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Abstract

We consider a multi-armed bandit problem
in which a set of arms is registered by each
agent, and the agent receives reward when its
arm is selected. An agent might strategically
submit more arms with replications, which
can bring more reward by abusing the ban-
dit algorithm’s exploration-exploitation bal-
ance. Our analysis reveals that a standard
algorithm indeed fails at preventing replica-
tion and suffers from linear regret in time T .
We aim to design a bandit algorithm which
demotivates replications and also achieves
a small cumulative regret. We devise Hier-
archical UCB (H-UCB) of replication-proof,
which has O(lnT )-regret under any equilib-
rium. We further propose Robust Hierarchi-
cal UCB (RH-UCB) which has a sublinear
regret even in a realistic scenario with ir-
rational agents replicating careless. We ver-
ify our theoretical findings through numerical
experiments.

1 Introduction

With increasing attention to smart recommender sys-
tem, multi-armed bandit (MAB) problem is exten-
sively studied under various settings as it captures
the fundamental trade-off between exploration and
exploitation. In a standard stochastic MAB setting,
at each time step, a principal chooses which arm to
pull a given set of arms. Once an arm is pulled,
a random reward associated to the arm is revealed
and the principal receives the reward. The princi-
pal’s goal is to maximize the expected cumulative
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reward or equivalently to minimize the cumulative
regret which is defined by the expected loss com-
pared to oracle policy that always pulls the opti-
mal arm over the given time horizon. To this end,
at each decision, the principle needs to address the
trade-off between exploring new arms with high po-
tential and exploiting empirically best arms with
low risk. A extensive line of works have been stud-
ied the fundamental limit in [Lai and Robbins, 1985]
and proposed optimal algorithms achieving the
limit [Auer et al., 2002, Garivier and Cappé, 2011,
Scott, 2010, Chapelle and Li, 2011].

These algorithms work efficiently in ideal case, how-
ever, they might suffer from a strategic manipulation
of the agents who register the arms in the platform.
For example if the principal runs ε-greedy based algo-
rithm [Auer et al., 2002], the probability of being se-
lected at exploration phase will certainly increase as
the agent registers more arms. This implies that the
agent should replicate their contents as much as possi-
ble to increase their revenue. As a consequence, it will
interrupt the platform’s algorithm in identifying the
best contents and possibly result in a decrease of the
platform’s revenue.

To prevent such abuse of the players, on one hand,
the platform can introduce an automated process to
detect the duplicated contents and blacklist the own-
ers [AdSense, 2020, Youtube, 2021]. However, these
process are often discouraged in some real-world ap-
plications since they might be erroneous or too costly
to adopt since the platform is required to analyze fea-
tures of registered contents.

On the other hand, one can borrow some off-the-shelf
algorithms proposed in infinitely many-armed bandit
literature [Berry et al., 1997, Wang et al., 2008] as-
suming a worst-case scenario. Yet, there are some lim-
itations on it either: (i) these works usually assume
certain characterizations on the pool of arms which
might be discouraged in practice, and (ii) the replica-
tion of the arms itself could be harmful to the platform
since it introduces an additional burden in hardware
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resources.

In this context, our major focus is how an algorithm
can demotivate the agents in advance from strategi-
cally replicating arms, when it can only distinguish to
whom each arm belongs.

Our main contributions are summarized as follows:

(a) To the best of our knowledge, this is the first
study to address the issue of strategic replication
in multi-armed bandit problem and mathemati-
cally analyze it.

(b) We show that UCB1 is replication-prone and
hence admits infinitely many replications for the
strategic agents, which obviously consequences lin-
ear regret.

(c) We propose H-UCB which mainly restrict the
amount of exploration to be O(lnT ) for each agent
by separating agent and arm selection phase, and
prove that it is replication-proof while achieving
O(lnT )-regret under the equilibrium.

(d) To cope with practical challenges, we present RH-
UCB which integrates arm sampling and enlarges
the amount of agent exploration into O(

√
T lnT ),

and prove that it has O(
√
T lnT ) regret in the

presence of replicators who infinitely replicate
their arms.

(e) We provide numerical experiments to support our
claim, and present some useful insights from it.

In Section 2, we present our model and objectives.
We then formally define replication-proneness with a
corresponding negative result of UCB1, and introduce
replication-proofness in Section 3. We provide our pos-
itive results in 4 and present numerical experiments in
Section 5. All the proofs are presented in Appendix C
due to space limit.

1.1 Related Work

We first present a line of works considering strate-
gic behavior in various multi-armed bandit problem.
[Braverman et al., 2019] study a multi-armed bandit
problem when each arm itself is a strategic agent,
and once the arm is selected by a principal, a ran-
dom reward is realized, and the agent reports the re-
ward to the principal, and finally this amount of re-
ported reward is delivered to the principal. Here, the
reported value can either be genuine or not with re-
spect to the agent’s strategic decision. The agents want
to maximize their own cumulative expected utility de-
fined by the summation of undelivered rewards, and
the principal aims to extract maximal cumulative re-
ward from the agents. The authors show that existing
algorithms maintain a bad approximate equilibrium,
and proposed a mechanism that only possesses an ef-
ficient approximate equilibrium in which the princi-

pal enjoys sub-linear regret. [Feng et al., 2020] study a
similar problem but when the agents try to maximize
the total expected number of selections by manipulat-
ing their random reward within a fixed amount of total
manipulation cost, and show that popular algorithms
achieve an intrinsic robustness.

Some of the works consider a strategic behavior of
users in user-generated content platforms to motivate
the strategic users to promptly contribute their
content rather than delaying it [Jain et al., 2014], or
to contribute a high quality content which possibly
requires their costly effort [Ghosh and Hummel, 2014,
Ghosh and McAfee, 2011, Ghosh and Hummel, 2013,
Liu and Ho, 2018]. Initiated by [Kremer et al., 2014],
there also exists a line of works referred to as
incentivized exploration which study incentivizing
schemes to motivate myopic selfish agent who se-
lects the arms to explore more arms submitted in
the system rather than exploiting the well-seeming
ones [Wang and Huang, 2018, Bahar et al., 2020],
and also in Bayesian setting [Mansour et al., 2015,
Mansour et al., 2016, Frazier et al., 2014]. Since these
works are quite distant from our focus of interest, we
skip the detailed explanation.

Since we design an algorithm that is robust to the
agent’s repetitive replication, it seems worthwhile
to present the works studying efficient algorithms
in case of infinitely many arms. [Berry et al., 1997]
study infinitely many-armed Bernoulli bandit prob-
lems when each arm’s parameter is sampled from
a common distribution under the assumption that
the optimal arm has mean 1. [Wang et al., 2008]
and [Carpentier and Valko, 2015] rather assume
certain characteristics in near-optimal arms’ re-
ward distribution to attain sublinear algorithms.
[Ghalme et al., 2021] consider the scenario where the
arms are not fully given at first but become available
in a sequential manner, which draws a need of new
definition in regret. They show that it is necessary to
have certain assumptions on the arrival time of the
optimal arm to achieve sublinear regret, and provide
corresponding sublinear regret algorithm. Unlike from
these approaches, our work mainly focus at preventing
such situation by demotivating the agents in advance.

2 System model

We consider n agents, where each agent i ∈ N = [n] :=
{1, 2, ..., n} is endowed with the set of unique arms, de-
noted by Oi := {oi,1, oi,2, . . . , oi,l(i)}, with a constant
l(i) ≥ 1. Each arm a ∈ O := ∪i∈NOi is associated with
Bernoulli1 reward distribution of mean µ(a). We con-

1This can be extended to the reward distributions of
single-parameter exponential family, while it can be corre-
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sider a one-shot game scenario with a principal and
n agents, where we assume that agents can hide or
replicate a part of its original arms. More formally, in
advance of MAB, each agent i ∈ N decides and reg-

isters its strategy Si = {s(c)i,k : c ∈ [ci,k], k ∈ [l(i)]} of
support Oi with parameters (ci,1, ci,2, ..., ci,l(i)) such
that for k ∈ [l(i)], ci,k is the number of copies of oi,k
(including itself) in Si and ci,k = 0 implies that oi,k is

not registered at all, where each copy s
(c)
i,k has the same

reward distribution of arm oi,k, i.e., µ(oi,k) = µ(s
(c)
i,k)

for each c ∈ [ci,k].
2 Then, given S := (S1,S2, ...,Sn),

at each round t = 1, 2, ..., T , the principal selects one
of the registered arms, denoted by At, according to
an MAB algorithm A, and receives reward Rt drawn
independently from the corresponding distribution of
mean µ(At). This is indeed a one-shot game as pro-
vided the principal’s algorithm A, each agent i ∈ N
simultaneously decides strategy Si and never updates
it once registered. We formally describe the behavior
of strategic agents in Section 2.1, and the principal’s
objective in Section 2.2.

2.1 Strategic Agent

For simplicity, we describe strategic agents when
agent i has the utility vi defined by the accumulated
reward from its arms in strategy Si, i.e., vi(S;A, T ) :=∑T

t=1 Rt1[At ∈ Si], which directly corresponds to the
canonical case that a fixed portion of the rewards is
shared from the principal. We note that the entire
analysis can be extended for a more general defini-
tion of utility including discount factor over time and
non-negative marginal utility, rigorously described in
Appendix B. A strategic agent i aims at maximizing
the expected utility, denoted by

ui(S;A, T ) := E[vi(S;A, T )] , (1)

where the expectation takes over the randomness of al-
gorithm A and reward Rt’s. We define dominant strat-
egy as follows:

Definition 1 (Dominant strategy). Agent i’s strat-
egy Si is dominant if regardless of the other agents’
strategy S−i := (S1, . . . ,Si−1,Si+1, . . .Sn), it provides
the expected utility at least as much as any other S ′i of
support Oi does, i.e.,

ui(Si,S−i) ≥ ui(S ′i,S−i) , (2)

sponded with the plausible scenario of recommender sys-
tem in which the performance is often measured by the
number of total clicks or hits per content.

2Such a replication-invariant reward assumption coin-
cides with the time-invariant reward distribution, com-
monly assumed in literature connecting MAB and recom-
mendation systems, where the time horizon of MAB cor-
responds to a stream of users with no duplication.

where for simplicity, we often write ui(Si,S−i) =
ui(Si,S−i;A, T ) omitting A and T . The dominance of
Si is strict if the inequality (2) is strict.

It is clear that once an agent i is able to identify a
dominant strategy Si, the agent’s rational decision is
always selecting Si regardless of the others’ strategy
S−i. Hence, it can be used to characterize the Nash
equilibrium of agents’ strategy. However, depending
on the principal’s algorithm and the agent’s knowl-
edge, it is possible that there exists no dominant one,
or the agent has no ability to identify one. In our anal-
ysis, we will elaborate the existence or identifiability
of dominant strategy.

2.2 Principal’s objective

The principal aims at maximizing the utility, which is
defined by the accumulated reward from selecting arms
submitted by the agents. In other words, the princi-
pal’s objective can be alternatively formulated as the
minimization of the expected cumulative opportunity
cost defined as Regret(S;A, T ) in the followings:

Definition 2 (Principal’s regret). Given strategy S,
the regret of algorithm A up to time horizon T is

Regret(S;A, T ) :=
T∑

t=1

∑
i∈N

∑
a∈Si

∆(a)E
[
1[At = a]

]
,

where we let ∆(a) := µ⋆ − µ(a) denote the expecta-
tion of the instantaneous regret from selecting arm a
instead of the optimal arm µ⋆ := maxa′∈O µ(a′).

It is well-known that without any prior knowledge,
the optimal regret is scaling with the number of arms
[Lai and Robbins, 1985]. To be specific, if S includes
the best arm a⋆ := argmaxa∈O µ(a), then the optimal
regret is given by O(|S| lnT ), where |S| is the number
of arms registered. Such a scaling regret in the num-
ber of arms is inevitable mainly because O(lnT ) explo-
rations per arm is required to information-theoretically
identify the best arm a⋆ with an error probability less
than O(1/t) at round t so that the regret from misiden-

tifying a⋆ is bounded by O
(∑T

t=1 1/t
)
= O(lnT ). We

refer to [Lai and Robbins, 1985] for a rigorous analy-
sis. This illustrates the importance of maintaining the
number of suboptimal arms as less as possible, while
having smaller number of arms is also beneficial in
terms of principal’s management cost, e.g., server ca-
pacity, in practice.

3 Preliminary

In this section, we provide an analysis revealing the
vulnerability of a canonical algorithm and a simple
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baseline against replicators. This shows not only the
significance but also the challenge of the replication
problem.

3.1 Replication-proneness

We first investigate the strategic behavior of agents
when using a canonical algorithm of regret minimiza-
tion, and check if the agents have a strong motivation
to replicate arms under the algorithm, i.e., the algo-
rithm is replication-prone.

Definition 3 (Replication-proneness). An algorithm
A for time horizon T is replication-prone if for an
agent i ∈ N , any strategy S = (Si,S−i), there exists
S ′i such that Si ⊂ S ′i and

ui(S ′i,S−i;A, T ) > ui(Si,S−i;A, T ) . (3)

In words, a replication-prone algorithm provides a
strictly positive gain from replicating a part of arms
for each agent, and thus each agent’s best deci-
sion is to register infinitely many arms regardless of
the others’ strategy. Our analysis verifies that UCB1
[Auer et al., 2002] is replication-prone, meanwhile we
believe that an extended analysis can show the
replication-proneness of other canonical MAB algo-
rithms such as KL-UCB [Garivier and Cappé, 2011].

Theorem 1. UCB1 is replication-prone.

This theorem shows a theoretical understanding of
replicating behaviors in practice, and an importance
to prevent replicators. It is intuitive from the fact that
UCB1 is oblivious to agents and thus grants a cer-
tain amount of explorations for every single registered
arm. We provide a formal proof of Theorem 1 in Ap-
pendix C, where we mainly use a sophisticated cou-
pling argument to compare rewards from two MAB
processes with or without an additional replication of
the entire set of agent i’s original arms. We note that
our analysis requires no special condition on O to show
(3), and thus just given UCB1, every agent i is able
to realize that its best decision must include infinitely
many replications even without knowledge on its arms
or others.

As mentioned earlier, UCB1 with registration of sub-
optimal arms more than Ω(T/ lnT ) may suffer from
linear regret. To overcome such an unwilling behav-
ior of the algorithm, one might consider using the al-
gorithms provided in many-armed bandit literature.
However, as we briefly discussed in Section 1, this
may not work well when only some of the agents repli-
cate their arm, and even the replication itself harms
the principal since it exhausts the hardware resources.
Therefore, we instead aim at demotivating the agents
replicating the arms in advance.

3.2 Replication-proofness and Fair(A)

To prevent the infinite replicas in advance, we focus
on constructing a mechanism that makes agents’ Nash
equilibrium at not replicating the arms. To this end, we
define replication-proof algorithm as a solution concept
of our problem as follows:

Definition 4 (Replication-proofness). An algorithm
A is replication-proof if there exists a dominant strat-
egy that no agent replicates.

Due to the equality in (2) the replication-proofness
actually refers to the weakly dominant strategy in the
literature. Hence, it does not guarantee that making
no replication is making more money for the agents,
which possibly induces a deviation for the agents. How-
ever, in practice, this can be prevented by introducing
a tiny constant cost in registering the arms or charg-
ing a periodical commission fee with respect to the
number of registered arms in the platform. In this
sense, under a replication-proof algorithm, the agents
have a Nash equilibrium without replicating arms.
Replication-proofness and -proneness are not comple-
mentary to each other, while one implies the nega-
tion of the other, i.e., UCB1 is replication-prone and
thus it is not replication-proof. We remark that Defini-
tion 4 shares a similar virtue with the truthfulness in
the mechanism design literature [Roughgarden, 2010]
since truthfully reporting a private valuation can be
regarded as reporting only a part of the original arms
without any replication in our scenario.

We note that the replication-proofness can be achieved
by a very simple baseline equipped with any MAB al-
gorithm A, denoted by Fair(A). At each round, Fair(A)
chooses an agent i ∈ N uniformly at random, and then
plays an arm a ∈ Si from running A based on the
history of the agent i’s arms. Then it is straightfor-
ward to check that Fair(A) is replication-proof since
the selection of each agent is not affected by the other
agents’ strategy for any A. In addition, if possible, the
best strategy of each agent is to register its best arm.
However, even with the best strategy containing only
each agent’s best arm, every agent is selected with the
equal probability at each round, and thus any subopti-
mal agents will be selected in linear portion of rounds,
i.e., linear regret is inevitable.

Therefore, the principal’s objective can be given in two
folds: i) demotivating the agents from replicating arms;
and ii) acquiring small regret. More formally, we aim
at designing an algorithm that is replication-proof and
has sublinear regret at the same time.
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4 Main result

In what follows, we first describe an replication-proof
algorithm, named Hierarchical UCB (H-UCB), which
has a sublinear regret assuming every agent is fully ra-
tional and thus not replicating arms. We then propose
a robust version of H-UCB (RH-UCB), that are guar-
anteed to be replication-proof and of sublinear regret
even in the realistic scenario possibly with irrational
agents.

4.1 Hierarchical UCB

We recall that Fair(A) is equipped with the replication-
proofness by the agent selection, irrelevant to the num-
ber of arms that the agent has, in advance of the arm
selection. Inspired by such a hierarchy of selections of
agent and then arm, we devise hierarchical UCB (H-
UCB) consisting of two phases per round, where Phase
1 to choose an agent is followed by Phase 2 to se-
lect its arm, sequentially. We provide a pseudo code
of H-UCB in Algorithm 1, where we keep track of the
empirical mean rewards from each agent i and arm
a by R(i) and r(a), respectively, and the numbers of
rounds selecting agent i’s arms and an arm a by N(i)
and n(a), respectively. In Phase 1, as a part of identi-
fying an agent with the optimal arm, a UCB algorithm
selects an agent î of the highest value of agent index

R(i) +
√

2 ln t
N(i) which estimates the potential rewards

from agent i’s arms at t-th round. Then, in Phase 2,
given the empirically best agent î, we aim at selecting
the agent î’s best arm. To this end, another UCB algo-
rithm is employed to choose an arm â from the agent

î of the highest value of arm index r(a) +
√

2 lnN (̂i)
n(a)

that assesses the potential of selecting arm a on the
part of time horizon when selecting the agent î only.
This forms a hierarchy of UCB algorithms as the arm
selection in Phase 2 depends on the agent selection
in Phase 1. We then have the following analysis on
H-UCB:

Theorem 2. H-UCB is replication-proof.

Intuitively, the exploration of the best agent in phase 1
distributes O(ln t) budget for each agent regardless of
the number of the agent’s arms. In addition, given the
asymptotically equal budget per agent, if the agent
replicated its arms, then it would increase the risk
of misindentifying its best arm and reduce its util-
ity. Hence, this demotivates the agent from replicat-
ing arms. A formal proof of Theorem 2 is provided in
Appendix C. In the proof, we in fact show a stronger
notion of replication-proofness based on stochastical
orderings to compare two different strategies instance-
wisely. Thus, H-UCB is replication-proof even when
agent seeks gain from replication in randomness.

Algorithm 1: Hierarchical UCB (H-UCB)

1 Initialize R(i), N(i), r(a) and n(a) at zero for all
i ∈ N and a ∈ ∪i∈NSi;

2 for t = 1, 2, . . . do
// Phase 1 - agent selection

3 if Unexplored agent exists then

4 Pick an unexplored î ∈ {i ∈ N : N(i) = 0};
5 else

6 Pick î = argmaxi∈N

{
R(i) +

√
2 ln t
N(i)

}
;

7 end
// Phase 2 - arm selection

8 if Unexplored arm exists in Sî then
9 Pick an unexplored

â ∈ {a ∈ Sî : n(a) = 0};
10 else

11 Pick â = argmaxa∈Sî

{
r(a) +

√
2 lnN(i)

n(a)

}
;

12 end
13 Play At = â and receive reward Rt;
14 Update statistics:

r(â)← r(â)n(â)+Rt

n(â)+1 ; R(̂i)← R(̂i)N (̂i)+Rt

N (̂i)+1
;

15 n(â)← n(â) + 1; N (̂i)← N (̂i) + 1;

16 end

We remark that under H-UCB, assuming each agent i
knows its best arm a⋆i ∈ argmaxa∈Oi

µ(a), the agent’s
dominant strategy is to register only a⋆i ’s. On such
a equilibrium, we obtain a logarithmic bound on the
regret of H-UCB:

Theorem 3. Given the original arms O and the cor-
responding mean rewards {µ(a) : a ∈ O}, under an
equilibrium S when each agent i decides its strategy
knowing its best arm a⋆i , Regret(S; H-UCB, T ) is at
most

∑
i:∆i>0

8

∆i
lnT +

(
1 +

π2

3

)( n∑
i=1

∆i

)
,

where ∆i := µ⋆ −maxa∈Oi
µ(a).

The proof of Theorem 3 is given in Appendix C, where
we present a formal characterization of equilibrium
under the assumption. We note that the asymptotic
order of regret bound is O(n lnT ), which scales with
the number of agents rather than the total number of
arms, while in practice, it is much harder to replicate
agents than arms since a genuine identification, such
as social security number or bank account, is required
to register an agent.
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4.2 Robust Hierarchical UCB

The logarithmic regret of H-UCB in Theorem 3 as-
sumes that every agent is rational enough to under-
stand no benefit from replicating arms under H-UCB,
and registers its arm truthfully. Meanwhile, in prac-
tice, it is still possible to have replicators who carelessly
duplicate their arms even under a replication-proof al-
gorithm. We assume that each replicator i’s strategy Si
includes at least a constant portion of arms of its best
mean reward µ⋆

i := maxa∈Oi
µ(a), i.e., there exists a

constant c > 0 such that mini∈N
|{a∈Si:µ

⋆
i =µ(a)}|

|Si| > c.

This is a reasonable assumption since no replicator
wants to hide its best arm. Even when a replicator
cannot identify its best arm, the safest choice is to
replicate the entire arms equally.

To obtain sublinear regret even with the presence of
such replicators, modifying H-UCB, we propose ro-
bust H-UCB (RH-UCB), described in Algorithm 2.
Before explaining the design of RH-UCB, we note that
RH-UCB inherits the hierarchical structure of H-UCB.
Hence, an analog analysis to that of Theorem 2 con-
cludes that:

Theorem 4. RH-UCB is replication-proof.

We now explain rationales behind RH-UCB, where we
append a modification to each phase of H-UCB. In
Phase 2, for each agent i, the risk of misidentifying
the best arm in strategy Si increases with the size of
Si. Hence, as a part of bounding the risk in Phase 2,
RH-UCB begins with Bi’s from subsampling each Si
uniformly at random without replacement such that
the cardinality of subset Bi is at most L lnT , where
L > 0 is a hyperparameter. The choice of size bound
depends on T for analytical simplicity, while our anal-
ysis can be extended to an online subsampling with in-
creasing size bound L ln t. Given the subsampled Bi’s,
in Phase 2, we use the same UCB1 for Bî. Although
the number of arms in Bi has the upper bound L lnT ,
but it is scaling in T . Hence, the exploration budget
O(lnT ) distributed over agents in H-UCB may be in-
sufficient to identify each agent’s best arm at a desired
confidence. For this reason, we increase confidence in-

terval of Phase 1 from
√

ln t
N(i) to

√√
t ln t

N(i) .

For ease of exposition, we assume that there exists a
unique agent i⋆ who possesses the optimal arm3, and
present the following regret bound for RH-UCB:

Theorem 5. Given the original arms O and {µ(a) :
a ∈ O}, under any S given that all the agents
are either strategic or replicator, if L ≥ 1/c, then

3Indeed, multiple optimal agents only reduce the re-
gret bound, since the constant C in our regret bound
O(C

√
T lnT ) will decrease and O(ln2 T ) appear instead.

Regret(S; RH-UCB, T ) is at most∑
i∈N

√
T lnT

(
1 +

4

∆2
i

+
∑

a∈Oi⋆

δi⋆,a>0

50L

δi⋆,a
+
∑
a∈Oi
δi,a>0

114L

δi,a

)
+O(ln5 T ) ,

where δi,a = µ⋆
i − µ(a).

Algorithm 2: Robust H-UCB (RH-UCB)

1 Initialize R(i), N(i), r(a) and n(a) at zero for all
i ∈ N and a ∈ ∪i∈NSi;

2 Subsample Bi of size min{|Si|, L lnT} from Si;
3 for t = 1, 2, . . . do

// Phase 1 - agent selection

4 if Unexplored agent exists then

5 Pick an unexplored î ∈ {i ∈ N : N(i) = 0};
6 else

7 Pick î = argmaxi∈N

{
R(i) +

√√
t ln t

N(i)

}
;

8 end
// Phase 2 - arm selection

9 if Unexplored arm exists in Bî then
10 Pick an unexplored

â ∈ {a ∈ Bî : n(a) = 0};
11 else

12 Pick â = argmaxa∈Bî

{
r(a) +

√
2 lnN(i)

n(a)

}
;

13 end
14 Play At = â and receive reward Rt;
15 Update statistics:

r(â)← r(â)n(â)+Rt

n(â)+1 ; R(̂i)← R(̂i)N (̂i)+Rt

N (̂i)+1
;

n(â)← n(â) + 1; N (̂i)← N (̂i) + 1;
16 end

In Appendix C, we provide not only the proof of Theo-
rem 5 but also a further discussion on each term in the
regret bound. Even with the replicators, the regret of
RH-UCB is asymptotically O(

√
T lnT ) for any given

configuration of the original arms. Hence, RH-UCB
is replication-proof but also achieves sublinear. The
majority of regret O(

√
T lnT ) is from the probability

of misidentifying each agent i’s best arm among sub-
sampled Bi of size O(lnT ). We note that O(

√
T lnT )

amount of agent exploration indeed optimizes the
order of regret bound in our analysis. For any 1-
dimensional increasing function f , suppose that Phase

1’s agent exploration term is given by Ri +
√

f(t)
N(i) .

Then, it can similarly be derived that regret bound

becomes O(f(T )) + O(T ln2 T
f(T ) ), where the optimized

regret can be obtained for f(t) = O(
√
t ln t) due to the

inequality of arithmetic and geometric means.

We note that the regret analysis in Theorem 5 is
problem-dependent as the bound is given as a function
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(a) Reward of 0.5-agent. (b) Reward of 0.9-agent.

Figure 1: (a) The average revenue and one-sigma in-
terval for 0.5-agent as it replicates more arms in the
single original arm setup. (b) The revenue of 0.9-agent
in the same setup with (a) but when 0.9-agent repli-
cates.

of the configuration of original arms. In the following
theorem, we further present a problem-independent re-
gret bound of RH-UCB:

Theorem 6. RH-UCB has problem-independent re-
gret upper-bound O( n√

c
T

3
4 lnT ).

The detailed terms and proof are presented in Ap-
pendix C, where we provide a worst-case anal-
ysis on regret. We note that with no replica-
tion, the optimal problem-independent regret is
O(
√
T ) [Audibert et al., 2009], while RH-UCB has

O(T 3/4 lnT ) even with replicators. The gap between
O(
√
T ) and O(T 3/4 lnT ) can be interpreted as an al-

gorithmic cost for being robust and replication-proof.

Note that our regret bound holds for L ≥ 1/c. Running
RH-UCB with sufficiently large L would guarantee this
bound, but it might hurt the algorithm’s efficiency
since there could be a chance that too much redundant
arms are subsampled for each agent. In case when pre-
cisely estimating c a priori is difficult, we can instead
subsample ln2 T arms per agent since sufficiently large
T would guarantee lnT ≥ 1/c. Meanwhile, this still
requires the principal to determine T in advance. This
dependency can be removed by gradually subsampling
arms up to ln2 T within each agent. These techniques

indeed enable us to derive O( n
c2

√
T ln3 T ) regret and

O( n√
c
T

3
4 ln

3
2 T ) problem-independent regret without

any prior information on L and T , where we put back a
detailed description of the algorithm and correspond-
ing analysis in Appendix D.

We remark that both the hierarchical structure and
the subsampling are necessary to ensure sublinear re-
gret. If there exists no hierarchy, it might work poor
when only the suboptimal agents are replicators, but
optimal one is not. Otherwise if subsampling is dis-
carded, any replicators would hurt the system since
their optimal arms cannot be identified. We provide a
relevant ablation study in Section 5.

Finally, it is obvious that H-UCB works better when all
the agents only register their optimal arm, since RH-
UCB achieves O(

√
T lnT )-regret in this case. However,

we need to put more exploration in Phase 1 to ensure
that all the arms within the agent are explored suf-
ficiently under the existence of replicators. Hence, by
closely observing behavior of the agents in the system,
one may balance the trade-off between robustness and
efficency. We will present a relevant case study in the
following section.

5 Simulation

We evaluate the proposed algorithms and compare
them with existing ones by borrowing well-known
open-source library SMPyBandits [Besson, 2018]. In
addition to UCB1, H-UCB and RH-UCB, we mea-
sure the performance of S-UCB(l) which samples at
most l lnT arms among the entire arms given T , and
then runs UCB1 on them. That is, S-UCB(l) is an
algorithm where the hierarchy is removed from RH-
UCB, discarding the agent selection phase. We provide
a pseudo-code in Appendix E. We decide the subsam-
pling ratio l as the number of total original arms. Each
solid or dashed line indicates the mean value of the
treatment over the repetitions, and its shade refers to
the one-sigma interval.

Figure 1(a) and 1(b) represent the changes of agents’
revenue with respect to their strategies in each algo-
rithm. In both scenarios, we consider 5 agents each
of whom has a single original Bernoulli arm with pa-
rameters 0.5, 0.6, 0.7, 0.8, 0.9, respectively. We denote
x-agent as the agent whose optimal arm’s parameter is
x. Figure 1(a) refers to 0.5-agent’s revenue when only
the 0.5-agent replicates its arm among the agents, and
Figure 1(b) indicates that of 0.9-agent when only the
0.9-agent replicates.

Vulnerability of non-hierarchical algorithms.
The replicating agents’ mean revenue increases in both
scenarios under UCB1 and S-UCB, but stays consis-
tent under H-UCB and RH-UCB. The revenue incre-
ment of 0.5-agent is more drastic than that of 0.9-
agent. It is because the replication of the optimal arm
does not fundamentally change the asymptotic selec-
tion ratio of any sub-optimal arms, but only delays
their selections. Note that the 0.5-agent’s revenue in-
creases almost in linear manner which is quite intu-
itive regarding that every suboptimal arm is sampled
O(lnT ) times in UCB1. On the other hand, in S-UCB,
the revenue increases in somewhat convex manner due
to the nature of probabilistic subsampling.

Hierarchy makes low regret. Figure 2(a) and Fig-
ure 2(b) depicts the principal’s cumulative regret in
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(a) Cumulative regret when 0.5-agent
is a replicator.

(b) Cumulative regret when all agents
except 0.9-agent are replicators.

(c) Cumulative regret when 0.5, 0.6,
0.7-agents are replicators, and 0.8, 0.9-
agents partially replicate.

Figure 2: (a) The average cumulative regret and one-sigma interval for the principal in each algorithm, when
0.5-agent replicates its arm 1000 times in the single original arm setup. (b) This shares the same setup with (a),
but when all the agents except 0.9-agent replicate their arms 1000 times. (c) 0.5, 0.6, 0.7-agents replicate their
original arms 1000 times and 0.8, 0.9-agents partially replicate their arms in the multiple original arms setup.

the single original Bernoulli arm setup with 5 agents
like Figure 1. Figure 2(a) shows the regret when the
0.5-agent replicates its arm 1000 times but the oth-
ers do not replicate at all. UCB1 and S-UCB suffer
from the replication even if there is only one replica-
tor agent. However, the hierarchy-based ones allocate a
fixed portion of exploration within each agent. Because
that amount of exploration is shared across the agent’s
arms, the replication does not significantly harm the
principal. Since RH-UCB enforces a larger amount of
agent exploration, low-reward agents are also explored
more than H-UCB. This results in worse performance
for RH-UCB than H-UCB.

Besides, in Figure 2(b), we consider a similar scenario
but where 0.5, 0.6, 0.7, 0.8-agents replicate their arms
1000 times yet only the 0.9-agent does not. H-UCB
still achieves lower regret than RH-UCB since the op-
timal agent does not replicate arms at all. Hence we
believe that H-UCB might work well if there exists
any optimal agent who does not replicate its arm at
all. This indeed can be observed in our analysis, where
the predominant term O(L

√
T lnT ) can be removed

in the regret bound in Theorem 5.

Primacy of RH-UCB in a world of replicators.
On the other hand, Figure 2(c) represents the regime
that RH-UCB works more robustly. We assume that
there are 5 agents with 3 Bernoulli original arms. Each
of those agents has arms with mean 0.2 and 0.1 in com-
mon, and has a different optimal arm whose parameter
is 0.5, 0.6, 0.7, 0.8, or 0.9, respectively. The 0.5, 0.6,
and 0.7-agents are replicators and they register 1000
arms per each original arm. Besides, we assume that
the 0.8-agent and the 0.9-agent are partial replicators.
Each of those two agents registers its own optimal arm
10 times, and the suboptimal arms 100 times each. In
this case, the power of RH-UCB reveals so that it suc-

ceeds to identify the best agent and the correspond-
ing best arm. However, the regret of H-UCB grows
almost in linear manner, which is even worse than S-
UCB. This is because H-UCB only explores each agent
O(lnT ) times, and the existence of many arms in the
optimal agent possibly hinders H-UCB to discover the
best arm within the agent. This would be the case
when all the agents are replicators.

Our intention of designing hierarchically-structured al-
gorithms is solely to demotivate the agents from repli-
cating their arms. Interestingly, however, our algo-
rithms outperform existing ones in the context of cu-
mulative regret in many regimes. This might arise be-
cause there is an inherent dominance structure among
the agents in the setups of our experiments including
that of Figure 2(c). In the setups, the suboptimal arms
remain the same across the agents, and the agents are
only distinguished by the optimal arm of each agent so
that the parameter of the optimal arm fully determines
an agent-wise dominance. Our hierarchical algorithms
naturally exploit such inherent dominance structure
among the registered arms by grouping them by agent,
which possibly increases their performance. Hence, we
believe that H-UCB or RH-UCB would perform better
than our theoretical guarantees since many practical
scenarios may possess the structure across the agents.

6 Conclusion

We analytically study multi-armed bandit algorithms
against strategic replication. We firstly show that
UCB1 admits an infinitely many registration of arms
for strategic agents which inevitably induces linear re-
gret. We mainly observe that it is essential to limit the
amount of exploration per agent to demotivate such
strategic replication, and present that a simple fair al-
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gorithm achieves it while it suffers from linear regret.
We propose H-UCB to catch the both rabbits of sublin-
ear regret and replication-proofness, and present more
robust algorithm named RH-UCB which adapts to the
infinitely many replicas from replicators. We conduct
numerical experiments to validate our theoretical find-
ings, and provide some practical insights from it.
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Supplementary Material:
Multi-armed Bandit Algorithm against Strategic Replication

A Open Problems and Future Directions

We discuss some open questions and future research directions in this section.

Tightening regret bound. We show that there exists an algorithm that is replication-proof and also has a
sublinear regret regardless of whether agents are strategic or not. However, it is not studied whether the regret
bound we obtain is tight or not. To tighten the regret analysis, an fundamental limit analysis is necessary. To be
specific, we need a regret lower bound for uniformly good and also replication-proof algorithms. The fundamental
analysis with the notion of replication-proofness seems challenging. Hence, we would bypass it by studying a lower
bound for uniformly good algorithms given the scenario of replicator in our paper with an argument of change-
of-measure, e.g., [Combes et al., 2017]. The relaxed scope of algorithms of interest would provide a loose lower
bound to be achieved by replication-proof algorithms. Meanwhile, this can provide a useful insight to improve

the regret upper bound fully exploiting the assumption on replicators, i.e., mini∈N
|{a∈Si:µ

⋆
i =µ(a)}|

|Si| > c > 0, as in

[Combes et al., 2017], the lower bound analysis corresponds to an optimal upper bound algorithm. In fact, the
assumption is analog to the bandit problems with linear or row-rank structures [Auer, 2002, Jun et al., 2019,
Katariya et al., 2017, Kveton et al., 2017]. However, our bandit problem with replicators is more challenging
since we do not know an embedding (or feature map) of arms, which are provided in the linear and low-rank
bandit problems.

Agent information model. We assume that the strategic agents have ability to exactly assess their arms, or at
least to identify the best one. This may be not true in practice. Hence, one can consider a Bayesian information
model where each agent only knows (or believes) the meta distribution of its arm’s parameter, but does not know
the arm’s distribution exactly. This can be interpreted as a scenario of recommender system to a population
of heterogeneous clients. Perhaps this meta distribution could be different for each arms within the agent. In
these cases, the agents might be motivated to register all the original arms since it will suffer from linear regret
with constant probability if some of the original arms are not registered. This is somewhat different from our
result, since our model encourages the agent to exactly register only the best arm if such information is readily
available. This difference seems natural since any agent who is oblivious to its own arms would definitely register
all the arms if there exists no significant cost in registering more arms. Nonetheless, in both cases, we believe
that our hierarchical algorithms would also demotivate the agents from replicating their arms since replication
might not result in an increase of the expected value of the empirical average reward.

Beyond UCB-based algorithms. Although our analysis on the negative result, i.e. replication-proneness, is
shown for the case of UCB1, we believe that our proof can be extended to other types of canonical algorithms,
e.g. ε-greedy based algorithms [Auer et al., 2002] or Thompson Sampling [Scott, 2010, Chapelle and Li, 2011].
One can alternatively run some simple numerical experiments to verify that the agents’ reward indeed increase
by replicating the arms as well in these types of algorithms. Regarding our positive results, we mainly reveal
that an algorithm needs to restrict its exploration cost for each agent to achieve replication-proofness. For ε-
greedy based algorithms, it is straightforward to examine the exploration cost since the exploration phase and
exploitation phase are explicitly separated. Hence, we believe that the hierarchical structure can analogously be
applied to construct a replication-proof and sublinear regret ε-greedy based algorithm. Meanwhile, it becomes
nontrivial for algorithms based on probability matching including Thompson Sampling. The exploration and
exploitation phase are not clearly separated in these algorithms, hence we need to define the exploration cost
in rigorous manner so that restricting exploration cost would result in a replication-proofness. These analysis
might be more challenging since we need to perform Bayesian analysis, and even these algorithms might be
discouraged since they need information on a parametric structure of reward distributions. However, we believe
that there may exist some valuable insights in these analysis, since different notion of exploration cost could lead
to a different point of the equilibrium. This might bridge the gap between our notion of replication-proofness
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and replication-proneness. Indeed, if we construct a logarithmic regret algorithm that is not replication-prone,
but only admits a finite number of replications to the strategic agents, then it could be better than RH-UCB
for the principal since the finite number of replications only contributes to increase constant term in the regret
bound while RH-UCB admits square root regret. To fairly compare the various algorithms in this context, it
might require us to define a new criterion to estimate their efficiency, e.g., worst-case regret over the dominant
strategies (or over any strategies if no such one exists).

Beyond stochastic bandit with one-shot game. In practice, many recommendation systems are modeled
as contextual bandit which utilizes features of clients and arms. Since replicating could still hurt the platform
under the contextual bandit algorithm, we believe that we can generalize our results into this setting. Besides,
we can consider a sequential arrival of the agents, which will result in a repeated-game between the principal
and the agents. In this case, the platform might have more controllability on handling agent’s strategic behavior
since agents are forced to register only certain amount of contents at once, and principal can block the agent’s
registration in advance at some rounds if they’ve been registered too much till that time. On the other hand,
agents could also abuse the system more viciously, for example, they can get rid of their registered contents, and
register it again as if it is newly created ones, which might hamper the algorithm from identifying the optimal
arm. Finally we remark that our analysis on replication-proofness are mainly based on the fact that a family of
Bernoulli distributions equipped with stochastic ordering form a totally ordered set. If such ordering cannot be
made within a family of distributions in consideration, then we cannot compare utilities between two strategies
with use of stochastic dominance. In this case, there might be a chance that such stochastic dominance between
two strategies’ utilities may not hold for any non-decreasing function U . Nevertheless, we believe that we can
still compare the expected utilities, but it may require more sophisticated method to analyze on it.

B Preliminaries to The Analysis

Our result on replication-proneness and replication-proofness can be shown in more generalized statements than
the ones provided in the main paper. In this context, before presenting the main proofs, we provide a generalized
model for our problem, then introduce some preliminaries required in presenting our results. We mainly consider
two extensions: discount sequence and generalized utility function. Throughout the appendix, we abuse It(Si,S−i)
or It to denote the arm selected at round t instead of It(Si,S−i;A, T ) if the context is clear.

B.1 Discount sequence

As discussed, we consider a scenario that each agent i receives the sum of rewards from its arms. In practice,
this corresponds to the scenario where a fixed portion of the rewards may be shared from the principal to the
agents. Then, agent’s revenue can precisely be defined as vi(Si,S−i) · ε. However, we can ignore this constant
since we’re only interested in comparing the agent’s utility between two or more strategies, where the impact
of ε will be wiped out in this case. Hence, we re-define the following notion of agent’s revenue by introducing a
discount sequence:

Definition 5 (Agent’s discounted revenue). Given a principal’s algorithm A, time horizon T ≥ n, other agents’
strategic decision S−i = (S1, . . . ,Si−1,Si+1, . . .Sn), and discount factor γ = (γt)

T
t=1, agent i’s revenue is defined

as,

vi(Si,S−i;A, T ) =

T∑
t=1

γtRt .

The discount sequence captures the agent’s various viewpoint in computing long-term cumulative reward, e.g.
agents’ utility can be discounted over time (γt = 1/t, t ∈ Z≥0) or not (γt = 1, t ∈ Z≥0). This generalized the
practical scenario where the advertisers or content providers in online platform are usually myopic than the
platform [Amin et al., 2013, Mohri and Medina, 2014]. We define a discount sequence to be proper if it is non-
negative real-valued (γt ∈ R≥0), non-increasing (γt ≥ γt+1), and has at least n non-zero elements. We denote
the family of all proper discount sequences given T be ΓT .
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B.2 Agent’s expected utility

Agent’s revenue is actually a random variable which can be varying with respect to the randomness of the policy,
and the randomness of realized reward. Hence, there could be difference between the agents in how they assess
the risk in the random revenue. For example, some agents might want to avoid a large variability in the random
revenue, but some might love it. In this context, we consider the following general notion of agent’s expected
utility, instead of agent’s expected revenue.

Definition 6 (Agent’s expected utility). Given a utility function U : R≥0 7→ R≥0, agent i’s expected utility is
defined as,

ui(Si,S−i;A, T ) = E[U(vi(Si,S−i;A, T ))] .

Utility function U represents how the agents assess an uncertainty in revenue. If U is concave, they gradually
underestimate the revenue growth as its absolute amount becomes large, hence in this case they prefer a certain
amount of revenue rather than taking a risk to get larger revenue even if the expected revenue is smaller. We say
that the agents are risk-averse in this case. In comparison, we call the agents be risk-seeking if U is convex, since
they are willing to take a risk for having a large amount of revenue with small probability. If U is an identity
function, we say that the agents are risk-neutral and they only care about the expected amount of revenue. In
this case, expected utility simply reduces to the expected revenue which was provided in our main paper:

T∑
t=1

γt
∑
a∈Si

µ(a) · E
[
1[It(Si,S−i;A, T ) = a]

]
.

Although we consider a homogeneous scenario so that every agents share a common utility function, all the
results can easily be extended to heterogeneous utility scenario.

B.3 Further notions and lemmas

Before getting into the proofs, we introduce some notions to make the explanation more clear. We denote a pair
of multi-armed bandit problem instance and corresponding algorithm be X = (⟨T,S⟩,A) for time horizon T ,
set of arms S (with corresponding set of reward distributions d(·)), and MAB algorithm A. We call such X be
MAB process. We often omit T in X as X = (⟨·,S⟩,A) if A is horizon-independent. Given a MAB process X ,
its sample path rXT = (it, xt)t∈[T ], and any set of arms A ⊂ S, we define A-sample path cA(r

X
T ) be rXT ’s longest

subsequence that consists of elements contained in A, i.e.

cA(r
X
T ) = argmax

r
{|r| : r = (int

, xnt
)t∈[T ], 1 ≤ n1 ≤ n2 ≤ . . . ≤ nT ≤ T, int

∈ A} .

We define t-count NX
A,t be the number of times arm i ∈ A is pulled in first t rounds in X . We often omit X in

NX
A,t if no confusion arises. We abuse the notation as NX

a,t when we consider a single arm a instead of a set of
arms.

Next, we define a notion of stochastic dominance between two random variables as the following:

Definition 7 (Stochastic dominance). Let X and Y be two random variables. X has stochastic dominance over
Y and we denote X ⪰ Y if ∀x ∈ R, P[X ≤ x] ≤ P[Y ≤ x]. If X ⪰ Y and there exists some x such that
P[X ≤ x] < P[Y ≤ x], then we say that X has strict stochastic dominance over Y , X ≻ Y .

We note that stochastic dominance always induce a higher expectation since E[X] =
∑∞

x=0 P[X > x] ≥∑∞
x=0 P[X > x] = E[Y ], i.e. it is stronger ordering compared to ordering with expectation. Our definition of

stochastic dominance refers to the first-order stochastic dominance in the literature, and it enables us to analyze
the behavior of agents regardless of their behavior against the risk.

We now introduce some well-known properties on stochastic dominance which are useful in proving our main
results. The following proposition provides a connection between stochastic dominance and expected utility:

Proposition 1. Given random variables X and Y , the following holds:

1) X ⪰ Y if and only if E[U(X)] ≥ E[U(Y )] for any non-decreasing utility function U(·),
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2) X ≻ Y if and only if E[U(X)] > E[U(Y )] for any strictly increasing utility function U(·).

Proof. We only prove for the discrete case since it can easily be generalized. Suppose that X and Y are discrete
random variables with outcome {x1, x2, . . . , xk} where x1 < x2 < . . . < xk.

Let di = P[Y ≤ xi]− P[X ≤ xi] and we have

E[U(X)]− E[U(Y )] =

k∑
i=1

(P[X = xi]− P[Y = xi])U(xi)

=

k−1∑
i=1

(P[X ≤ xi]− P[Y ≤ xi])(U(xi)− U(xi+1)) + (P[X ≤ xk]− P[Y ≤ xk])uk

=

k−1∑
i=1

(U(xi+1)− U(xi))di ,

where the second equation holds from Abel’s lemma and the last comes from dk = 0. It is straightforward that if
di ≥ 0 for ∀i = 1, 2, . . . , k then E[U(X)] ≥ E[U(Y )] since U is non-decreasing. Suppose that E[U(X)] ≥ E[U(Y )]
for any non-decreasing function U and there exists j such that dj < 0. If we consider a utility function U such
that U(xi+1) = U(xi) for i ̸= j, and U(xj+1) > U(xj), then E[U(X)] − E[U(Y )] = dj(U(xj+1) − U(xj)) < 0
which is a contradiction. We omit the proof for the second statement since it can easily be derived in similar
argument.

We also note that the stochastic dominance is preserved under summation and multiplication between positive
independent random variables:

Proposition 2. X1, X2, Y1 and Y2 are positive random variables such that X1 and Y1 is independent, and X2

and Y2 is independent. If X1 ⪰ Y1 and X2 ⪰ Y2, then, (i) X1 +X2 ⪰ Y1 + Y2 and (ii) X1X2 ⪰ Y1Y2.

Proof. Since stochastic dominance is equivalent to the existence of monotone coupling [Roch, 2015], we can
construct monotone couplings (X̂1, Ŷ1) and (X̂2, Ŷ2) of (X1, Y1) and (X2, Y2), respectively. Then, we have X1 +
X2 ∼ X̂1 + X̂2 ⪰ Ŷ1 + Ŷ2 ∼ Y1 + Y2 and X1X2 ∼ X̂1X̂2 ⪰ Ŷ1Ŷ2 ∼ Y1Y2 where ∼ refers to the equality in
distribution, and it concludes the proof.

Finally, with use of stochastic dominance, the following theorem represents a sufficient condition for a strategy
to be dominant over another strategy for any non-decreasing utility function U . We remark that we often say
that a strategy is dominant over another strategy when it induces an expected utility which is at least that of
another.

Claim 1. Given a principal’s algorithm A, time horizon T ≥ n, and other agents’ strategic decision S−i, suppose
that agent i’s two strategies Si and S ′i satisfy the followings:

1) a′ ⪰ a for ∀a′ ∈ S ′i and ∀a ∈ Si,
2) NX ′

S′
i,t

has stochastic dominance over NX
Si,t

for any t ∈ [T ]

Then, S ′i is a dominant over Si under any non-decreasing utility function U and any proper discount sequence
γ ∈ ΓT .

Proof. We denote r(a) be the revenue R.V. of arm a. The probability that agent i’s revenue is at most x can be
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computed as the following:

PX [vi(Si,S−i;A, T ) ≤ x] = PX [

T∑
t=1

γtrIt(Si,S−i),t ≤ x] (4)

= PX
[ T∑
t=1

∑
a∈Si

γtr(a)1[It(Si,S−i;A, T ) = a] ≤ x
]

(5)

= PX
[( T∑

t=2

γt
∑
a∈Si

r(a)(NX
a,t −NX

a,t−1)
)
+ γ1

∑
a∈Si

µ(a)NX
a,1 ≤ x

]
(6)

= PX
[ T−1∑

t=1

∑
a∈Si

r(a)(γt − γt+1)N
X
a,t ≤ x

]
(7)

≥ PX ′
[ T−1∑

t=1

∑
a∈S′

i

r(a)(γt − γt+1)N
X ′

a,t ≤ x
]
= PX ′ [vi(S ′i,S−i;A, T ) ≤ x] , (8)

where equation (6) holds since NX
a,t = NX

a,t−1 + 1[It = a] for t ≥ 2 and NX
a,1 = 1[I1 = a]. In equation (7) we

assume that γ0 = 0, and inequality (8) follows from the stochastic dominance of NX ′

S′
i,t

over NX
Si,t

and condition

1 in theorem statement applied with 2. Hence we conclude that revenue under S ′i has stochastic dominance over
that under Si, and by Proposition 1, ui(S ′i,S−i;A, T ) ≥ ui(Si,S−i;A, T ) for any non-decreasing utility U .

Remark. It is straightforward to check that ui(S ′i,S−i;A, T ) > ui(Si,S−i;A, T ) if any of the described inequal-

ities is strict. For example, if there exists some x and t such that P[NX
a,t ≤ x] < P[NX ′

a,t ≤ x], then the dominance
is strict.

B.4 Embedding

We now lay out the foundations in defining the embedding from a MAB process to the other MAB process which
helps us to compare the agent’s expected utility between two strategies. This will mainly be used at analyzing the
replication-proneness. Given any two MAB processes X = (⟨·,S⟩,A) and X ′ = (⟨·,S ′⟩,A′) with two horizon-free
algorithms A and A′, we define an arm-translation τ : S 7→ S ′ be a mapping function between arms in MAB
processes, and let Imτ (A) be image of A under τ for any A ⊂ S. Given any sample path r, let L(r) be its length,
e.g. if r = (i1, x1)× (i2, x2) then L(r) = 2, and Tτ (r) be the sequence that replaces each selected arm a at round
t in r into τ(a) for any t ∈ [L(r)]. Now we define an embedding of MAB process X into X ′.

Definition 8 (Embedding). Given an arm-translation τ , we say that X is embedded into X ′ by τ if a sample
path rXt is realized under X , then sample path rX

′

t′ is realized under X ′ such that its SI-sample path is Tτ (r
X
t ),

i.e. Tτ (r
X
t ) = cSI

(rX
′

t′ ) for SI = Imτ (S).

Note that given τ , we can construct an embedding of X into X ′ by coupling the sample paths in X and X ′ as
the following: at each round in X ′, (i) arm a ∈ S ′ \SI can be selected in X ′, (ii) a ∈ SI can be selected in X ′ and
one of the arms in τ−1(a) can be selected in X . In this scenario, X move forwards only when a ∈ SI is selected
under X ′. Likewise, we can enforce the described mapping between any realization of sample paths regardless of
MAB processes X and X ′, and hence we can always embed X into X ′. However, it is not true that such mapped
pair of sample paths has the same marginal probability to be realized in corresponding MAB process, hence we
introduce the following notion of proper embedding:

Definition 9 (Proper embedding). We say that X is properly embedded into X ′ if for any t ≥ 1, there exists
a mapping τ : S 7→ S ′ such that given any sample path rXt in X , the marginal probability that sample path r
is realized under X whose Tτ transformation is Tτ (r

X
t ), is equal to the summation of marginal probability that

sample path r′ is realized of which its SI-sample path is Tτ (r
X
t ), i.e.

PX [{r : Tτ (r) = Tτ (r
X
t )}] = PX ′ [{r′ : cSI

(r′) = Tτ (r
X
t )}] .

Unlike from embedding, proper embedding does not always exist, but rather depends on the parameters of two
MAB process.
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Illustrative examples. To give an intuition on when the proper embedding exists and how it can be constructed,
we provide some concrete examples.

Example 1. Suppose that we have two MAB process X = (⟨·, {1, 2}⟩,A) and X ′ = (⟨·, {3, 4}⟩,A′) where A
selects the arms in uniform random manner, but A′ selects arm 3 with probability 1/3 and 4 with probability
2/3. If Imτ ({1, 2}) = {3} or {4}, then it is obvious that it is not proper embedding since both arms need to be
selected in X ′. Suppose that τ(1) = 3 and τ(2) = 4 without loss of generality and sample path r = (1, ·)× (2, ·) is
given. In this case, the only sample path in X ′ whose Imτ ({1, 2})-sample path is (1, ·)×(2, ·), is r′ = (3, ·)×(4, ·).
However, PX [r] = 1/2 · 1/2 ̸= 1/3 · 2/3 = PX ′ [r′] and hence there can be no proper embedding.

Example 2. Suppose that X = (⟨·, {1, 2},A) and X ′ = (⟨·, {1, 2, 3},A′) where both A and A′ chooses the arms
in uniformly random manner with respect to corresponding MAB instance. Consider τ : {1, 2} 7→ {1, 2, 3} such
that τ(1) = 1 and τ(2) = 2. In this case, given any realization r under X , we can easily check that the summation
of marginal probability that sample path r′ under X ′ whose {1, 2}-sample path is r is equal to the marginal
probability of having r under X .

Example 3. Suppose that X = (⟨·, {1, 2, 3},A) and X ′ = (⟨·, {1, 2},A′) where A chooses arm 1 and 2 with
probability 1/4 and 3 with probability 1/2, and A′ chooses the arm in uniformly random manner. Consider
τ : {1, 2, 3} 7→ {1, 2} such that τ(1) = τ(2) = 1 and τ(3) = 2. Since the summation of probability that arm 1 or
2 is selected in X is equal to the probability that arm 1 is selected in X ′, it is straightforward that τ makes a
proper embedding from X to X ′.

Proper embedding enables us to compare the probabilistic properties of random variables defined on two MAB
process respectively. Representatively, we present the following claim which holds upon surjective arm-translation
function:

Claim 2. Given a MAB process X = (⟨·,S⟩,A) and its proper embedding X ′ = (⟨·,S ′⟩,A′) with τ : S 7→ S ′,
if τ is surjective and each mapped pair a and τ(a) have the same reward distribution for any a ∈ S, then the
principal’s regret until any round t has the same distribution between X and X ′ .

We skip the proof since it is obvious from the definition of proper embedding.

If τ is not surjective, then there will be unmapped arms in X ′, and this remaining arms will increase the revenue
of the agent who owns these arms since they will be selected more times due to the existence of the remaining
arms. This means that the agent’s t-count can be stochastically ordered between two strategies, and we formally
present this result as follows:

Claim 3. Given a MAB process X = (⟨·,S⟩,A) and its proper embedding X ′ = (⟨·,S ′⟩,A′) with τ : S 7→ S ′, for
any set of arms A ⊂ S, NX ′

A′,t has stochastic dominance over NX
A,t for any t ≥ 1 where A′ = Imτ (A) ∪ (S ′ \

Imτ (S)).

Proof. Given a sample path rXt in X , suppose that a sample path r′ in X ′ satisfies that cA(r
′) = Imτ (r

X
t ). Let

AI = Imτ (A) and SI = Imτ (S). Under the embedding, it is obvious that L(r′) ≥ t andNX
A,t(r

X
t ) = NX ′

AI ,L(r′)(r
′).

Suppose that arms in AI and SI \ AI appears x and y times respectively from round t+ 1 to L(r′) in r′ under
X ′. Then the following inequalities hold:

NX ′

AI ,L(r′)(r
′) = NX ′

AI ,t(r
′) + x ≤ NX ′

AI ,t(r
′) + x+ y = NX ′

A′,t(r
′) ,

where the last equation holds since arms in S ′ \ SI appears exactly x + y times from round 1 to round t in r
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under X ′. Hence, the following inequalities hold:

PX [NX
A,t ≤ m] =

m∑
j=0

PX [NX
A,t = j] =

m∑
j=0

∑
NX

A,t(r
X
t )=j

PX [rXt ]

=

m∑
j=0

∑
NX′

AI ,L(r′)(r
′)=j

PX ′ [r′]

=
∑
r′

PX ′ [NX ′

AI ,L(r′)(r
′) ≤ m]

≥
∑
r′

PX ′ [NX ′

A′,t(r
′) ≤ m] = PX ′ [NX ′

A′,t ≤ m] ,

and we conclude that NX ′

A′,t has stochastic dominance over NX
A,t.

C Proof of Main Results

We now provide proofs for all the theorems presented in our main paper.

C.1 Proof of Theorem 1

Proof. Instead of proving Theorem 1, we prove the following generalized statement:

Proposition 3 (Restatement of theorem 1 in main paper). UCB1 is replication-prone under any strictly in-
creasing utility function U , and ∀γ ∈ ΓT .

We first consider a simple scenario when all the agents have single original arm. It suffices to show that replicating
k times is a strictly dominant strategy over replicating k − 1 times for k = 1, 2, . . .. Noting that the proof can
easily be extended into the case where |Si| ≥ 2, we only provide the proof for the case when |Si| = 1. Let Si = {1}
and S−i = {2, 3, . . . , k} be the union of other agents’ arms. Let S ′i = {1, 1′} be agent i’s another strategy where
1′ is a replication of arm 1. Now we want to prove that agent i’s payoff is strictly dominant in S ′i over Si. Let
S = Si ∪ S−i and S ′ = S ′i ∪ S−i. We denote MAB process for the non-replicated case be X = (⟨·,S,D⟩,A) and
for the replicated case be X ′ = (⟨·,S ′,D′⟩,A′) for corresponding UCB1 algorithms A and A′. We now show that
there exists a proper embedding from X into X ′, and conclude the proof by calculating the expected payoff of
agent i with the notion of t-count.

Firstly we prove that there exists a proper embedding from X into X ′. Consider an arm-translation τ : S 7→ S ′
such that τ(a) = a for any a ∈ S. To show that there exists a proper embedding, since {rx : Tτ (rx) = Tτ (r)} =
{r} by our construction of τ , we need to show that for any valid sample path r in X ,

PX [r] =
∑

cS(r′)=Tτ (r)

PX ′ [r′] . (9)

Since τ is identity function we simply use r instead of Tτ (r). We use the proof by induction with respect to the
length of sample path in X . Assume that the sample path r under X is given and its length is 1, i.e. L(r) = 1.
Let the arm selected in r be a ∈ S. Then,∑

cS(r′)=(r)

PX ′ [r′] = PX ′ [I1 = a] + PX ′ [{I1 ̸= a} ∩ {I2 = a}]

= 1/(k + 1) + 1/(k + 1) · 1/k = PX [I1 = a] = PX [r] ,

and hence equation (9) holds for L(r) = 1. Now suppose that equation (9) holds for any sample path r with
L(r) = m. Again, let r be the sample path of length m+1 under X , and rm be its sub-sequence that only accounts
for the first m elements in r, e.g. if r = (1, 0.1)× . . .× (m, 0.1)× (m+ 1, 0.1) then rm = (1, 0.1)× . . .× (m, 0.1).
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Let the arm selected in r at round m+ 1 be a ∈ S. Then the following equations hold:

PX [r] = PX [r|rm]PX [rm] = PX [Im+1 = a|rm]PX [rm] (10)

=
∑

cS(r′)=rm

PX ′ [r′] · PX [Im+1 = a|rm] . (11)

Now we look into PX [Im+1 = a|rm]. For s ∈ S, let arm s’s UCB index at round m be um(s). If um(a) <
argmaxs∈S(um(s)), then arm a cannot be selected at round m+1 and hence r can’t be realized under X , which
is a contradiction. Hence we have um(a) ≥ argmaxs∈S(um(s)), and let the set of arms in this tied index be T .
Given r′ with cS(r

′) = rm, suppose that arm 1′ has the highest UCB index from round L(r) to L(r)+ t− 1, and
hence selected by UCB1 at rounds L(r)+1 to L(r)+ t, and not for round L(r)+ t. It is obvious that such t <∞
exists since arm 1′ and 1 follows the same reward distribution. In this case at round L(r) + t+ 1, arm 1′ cannot
have the highest UCB index, and hence one of the arms in T would be selected since cS(r

′) = rm and only arm
1′ is selected from round L(r) + 1 to L(r) + t. Hence, the probability that arm a is selected in this case is equal
to PX [Im+1 = a|rm], and we have:

∑
cS(r′)=rm

PX ′ [r′] · PX [Im+1 = a|rm] =
∑

cS(r′)=rm

PX ′ [r′]/|T | (12)

=
∑

cS(r′)=rm

PX ′ [r′] · PX ′ [IL(r)+t+1 = a|r′] (13)

=
∑

cS(r′)=r

PX ′ [r′] . (14)

By equation (11) and (14), we have PX [r] =
∑

cS(r′)=r PX ′ [r′] and we conclude that equation (9) is true. Hence,

by Claim 1 and 3, S ′i is a dominant strategy over Si regardless of the MAB instance, and now it is enough to
prove that there exists a MAB instance such that equality does not hold in ui(S ′i,S−i) ≥ ui(Si,S−i). In Bernoulli

bandit case, it is obvious that PX ′ [NX ′

S′
i,t
≥ 2] = 1 > PX [NX

Si,t
≥ 2] for any t ≥ n. Then in inequality (8) in the

proof of Claim 1, the equality cannot hold and hence S ′i is a strict dominant strategy over Si, which implies that
ui(S ′i,S−i) > ui(Si,S−i) for any time horizon T by Proposition 1.

Finally, we can extend our proof into the multiple arm cases by constructing S ′ which replicates all the arms in
Si once. We omit the detailed process since it can easily be derived.

C.2 Proof of Theorem 2

Proof. We prove the following generalized statement:

Proposition 4 (Restatement of theorem 2 in main paper). H-UCB is replication-proof for i ∈ N under any
non-decreasing utility function U , ∀T ≥ n and ∀γ ∈ ΓT .

Let X = (⟨·,Si ∪ S−i⟩,A) and X ′ = (⟨·,S ′i ∪ S−i⟩,A) where A is H-UCB. By Claim 1, it is enough to show

that NX
Si,t

has stochastic dominance over NX ′

S′
i,t

for any strategy S ′i. To this end, we show that 1[IXt (Si,S−i) ∈
Si] ⪰ 1[IX

′

t (S ′i,S−i) ∈ S ′i] for any round t. We use proof by induction. For t ∈ [n], it is straightforward that

1[IXt (Si,S−i) ∈ Si] ∼ 1[IX
′

t (S ′i,S−i) ∈ S ′i] due to the agent initialization step in H-UCB. Suppose that we have

1[IXt (Si,S−i) ∈ Si] ⪰ 1[IX
′

t (S ′i,S−i) ∈ S ′i] holds for any t ∈ [t′]. Then, by Proposition 2, we can derive the
following relation between t-count of Si and S ′i for any t ∈ [t′]:

NX
Si,t =

t∑
q=1

1[IXq (Si,S−i) ∈ Si] ⪰
t∑

q=1

1[IX
′

q (S ′i,S−i) ∈ S ′i] = NX ′

S′
i,t

.
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The probability that agent i is selected at round t′ + 1 can be computed as the following4:

P[IXt′+1(Si,S−i) ∈ Si] =
t′∑

m=0

P
[
IXt′+1(Si,S−i) ∈ Si|NX

Si,t′ = m
]
P[NX

Si,t′ = m]

=

t′∑
m=0

∑
r≥0

P
[
IXt′+1(Si,S−i) ∈ Si|NX

Si,t′ = m, r̄Xi,m = r
]
P[r̄Xi,m = r|NX

Si,t′ = m]P[NX
Si,t′ = m] ,

(15)

where r̄Xi,m denotes empirical average reward of agent i given that agent i is selected mth time by H-UCB under

MAB process X . Since Xi,1 ⪰ Xi,k for any k ∈ [l(i)], it is straightforward that r̄Xi,m conditioned to NX
i,t′ = m has

stochastic dominance over r̄X
′

i,m conditioned to NX ′

i,t′ = m, i.e.

P[r̄Xi,m > r|NX
Si,t′ = m] ≥ P[r̄X

′

i,m > r|NX ′

S′
i,t

′ = m] , (16)

for any r ≥ 0.

Besides, due to the nature of phase 1 that it selects agent solely based on agent’s t-count and empirical average
reward, the following holds for any r1 ≥ r2:

P
[
IXt′+1(Si,S−i) ∈ Si|NX

Si,t′ = m, r̄i,m = r1
]
≥ P

[
IXt′+1(Si,S−i) ∈ Si|NX

Si,t′ = m, r̄Xi,m = r2
]
. (17)

Now we observe that the distribution of sample path for the arms in S ′i conditioned on agent i’s t-count and
empirical average reward would be the same5 between X and X ′. This implies that the probability that agent i
is selected at round t given its t-count and empirical average reward is the same between X and X ′, and hence
equation (17) can be lower-bounded as the following for any r1 ≥ r2:

P
[
IXt′+1(Si,S−i) ∈ Si|NX

Si,t′ = m, r̄i,m = r1
]
≥ P

[
IX

′

t′+1(S ′i,S−i) ∈ S ′i|NX ′

S′
i,t

′ = m, r̄X
′

i,m = r2
]
. (18)

Since we have NX
Si,t
⪰ NX ′

S′
i,t

′ for any t ∈ [t′] by our induction hypothesis, plugging inequalities (16) and (18)

into (15) yields the following:

P[IXt′+1(Si,S−i) ∈ Si] =
t∑

m=0

∑
r≥0

P
[
IXt′+1(Si,S−i) ∈ Si|NX

Si,t′ = m, r̄Xi,m = r
]
P[r̄Xi,m = r|NX

Si,t′ = m]P[NX
Si,t = m]

≥
t∑

m=0

∑
r

P
[
IX

′

t′+1(S ′i,S−i) ∈ S ′i|NX ′

i,t′ = m, r̄i,m = r
]
P[r̄i,m = r|NX ′

i,t′ = m]P[NX ′

S′
i,t

′ = m]

= P[IX
′

t+1(S ′i,S−i) ∈ S ′i] .

Hence we conclude that 1[IXt (Si,S−i) ∈ Si] ⪰ 1[IX
′

t (S ′i,S−i) ∈ S ′i] for any t ≥ 1, which implies that NX
Si,t
⪰ NX ′

S′
i,t

for any t ≥ 1 by Proposition 2. By Claim 1, we conclude that H-UCB is replication-proof.

C.3 Proof of Theorem 3

Firstly, under the equilibrium S = ∪i∈NSi such that Si = {oi,1} for any i ∈ N , it is straightforward to check
that H-UCB submits the proposed regret bound since it exactly reduces to UCB1 under the canonical setting.
Now we characterize all the possible dominant strategy equilibrium, and then show that there exists a proper
embedding for any pair of equilibrium. Suppose that S ′i possesses a suboptimal arm a. Then, inequality (16)
in the proof of Theorem 2 will obviously become strict. Following the similar analysis, we can observe that the

4In precise, we need to integrate over r ≥ 0 rather than summing over it since the support of r̄Xi,m is continuous over
non-negative real value, however, we abuse it for the sake of simplicity.

5One may consider a sort of partial proper embedding from X to X ′ so that any arm a ∈ S ′
i in X is mapped to a ∈ S ′

i

in X ′, which implies that the selection and realization of the arms in S ′
i can be coupled between X and X ′.
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selection probability of agent i under S ′i will be strictly smaller than that under Si, which eventually implies
that S ′i cannot be a dominant strategy. Finally, we prove that the principal’s regret remains the same as Si
under any strategy S ′′i = {o(1)i,1 , o

(2)
i,1 , . . . , o

(ci,1)
i,1 }. Let X ′′ = (⟨·,S ′′i ,S−i⟩,A), and S ′′ = S ′′i ∪ S−i. Consider arm-

translation τ : S ′′ → S which maps all the arms in S ′′i to oi,1 in Si and identically maps the arms in S−i. Then,
it is straightforward to check that this constructs a proper embedding from X ′′ to X . Hence by Claim 2, the
principal’s regret remains the same under S and S ′′, and we conclude the proof.

C.4 Proof of Theorem 5

Proof. For simplicity, we assume that Si is ordered so that µ(si,1) ≥ µ(si,2) ≥ . . . ≥ µ(si,l(i)) for i ∈ N . For
simplicity, we abuse NA,t to denote NX

A,t. We use Ni,t, Nia,t to denote the expected number of times agent i and
arm ia are played up to time t, and Ri,t, Ria,t be the empirical average reward of agent i and arm ia at round t,
respectively. Hence, if the index is contained in N , it refers to the agent’s random variable, otherwise, it indicates
to that of the arm. Let i⋆ be the agent with optimal arm, and a⋆ be the optimal arm. Let ∆i = µ(si⋆,1)−µ(si,1),
∆ia = µ(si⋆,1)− µ(ia), ∆

m
i = µ(si⋆,1)− µ(si,l(i)), and δia = µ(si,1)− µ(ia).

Thanks to our analysis given in so far, any strategic agent can be viewed as a replicator with only single original
arm, since it will only register the best arm or any set of replicas of it. Hence we assume that there only exists
replicators without loss of generality.6

Let Yi be the event that Bi contains i’s optimal arm or any replica of it. We begin with the following two lemmas
which gives upper-bound for expected regret occurred from replicator i.

Lemma 1. P[Y c
i ] ≤ 1/T .

Proof of Lemma 1. If |Si| ≤ L lnT , then P[Yi] = 1. If Si’s cardinality is infinite, then P[Y c
i ] = (1 − c)L lnT .

Otherwise, the probability that i’s optimal arm is not sampled Bi is given by

P[Y c
i ] ≤ (1− c)

|Si|(1− c)− 1

|Si| − 1

|Si|(1− c)− 2

|Si| − 2
. . .
|Si|(1− c)− L lnT

|Si| − L lnT

≤ (1− c)L lnT .

Since (1− 1/x)x ≤ 1/e for any x ≥ 0, we can derive the following bound on (1− c)L lnT :

(1− c)L lnT ≤ (1− c)1/c lnT ≤ (
1

e
)lnT = 1/T .

Lemma 2. Given that event Yi occurs, its conditional expected internal regret is bounded as the following:∑
ia∈Bi

E[δiaNia,t|Yi] ≤ L lnT
( ∑

ia∈Oi
µia<µi1

8 lnNi,t

δia
+ (1 +

π2

3
)δia

)
.

Proof of Lemma 2. If the optimal arm is sampled at least one time, then all the other sampled arms induce
O(lnT ) internal regret [Auer et al., 2002] since the behavior of phase 2 in RH-UCB given the sampled arms is
equal to that of UCB1 under the canonical MAB problem. Hence, we have∑

ia∈Bi

E[δiaNia,t|Yi] ≤ L lnT
( ∑

ia∈Oi
µia<µi1

8 lnNi,t

δia
+ (1 +

π2

3
)δia

)
,

from the regret analysis of [Auer et al., 2002]

Now, we prove the following bounds on the empirical average reward of any agent.

6Though, we can tighten our analysis by separating the regret from each type since the regret bound for strategic
agent would definitely be smaller.
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Lemma 3. Given any agent i ∈ N , for each arm j in j ∈ Si at time t, we have

P
[
|Ri,t − µi1 | ≥

√√
t ln t

Ni,t

]
≤ 1/T + 2L lnT exp

( −√t ln t
2L2 ln2 T

)
+

L lnT√
Ni,t

√
t ln t

( ∑
ia∈Oi

µia<µi1

16 lnNi,t

δia
+ (2 +

2π2

3
)δia

)
.

Proof of Lemma 3. We can divide the probability in our lemma as the following:

P
[
|Ri,t − µi1 | ≥

√√
t ln t

Ni,t

]
= P

[
Yi ∩ |Ri,t − µi1 | ≥

√√
t ln t

Ni,t

]
+ P

[
Y c
i ∩ |Ri,t − µi1 | ≥

√√
t ln t

Ni,t

]
. (19)

The latter term is at most 1/T by Lemma 1. For the former one, we begin with the following inequalities where
we use PYi

[X] = P[X|Yi] for simplicity:

P
[
Yi ∩ |Ri,t − µi1 | ≥

√√
t ln t

Ni,t

]
≤ PYi

[
|Ni,tRi,t −Ni,tµi1 | ≥

√
Ni,t

√
t ln t

]
= PYi

[
|

Si∑
a=1

Nia,tRia,t −Ni,tµi1 | ≥
√

Ni,t

√
t ln t|Yi

]
= PYi

[
|
∑
ia∈Bi

Nia,tRia,t −
∑
ia∈Bi

Nia,tµia +
∑
ia∈Bi

Nia,tµia − µi1

∑
ia∈Bi

Nia,t| ≥
√
Ni,t

√
t ln t

]

≤ PYi [|
∑
ia∈Bi

Nia,t(Ria,t − µia)| ≥

√
Ni,t

√
t ln t

4
] + PYi

[
|
∑
ia∈Bi

Nia,t(µi1 − µia)| ≥

√
Ni,t

√
t ln t

4

]
(20)

≤ PYi

[ ∑
ia∈Bi

|Nia,t(Ria,t − µia)| ≥

√
Ni,t

√
t ln t

4

]
+ PYi

[ ∑
ia∈Bi

Nia,t(µi1 − µia) ≥

√
Ni,t

√
t ln t

4

]
(21)

≤
∑
ia∈Bi

PYi

[
|(Ria,t − µia)|

Nia,t

Ni,t
≥

√ √
t ln t

4|B2i |Ni,t

]
+ PYi

[ ∑
ia∈Bi

µia<µi1

δiaNia,t ≥

√
Ni,t

√
t ln t

4

]
, (22)

where we use P(
∑n

i Xi ≥ x) ≤
∑n

i P(Xi ≥ x/n) for inequality (20) and (22), and inequality (21) holds by
triangle inequality. The first term can be bounded by Chernoff-Hoeffding inequality as follow:

PYi

[
|Ria,t − µia | ·

Nia,t

Ni,t
≥

√ √
t ln t

4|Bi|2Ni,t

]
≤ PYi

[
|Ria,t − µia | ·Nia,t ≥

√
Ni,t

√
t ln t

4L2 ln2 T

]
≤ 2 exp

(
−
√
t ln tNi,t

2L2 ln2 TNia,t

)
≤ 2 exp

(
−
√
t ln t

2L2 ln2 T

)
.

(23)

For the second term in inequality (22), the following holds:

PYi

[ ∑
a∈Bi

µia<µi1

δiaNia,t ≥
√
Ni,t

√
t ln t/4

]
≤ 2E

[ ∑
a∈Bi

µia<µi1

δiaNia,t

∣∣∣Yi

]
/

√
Ni,t

√
t ln t (24)

≤ L lnT
( ∑

ia∈Oi
µia<µi1

16 lnNi,t

δia
+ (2 +

2π2

3
)δia

)
/

√
Ni,t

√
t ln t , (25)

where inequality (24) holds by conditional Markov inequality, and (25) follows from Lemma 2. Combining in-
equalities (19),(22),(23), and (25), we conclude the proof.
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In overall, our total regret can be divided into the regret (i) that internally incurs from any optimal agent7 during
identifying his optimal arm, and (ii) that externally incurs from selecting any suboptimal agents. We can simply
bound the former one as the following, which is O(ln2 T ):

E[RegretoptT ] ≤ T · 1/T + L lnT
( ∑

ia∈Oi
µia<µi1

16 lnT

δia
+ 9δia

)
, (26)

by the fact that the expected regret given Y c
i is at most T , P[Y c

i ] ≤ 1/T , and Lemma 2. Hence we focus on the
regret from any suboptimal agent.

Using Lemma 3, we upper bound the probability that suboptimal replicator i is selected given that replicator
i and optimal replicator i⋆ has already selected at least certain times. For notational simplicity, we denote the
bounding probability (terms in RHS) in Lemma 3 be ρi,t(Ni,t), i.e.

ρi,t(Ni,t) = 1/T + 2L lnTe−
√
t ln t/(2L2 ln2 T ) + L lnT

( ∑
ia∈Oi

µia<µi1

16 lnNi,t

δia
+ (2 +

2π2

3
)δia

)
/

√
Ni,t

√
t ln t .

We abuse It to denote the arm selected at round t if the context is clear. We define UCBi,t to denote the UCB

score of agent i at round t, i.e. UCBi,t = Ri,t +
√√

t ln t
Ni,t

.. The following lemma upper-bound the probability

that any suboptimal replicator i is selected given that replicator i and any optimal replicator i⋆ is sufficiently
selected:

Lemma 4. At round t, if any suboptimal replicator i has been played at least 4
√
t ln t
∆2

i
times and optimal replicator

i⋆ has been played at least
√
t ln t, then UCBi,t < UCBi⋆,t with probability at least 1−(ρi,t( 4

√
t ln t
∆2

i
)+ρi⋆,t(

√
t ln t)),

i.e.

P
[
It+1 ∈ Si|Ni,t ≥

4
√
t ln t

∆2
i

, Ni⋆,t ≥
√
t ln t

]
≤ ρi,t(

4
√
t ln t

∆2
i

) + ρi⋆,t(
√
t ln t) (27)

Proof of Lemma 4. Given Ni,t ≥ 4
√
t ln t
∆2

i
and Ni⋆,t ≥

√
t ln t, assume that event |Ri,t − µi1 | ≤

√√
t ln t
Ni,t

occurs for

replicator i and i⋆. Then we have

UCBi,t = Ri,t +

√√
t ln t

Ni,t
≤ Ri,t +

∆i

2
≤ µi1 +

√√
t ln t

Ni,t
+

∆i

2
≤ (µi1 +

∆i

2
) +

∆i

2
= µ⋆ < UCBi⋆,t ,

where the first inequality holds by Ni,t ≥ 4
√
t ln t
∆2

i
, the second holds by |Ri,t − µi1 | ≤

√√
t ln t
Ni,t

, the third again

holds by Ni,t ≥ 4
√
t ln t
∆2

i
, and the last follows from |Ri⋆,t − µi⋆1

| ≤
√√

t ln t
Ni⋆,t

.

By union bound, the probability of |Ri,t − µi1 | >
√√

t ln t
Ni,t

or |Ri⋆,t − µi⋆1
| >

√√
t ln t

Ni⋆,t
is at most ρi,t(Ni,t) +

ρi⋆,t(Ni⋆,t). Since ρi,t(
√
t ln t) is a decreasing function on t for t ≥ 1, we conclude the proof.

Now for any suboptimal agent i, we upper bound the expected number of times it is played up to round T under

7In here, optimal agent refers to the agent with at least one optimal arm.
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RH-UCB as the following:

E[Ni,T ] = 1 + E
[ T∑
t=n

1(It+1 ∈ Si)
]

= 1 + E
[ T∑
t=n

1(It+1 ∈ Si, Ni,t <
4
√
t ln t

∆2
i

)
]
+ E[

T∑
t=n

1(It+1 ∈ Si, Ni,t ≥
4
√
t ln t

∆2
i

)]

≤ 4
√
T lnT

∆2
i

+ E[
T∑

t=n

1(It+1 ∈ Si, Ni,t ≥
4
√
t ln t

∆2
i

)]

≤ 4
√
T lnT

∆2
i

+ E
[ T∑
t=n

1(It+1 ∈ Si⋆ , Ni,t ≥
4
√
t ln t

∆2
i

, Ni⋆,t <
√
t ln t)

]
+ E

[ T∑
t=n

1(It+1 ∈ Si, Ni,t ≥
4
√
t ln t

∆2
i

, Ni⋆,t ≥
√
t ln t)

]
(28)

≤ 4
√
T lnT

∆2
i

+
√
T lnT + E

[ T∑
t=n

1(It+1 ∈ Si, Ni,t ≥
4
√
t ln t

∆2
i

, Ni⋆,t ≥
√
t ln t)

]
≤ 4
√
T lnT

∆2
i

+
√
T lnT +

T∑
t=n

P
[
(It+1 ∈ Si|Ni,t ≥

4
√
t ln t

∆2
i

, Ni⋆,t ≥
√
t ln t

]
≤ 4
√
T lnT

∆2
i

+
√
T lnT +

T∑
t=n

(
ρi,t(

4
√
t ln t

∆2
i

) + ρi⋆,t(
√
t ln t)

)
, (29)

where inequality (28) holds since if Ni,t ≥ 4
√
t ln t/∆2

i and Ni⋆,t <
√
t ln t/4 then Ri,t +

√√
t ln t/Ni,t < 2 ≤

Ri⋆,t +
√√

t ln t/Ni⋆,t and inequality (29) holds by Lemma 4.

By integral test, we have:

T∑
t=2

1√
Ct ln t

≤
T∑

t=2

√
1

Ct
≤ 2√

C

∫ T+1

t=2

d
√
t

dt
dt ≤ 2

√
T/C (30)

T∑
t=2

2L lnTe−
√

t ln t

2L2 ln2 T ≤
T∑

t=2

2L lnTe−
√

t

2L2 ln2 T ≤
∫ ∞

t=0

4L4 ln4 T
d(−2e−

√
t(
√
t+ 1))

dt
= 8L5 ln5 T . (31)

Applying inequalities (30) and (31), we can bound the summation of ρ(C
√
t ln t) as the following:

T∑
t=n

ρi,t(C
√
t ln t) =

T∑
t=2

[
1/T + 2L lnTe−

√
t ln t/(2L2 ln2 T ) + L lnT

( ∑
ia∈Oi

µia<µi1

16 lnNi,t

δia
+ (2 +

2π2

3
)δia

)
/

√
Ni,t

√
t ln t

]

≤ 1 + 8L5 ln5 T + L lnT

T∑
t=2

[( ∑
ia∈Oi

µia<µi1

16 lnNi,t

δia
+ (2 +

2π2

3
)δia

)
/

√
Ni,t

√
t ln t

]

≤ 1 + 8L5 ln5 T + L lnT

T∑
t=2

[( ∑
ia∈Oi

µia<µi1

16 lnC + 16 ln t

δia
+ (2 +

2π2

3
)δia

)
/(
√
Ct ln t)

]
(32)

≤ 1 + 8L5 ln5 T +
2L
√
T lnT√
C

∑
ia∈Oi

µia<µi1

(
16 lnC + 16

δia
+ 9δia) ,

where we use ln t ≤ 2 ln(ln t) for t ≤ 2 in inequality (32).
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Applying it to inequality (29), we can bound the expected number of selection as the following:

E[Ni,T ] =
4
√
T lnT

∆2
i

+
√
T lnT +

T∑
t=n

ρi,t(
4
√
t ln t

∆2
i

) + ρi⋆,t(
√
t ln t)

≤ 4
√
T lnT

∆2
i

+
√
T lnT

+ 1 + 8L5 ln5 T + 2L
√
T lnT

∑
i⋆a∈Oi⋆

µi⋆a
<µi⋆1

(
16

δi⋆a
+ 9δi⋆a)

+ 1 + 8L5 ln5 T + 2∆iL
√
T lnT

∑
ia∈Oi

µia<µi1

(
16 ln(4/∆2

i ) + 16

δia
+ 9δia)

.

≤ 4
√
T lnT

∆2
i

+
√
T lnT + 2 + 16L5 ln5 T

+ 2L
√
T lnT

∑
i⋆a∈Oi⋆

µi⋆a
<µi⋆1

(
16

δi⋆a
+ 9δi⋆a) + 2L

√
T lnT

∑
ia∈Oi

µia<µi1

(
48

δia
+ 9δia) ,

where we use the fact ln(4x2)/x ≤ 2 for any x ≥ 0 and ∆i ≤ 1 for the last inequality.

Hence, the expected regret from suboptimal agents can be upper bounded as the following:

E[RegretsubT ] =
∑
i∈N ′

E[Ni,T ]∆
m
i

≤ 4
√
T lnT

∆2
i

+
√
T lnT + 2 + 16L5 ln5 T

+ 2L
√
T lnT

∑
i⋆a∈Oi⋆

µi⋆a
<µi⋆1

(
16

δi⋆a
+ 9δi⋆a) + 2L

√
T lnT

∑
ia∈Oi

µia<µi1

(
48

δia
+ 9δia)

]
.

Combining it with inequality (26) and use the fact that any regret is at most 1, we conclude the proof.

Remark - Regret bound under logarithmic agent exploration. Suppose that H-UCB is equipped with
its phase 1 exploration term as Ri +

√
2 ln t/Ni,t. Then, following the analogous step of our analysis, Lemma 3

should be replaced into the bounding probability with
√
2 ln t/Ni,t, and this makes the bounding probability in

equation (24) be O(lnNi,t)/O(
√
Ni,t ln t), where one can find that this finally leads to the undesirable result of

linear regret upper bound.

Remark - Improving regret bound. We note that there exists some tuning points in our regret analysis. For
each agent i, we can improve each arm’s deviation probability and the internal regret bound by replacing phase
2 UCB index to KL-UCB index [Garivier and Cappé, 2011]. Secondly, we mainly upper-bound the probability
that agent i is selected given that agent i and i⋆ is sampled sufficiently, take expectation over it, and directly
derive the regret bound by multiplying it with ∆m

i . In this procedure, the regret bound might be tightened if
we separately upper-bound the probability that agent i’s arm ia is selected given that agent i and i⋆ is sampled
sufficiently, since it will lead to the separation of final regret bound by the summation of expected number of
count that ia is sampled multiplied by δia .

C.5 Proof of Theorem 6

Proof. To derive a problem-independent regret upper-bound, we need to remove the dependency of our regret
bound from δia and ∆i in all the denominators. To handle δia , we start with the inequality (24) in Lemma 3.
Let K = 1/c. For agent i, suppose that the arms are divided into the following two groups:
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(1) Group 1 consists of almost optimal arm with δia <
√
K lnT lnNi,t/Ni,t .

(2) Group 2 consists of arm with δia ≥
√
K lnT lnNi,t/Ni,t .

Given Ni,t, the total expected internal regret of agent i until Ni,t is the sume of the regret of each group. Since
group 1 only contains near-optimal arms,∑

ia∈Group 1

Nia,tδia <
√
K lnT lnNi,t/Ni,t

∑
ia∈Group 1

Nia,t ≤
√

KNi,t lnNi,t lnT .

For the arms in group 2, the expected number of any arms in group 2 selected until round Ni,t is,∑
ia∈Group 2

E[Nia,tδia,t] ≤ 1 +K lnT
( ∑

ia∈Oi∩Group 2
µia<µi1

8 lnNi,t

δia
+ (1 +

π2

3
)δia

)
(33)

≤ 8
√
KNi,t lnNi,t lnT + 5K lnT + 1 , (34)

where inequality (33) follows from Lemma 1 and 2. Hence, we have

E[
l(i)∑
a=1

δiaNia,t] ≤ 9
√
1/cNi,t lnNi,t lnT + 5L lnNi,t + 1

≤ 9 lnT
√
KNi,t + 5K lnT + 1 .

Hence, inequality (25) can be replaced into the following:

P[
l(i)∑
a=2

|µi1 − µia | ·
Nia,t

Ni,t
>

√√
t ln t

4Ni,t
] ≤

9 lnT
√
KNi,t + 5K lnT + 1√

Ni,t

√
t ln t

.

On top of that, following the analogous arguments in the proof of Theorem 4 leads us to the following:

Lemma 5. At round t, if any suboptimal agent i has been played at least 4
√
t ln t
∆2

i
times and optimal agent i⋆ has

been played at least
√
t ln t, then UCBi,t < UCBi⋆,t with probability at least 1− (ρ′i,t(

4
√
t ln t
∆2

i
)+ ρ′i⋆,t(

√
t ln t)), i.e.

P[It+1 ∈ Si|Ni,t ≥
4
√
t ln t

∆2
i

, Ni⋆,t ≥
√
t ln t] ≤ ρ′i,t(

4
√
t ln t

∆2
i

) + ρ′i⋆,t(
√
t ln t) , (35)

where ρ′i,t(x) = 1/T + 2K lnT exp ( −
√
t ln t

2KN2 ln2 T
) + 9 lnT

√
Kx+5K lnT+1√
x
√
t ln t

.

We skip the detailed proof since it can similarly be derived as the proof of Lemma 4.

By integral test, the following holds:

T∑
t=2

1

(t ln2 t)1/4
≤

T∑
t=2

(
1

t
)1/4 ≤

∫ T+1

t=2

d(4/3t3/4t)

dt
dt ≤ 4/3T 3/4 . (36)

By inequality (30) and (36), the summation of ρ′i,t(C
√
t ln t) can be bounded as the following:

T∑
t=2

ρ′i,t(C
√
t ln t) ≤ 1 + 8K5 ln5 T +

T∑
t=2

(9 lnT√KC
√
t ln t+ 5K lnT + 1√
Ct ln t

)
≤ 1 + 8K5 ln5 T +

T∑
t=2

( 9 lnT
√
K√

C
√
t ln t

+
5K lnT + 1√

Ct ln t

)
≤ 1 + 8K5 ln5 T + 12

√
K/CT 3/4 lnT + 10/

√
CT 1/2 lnT + 2

√
T/C .
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Following the analogous step to derive inequality (29) in the proof of Theorem 5, we eventually have the following
inequality for any suboptimal agent i:

E[Ni,T ] ≤
4
√
T lnT

∆2
i

+

√
T lnT

2
+
√
KT 3/4 lnT (12 + 6∆i) + 16L5 ln5 T + 5T 1/2 lnT (2 + 1∆i) +

√
T (2 + ∆i)

≤ 18
√
KT 3/4 lnT + T 1/2 lnT (19 +

4

∆2
i

) + 16L5 ln5 T

Now, let’s divide the suboptimal agents into two groups: For agent i, suppose that the arms are divided into the
following two groups:

(1) Group 1 consists of almost optimal agents with ∆i < (16n2 ln2 T/T )1/4 .
(2) Group 2 consists of arm with ∆i ≥ (16n2 ln2 T/T )1/4 .

Given Ni,t, the total expected regret is the sum of the regret in these two groups. Since group 1 only contains
near-optimal agents, ∑

i∈Group 1

Ni,T∆i ≤ (16n2 ln2 T/T )1/4
∑

i∈Group 1

Ni,t ≤ 2
√
nT 3/4 ln1/2 T .

For the agents in group 2,

∑
i∈Group 2

E[Ni,T ]∆i ≤
∑

i∈Group 2

[
18
√
KT 3/4 lnT + T 1/2 lnT (19 +

4

∆i
) + 16K5 ln5 T

]
≤ T 3/4 lnT (18n

√
K + 19n+ 2

√
n) + 16nK5 ln5 T .

Summing the regret bound for group 1 and 2 yields,∑
i∈N ′

E[Ni,T ]∆i = T 3/4 lnT (18n
√
K + 19n+ 4

√
n) + 16nL5 ln5 T.

From inequality (34), we already have the problem-independent regret upper-bound for agent in N⋆ as follow,

∑
i∈N⋆

E[
l(i)∑
a=1

δiaNia,t] ≤
∑
i∈N⋆

(
9 lnT

√
KT + 5K lnT + 1

)
≤ 9n

√
KT 1/2 lnT + 5nK lnT + n .

Hence summing up the results give us the following regret bound:

T 3/4 lnT (18n
√
K + 19n+ 2

√
n) + 9n

√
KT 1/2 lnT + 16nK5 ln5 T + 5nK lnT + n = O(

n√
c
T

3
4 lnT ) ,

and we conclude the proof.

Remark - honest agent. Suppose that honest agent, who honestly register all the original arms without any
replication, exists rather than replicators. In this case, we can get rid of the arm sampling part in RH-UCB, and
correspondingly, the order of nominator in inequality (25) can be bounded by O(lnNi,t). In this case, following
the analogous step provided in the analysis, we can find that eventual problem-dependent regret bound under
this scenario will be O(

√
T lnT ), and problem-independent bound will be O(T 3/4 ln1/4 T ). Note that all the

analysis can also be generalized into the scenario when the strategic agent, honest agent, and replicator coexist,
where the order of regret will be the same as that of the case when strategic agent and replicator exist since
honest agent can be regarded as a weaker version of replicator.
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D Prior-free Robust Hierarchical UCB and its regret analysis

We provide a detailed description of Prior-free Robust Hierarchical UCB (PRH-UCB) which we briefly described
in Section 4, and present corresponding regret analysis. We note that PRH-UCB still achieves replication-
proofness, where we skip the proof since it can analogously be derived from the proof of Theorem 2 since it

inherits the hierarchical structure of H-UCB. Note that we tune Phase 1 exploration parameter to
√
t ln3 t to

optimize the order of poly-logarithmic term in regret bound. For the regret analysis, we only provide a proof
sketch since the detailed steps are analogous to the proof of Theorem 5 and 6.

Theorem 7. PRH-UCB has O( n
c2T

1
2 ln

3
2 T ) problem-dependent and O( n√

c
T

3
4 ln

3
2 T ) problem-independent regret

upper-bound for any T such that T ln3 T ≥ e2/c.

Algorithm 3: Prior-free Robust Hierarchical UCB (PRH-UCB)

1 Initialize R(i), N(i), r(a) and n(a) at zero and Bi at an empty set for all i ∈ N and a ∈ ∪i∈NSi; for
t = 1, 2, . . . do
// Phase 1 - agent selection

2 if Unexplored agent exists then

3 Pick an unexplored î ∈ {i ∈ N : N(i) = 0};
4 else

5 Pick î = argmaxi∈N

{
R(i) +

√√
t ln3 t
N(i)

}
;

// Phase 2 - arm selection

6 if |Bî| < min(|Sî|, ln
2 t) then

7 Pick an unexplored arm â ∈ {a ∈ Sî \ Bî : n(a) = 0};
8 Bî ← Bî ∪ {â};
9 else

10 Pick â = argmaxa∈Bî

{
r(a) +

√
2 lnN(i)

n(a)

}
;

11 Play At = â and receive reward Rt;

12 Update statistics: r(â)← r(â)n(â)+Rt

n(â)+1 ; R(̂i)← R(̂i)N (̂i)+Rt

N (̂i)+1
; n(â)← n(â) + 1; N (̂i)← N (̂i) + 1;

Proof sketch. The proof structure is exactly the same with the proof of Theorem 5 and Theorem 6. We briefly
explain how the order of magnitude will be changed when the sampling amount becomes ln2 T . Given round t,
we redefine the random variable Yi to be the event that Bi contains i’s optimal arm or any replica of it until
round t. Then we can derive the following lemma:

Lemma 6. At round t, if Ni,t ≥ e1/c, then P[Y c
i ] ≤ 1/Ni,t.

Proof of Lemma 6. At round t, agent i is selected Ni,t times and min(|Si|, ln2 Ni,t) arms will be sampled until
then. If |Si| ≤ ln2 Ni,t, then the optimal arm will be contained in Bi. Otherwise, the following inequalities
conclude the proof.

P[Y c
i ] ≤ (1− c)

|Si|(1− c)− 1

|Si| − 1

|Si|(1− c)− 2

|Si| − 2
. . .
|Si|(1− c)− ln2 Ni,t

|Si| − ln2 Ni,t

≤ (1− c)ln
2 Ni,t

≤ (1− c)1/c lnNi,t

≤ 1/Ni,t ,

where the last inequality holds from (1− 1/x)x ≤ 1/e for any x ≥ 0.

Then, Lemma 2 should be replaced as the following:
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Lemma 7. At round t, conditional expected internal regret given that Yi is occurred can be bounded as the
following: ∑

ia∈Bi

E[δiaNia,t|Yi] ≤ ln2 Ni,t

( ∑
ia∈Oi

µia<µi1

8 lnNi,t

δia
+ (1 +

π2

3
)δia

)
.

Proof of Lemma 7. Given t and Ni,t, |B|i = min(|Si|, ln2 Ni,t). If |Si| ≤ ln2 Ni,t, then the optimal arm will be
contained in Bi, and the result directly holds. Otherwise, we have

E[δiaNia,t|Yi] ≤ (1− P[Yi]) ln
2 Ni,t

( ∑
a∈Oi

µia<µi1

(8 lnNi,t

δia
+ (1 +

2π2

3
)δia

))
,

and it concludes the proof.

Now we present two lemmas which are analogous to Lemma 3 and 4.

Lemma 8. Given any agent i ∈ N , for each arm j in j ∈ Si at time t, we have

P
[
|Ri,t − µi1 | ≥

√√
t ln3 t

Ni,t

]
≤ ρ′′(Ni,t) ,

where

ρ′′(Ni,t) = 1/Ni,t +
1

c
lnTe−

√
t ln3 t/(2L2 ln2 T ) +

1

c
ln2 Ni,t

( ∑
ia∈Oi

µia<µi1

16 lnNi,t

δia
+ (2 +

2π2

3
)δia

)
/

√
Ni,t

√
t ln3 t .

Lemma 9. At round t such that t ln3 t ≥ e2/c, if any suboptimal replicator i has been played at least 4
√
t ln3 t
∆2

i

times and optimal replicator i⋆ has been played at least
√
t ln3 t, then UCBi,t < UCBi⋆,t with probability at least

1− (ρ′′i,t(
4
√
t ln3 t
∆2

i
) + ρ′′i⋆,t(

√
t ln3t)), i.e.

P
[
It+1 ∈ Si|Ni,t ≥

4
√
t ln3 t

∆2
i

, Ni⋆,t ≥
√

t ln3 t
]
≤ ρ′′i,t(

4
√
t ln3 t

∆2
i

) + ρ′′i⋆,t(
√
t ln3 t) . (37)

Then, followed by some calculations, one can find that ρ′′(
√
t ln3 t) = O(

√
t ln3 t) for any t such that t ln3 t ≥ e2/c.

These enables us to obtain O( n
c2

√
T ln3 T ) problem-dependent regret upper bound and O( n√

c
T 3/4 ln3/2 T )

problem-independent regret upper bound. Note that deriving problem-independent regret bound requires a sim-
ilar technique as the ones used in the proof of Theorem 6.
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E Sampling UCB

We provide a pseudo-code for S-UCB described in Section 5, which is UCB1 with the subsampling module of RH-
UCB. Our construction of S-UCB is to perform an ablation study on the impact of subsampling and hierarchy
in RH-UCB, respectively. We recall that our experiment reveals that S-UCB can outperform UCB1 in cases with
infinite replications thanks to the addition of subsampling module, c.f., Figure 2(b) and Figure 2(c).

Algorithm 4: Sampling UCB (S-UCB)

1 Parameter: L > 0
2 Initialize R(i), N(i), r(a) and n(a) at zero for all i ∈ N and a ∈ ∪i∈NSi;
3 Subsample Bi of size min{|Si|, L lnT} from Si and B = ∪iBi;
4 for t = 1, 2, . . . do
5 if Unexplored arm exists in B then
6 Pick an unexplored â ∈ {a ∈ B : n(a) = 0};
7 else

8 Pick â = argmaxa∈B

{
r(a) +

√
2 ln t
n(a)

}
;

9 end
10 Play At = â and receive reward Rt;

11 Update statistics: r(â)← r(â)n(â)+Rt

n(â)+1 ; n(â)← n(â) + 1;

12 end
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