderate target testing accuracy, a performance
metric used in the previous work [Acar et al., 2020]. The s numbers indicate degree of homogeneity in the client datasets.
In the first column, the datasets in bold are the training sets and the ones in parenthesis are the distillation datasets.

Dataset Level of
heterogeneity

Target
Accuracy

FFGB-distill
(this work) FedAvg-distill

FedDyn
(FedPD) FedAvg

CIFAR10
(CIFAR100)

s = 0.1 0.50 1 4 20 25
0.55 3 19 30 39

s = 0.2 0.54 1 3 16 18
0.60 3 25 24 32

s = 0.3 0.55 1 3 15 16
0.60 3 11 20 24

CIFAR100
(CIFAR10)

s = 0.1 0.2 4 > 100 70 > 100
0.25 20 > 100 > 100 > 100

s = 0.2 0.2 1 81 23 74
0.25 17 > 100 37 > 100

s = 0.3 0.2 1 66 19 25
0.25 7 95 29 40

EMNIST-L
(EMNIST-D)

s = 0.1 0.89 8 >100 93 >100
s = 0.2 0.89 5 >100 68 >100
s = 0.3 0.89 3 >100 43 >100

EMNIST-D
(EMNIST-L)

s = 0.1 0.99 4 >100 >100 >100
s = 0.2 0.99 4 >100 >100 >100
s = 0.3 0.99 4 >100 >100 >100

value from {0.1, 0.2, 0.3}. We set N = 100 in all cases.

Architecture of the Neural Network. We follow
the choice of model architectures in [Acar et al., 2020,
McMahan et al., 2017a]. For CIFAR10 and CIFAR100,
we use a CNN model consisting of 2 convolution layers
with 64 5 × 5 filters followed by 2 fully connected layers
with 394 and 192 neurons. For EMNIST, we use the
same convolution layers and reduce the fully connected
layers to (120, 84) neurons. We note that higher testing
accuracy on the included datasets can be obtain by
using models with high capacity, but is orthogonal to
our research.

Choice of hyperparameters. In our implementa-
tion of FFGB-distill, we choose Q2

αi as the weak
learning oracle. To solve the corresponding optimiza-
tion problem (6) on the clients, we run Adam for 100
epochs on the local data, with learning rate 0.001,
batch size 64, without weight decay. The learning rate
of FFGB-distill is fixed as 10 which according to
our observation gives the best results. We minimize
the distillation loss (17) using Adam with the same
hyperparameters adopted when computing the weak
learning oracle. For FedAvg-distill, the hyperpa-
rameters are chosen as suggested by the original paper.
For a fair comparison, the number of local epochs is
set to 100, same as FFGB-distill. For FedDyn (or
equivalently FedPD) and FedAvg, after a global com-

munication round, we run SGD for 10 local epochs
with batch size 64. The learning rate is grid searched
from {0, 01, 0.05, 0.1} (FedAvg can diverge with a
large learning rate). We use gradient clipping for all
experiment setup with maximum gradient norm 5.

Data augmentation. The data augmentation tech-
nique has a huge impact on the output accuracy. For
the experiments on CIFAR10 and CIFAR100, we use
random horizontal flip and random crop with size 32
and padding 4 to transform the minibatch used in each
SGD/Adam step. For the experiments on EMNIST,
we conduct no data augmentation.

6.1 Result Summary

We run FFGB-distill and its competitors on CI-
FAR10 and CIFAR100 with different levels of data
heterogeneity. The results are reported in Table 2 and
Figure 1 and are summarized as follows.

• FFGB-distill quickly converges to a mod-
erate accuracy. In Table 2, we report the number
of models transmitted so that the included methods
reach a moderate target accuracy. We emphasize that
the reported target accuracy are obtained after only
a few communication rounds, e.g. FFGB-distill ob-
tains a 50% testing accuracy after a single iteration,
and are presented to motivate that FFGB-distill pro-
vides an effective warm-start. This should not be con-
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Figure 1: Performance of baseline methods when initialized with a single FFGB-distill step ("<alg>-d") and randomly
initialized ("<alg>-r"). Here FedPD is a synonym for FedDyn as these two methods are proved to be equivalent.

fused with the high accuracy obtained after hundreds
of communication rounds. From our results, we see
that FFGB-distill has a clear advantage over the
baselines, including FedDyn which to the best of our
knowledge is the SOTA FL solver. Note that the com-
parisons between FFGB-distill and FedAvg-distill
can also be regarded as an ablation study: Both meth-
ods use knowledge distillation to fuse the ensemble
on the server, but each with a different client update
scheme. The clear advantage of FFGB-distill over
FedAvg-distill shows that our functional minimiza-
tion scheme also has a significant contribution to the
observed improvements. Moreover, while FedAvg-
distill improves the performance of FedAvg on CI-
FAR10, on the more difficult CIFAR100 in with higher
data heterogeneity, FedAvg-distill has worse perfor-
mance than FedAvg. This phenomenon is possibly
due to that FedAvg fails to generate reasonable local
models with limited communication rounds, a necessity
for the success of knowledge distillation.

• FFGB-distill boosts SOTA FL solver as
a warm start. The empirical results in Table 2
show that FFGB-distill achieve a moderate accu-
racy within the first few rounds. This observation
motivates us to utilize FFGB-distill as a warm start
method for existing FL solves. To this end, we conduct
the ablation study where we run FedAvg and Fed-
Dyn using either the output of a single FFGB-distill
step as initialization or random initialization. Figure
1 shows that one step of FFGB-distill significantly
boosts the performance of all included baselines.

Conclusion

In this paper, we initiate the theory of boosting in
the Federated Learning setting. We develop federated

functional gradient boosting (FFGB) an algorithm that
is designed to handle the challenge of data hetero-
geneity. Under appropriate assumptions on the weak
learning oracle, the FFGB algorithm is proved to effi-
ciently converge to certain neighborhoods of the global
optimum. The radii of these neighborhoods depend
upon the level of heterogeneity measured via the total
variation distance and the much tighter Wasserstein-1
distance, and diminish to zero as the setting becomes
more homogeneous. While our work serves as the first
step towards extending the theory of boosting to the
Federated Learning setting, more work is needed to
ensure that the memory and communication costs are
reduced to have an impact on FL in practice. One of
the possible applications, as hinted by our theoretical
findings, is to use FFGB with knowledge distillation
to warm-start existing Federated Learning solvers. In
our experiments, we observe this strategy boosts per-
formance in highly heterogeneous settings.
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A Total Variation Distance and Wasserstein-1 Distance between Probability
Measures

Given two probability distributions α, β ∈M1
+(X ), the total variation distance between α and β is

TV(α, β) = sup
A∈F
|α(A)− β(A)|, (18)

where F is the Borel sigma algebra over X .

The p-Wasserstein metric between α and β is defined as

Wp(α, β)
∆
= min
π∈Π

(∫
X 2

‖x− y‖pdπ(x, y)

)1/p

, (19)

where Π(α, β)
∆
={π ∈ M1

+(X × X )|]1π = α, ]2π = β} is the set of joint distributions with given marginal
distributions α and β. Here ]i denotes the marginalization.

B Experiments: Implementing the Weak Learning Oracles

We now discuss the implementations of the weak learning oracles. In our experiments, we only use the weak
learning oracle Q2

α. We discuss the implementation of the oracles Q∞α and Qlip
α for completeness, but the suggested

schemes may not necessarily be very efficient in practice.

Implementing Q∞α . Let φ be the input to the oracle and let hθ be the candidate weak learner to be trained.
Here hθ is a neural network with parameter θ.

We can implement the oracle by solving

min
θ

max
x∈supp(α)

‖φ(x)− hθ(x)‖2. (20)

Implementing Qlip
α . Recall that we assume the input to Qlip

α to be of the form −φ+g, where g is some function
that is explicitly available (usually, the variable function) and recall that Qlip

α outputs −hθ + g where hθ is a
neural network with parameter θ. In other words, Qlip

α only approximates φ in the input with hθ and leaves the
known part, g, untouched.

We can implement the oracle Qlip
α by solving

min
θ

(
max

x∈supp(α)
‖φ(x)− hθ(x)‖2

)
+

∫
X
‖∇xφ(x)−∇xhθ(x)‖2dx. (21)

Note that the gradient of the input φ is available as we have the explicit expression of φ = ui + ∆k,t
i (ui is defined

in (13)). The above scheme is similar to the Sobolev training scheme (1) in Czarnecki et al. [2017].

C Proof of Theorem 4.2

Suppose that we have two clients each with Dirac local distributions, i.e., α1 = δx1 and α2 = δx2 with x1 6= x2.
Consider the cross entropy loss ` defined in Eq.(1) with `2 regularization. Hence the local objective functional
is Fi[f ] = `(f(xi), yi) + ||f(xi)||2 ∗ µ/2 (there is only one term since αi is a Dirac). We can compute that the
functional gradient is ∇Fi[f ] = ∇1`(f(xi), yi)δxi + µf(xi)δxi . For simplicity we assume every client takes a
single local step, i.e. K = 1 and that the algorithm A updates the variable by f t+1 = f t − ηt(gt1 + gt2) given the
outputs of the weak learner gt1 and gt2. The following example can be easily generalized to other update rules
where f t is the affine combination of gti ’s and there are more than one local steps, i.e. K > 1.

We construct an adversarial weak learning oracle Q(A) according to the update rule of A such that f t(xi) = [0, 0]
for any t and i under the initialization f0(xi) = [0, 0], in the following manner: The adversarial oracle Q(A)
returns gt1 and gt2 such that

gt1(x1) = ∇1`(f(x1), y1), gt1(x2) = −∇1`(f(x2), y2);
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gt2(x1) = −∇1`(f(x1), y1), gt2(x2) = ∇1`(f(x2), y2).

Here we note that the regularization term vanishes since f t is a zero function. We can check that in this case, the
adversarial oracle O(A) satisfies (10) with γ = 1 since on the support of αi, we have gti(xi) = ∇Fi[f t](xi). And
we can simply set Ḡγ to be G in (11).

However, we always have f t+1 = f t − ηt(gt1 + g2
2) ≡ 0 given that f t ≡ 0. Consequently, the output ensemble

model of algorithm A is independent of the conditional distributions p(yi|xi) which is clearly not optimal. In fact,
we can compute in this special case that

∀t, ‖f t − f∗‖2α = ‖f∗‖2α. (22)

This lower bound agrees with the result in Theorem 4.1 for T →∞ if we pick ‖f∗‖ = G/µ (see (31)).

D Proof of Theorem 4.1

We now present the proof of FFGB in the most general setting where we make no assumption on the homogeneity
of α’s, the distributions over the input space, and the loss function ` in the objective (8) can be any function that
is convex w.r.t. its first input. Unfortunately the statement of Theorem 4.1 in the main body contains a typo
which is fixed in the following restatement and is marked in red.
Theorem D.1 (Theorem 4.1 restated). Let f0 be the initializer function. We define a proxy of the heterogeneity
among the local input distributions α’s in the TV distance as

ωTV
∆
=

1

N

N∑
i=1

TV(α, αi). (23)

Under Assumption 4.1, and supposing the weak learning oracle Q∞α satisfies (10) and (11) with constant γ and
Ḡλ = 2G/λ, using the step sizes ηk,t = 4/(µ(tK + k + 1)), the output of FFGB satisfies

‖fT − f∗‖2α = O

(
‖f0 − f∗‖2α

KT
+
KG2log(KT )

Tµ2γ2
+

(1− γ)2G2

Kµ2γ2
+
G2ωTV

µ2γ2

)
.

Proof. Similar to the proof of Theorem 4.3, for simplicity, in this proof, we define ĥk,ti := hk,ti + µgk,ti .

We first show that ∆k,t
i , the residual variable, and hk,ti , the output of the weak learing oracle Q∞αi , are bounded

under the L∞(αi) norm: Note that ∆0,t
i ≡ 0. Besides, for x ∈ supp(αi), in each iteration |∆k,t

i (x)| is first
increased at most by G after adding ∇Ri[gk,ti ] and is then reduced by at least 1− γ after subtracting the weak
learner hk,ti . Consequently, we have

‖∆k,t
i ‖αi,∞ ≤ (1− γ)

(
‖∆k−1,t

i ‖αi,∞ +G
)

and ‖∆0,t
i ‖∞ = 0⇒ ∀k, ‖∆k,t

i ‖αi,∞ ≤
1− γ
γ

G = G1
γ . (24)

Further, using the triangle inequality we have ‖∆k−1,t
i +∇Ri[gk,ti ]‖αi,∞ ≤ G+ 1−γ

γ G = G
γ and hence

‖hk,ti ‖αi,∞ ≤ ‖∆
k−1,t
i +∇Ri[gk,ti ]− hk,ti ‖αi,∞ + ‖∆k−1,t

i +∇Ri[gk,ti ]‖αi,∞ ≤
2− γ
γ

G = G2
γ . (25)

Based on the above results, the following lemmas characterize the boundedness of hk,ti , gk,ti , and ĥk,ti .

Lemma D.1. Assume that the initial function satisfies ‖f0‖∞ ≤ 2G
γµ . Then for all t ≥ 0, ‖f t‖ ≤ 2G

µγ and
‖ḡk,t‖∞ ≤ 2G

γµ for all 1 ≤ k ≤ K.

Proof. For t = 0, ḡ1,0 = f0 and hence ‖ḡ1,0‖∞ ≤ 2G
γµ due to the initialization. Now assume that for t = τ the

statement holds. Therefore ‖fτ‖∞ ≤ 2G
γµ . So for t = τ + 1, ‖ḡ1,t‖∞ ≤ 2G

γµ . From the update rule in line (5) of
Algorithm 2, we have

ḡk+1,t = (1− µηk,t)ḡk,t +
1

N

N∑
i=1

ηk,thk,ti (26)
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Since we have ‖hk,ti ‖∞ ≤ 2G
γµ from (25) and the assumption (11) on the weak learning oracle Q∞αi . Recursively, we

have
‖ḡk+1,t‖∞ −

2G

γµ
≤ (1− µηk,t)

(
‖ḡk,t‖∞ −

2G

γµ

)
≤ 0,

which leads to the conclusion.

Combing the above results, we have the boundedness of ĥk,ti and ∇Fi[gk,ti ]: ‖ĥk,ti ‖∞ ≤ 4G
γ and ‖∇Fi[gk,ti ]‖∞ ≤ 4G

γ .

For a fixed communication round t, we define two hypothetical sequences ḡk,t = 1
N

∑N
i=1 g

k,t
i and h̄k,t =

1
N

∑N
i=1 ĥ

k,t
i . Note that ḡ1,t = f t. From the update rule in line 5 of Algorithm 2, we write

‖ḡk+1,t − f∗‖2α = ‖ḡk,t − f∗‖2α + (ηk,t)2‖h̄k,t‖2α − 2ηk,t〈ḡk,t − f∗, h̄k,t〉α. (27)

For the second term, we have ‖h̄k,t‖2α ≤ ‖h̄k,t‖2∞ = O(G
2

γ2 ).

The last term of (27) can be split as

− 2〈ḡk,t − f∗, h̄k,t〉α (28)

= − 2

N

N∑
i=1

〈ḡk,t − f∗, ĥk,ti 〉αi +
(
〈ḡk,t − f∗, ĥk,ti 〉α − 〈ḡ

k,t − f∗, ĥk,ti 〉αi
)

=
2

N

N∑
i=1

〈gk,ti − ḡ
k,t, ĥk,t〉αi + 〈f∗ − gk,ti ,∇Fi[gk,ti ]〉αi + 〈f∗ − gk,ti , ĥk,t −∇Fi[gk,ti ]〉αi

+
(
〈ḡk,t − f∗, ĥk,t〉αi − 〈ḡk,t − f∗, ĥk,t〉α

)
. (29)

Using the variational formulation of the TV norm, with the boundedness of ḡk,t and ĥk,ti one has

|〈ḡk,t − f∗, ĥk,ti 〉α − 〈ḡ
k,t − f∗, ĥk,ti 〉αi | ≤ O

(
G2/µγ2 · TV(α, αi)

)
. (30)

where we know from the first-order optimalily solution of f∗:

∇F [f∗] = µf∗ +
1

N

∑
i∈[N ]

∇Ri[f∗] ≡ 0⇒ ‖f∗‖α,∞ ≤
1

µ
max
i
‖∇Ri[f∗]‖αi,∞ ≤

G

µ
. (31)

Denote ωTV
∆
= 1

N

∑N
i=1 TV(α, αi). We hence have

2

N

N∑
i=1

(
〈ḡk,t − f∗, hk,ti 〉αi − 〈ḡ

k,t − f∗, hk,ti 〉α
)
≤ δ ∆

= O(G2ωTV /µγ
2). (32)

The first term of (29) can be bounded by

2

N

N∑
i=1

〈gk,ti − ḡ
k,t, hk,ti 〉αi

≤ 1

N

N∑
i=1

ηk,t‖hk,ti ‖
2
αi +

1

ηk,t
‖gki − ḡk‖2αi

≤ ηk,t4G2/γ2 +
1

N

N∑
i=1

1

ηk,t
‖gki − ḡk‖2αi = O(

ηk,tG2

γ2
) +

1

ηk,t
· 1

N

N∑
i=1

‖gki − ḡk‖2αi .

The second term of (29) can be bounded by using the µ-strong convexity of Fi:

2

N

N∑
i=1

〈f∗ − gk,ti ,∇Fi[gk,ti ]〉αi ≤ −
2

N

N∑
i=1

(
Fi[gk,ti ]−Fi[f∗]

)
− 2

N

N∑
i=1

µ

2
‖f∗ − gk,ti ‖

2
αi .
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For the first term above, using the optimality of f∗, we have

− 2

N

N∑
i=1

(
Fi[gk,ti ]−Fi[f∗]

)
= − 2

N

N∑
i=1

(
Fi[gk,ti ]−Fi[ḡk,t] + Fi[ḡk,t]−Fi[f∗]

)
≤ − 2

N

N∑
i=1

(
Fi[gk,ti ]−Fi[ḡk,t]

)
.

For the second term, we have

‖f∗ − gk,ti ‖
2
αi ≤ 2‖f∗ − ḡk,t‖2αi + 2‖ḡk,t − gk,ti ‖

2
αi .

Combine the above inequality to yield

2

N

N∑
i=1

〈f∗ − gk,ti ,∇Fi[gk,ti ]〉αi

≤ − 2

N

N∑
i=1

(
Fi[gk,ti ]−Fi[ḡk,t]

)
− µ

4
‖f∗ − ḡk,t‖2α

+
µ

2N

N∑
i=1

‖gk,ti − ḡ
k,t‖2αi −

µ

2N

N∑
i=1

‖f∗ − gk,ti ‖
2
αi

≤ − 2

N

N∑
i=1

〈∇Fi[ḡk,t], gk,ti − ḡ
k,t〉αi −

µ

4
‖f∗ − ḡk,t‖2α

+
µ

2N

N∑
i=1

‖gk,ti − ḡ
k,t‖2αi −

µ

2N

N∑
i=1

‖f∗ − gk,ti ‖
2
αi

≤ 1

N

N∑
i=1

ηk,t‖∇Fi[ḡk,t]‖2αi +
1

ηk,t
‖gk,ti − ḡ

k,t‖2αi

− µ

4
‖f∗ − ḡk,t‖2α +

µ

2N

N∑
i=1

‖gk,ti − ḡ
k,t‖2αi −

µ

2N

N∑
i=1

‖f∗ − gk,ti ‖
2
αi

≤ ηk,t
16G2

γ2
+ (

µ

2
+

1

ηk,t
)

1

N

N∑
i=1

‖gk,ti − ḡ
k,t‖2αi −

µ

4
‖f∗ − ḡk,t‖2α −

µ

2N

N∑
i=1

‖f∗ − gk,ti ‖
2
αi (33)

Note that ‖ḡk,t − f t‖2αi = ‖
∑k−1
κ=1 η

κ,th̄κ,t‖2αi and η
t,κ ≤ 2ηt,k for κ ≤ k. Therefore, 1

N

∑N
i=1 ‖g

k,t
i − ḡk,t‖2αi can

be bounded by (we use ‖ · ‖αi ≤ ‖ · ‖∞ in the following)

1

N

N∑
i=1

‖gk,ti − ḡ
k,t‖2αi

=
1

N

N∑
i=1

‖gk,ti − f
t + f t − ḡk,t‖2αi

≤ 1

N

N∑
i=1

2‖gk,ti − f
t‖2αi + 2‖f t − ḡk,t‖2αi ≤ 36

k−1∑
κ=1

(ηκ,t)2G2/γ2 ≤ 144(ηk,t)2K2G2/γ2

= O(
(ηk,t)2K2G2

γ2
).
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Plug in the above results into (27) to yield (note that ĥk,ti −∇Fi[g
k,t
i ] = hk,ti −∇Ri[g

k,t
i ])

‖ḡk+1,t − f∗‖2α ≤(1− µηk,t

4
)‖ḡk,t − f∗‖2α +O(

(ηk,t)2K2G2

γ2
)

+
2ηk,t

N

N∑
i=1

〈f∗ − gk,ti , hk,ti −∇Ri[g
k,t
i ]〉αi + ηk,tδ − µ

2N

N∑
i=1

‖f∗ − gk,ti ‖
2
αi

Recall that ηk,t = 4
µ(tK+k+1) and multiply both sides by (Kt+ k + 1)

(Kt+ k + 1)‖ḡk+1,t − f∗‖2

≤ (Kt+ k)‖ḡk,t − f∗‖2 +O(
K2G2

µ2γ2(Kt+ k + 1)
)

+
4

µN

N∑
i=1

〈f∗ − gk,ti , hk,ti −∇Ri[g
k,t
i ]〉αi +

2δ

µ
− µ

2N

N∑
i=1

‖f∗ − gk,ti ‖
2
i

Sum from k = 1 to K

(Kt+K + 1)‖ḡk+1,t − f∗‖2

≤ (Kt+ 1)‖ḡ1,t − f∗‖2 +O

(
K2G2

µ2γ2
(log(Kt+K + 1)− log(Kt+ 1))

)
+

4

µN

N∑
i=1

K∑
k=1

〈f∗ − gk,ti , hk,ti −∇Ri[g
k,t
i ]〉αi +

2δK

µ
− 2

N

K∑
k=1

N∑
i=1

‖f∗ − gk,ti ‖
2
αi

We analyze the first term in the second line above as follows.
K∑
k=1

〈f∗ − gk,ti , ĥk,ti −∇Fi[g
k,t
i ]〉α =

K∑
k=1

〈f∗ − gk,ti , hk,ti −∇Ri[g
k,t
i ]〉α

=

K∑
k=1

〈f∗ − gk,ti , hk,ti − (∇Ri[gk,ti ] + ∆k−1
i )〉α +

K∑
k=1

〈f∗ − gk,ti ,∆k−1
i 〉α

=

K∑
k=1

〈f∗ − gk,ti ,−∆k
i 〉α +

K∑
k=2

〈f∗ − gk,ti ,∆k−1
i 〉α + 〈f∗ − g1

i ,∆
0
i 〉α &∆0

i = 0

=

K∑
k=1

〈f∗ − gk,ti ,−∆k
i 〉α +

K−1∑
k=1

〈f∗ − gk+1
i ,∆k

i 〉α

=

K∑
k=1

〈f∗ − gk,ti ,−∆k
i 〉α +

K−1∑
k=1

〈f∗ − gk,ti ,∆k
i 〉α +

K−1∑
k=1

〈ηkt h
k,t
i ,∆k

i 〉α

= 〈f∗ − gK,ti ,−∆K
i 〉α +

K−1∑
k=1

〈ηkt h
k,t
i ,∆k

i 〉α

≤ µ

2
‖f∗ − gK,ti ‖

2 +
1

2µ
(
1− γ
γ

)2G2 +
(1− γ)(2− γ)

γ2
G2

K−1∑
k=1

ηk,t

≤ µ

2
‖f∗ − gK,ti ‖

2 +
1

2µ
(
1− γ
γ

)2G2 +
(1− γ)(2− γ)

γ2
G2(log(tK +K)− log(tK + 2)). (34)

Using this result, we obtain

(K(t+ 1) + 1)‖f t+1 − f∗‖2α

≤ (Kt+ 1)‖f t − f∗‖2α +O

(
K2G2

µ2γ2
(log(K(t+ 1) + 1)− log(Kt+ 1))

)
+O(G2 (1− γ)2

µ2γ2
) +O

(
G2 1− γ

µγ2
(log(K(t+ 1))− log(Kt))

)
+

2δK

µ
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Sum from t = 0 to T − 1 and use the non-expensiveness of the clip operation to yield

(KT + 1)‖fT − f∗‖2α

≤ (k0 + 1)‖f0 − f∗‖2α +O

(
K2G2 log(KT + 1)

µ2γ2

)
+O(

(1− γ)G2 log(TK)

µγ2
)

+O(TG2 (1− γ)2

µ2γ2
) +O(

G2TKωTV
µ2γ2

),

and hence

‖fT − f∗‖2α = O(
‖f0 − f∗‖2α

KT
+
KG2log(KT )

Tµ2γ2
+

(1− γ)2G2

Kµ2γ2
+
G2ωTV
µ2γ2

). (35)

E Proof of Theorem 4.3

In this section, we present the convergence analysis of the setting where the distributions over the input space are
i.i.d.. Under this setting, we show that FFGB converges to the global minimizer in a sublinear rate.

Theorem E.1 (Theorem 4.3 restated.). Let f0 be the initializer function. Suppose that Assumption 4.2 holds,
and suppose the weak learning oracle Q2

α satisfies (5) with constant γ. Using the step size ηk,t = 2
µ(tK+k+1) , the

output of FFGB satisfies

‖fT − f∗‖2α = O

(
‖f0 − f∗‖2α

KT
+
KG2 log(KT )

Tγ2µ2
+

(1− γ)G2

Kµ2γ2
+

(1− γ)G2 log(KT )

KTµγ2

)
.

Proof. Since we are considering the setting where α = αi, we ignore the subscript i and simply write ‖ · ‖α and
〈·, ·〉α for the norm and the inner product in L2(α).

For simplicity, we denote ĥk,ti = hk,ti + µgk,ti .

We define two hypothetical global average sequences ḡk,t = 1
N

∑N
i=1 g

k,t
i and h̄k,t = 1

N

∑N
i=1 ĥ

k,t
i . In particular,

we have ḡ1,t = f t. From the update rule in line (5) of Algorithm 2, we write

‖ḡk+1,t − f∗‖2α = ‖ḡk,t − f∗‖2α + (ηk,t)2‖h̄k,t‖2α − 2ηk,t〈ḡk,t − f∗, h̄k,t〉α (36)

The last term of (36) can be split as

− 2〈ḡk,t − f∗, h̄k,t〉α = − 2

N

N∑
i=1

〈ḡk,t − f∗, ĥk,ti 〉α (37)

= − 2

N

N∑
i=1

〈ḡk,t − gk,ti , ĥk,ti 〉α + 〈gk,ti − f
∗, ĥk,ti 〉α

=
2

N

N∑
i=1

〈gk,ti − ḡ
k,t, ĥk,ti 〉α + 〈f∗ − gk,ti ,∇Fi[gk,ti ]〉α + 〈f∗ − gk,ti , ĥk,ti −∇Fi[g

k,t
i ]〉α. (38)

The second term of (38) can be bounded using the µ-strong convexity of Fi

2

N

N∑
i=1

〈f∗ − gk,ti ,∇Fi[gk,ti ]〉α ≤ −
2

N

N∑
i=1

Fi[gk,ti ]−Fi[f∗]−
2

N

N∑
i=1

µ

2
‖f∗ − gk,ti ‖

2
α.

Note that using the optimality of f∗ we have

N∑
i=1

Fi[gk,ti ]−Fi[f∗] =

N∑
i=1

Fi[gk,ti ]−Fi[ḡk,t] + Fi[ḡk,t]−Fi[f∗] ≤
N∑
i=1

Fi[gk,ti ]−Fi[ḡk,t]
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and that by recalling that ḡk,t = 1
N

∑N
i=1 g

k,t
i and using the Cauchy–Schwarz inequality we have

1

N

N∑
i=1

‖f∗ − gk,ti ‖
2
α ≥ ‖f∗ − ḡk,t‖2α.

Therefore, we can bound

2

N

N∑
i=1

〈f∗ − gk,ti ,∇Fi[gk,ti ]〉α

≤ − 2

N

N∑
i=1

Fi[gk,ti ]−Fi[ḡk,t]−
µ

2
‖f∗ − ḡk,t‖2α −

1

N

N∑
i=1

µ

2
‖f∗ − gk,ti ‖

2
α

≤ − 2

N

N∑
i=1

〈∇Fi[ḡk,t], gk,ti − ḡ
k,t〉α −

µ

2
‖f∗ − ḡk,t‖2α −

1

N

N∑
i=1

µ

2
‖f∗ − gk,ti ‖

2
α

≤ 1

N

N∑
i=1

ηk,t‖∇Fi[ḡk,t]‖2α +
1

ηk,t
‖gk,ti − ḡ

k,t‖2α −
µ

2
‖f∗ − ḡk,t‖2α −

1

N

N∑
i=1

µ

2
‖f∗ − gk,ti ‖

2
α,

where we use Young’s inequality in the last inequality.

Besides, recall that ‖∇Ri[g]‖α ≤ G from Assumption 4.2. Together with the property of the oracle, we have

‖∆k,t
i ‖α ≤ (1− γ)

(
‖∆k−1,t

i ‖α +G
)

and ‖∆0,t
i ‖α = 0⇒ ∀k, ‖∆k,t

i ‖α ≤
1− γ
γ

G. (39)

Consequently, we also have

‖h̄k‖α ≤
1

N

N∑
i=1

‖hk,ti ‖α =
1

N

N∑
i=1

‖∇Ri[gk,ti ] + ∆k−1
i ‖α ≤

2− γ
γ

G.

From line 5 of Algorithm 2, we have gk+1,t
i = (1− µηk,t)gk,ti + ηk,thk,ti and therefore

‖gk+1,t
i ‖α −

2G

γµ
≤ (1− µηk,t)

(
‖gk+1,t
i ‖α −

2G

γµ

)
, (40)

where we use ‖hk,ti ‖α ≤ 2G/γ. Therefore, if we have initially ‖f t‖α ≤ 2G
γµ , we always have ‖gk,ti ‖α ≤ 2G

γµ (hence
so is f t+1 as it is the global average ḡK+1,t). Further, together with ‖hk,ti ‖α ≤ 2G/γ, we have ‖ĥk,ti ‖α ≤ 4G/γ.

Additionally, 1
N

∑N
i=1 ‖g

k,t
i − ḡk,t‖2α can be bounded by (we use E[(X − E[X])

2
] ≤ E[X2])

1

N

N∑
i=1

‖gk,ti − ḡ
k,t‖2α =

1

N

N∑
i=1

‖gk,ti − g
1,t
i + g1,t

i − ḡ
k,t‖2α

≤ 1

N

N∑
i=1

‖gk,ti − g
1,t
i ‖

2
α ≤

k∑
κ=1

16(ηκ,t)2G2/γ2 ≤ 64(ηk,t)2K2G2/γ2,

where we use ηκ,t ≤ 2ηk,t for any t ≥ 0 and 1 ≤ κ ≤ k. Therefore we can bound the first term of (38) by

2

N

N∑
i=1

〈gk,ti − ḡ
k,t, ĥk,ti 〉α ≤

1

N

N∑
i=1

1

ηk,t
‖gk,ti − ḡ

k,t‖2α +
ηk,t

N

N∑
i=1

‖ĥk,ti ‖
2
α ≤ (64K2 + 16)ηk,tG2/γ2

Plug in the above results into (36) to yield

‖ḡk+1,t − f∗‖2α ≤ (1− µηk,t

2
)‖ḡk,t − f∗‖2α +O

(
(ηk,t)2K2G2/γ2

)
+

2ηk,t

N

N∑
i=1

〈f∗ − gk,ti , ĥk,ti −∇Fi[g
k,t
i ]〉α −

ηk,t

N

N∑
i=1

µ

2
‖f∗ − gk,ti ‖

2.
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Recall that ηk,t = 2
µ(tK+k+1) and multiply both sides by (tK + k + 1)

(tK + k + 1)‖ḡk+1,t − f∗‖2α ≤ (tK + k)‖ḡk,t − f∗‖2α +O(
K2G2

γ2µ2(tK + k + 1)
)

+
4

µN

N∑
i=1

〈f∗ − gk,ti , ĥk,ti −∇Fi[g
k,t
i ]〉α −

2

µN

N∑
i=1

µ

2
‖f∗ − gk,ti ‖

2
α.

Sum from k = 1 to K

(tK +K + 1)‖ḡK+1,t − f∗‖2α

≤ (tK + 1)‖ḡ1,t − f∗‖2α +O(
K2G2

γ2µ2
) (log(tK +K)− log(tK + 1))

+
4

µN

N∑
i=1

K∑
k=1

〈f∗ − gk,ti , ĥk,ti −∇Fi[g
k,t
i ]〉α −

2

µN

N∑
i=1

K∑
k=1

µ

2
‖f∗ − gk,ti ‖

2
α. (41)

For the first term of the second line above, the following equality holds for the same reason as (34)

K∑
k=1

〈f∗ − gk,ti , ĥk,ti −∇Fi[g
k,t
i ]〉α = 〈f∗ − gK,ti ,−∆K

i 〉α +

K−1∑
k=1

〈ηkt h
k,t
i ,∆k

i 〉α

≤ µ

2
‖f∗ − gK,ti ‖

2 +
1

2µ
(
1− γ
γ

)2G2 +
(1− γ)(2− γ)

γ2
G2

K−1∑
k=1

ηk,t

≤ µ

2
‖f∗ − gK,ti ‖

2 +
1

2µ
(
1− γ
γ

)2G2 +
(1− γ)(2− γ)

γ2
G2(log(tK +K)− log(tK + 2)). (42)

Using this result, we obtain (we cancel µ2 ‖f
∗ − gK,ti ‖2 with the last term of (41))

(K(t+ 1) + 1) ‖f t+1 − f∗‖2α

≤ (Kt+ 1)‖f t − f∗‖2α +O(
K2G2

γ2µ2
)(log(K(t+ 1) + 1)− log(Kt+ 1))

+
4

µ
(

1

2µ
(
1− γ
γ

)2G2 +
(1− γ)(2− γ)

γ2
G2(log(K(t+ 1)− 1)− log(Kt+ 1)))

Sum from t = 0 to T − 1 to yield

(KT + 1)‖fT − f∗‖2α

≤ ‖f0 − f∗‖2α +O(
K2G2 log(KT )

γ2µ2
) +O(

(1− γ)TG2

µ2γ2
) +O(

(1− γ)G2 log(KT )

µγ2
),

and hence

‖fT − f∗‖2α

≤ O(
‖f0 − f∗‖2α

KT
) +O(

KG2 log(KT )

Tγ2µ2
) +O(

(1− γ)G2

Kµ2γ2
) +O(

(1− γ)G2 log(KT )

KTµγ2
).

F Proof of Theorem 4.4

To show that FFGB converges to a neighborhood of f∗, the global minimizer of the federated functional
minimization problem (9), in the regression loss special case, we need to following lemma that characterizes the
difference between the inner products in L2 spaces with different weights.
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Lemma F.1. For two functions f, g ∈ L∞(α) with ‖f‖lip < ∞ and ‖g‖lip < ∞, denote ξ := ‖f‖lip‖g‖α,∞ +
‖g‖lip‖f‖α,∞. Then

|〈f, g〉αi − 〈f, g〉α| ≤ ξW1(α, αi). (43)

Proof. Recall (19) where the Wasserstein-1 distance between two discrete distribution µ and ν can be written as

W1(µ, ν) = min
Π≥0

∫
X 2

‖x− y‖dΠ(x, y), s.t.]1Π = µ, ]2Π = ν.

Note that the constraint of the above problem implies that supp(Π) ⊆ supp(µ)× supp(ν), otherwise Π must be
infeasible. The above minimization problem is equivalent to

W1(µ, ν) = min
Π≥0

max
φ,ψ

∫
X 2

‖x− y‖dΠ(x, y) +

∫
X
φ(x)d (µ− ]1Π) (x) +

∫
X
ψ(y)d (ν − ]2Π) (y).

Change the order of min-max to max-min (due to convexity) and rearrange terms:

W1(µ, ν) = max
φ,ψ

{
min
Π≥0

∫
X 2

‖x− y‖ − φ(x)− ψ(y)dΠ(x, y)

}
+

∫
X
φ(x)dµ(x) +

∫
X
ψ(y)dν(y).

Therefore, we must have that for (x, y) ∈ supp(Π) ⊆ supp(µ)× supp(ν), φ(x) + ψ(y) ≤ ‖x− y‖ which leads to

W1(µ, ν) = max
φ,ψ

∫
X
φ(x)dµ(x) +

∫
X
ψ(y)dν(y),

s.t. φ(x) + ψ(y) ≤ ‖x− y‖,∀(x, y) ∈ supp(µ)× supp(ν).

Now, recall that every local distribution αi is described by a set of data feature points: αi = 1
M

∑M
j=1 δxi,j ,

where δx is the Dirac distribution; and the global distribution α is described by the union of all these points:
α = 1

MN

∑N,M
i,j=1 δxi,j . Clearly we have supp(αi) ⊆ supp(α). Using Proposition 6.1. of [Peyré et al., 2019] with

X = supp(α), the above bi-variable problem is equivalent to the single-variable problem

W1(µ, ν) = max
φ

∫
X
φ(x)dµ(x)−

∫
X
φ(y)dν(y),

s.t. |φ(x)− φ(y)| ≤ ‖x− y‖,∀(x, y) ∈ supp(µ)× supp(ν).

Recall that in (43), φ(x) = f(x)g(x) and ξ = ‖g‖lip‖f‖∞ + ‖f‖lip‖g‖∞. One can check that

‖φ(x)/ξ − φ(y)/ξ‖ = ‖f(x) (g(x)− g(y)) + g(y) (f(x)− f(y)) ‖/ξ
≤ (‖g‖lip‖f‖∞ + ‖f‖lip‖g‖∞) /ξ‖x− y‖ = ‖x− y‖.

Therefore

W1(µ, ν) ≥ |
∫
X
f(x)g(x)/ξdα(x)−

∫
X
f(x)g(x)/ξdαi(y)|,

which is equivalent to (43).

Recall that we assume the input to Qlip
α to be of the form −φ + g, where g is some function that is explicitly

available (usually, the variable function) and recall that Qlip
α outputs −hθ + g where hθ is a neural network

with parameter θ. In other words, Qlip
α only approximates φ in the input with hθ and leaves the known part, g,

untouched. Therefore, the client procedure of FFGB in Algorithm 2 can be equivalently written as Algorithm 3.
In the following, we will analyze the convergence of Algorithm 3.

Algorithm 3 Client procedure of Federated Functional Gradient Boosting for regression loss

1: procedure Client(i, t, f)
2: ∆0

i = 0, g1,t
i = f t ;

3: for k ← 1 to K do
4: hki := Qlip

αi (∆
k−1
i − ui)

5: gk+1,t
i := gk,ti − ηk,t(g

k,t
i − hki )

6: ∆k
i := ∆k−1

i − ui + hki
7: return gK,ti .
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Theorem F.1 (Theorem 4.4 restated). Consider the special case of the federated functional minimization problem
with square loss. Assume that the optimal solution f∗ is L-Lipschitz continuous. Let f0 be the initializer. We
define a proxy of the heterogeneity among the local input distributions α’s in the Wasserstein-1 distance as

ωW1
=

1

N

N∑
i=1

W1(α, αi) (44)

Suppose that Assumption 4.3 holds and define G2 = 2L2

N2

∑N
i,s=1 W2

2(αs, αi) + 2B2. Moreover, suppose the weak
learning oracle Qlip

α satisfies (14) and (15) with constant γ. Using the step sizes ηk,t = 4/(µ(tK + k + 1)), the
output of FFGB satisfies

‖fT − f∗‖2α = O

(
K
(
L(LD +B)ωW1

+G2
)
log(KT )

Tµ2γ2
+
‖f0 − f∗‖2

KT
+

(1− γ)2B2

µ2γ2K
+
L(LD +B)ωW1

γ2µ

)
.

Proof. For a fixed communication round t, we define a hypothetical sequence ḡk,t = 1
N

∑N
i=1 g

k,t
i . We also define

h̄k = 1
N

∑N
i=1 h

k
i . Note that ḡ1,t = f t.

From the Lipschitz extension construction, we have ‖ui‖lip ≤ L. Additionally, using the assumptions (15) on the
oracle, the residual is inductively proved to be (1−γ)

γ L-Lipschitz continuous as follows. For the base case, note

that ‖∆0
i ‖lip ≡ 0. Now, assume that for some k ≥ 1, we have ‖∆k−1

i ‖lip ≤ (1−γ)
γ L. Then

‖∆k
i ‖lip =‖hki − (ui −∆k−1

i )‖lip≤ (1− γ)‖ui −∆k−1
i ‖lip ≤ (1− γ)(‖∆k−1

i ‖lip + L) ≤ (1−γ)
γ L.

Therefore, the query to the weak learning oracle is also Lipschitz continuous: ‖∆k−1
i − ui‖lip ≤ L/γ, and so

is the output, ‖hki ‖lip ≤ L/γ. Now, the update rule of gk,ti (line 5), and the boundedness of ‖hki ‖lip imply the
boundedness of ‖gk,ti ‖lip for sufficiently small ηk,t:

‖gk+1,t
i ‖lip = ‖(1− ηk,t)gk,ti + ηk,thki ‖lip ≤ (1− ηk,t)‖gk,ti ‖lip + L/γ · ηk,t

⇒ ‖gk,ti ‖lip ≤ L/γ (via induction using‖g1,t
i ‖lip ≤ L/γ).

Lemma F.2. The residual ∆k
i and the output hki of the oracle Qlip

αi are bounded under the L∞(αi) norm:

‖∆k
i ‖αi,∞ ≤

(1− γ)B

γ
and ‖hki ‖αi,∞ ≤ B/γ.

Proof. From property (15) of the weak leaner oracle Qlip
αi , we have

‖∆k
i ‖αi,∞ = ‖∆k−1

i − ui + hki ‖αi,∞ ≤ (1− γ)‖∆k−1
i − ui‖αi,∞ ≤ (1− γ)‖∆k−1

i ‖αi,∞ + (1− γ)B, (45)

where the second inequality uses the boundedness of yi,j = f∗i (xi,j) in Assumption 4.3. We hence have

‖∆k
i ‖αi,∞ −

(1− γ)B

γ
≤ (1− γ)

(
‖∆k−1

i ‖αi,,∞ −
(1− γ)B

γ

)
⇒ ‖∆k

i ‖αi,∞ ≤
(1− γ)B

γ
. (46)

The boundedness of ‖hki ‖αi,∞ can be obtained from the above inequality: ‖hki ‖αi,∞ ≤ ‖ui‖αi,∞ + ‖∆k
i ‖αi,∞ ≤

B/γ.

Lemma F.3. The local variable function gk,ti is bounded under the L∞(αi) norm: ‖gk,ti ‖αi,∞ ≤ B/γ.

Proof. Using the update rule in line 5 of Algorithm 3, we have

‖gk+1,t
i ‖αi,∞ = ‖(1− ηk,t)gk,ti + ηk,thki ‖αi,∞

≤ (1− ηk,t)‖gk,ti ‖αi,∞ + ηk,t‖hki ‖αi,∞ ≤ (1− ηk,t)‖gk,ti ‖αi,∞ + ηk,tB/γ.

Inductively, we have the boundedness of ‖gk+1,t
i ‖αi,∞

‖gk+1,t
i ‖αi,∞ −B/γ ≤ (1− ηk,t)

(
‖gk,ti ‖αi,∞ −B/γ

)
⇒ ‖gk,ti ‖αi,∞ ≤ B/γ. (47)
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Lemma F.4. The local variable function gk,ti , the global average function ḡk,t, and the output of the oracle Qlip
αi

are (LD +B)/γ-bounded under the L∞(α) norm.

Proof. From Lemmas F.3 and F.2, gk,ti , ḡk,t and hk,ti are B/γ on the support of αi. Using Assumption 4.3
together with the L/γ-Lipschitz continuity of gk,ti , ḡk,t and hk,ti , we have the results.

While the above lemma implies the boundedness of ḡk,t under the L2(α) norm, we can tighten the analysis with
the following lemma. Important, the following result does not depend on the constant D in Assumption 4.3.

Lemma F.5. The hypothetical global sequences ḡk,t and h̄k,t are bounded under the local norm ‖ · ‖αs : Denote
G2
s = 2L2

N

∑N
i=1 W2

2(αs, αi) + 2B2. We have that ‖ḡk,t‖αs ≤ G2
s/γ

2 and ‖h̄k,t‖αs ≤ G2
s/γ

2, where W2(αs, αi) is
the Wasserstein-2 distance between measures αi and αs. Consequently, we have ḡk,t and h̄k,t are G-bounded under
the L2(α) norm, where we further denote G2 = 1

N

∑N
s=1G

2
s.

Proof. Let Πs,i ∈ RM×M+ be the Wasserstein-2 optimal transport plan (matrix) between αs and αi. The entry
Πs,i
j1,j2

denotes the portion of mass that should be transported from xs,j1 ∈ supp(αs) to xi,j2 ∈ supp(αi). Note
that in αi and αs, the entries xs,j1 and xi,j2 have uniform weight 1/M . As a transport plan, any row or column
of Πs,i sums up to 1/M . We now show that ‖ḡk,t‖αs is bounded using the Lipschitz continuity of gk,ti .

‖ḡk,t‖2αs =
1

M

M∑
j=1

‖ 1

N

N∑
i=1

gk,ti (xs,j)‖2 ≤
1

M

M∑
j=1

1

N

N∑
i=1

‖gk,ti (xs,j)‖2 =
1

N

N∑
i=1

1

M

M∑
j=1

‖gk,ti (xs,j)‖2. (48)

We analyze the summand as follows.

1

M

M∑
j=1

‖gk,ti (xs,j)‖2 =

M∑
j1=1

M∑
j2=1

Πs,i
j1,j2
‖gk,ti (xs,j1)− gk,ti (xi,j2) + gk,ti (xi,j2)‖2

≤
M∑
j1=1

M∑
j2=1

Πs,i
j1,j2

(
2‖gk,ti (xs,j1)− gk,ti (xi,j2)‖2 + 2‖gk,ti (xi,j2)‖2

)

≤
M∑
j1=1

M∑
j2=1

Πs,i
j1,j2

(
2L2/γ2 · ‖xs,j1 − xi,j2‖2 + 2‖gk,ti (xi,j2)‖2

)

= 2L2/γ2 ·W2
2(αs, αi) +

2

M

M∑
j2=1

‖gk,ti (xi,j2)‖2

= 2L2/γ2 ·W2
2(αs, αi) + 2‖gk,ti ‖

2
αi ,

where we used the definition of the Wasserstein-2 distance. Therefore, (48) can be bounded by

‖ḡk,t‖2αs ≤
1

N

N∑
i=1

2L2/γ2 ·W2
2(αs, αi) + 2‖gk,ti ‖

2
αi ≤

2L2

Nγ2

N∑
i=1

W2
2(αs, αi) + 2B2/γ2. (49)

Following the similar proof above, we have the same bound for ‖h̄k,t‖αs as hk,ti is also B/γ- bounded and
L/γ-Lipschitz continuous:

‖h̄k,t‖2αs ≤
2L2

Nγ2

N∑
i=1

W2
2(αs, αi) + 2B2/γ2. (50)

We now present the convergence analysis of Algorithm 3. From the update rule in line 5 of Algorithm 3, we write

‖ḡk+1,t − f∗‖2α = ‖ḡk,t − f∗‖2α + (ηk,t)2‖ḡk,t − h̄k‖2α − 2ηk,t〈ḡk,t − f∗, ḡk,t − h̄k〉α. (51)
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To bound the second term, note that

‖ḡk,t − h̄k‖2α ≤
1

N

N∑
i=1

‖gk,ti − h
k
i ‖2α. (52)

For each individual term on the R.H.S. of the above inequality, we have

‖gk,ti − h
k
i ‖2α =

(
‖gk,ti − h

k
i ‖2α − ‖g

k,t
i − h

k
i ‖2αi

)
+ ‖gk,ti − h

k
i ‖2αi

≤ O(L(LD +B)/γ2 ·W1(α, αi)) +O(B2/γ2),

where we use the variational formulation (43) of the Wasserstein-1 distance as well as the Lipschitz continuity
and boundedness of gk,ti and hk,ti under the L2(α) norm. Therefore the second term is bounded by

‖ḡk+1,t − f∗‖2α ≤ O(L(LD +B)/γ2 · ω) +O(B2/γ2), ω =
1

N

N∑
i=1

W1(α, αi). (53)

The third term of (51) can be split as

− 2〈ḡk,t − f∗, ḡk,t − h̄k〉α (54)

= − 2

N

N∑
i=1

〈ḡk,t − f∗, gk,ti − h
k
i 〉αi +

(
〈ḡk,t − f∗, gk,ti − h

k
i 〉α − 〈ḡk,t − f∗, g

k,t
i − h

k
i 〉αi

)
=

2

N

N∑
i=1

〈gk,ti − ḡ
k,t, gk,ti − h

k
i 〉αi + 〈f∗ − gk,ti , gk,ti − ui〉αi + 〈f∗ − gk,ti , ui − hk,ti 〉αi

+
(
〈ḡk,t − f∗, gk,ti − h

k
i 〉α − 〈ḡk,t − f∗, g

k,t
i − h

k
i 〉αi

)
. (55)

The last term of R.H.S. of the above equality can be bounded using the Lipschitz continuity and the boundedness
of (ḡk,t − f∗) and (gk,ti − hki ) and the variational formulation of W1 (see (43)):

1

N

N∑
i=1

(
〈ḡk,t − f∗, gk,ti − h

k
i 〉α − 〈ḡk,t − f∗, g

k,t
i − h

k
i 〉αi

)
= O(L(LD +B)/γ2 · ω), ω =

1

N

N∑
i=1

W1(α, αi).

The first term of of the R.H.S. of (55) can be bounded by

2

N

N∑
i=1

〈gk,ti − ḡ
k,t, gk,ti − h

k
i 〉αi ≤

1

N

N∑
i=1

ηk,t‖gk,ti − h
k
i ‖2αi +

1

ηk,t
‖gk,ti − ḡ

k,t‖2αi

≤ O(ηk,tL(LD +B)/γ2 ·W1(α, αi)) +O(ηk,tB2/γ2) +
1

ηk,t
· 1

N

N∑
i=1

‖gk,ti − ḡ
k‖2αi .

The second term of (55) can be bounded by using the µ-strong convexity of Ri (note that µ = 1 and we use
∇Ri[gk,ti ] to denote (gk,ti − ui) as they are identical on the support of αi). The following inequality holds for the
same reason as (33).

2

N

N∑
i=1

〈f∗ − gk,ti ,∇Ri[gk,ti ]〉αi

≤ O
(
ηk,tG2/γ2

)
+ (

µ

2
+

1

ηk,t
)

1

N

N∑
i=1

‖gk,ti − ḡ
k,t‖2αi −

µ

4
‖f∗ − ḡk,t‖2 − µ

2N

N∑
i=1

‖f∗ − gk,ti ‖
2
αi
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Note that ‖f t− ḡk,t‖2αi = ‖
∑k
κ=1 η

κ,t
(
ḡκ,t − h̄κ

)
‖2αi and η

t,κ ≤ 2ηt,k for κ ≤ k. Therefore, 1
N

∑N
i=1 ‖g

k,t
i − ḡk,t‖2αi

can be bounded by

1

N

N∑
i=1

‖gk,ti − ḡ
k,t‖2αi

=
1

N

N∑
i=1

‖gk,ti − f
t + f t − ḡk,t‖2αi

≤ 1

N

N∑
i=1

2‖gk,ti − f
t‖2αi + 2‖f t − ḡk,t‖2αi = O(

k∑
κ=1

(ηκ,t)2G2/γ2) = O(ηk,t)2K2G2/γ2

= O(
(ηk,t)2K2G2

γ2
).

Plug in the above results into (51) to yield

‖ḡk+1,t − f∗‖2α ≤ (1− µηk,t

2
)‖ḡk,t − f∗‖2α +O

(
(ηk,t)2K2

γ2

(
L(LD +B)ω +G2 +B2

))
+

2ηk,t

N

N∑
i=1

〈f∗ − gk,ti , ui − hki 〉αi

+O(ηk,tL(LD +B)/γ2 · ω)− µηk,t

2N

N∑
i=1

‖f∗ − gk,ti ‖
2
αi

Set ηk,t = 4
µ(Kt+k+1) and multiply both sides by (Kt+ k + 1)

(Kt+ k + 1)‖ḡk+1,t − f∗‖2

≤ (Kt+ k)‖ḡk,t − f∗‖2 +O(
K2
(
L(LD +B)ω +G2 +B2

)
µ2γ2(Kt+ k + 1)

)

+
4

µN

N∑
i=1

〈f∗ − gk,ti , ui − hki 〉αi +O
(
(L(LD +B) · ω/(γ2µ)

)
− 1

N

N∑
i=1

‖f∗ − gk,ti ‖
2
i

Sum from k = 1 to K

(Kt+K + 1)‖ḡk+1,t − f∗‖2

≤ (Kt+ 1)‖ḡ1,t − f∗‖2 +O

(
K2
(
L(LD +B)ω +G2 +B2

)
µ2γ2

(log(Kt+K + 1)− log(Kt+ 1))

)

+
4

µN

N∑
i=1

K∑
k=1

〈f∗ − gk,ti , ui − hki 〉αi +O
(
KL(LD +B) · ω/(γ2µ)

)
− 1

N

K∑
k=1

N∑
i=1

‖f∗ − gk,ti ‖
2
αi
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We now focus on the last term
K∑
k=1

〈f∗ − gk,ti , ui − hki 〉αi

=

K∑
k=1

〈f∗ − gk,ti , ui − (ui −∆k−1
i + ∆k

i )〉αi =

K∑
k=1

〈f∗ − gk,ti ,∆k−1
i −∆k

i 〉αi

=

K∑
k=1

〈f∗ − gk,ti ,−∆k
i 〉αi +

K∑
k=2

〈f∗ − gk,ti ,∆k−1
i 〉αi + 〈f∗ − g1

i ,∆
0
i 〉αi &∆0

i = 0

=

K∑
k=1

〈f∗ − gk,ti ,−∆k
i 〉αi +

K−1∑
k=1

〈f∗ − gk+1
i ,∆k

i 〉αi

=

K∑
k=1

〈f∗ − gk,ti ,−∆k
i 〉αi +

K−1∑
k=1

〈f∗ − gk,ti ,∆k
i 〉αi +

K−1∑
k=1

〈ηkt
(
gk,ti − h

k
i

)
,∆k

i 〉αi

= 〈f∗ − gK,ti ,−∆K
i 〉αi +

K−1∑
k=1

〈ηkt
(
gk,ti − h

k
i

)
,∆k

i 〉αi

≤ µ‖f∗ − gk,ti ‖
2
αi +O((1− γ)2B2/(γ2µ)) +O(G2 1− γ

γ2
)

K−1∑
k=1

ηk,t

= µ‖f∗ − gk,ti ‖
2
αi +O((1− γ)2B2/(γ2µ)) +O

(
G2 1− γ

γ2
(log(KT +K)− log(Kt))

)
.

Using this result, we obtain

(K(t+ 1) + 1)‖f t+1 − f∗‖2

≤ (Kt+ 1)‖f t − f∗‖2 +O

(
K2
(
L(LD +B)ω +G2 +B2

)
µ2γ2

(log(K(t+ 1) + 1)− log(Kt+ 1))

)

+
2

µ
(O((1− γ)2B2/(γ2µ)) +O

(
G2 1− γ

γ2
(log(K(t+ 1))− log(Kt))

)
)

+O
(
KL(LD +B) · ω/(γ2µ)

)
Sum from t = 0 to T − 1 and use the non-expensiveness of the projection operation (note that C is a convex set)
to yield

(KT + 1)‖fT − f∗‖2 ≤ (k0 + 1)‖f0 − f∗‖2 +O

(
K2
(
L(LD +B)ω +G2 +B2

)
log(KT + 1)

µ2γ2

)

+O(
(1− γ)2TB2

µ2γ2
+

(1− γ)G2 log(TK)

µγ2
) +O

(
TKL2 · ω/(γ2µ)

)
,

and hence (B = O(G))

‖fT − f∗‖2 = O(
‖f0 − f∗‖2

KT
+
K
(
L(LD +B)ω +G2

)
log(KT )

Tµ2γ2
+

(1− γ)2B2

µ2γ2K
+
L(LD +B)ω

γ2µ
).

G Partial Device Participation

In this section, we consider the setting of partial device participation. In the following discussion, we take the
setting of homogeneous input distributions for example. Similar arguments hold for the other two settings.

In round t of Algorithm 2, we randomly sample without replacement a subset St ⊆ [N ] of clients and only
compute the average of their returns to update the global variable function. We assume that all St has the same
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cardinality m. Conceptually, we can imagine all the clients are participating in the update, but we only utilize
the results in the set St.

Similar to the proof for the setting of full device participation, we define the hypothetical global average function
ḡk,t = 1

N

∑N
i=1 g

k,t
i . In particular, we have ḡ1,t = f t. From the derivation therein (see Section E), we have

(tK +K + 1)‖ḡK+1,t − f∗‖2α

≤ (tK + 1)‖ḡ1,t − f∗‖2α +O(
K2G2

γ2µ2
)(log(tK +K + 1)− log(tK + +1))

+
4

µ
(

1

2µ
(
1− γ
γ

)2G2 +
(1− γ)(2− γ)

γ2
G2(log(tK +K)− log(tK)))

However, unlike the setting of full device participation, we do not have f t+1 = ḡK+1,t. Instead, f t+1 =
1
m

∑
i∈St g

K+1
i . We have the following simple but useful lemma. The proof of this lemma is similar to scheme II

of Lemma 5 in [Li et al., 2019].

Lemma G.1. ESt‖f t+1 − ḡK+1,t‖2α = O
(
N−m
N−1

(ηK,t)2K2G2

mγ2

)
.

Moreover, f t+1 is an unbiased estimator of ḡK+1,t. Therefore ESt〈f t+1 − ḡK+1,t, ḡK+1,t − f∗〉α = 0 and

ESt‖f t+1 − f∗‖2α = ESt‖f t+1 − ḡK+1,t‖2 + ‖ḡK+1,t − f∗‖2α. (56)

Recall that ηk,t = 2
µ(tK+k+1) . Combining the above results, we have

((t+ 1)K + 1)ESt‖f t+1 − f∗‖2α

≤ (tK + 1)‖f t − f∗‖2α +O(
K2G2

γ2µ2
)(log(tK +K + 1)− log(tK + 1))

+
4

µ
(

1

2µ
(
1− γ
γ

)2G2 +
(1− γ)(2− γ)

γ2
G2(log(tK +K)− log(tK)))

+O

(
N −m
N − 1

ηK,tK2G2

µmγ2

)
.

Sum the above results from t = 0 to T , we have

((T + 1)K + 1)E‖fT+1 − f∗‖2α

≤ ‖f0 − f∗‖2α +O(
K2G2 log(KT )

γ2µ2
) +O(

TG2

µ2
(
1− γ
γ

)2)

+O

(
(1− γ)

µγ2
G2 log(TK +K)

)
+O(

N −m
N − 1

KG2 log T

µ2mγ2
)

⇒ E‖fT+1 − f∗‖2α = O

(
‖f0 − f∗‖2α

KT
+
KG2 log(KT )

Tγ2µ2
+

G2

Kµ2
(
1− γ
γ

)2

+
(1− γ)G2 log(TK)

KTµγ2
+
N −m
N − 1

G2 log T

Tµ2mγ2

)
.

Theorem G.1. Let f0 be the initializer function. Suppose that Assumption 4.2 holds, and suppose the weak
learning oracle Q2

α satisfies (5) with constant γ. We pick the step size ηk,t = 2
µ(tK+k+1) and in each round the

server randomly selects a subset St ⊆ [N ] without replacement with |St| = m. The output of FFGB (Algorithm
2) satisfies

‖fT − f∗‖2α = O
(‖f0 − f∗‖2α

KT
+
KG2 log(KT )

Tγ2µ2
+

(1− γ)G2

Kµ2γ2
+

(1− γ)G2 log(KT )

KTµγ2
+
N −m
N − 1

G2 log T

Tµ2mγ2

)
.

Theorem G.2. Let f0 be the initializer function. We define a proxy of the heterogeneity among the local input
distributions α’s in the TV distance as

ωTV
∆
=

1

N

N∑
i=1

TV(α, αi). (57)
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Suppose Assumption 4.1 holds, and suppose that the weak learning oracle Q∞α satisfies (10) and (11) with constant
γ and Ḡλ = 2G/λ. We use the step sizes ηk,t = 4/(µ(tK + k + 1)) and in each round the server randomly selects
a subset St ⊆ [N ] without replacement with |St| = m. The output of FFGB satisfies

‖fT − f∗‖2α = O

(
‖f0 − f∗‖2α

KT
+
KG2log(KT )

Tµ2γ2
+

(1− γ)2G2

Kµ2γ2
+
G2ωTV

µ2γ2
+
N −m
N − 1

G2 log T

Tµ2mγ2

)
.

Theorem G.3. Consider the special case of the federated functional minimization problem with square loss.
Assume that the optimal solution f∗ is L-Lipschitz continuous. Let f0 be the initializer. We define a proxy of the
heterogeneity among the local input distributions α’s in the Wasserstein-1 distance as

ωW1 =
1

N

N∑
i=1

W1(α, αi) (58)

Suppose that Assumption 4.3 holds and define G2 = 2L2

N2

∑N
i,s=1 W2

2(αs, αi) + 2B2. Moreover, suppose the weak
learning oracle Qlip

α satisfies (14) and (15) with constant γ. We pick the step sizes ηk,t = 4/(µ(tK + k + 1)) and
in each round the server randomly selects a subset St ⊆ [N ] without replacement with |St| = m. The output of
FFGB satisfies

‖fT − f∗‖2α = O

(
K
(
L(LD +B)ωW1 +G2

)
log(KT )

Tµ2γ2
+
‖f0 − f∗‖2

KT
+

(1− γ)2B2

µ2γ2K

+
L(LD +B)ωW1

γ2µ
+
N −m
N − 1

G2 log T

Tµ2mγ2

)
.
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