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Abstract

Decision trees are important both as in-
terpretable models amenable to high-stakes
decision-making, and as building blocks of
ensemble methods such as random forests
and gradient boosting. Their statistical prop-
erties, however, are not well understood. The
most cited prior works have focused on de-
riving pointwise consistency guarantees for
CART in a classical nonparametric regression
setting. We take a different approach, and
advocate studying the generalization perfor-
mance of decision trees with respect to dif-
ferent generative regression models. This al-
lows us to elicit their inductive bias, that
is, the assumptions the algorithms make (or
do not make) to generalize to new data,
thereby guiding practitioners on when and
how to apply these methods. In this pa-
per, we focus on sparse additive generative
models, which have both low statistical com-
plexity and some nonparametric flexibility.
We prove a sharp squared error generaliza-
tion lower bound for a large class of deci-
sion tree algorithms fitted to sparse additive
models with C1 component functions. This
bound is surprisingly much worse than the
minimax rate for estimating such sparse ad-
ditive models. The inefficiency is due not
to greediness, but to the loss in power for
detecting global structure when we average
responses solely over each leaf, an observa-
tion that suggests opportunities to improve
tree-based algorithms, for example, by hier-
archical shrinkage. To prove these bounds,
we develop new technical machinery, estab-
lishing a novel connection between decision
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tree estimation and rate-distortion theory, a
sub-field of information theory.

1 Introduction

Using decision trees for supervised learning has a long
and storied history. First introduced by Morgan and
Sonquist (1963), the idea is simple: recursively split
your covariate space along coordinate directions, and
fit a piecewise constant model on the resulting parti-
tion. The adaptivity of splits to structure in the data
improves conciseness and statistical efficiency of tree
models. Meanwhile, the greedy splitting principle fol-
lowed by most algorithms, including Breiman et al.
(1984)’s Classification and Regression Trees (CART),
ensures computational tractability. More recently,
there has also been growing interest in fitting opti-
mal decision trees using mathematical programming
or dynamic programming techniques (Lin et al., 2020;
Aghaei et al., 2021).

Decision tree models are important for two main rea-
sons. First, shallow decision trees are interpretable
models (Rudin et al., 2021): They can be implemented
by hand, and they are easily described and visualized.
While the precise definition and utility of interpretabil-
ity has been a subject of much debate (Murdoch et al.,
2019; Doshi-Velez and Kim, 2017; Rudin, 2019), all
agree that it is an important supplement to predic-
tion accuracy in high-stakes decision-making such as
medical risk assessment and criminal justice. For this
reason, decision trees have been widely applied in both
areas (Steadman et al., 2000; Kuppermann et al., 2009;
Letham et al., 2015; Angelino et al., 2018). Second,
CART trees are used as the basic building blocks of
ensemble machine learning algorithms such as random
forests (RF) and gradient boosting (Breiman, 2001;
Friedman, 2001). These algorithms are recognized as
having state-of-the-art performance over a wide class
of prediction problems (Caruana and Niculescu-Mizil,

Code and documentation for easily reproducing the re-
sults are provided at https://github.com/aagarwal1996/
additive_trees.

https://github.com/aagarwal1996/additive_trees
https://github.com/aagarwal1996/additive_trees
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2006; Caruana et al., 2008; Fernández-Delgado et al.,
2014; Olson et al., 2018), and receive widespread use,
given their implementation in popular machine learn-
ing packages such as ranger (Wright et al., 2017),
scikit-learn (Pedregosa et al., 2011) and xgboost

(Chen and Guestrin, 2016). Random forests in par-
ticular have also shown promise in scientific applica-
tions, for example in discovering interactions in ge-
nomics (Boulesteix et al., 2012; Basu et al., 2018).

Because of the centrality of decision trees in the ma-
chine learning edifice, it is all the more surprising that
there has been relatively little theory on their statis-
tical properties. In the regression setting, some of the
most cited prior works have focused on deriving point-
wise consistency guarantees for CART when assuming
that the conditional mean function is Lipschitz contin-
uous (Biau, 2012; Wager and Athey, 2018). Unfortu-
nately, each is forced to modify the splitting criterion
in the algorithm to ensure that the mesh of the learnt
partition shrinks to zero. Scornet et al. (2015) proved
the first consistency result for the unmodified CART
algorithm by replacing the fully nonparametric regres-
sion model with an additive regression model (Fried-
man et al., 2001). This generative assumption simpli-
fies calculations by avoiding some of the complex de-
pendencies between splits that may accumulate during
recursive splitting. Moreover, it prevents the existence
of locally optimal trees that are not globally optimal,
which would otherwise trip up greedy methods such
as CART. Klusowski (2020, 2021) has extended this
analysis to sparse additive models, showing that when
the true conditional mean function depends only on a
fixed subset of s covariates, CART is still consistent
even when the total number of covariates is allowed to
grow exponentially in the sample size. This adaptiv-
ity to sparsity somewhat alleviates the curse of dimen-
sionality, and partially explains why CART and RF
are often preferred in practice to k-nearest neighbors.

As natural generalizations of linear models, additive
models simultaneously have low statistical complexity
and yet sufficient nonparametric flexibility required to
describe some real world datasets well. Moreover, if
the component functions are not too complex, additive
models have aspects of interpretability (Rudin et al.,
2021). Unsurprisingly, they have accumulated a rich
statistical literature (Hastie and Tibshirani, 1986; Sad-
hanala and Tibshirani, 2019). While the previously
discussed works have proved consistency for CART on
additive regression models, it is also important to com-
pute rate upper and lower bounds for the generaliza-
tion error of CART and other decision tree algorithms.
This would allow us to compare their performance with
that of specially tailored algorithms such as backfitting
(Breiman and Friedman, 1985), and hence understand

whether the inductive biases of decision trees are able
to fully exploit the structure present in additive mod-
els.

1.1 Main contributions

In this paper, we provide generalization lower bounds
for a large class of decision trees, which we call ALA,
when fitted to data generated from sparse additive
models. We define an ALA tree as one that learns
an axis-aligned partition of the covariate space, and
makes predictions by averaging the responses over each
leaf. We call this second aspect leaf-only averaging. In
addition, we will assume for analytical reasons that our
trees are honest, which means that one sample is used
to learn the partition, and a separate sample is used
to estimate the averages over each leaf (Athey and Im-
bens, 2016). CART is an example of an ALA tree, and
so are most (but not all) decision tree algorithms used
in practice. The reason we consider this level of gen-
erality is to remove the effect of greediness that has
dominated the analysis of CART thus far, and to ar-
gue that leaf-only averaging subtly introduces its own
inductive bias.

We show that when the true conditional mean function
is a sparse additive model with s C1 univariate compo-
nent functions, no honest ALA tree, even one that has
oracle access to the true conditional mean function,

can perform better than Ω
(
n−

2
s+2

)
in expected `2 risk.

This is the `2 minimax rate for nonparametric estima-
tion of C1 functions in s dimensions (Stone, 1982).
In contrast, if each univariate component function in
the model is assumed to be C1, the minimax rate for

sparse additive models scales as max
{
s log(d/s)

n , s
n2/3

}
(Raskutti et al., 2012). As such, while it is possible to
achieve a prescribed error tolerance with Õ

(
s3/2

)
sam-

ples via convex programming, ALA trees have a sam-
ple complexity that is at least exponential in s, which
means that they needlessly suffer from the curse of
dimensionality. The intuitive explanation for this in-
efficiency is that by ignoring information from other
leaves when making a prediction, leaf-only averaging
creates an inductive bias against global structure.

As far as we know, this paper is the first to establish
algorithm-specific lower bounds for CART or any other
decision tree algorithm. More broadly, algorithm-
specific lower bounds can be challenging in the ma-
chine learning literature because they require special-
ized techniques instead of relying on a general recipe
(as is the case with minimax lower bounds). Addi-
tionally, we show that the rate lower bound is achiev-
able using an oracle partition. We also obtain a
lower bound for additive models over Boolean features,
which surprisingly, has a very different form. We note
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that Tang et al. (2018) proved sufficient conditions
under which honest random forest estimators are in-
consistent for special regression functions using Stone
(1977)’s adversarial construction. This construction
does not produce additive functions. Theirs is the only
other work we know of that provides negative results
for tree-based estimators. On the other hand, they do
not compute lower bounds, and their conditions either
involve unrealistic choices of hyperparameters, or per-
tain to properties of trees after they are grown, such
as upper bounds on the rate of shrinkage of leaf diam-
eters. It is not clear if or when these conditions hold
in practice.

Our results are obtained using novel technical machin-
ery, which are based on two simple insights: First, we
show that the variance term of the expected `2 risk
scales linearly with the number of leaf nodes. Sec-
ond, a tree model can be thought of as a lossy code,
in which the number of leaves is the size of the code,
while the bias term of the risk is simply its distortion.
This link to rate-distortion theory, a sub-field of infor-
mation theory (Cover and Thomas, 2012), allows us to
compute the optimal trade-off between bias and vari-
ance to obtain lower bounds. As a happy by-product
of our analysis, the first insight yields a better un-
derstanding of cost-complexity pruning and minimum
impurity decrease procedures that are commonly used
with CART to prevent overfitting.

1.2 Other related work

Here, we discuss some other theoretical work on CART
that is less directly related to this paper. Syrgkanis
and Zampetakis (2020) proved generalization upper
bounds for CART in a different setting. They con-
sidered Boolean features, and imposed some type of
submodularity assumption on the conditional mean
function. While this subsumes additive models, the
authors did not give concrete examples of other mod-
els satisfying this assumption. Scornet (2020) returned
to the additive model setting, and was able to compute
explicit asymptotic formulas for the popular mean im-
purity decrease (MDI) feature importance score. Behr
et al. (2021) formulated a biologically-inspired discon-
tinuous nonlinear regression model, and showed that
CART trees can be used to do inference for the model.
We refer the reader to several excellent survey papers
for a fuller description of the literature (Loh, 2014;
Biau and Scornet, 2016; Hooker and Mentch, 2021).

2 Preliminaries

We work with the standard regression framework in
supervised learning, and assume a generative model

y = f(x) + ε (1)

where the feature vector x is drawn from a distribu-
tion ν on a subset X ⊂ Rd, while the responses y are
real-valued, and ε is a noise variable that is mean zero
when conditioned on x. We assume that the noise is
homoskedastic, and denote σ2 := E

{
ε2 | x

}
. In this

paper, X will either be the unit-length cube [0, 1]d or
the hypercube {0, 1}d. An additive model is one in
which we can decompose the conditional mean func-
tion as the sum of univariate functions along each co-
ordinate direction:

f(x) =

d∑
j=1

φj(xj). (2)

We are given a training set Dn =
{(x(1), y(1)), . . . (x(n), y(n))} comprising indepen-
dent samples that are drawn according to the model
(1).1

A cell C ⊂ X is a rectangular subset. If X = [0, 1]d,
this means that it can be written as a product of
intervals: C = [a1, b1] × [a2, b2] × · · · × [ad, bd]. If
X = {0, 1}d, this means that it is a subcube of the
form C(S, z) = {x ∈ {0, 1}d : xj = zj for j ∈ S} where
S ⊂ [d] is a subset of coordinate indices. Given a cell
C and a training set Dn, let N(C) :=

∣∣{i : x(i) ∈ C
}∣∣

denote the number of samples in the cell.

A partition p = {C1, . . . , Cj} is a collection of cells
with disjoint interiors, whose union is the entire space
X . Given the training set Dn, every partition yields
an estimator f̂(−; p,Dn) for f via leaf-only averaging :
For every input x, the estimator outputs the mean
response over the cell containing x. In other words,
we define

f̂(x; p,Dn) :=
∑
C∈p

( 1

N(C)
∑

x(i)∈C

y(i)
)
1{x ∈ C}.

We will use the convention that if N(C) = 0, then we
set 1

N(C)
∑

x(i)∈C y
(i) = 0. We call such an estimator

an ALA tree.2

Note that decision tree algorithms that make non-axis-
aligned splits do not yield partitions, though this is not

1Sample indices will be denoted using superscripts,
while subscripts will be reserved for coordinate indices.

2Certain partitions cannot be obtained by recursive bi-
nary partitioning. This distinction is not important for
our analysis, so we will slightly abuse terminology in call-
ing these estimators trees.
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the case for CART and most other algorithms pop-
ularly used today. In this definition, we have also
kept the partition fixed, whereas decision tree algo-
rithms learn a data-adaptive partition. Having a fixed
partition, however, is in keeping with our setting of
honest decision trees: We assume that the partition
p = p(D′m) has been learnt using a separate dataset
D′m that we are conditioning on. Furthermore, we note
that any lower bounds that hold conditionally on D′m
will also hold unconditionally.

The squared error risk, or generalization error of an
estimator f̂ for f is defined as

R(f̂) := Ex∼ν

{(
f̂n(x)− f(x)

)2}
.

We are interested in the smallest possible risk of an
ALA tree. To rule out irregularities that happen when
some cell C does not contain any samples from the
training set Dn, we need to ensure that the cells are
not too small. We say that a partition p is permissible
if for every cell C ∈ p, we have ν{C} ≥ 1

n . This is a
reasonable assumption, as we should expect each cell
to contain at least one sample point. Finally, given
a conditional mean function f , we define the oracle
expected risk for ALA trees to be

R∗(f, ν, n) := inf
p
E
{
R(f̂(−; p,Dn)

}
(3)

where the infimum is taken over all permissible parti-
tions.

3 A bias-variance risk decomposition
for ALA trees

Our main results rely on two key ingredients: A bias-
variance decomposition of the expected risk for ALA
trees, and a connection to information theory. We
state the former as follows.

Theorem 3.1 (Bias-variance decomposition of ex-
pected risk). Assume the regression model (1). Given
a permissible partition p and a training set Dn, the
expected risk satisfies the following lower and upper
bounds:

ER(f̂(−; p,Dn)) ≥
∑
C∈p

Var{f(x) | x ∈ C}ν{C}+ |p|σ
2

2n
,

(4)

ER(f̂(−; p,Dn)) ≤ 7
∑
C∈p

Var{f(x) | x ∈ C}ν{C}

+
6|p|σ2

n
+ E(p), (5)

where

E(p) =
∑
C∈p

E{f(x) | x ∈ C}2 (1− ν{C})n ν{C}.

We make a few remarks about the above theorem.
First, we draw attention to its generality: It holds for
any conditional mean function and any distribution ν
on X , where X is allowed to be any measurable subset
of Rd. In fact, inspecting the proof shows that we do
not even require the partition to be axis-aligned.

Next, observe that the lower and upper bounds match
up to constant factors and an additive error term E for
the upper bound. This term is due to each cell receiv-
ing possibly zero samples from the training set, and
thus can be made arbitrarily small in comparison with
the main terms by further constraining the minimum
volume of cells in the partition.

The first main term can be thought of as the approxi-
mation error or bias, and has the following equivalent
representations:∑
C∈p

Var{f(x) | x ∈ C}ν{C} = E{Var{f(x) | x ∈ C}}

= E
{(
f(x)− f̄p(x)

)2}
,

where f̄p is the function that takes the value of the
conditional mean of f over each cell. In other words,
this term is the expected mean square error of the ALA
tree if we had infinite data.

The second main term is the contribution from vari-
ance, and can be traced to using empirical averages
over each cell to estimate the conditional means. The
form of this term is striking: It scales linearly with
the size of the partition, in direct analogy with the
penalty term in cost-complexity pruning (Friedman
et al., 2001). Furthermore, it precisely quantifies the
trade off between bias and variance when splitting a
cell C in the partition into two children CL and CR. The

gain in variance is of the order σ2

n , while the reduction
in bias is

Var{f(x) | x ∈ C}ν{C} −Var{f(x) | x ∈ CL}ν{CL}
−Var{f(x) | x ∈ CR}ν{CR}.

One can check that this is the population version of the
weighted impurity decrease of this split, which is the
quantity used to determine splits in CART, and also
the value compared against a threshold in early stop-
ping with the minimum impurity decrease criterion.
These observations show that both these methods for
preventing overfitting in CART attempt to optimize
an objective function that is a weighted combination
of plug-in estimates of the bias and variance terms in
the expected risk decomposition for an honest tree.

The proof of Theorem 3.1 and that of a tighter but
more complicated version of the decomposition can
both be found in Appendix A. In the next two sec-
tions, we will see how the decomposition can be used in
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conjunction with rate distortion theory to yield lower
bounds for additive models.

4 Connecting decision trees to
rate-distortion theory

The second ingredient we need is supplied by rate-
distortion theory. We start by recalling some defini-
tions from Cover and Thomas (2012). We will use
H(−), h(−) and I(−;−) to denote discrete entropy,
differential entropy, and mutual information respec-
tively. Let X be a subset of Rd as before. Given a
vector β ∈ Rd, we denote the associated weighted Eu-
clidean norm on X via ‖x−y‖2β :=

∑d
j=1 β

2
j (xj−yj)2.

Now let p denote a joint distribution on X × X . The
distortion of p with respect to ‖−‖β is defined as

δ(p;β) := E(x,x̂)∼p

{
‖x− x̂‖2β

}
.

The rate distortion function of the marginal px is de-
fined by

R(D; px,β) := inf
px̂|x

I(x; x̂)

where the infimum is taken over all conditional distri-
butions such that δ(pxpx̂|x;β) ≤ D.

In rate-distortion theory, the rate distortion function
characterizes the length of a binary code needed to en-
code a source so that the distortion is not too large.
In this paper, it clarifies the trade-off between the bias
and variance terms in the decomposition (4). Under
some independence conditions, we show that the bias
term is equivalent to a distortion, while the size of the
partition occurring in the variance term is bounded
from below by the rate of this distortion. More pre-
cisely, we have the following lemma.

Lemma 4.1 (Rate-distortion bound for oracle ex-
pected risk). Assume the regression model (1), and
that X = {0, 1}d or X = [0, 1]d. Furthermore, assume
that the covariates are independent, and that the con-
ditional mean function is linear: f(x) = βTx. Then
the oracle expected risk is lower bounded by

R∗(f, ν, n) ≥ 1

2
inf
D>0

{
D +

σ22R(D;ν,β)

n

}
. (6)

Proof. Consider some permissible partition p. For any
cell C ∈ p, notice that the conditional covariate dis-
tribution ν|C also has independent covariates. Let x′

be an independent copy of x. Using independence, we

compute

Var{f(x) | x ∈ C} =
1

2
E
{(

βT (x− x′)
)2 | x,x′ ∈ C}

=
1

2
E


d∑
j=1

β2
j

(
xj − x′j

)2 | x,x′ ∈ C


=
1

2
E
{
‖x− x′‖2β | x,x′ ∈ C

}
≥ 1

2
E
{
‖x− z(C)‖2β | x ∈ C

}
, (7)

where z(C) := arg minx′∈C E
{
‖x− x′‖2β | x ∈ C

}
.3 To

define a conditional distribution, for each x, we let px̂|x
be a Dirac mass at z(C(x)), where C(x) is the cell in p
containing x. Then the bias term in (4) can be lower
bounded by the distortion for the joint distribution
p = νpx̂|x:

∑
C∈p

Var{f(x) | x ∈ C}ν{C} ≥ δ(p;β)

2
.

Meanwhile, notice that x̂ is a discrete distribution on
|p| elements, so we may use the max entropy property
of the uniform distribution to write

log|p| ≥ H(x̂) ≥ I(x; x̂) ≥ R(δ(p;β); ν,β).

Plugging these formulas into (4) gives the lower bound∑
C∈p

Var{f(x) | x ∈ C}ν{C}+
|p|σ2

2n

≥ δ(p;β)

2
+
σ22R(δ(p;β);ν,β)

2n
.

Minimizing over all partitions yields (6).

We remark that the lemma applies to both continu-
ous and discrete distribution, and may be valid for
other subsets X ⊂ Rd. Next, it is known that rate
distortion functions are convex and monotonically de-
creasing, and one may therefore check that the same
applies to the function D 7→ 2R(D;ν,β). As such, the
right-hand-side of (6) is the solution to a convex op-
timization problem, and can be solved efficiently in
principle. This is especially significant when X is the
Boolean cube, because it allows us to turn what is
a priori a combinatorial optimization problem into a
smooth, convex one.

When β has at least s large coefficients, the indepen-
dence of the covariates allows us to use standard calcu-
lations to bound R(D; ν,β) from below by elementary

3z(C) is the cell centroid when X is the unit length cube,
but not when it is the Boolean cube. Furthermore, equality
actually holds without the factor of 1/2 in the former case.
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functions, therefore giving us a closed-form formula for
the oracle expected risk. We state the result for the
case where X is the unit length cube, and leave more
general versions of the theorem to the next section.

Theorem 4.2 (Lower bound for linear models). In
addition to the assumptions of Lemma 4.1, assume
that X is the unit length cube [0, 1]d, and that the
covariates each follow some marginal distribution ν0.
Suppose there is some subset of coordinates S ⊂ [d]
of size s such that |βj | ≥ β0 for all j ∈ S. Then the
oracle expected risk is lower bounded by

R∗(f, ν, n) ≥ Csβ2
0

(
σ2

β2
0n

)2/(s+2)

, (8)

where C = 1
2

(
22h(ν0)/πe

)s/(s+2)
.

Proof. Combining Lemmas B.1, B.2, and B.3, we know
that R(D; ν,β) is lower bounded by the value of

inf
β2
0

∑
j∈S Dj≤D

∑
j∈S

(
h(ν0)− 1

2
log(2πeDj)

)
∨ 0. (9)

This is a convex optimization problem, and by sym-
metry over the coordinate indices in S, it is easy to

see that the infimum is achieved at Dj = D
sβ2

0
∨ 22h(ν0)

2πe

for j ∈ S, and Dj = 22h(ν0)

2πe for j /∈ S, where s = |S|.
Plugging these into (9), we get

R(D; ν,β) ≥ s
(
h(ν0)− 1

2
log

(
2πeD

sβ2
0

))
. (10)

As such, we have

D +
σ22R(D;ν,β)

n
≥ D +

σ22sh(ν0)

n

(
sβ2

0

2πeD

)s/2
.

Differentiating, we easily see that the minimum is
achieved at

D = s2
2s
s+2h(ν0)−1

(
β2
0

πe

)s/(s+2)(
σ2

n

)2/(s+2)

.

Using this value in (6) and dropping the second term
then completes the proof.

5 Results for additive models

In the previous section, we saw how the bias-variance
risk decomposition and an information theoretic argu-
ment can be used to obtain a lower bound for oracle
expected risk. With a more sophisticated application
of the latter, we can derive more powerful results for
additive models over both continuous and Boolean fea-
ture spaces. We state these results in this section,
deferring all proofs to the appendix because of space
constraints.

Theorem 5.1 (Lower bound for additive models
on unit length cube). Assume the regression model
(1), with f be defined as in (2), and assume that
the covariate space is the unit length cube [0, 1]d.
Suppose φj ∈ C1([0, 1]) for j = 1, . . . , d. Let
I1, I2, . . . , Id ⊂ [0, 1] be sub-intervals, and suppose
there is some subset of indices S ⊂ [d] of size s such
that min

t∈Ij

∣∣φ′j(t)∣∣ ≥ β0 > 0 for all j ∈ S. Denote

K = {x : xj ∈ Ij for j = 1, . . . , d}. Assume that ν is
a continuous distribution with density q, and denote
qmin = min

x∈K
q(x). Then the oracle expected risk is

lower bounded by

R∗(f, ν, n) ≥ Csβ2
0

(
σ2

β2
0n

)2/(s+2)

, (11)

where C = µ(K)q
s/(s+2)
min /12.

As mentioned before, the Ω(n−2/(s+2)) rate in (11) is
the `2 minimax rate for nonparametric estimation of
C1 functions in s dimensions (Stone, 1982). This is far
worse than the minimax rate for estimating sparse ad-

ditive models, which scales as max
{
s log(d/s)

n , sε2n(H)
}

,

where εn(H) is a quantity that depends only on H and
the sample size n (Raskutti et al., 2012).

The theorem is more flexible than Theorem 4.2 in the
following ways: It allows the component functions φj
to be nonlinear, and even have vanishing derivatives
everywhere except on an interval, which means (11)
applies to any nontrivial choice of the φj ’s. Further-
more, unlike Theorem 4.2, it does not require the co-
variates to be independent. Finally, a more general
version of the lower bound, stated as Theorem C.1 in
Appendix C, allows us to provide tighter lower bounds
in the case where the βj ’s may be decaying in magni-
tude rather than having a non-zero lower bound.

These improvements require a different information
theoretic argument, which roughly works as follows:
First, we derive the maximum volume a cell can have
under gradient lower bounds and a prescribed variance
constraint (see Lemma C.3.) We then use this to com-
pute the number of cells necessary to cover the por-
tion of [0, 1]d over which the the gradient lower bounds
hold. As an easy by-product of the above calculations,
we also compute the optimal dimensions of a cell un-
der the variance constraint. This allows us to derive
matching oracle upper bounds for sparse additive mod-
els:

Proposition 5.2 (Upper bound for sparse additive
models on unit length cube). Let f be a sparse addi-
tive model, i.e. there is a subset of coordinates S ⊂ [d]
such that f(x) =

∑
j∈S φj(xj). Assume that the co-

variate space is the unit length cube [0, 1]d. Suppose
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Figure 1: Scaling of the test set error for CART and RF for a sparse sum of squares generative model y =∑
j βjx

2
j + ε with x ∼ Unif

(
[0, 1]d

)
.We show the scaling with respect to n for (A) s = 10, and (B) s = 20..

φj ∈ C1([0, 1]), and ‖φj‖∞ ≤ βmax for j ∈ S. Assume
ν is a continuous distribution with density q. Then

lim sup
n→∞

R∗(f, ν, n)

n−2/(s+2)
≤
(
Csβ2

max + 6
)
σ2/(s+2), (12)

where C = 168‖q‖∞.

Our next main result is for additive models over the
Boolean cube. Note that all additive models are linear
in this setting, and we are thus able to prove this using
the original rate-distortion argument.

Theorem 5.3 (Lower bounds for additive Boolean
models). Assume the regression model (1) and that the
conditional mean function is linear: f(x) = βTx. As-
sume that the covariate space is the hypercube {0, 1}d,
and that the covariates are independent, with xj ∼
Ber(π), 0 ≤ π ≤ 1

2 , for j = 1, . . . , d. Suppose there is
some subset of coordinates S ⊂ [d] of size s such that
|βj | ≥ β0 > 0 for all j ∈ S. Then the oracle expected
risk is lower bounded by

R∗(f, ν, n) ≥ sβ2
0

2

(
1−

(
2esnβ2

0

2sH(π)σ2

) 1
s−1

)
. (13)

The form of the lower bound (13) is different from
that in Theorem 5.1. This is due to the fact that we
can achieve zero approximation error over the Boolean
cube with finitely many cells. As a consequence, while
the rate-distortion function in the continuous case (10)
tends to infinity as D tends to 0, that in the Boolean
case (22) tends to a finite number. Our proof of
(13) does not actually use the sharp rate bound (22),
and instead approximates it by a more computation-
ally tractable bound (23). It is unclear how much
slack from this approximation propagates into the fi-
nal bound (13), but it is reassuring that the general

concave down shape of the test error scaling in Figure
3 is consistent with (13). We provide a more general
version of the lower bound (Theorem B.5) in Appendix
B.

We examined the empirical validity of each of our main
results by simulating the generalization error of tree-
based algorithms fitted to sparse linear models with
both continuous and Boolean features, as well as an
additive non-linear sum of squares model with contin-
uous features. We present only results for the sum of
squares model as seen in Figure 1 in the main text of
the paper due to space constraints, while the results
and experimental design for other experiments can be
found in Appendix D. Details of our experimental de-
sign and algorithm settings are shown below.

Experimental design: We simulate data via a sparse
sum of squares model y =

∑
j βjx

2
j + ε with x ∼

Unif
(
[0, 1]d

)
. We varied n, but fixed d = 50, σ2 = 0.01,

and set βj = 1 for j = 1, . . . , s, and βj = 0 otherwise,
where s is a sparsity parameter. We ran the experi-
ments with both s = 10 and s = 20, and plotted the
results for each setting in panel A and panel B respec-
tively for all of the figures. We computed the general-
ization error using a test set of size 500, averaging the
results over 25 runs.

Algorithm settings: We fit both honest and non-
honest versions of CART, as well as the non-honest
version of RF using a training set of size n. For the
honest version of CART, we use a separate indepen-
dent sample of size n to compute averages over each
leaf in the tree. Furthermore, if a cell contains no sam-
ples from the training data used to do averaging, we
search for the closest ancestor node that contains at
least one sample and use the average over that node
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to make a prediction. We use min samples leaf=5

as the stopping condition, although we also ran ex-
periments with cost-complexity pruning and achieved
very similar results.

We note that Figures 1 and 2 not only give an empirical
validation of the theoretical rates in our lower bound,
which are 0.17 and 0.09 for s = 10 and 20 respectively,
but also indicate that honest CART almost achieves
these bounds despite there being no a priori guarantee
that CART grows an optimal tree. While the theory
does not cover the case of non-honest CART, its test
error is worse than that of honest CART, and has a
similar rate. An interesting facet of all our simulations
is that RF has a markedly faster rate, implying that
diverse trees allow the algorithm to pool information
across the training samples more efficiently, supporting
Breiman (2001)’s original hypothesis.

There are a few interesting additional observations
that can be made. First, we remark that although
Theorem 5.1 is stated in terms of distributions over
the unit cube, we can easily extend it to non-compact
distributions over Rd such as multivariate Gaussians
by using marginal quantile transforms. Second, from
the formulas (8) and (13), we see that the lower bound
decreases with the entropy of the covariate distribu-
tion, although the rate in the sample size n remains
the same. Third, in Appendix B, we provide more
complicated lower bounds (25) and (20), which, for a
fixed value of ‖β‖22, are smaller when more of the `2
energy is concentrated in fewer coordinates, i.e. when
the coefficients experience faster decay. This agrees
with our intuition that decision trees are adaptive
to low-dimensional structure beyond the hard spar-
sity regime, which has been the focus of recent lit-
erature (Syrgkanis and Zampetakis, 2020; Klusowski,
2020, 2021).

6 Discussion

In this paper, we have obtained theoretical lower
bounds on the expected risk for honest ALA trees
when fitted to additive models, while our simulations
suggest that these results should also hold for their
non-honest counterparts. These bounds lead us to ar-
gue that such estimators, including CART, have an in-
ductive bias against global structure, a bias that arises
not from the greedy splitting criterion used by most de-
cision tree algorithms, but from the leaf-only averaging
property of this class of estimators. Furthermore, we
provide experimental evidence that the bounds do not
apply to RF, which supports Breiman (2001)’s original
narrative that the diversity of trees in a forest helps to
reduce variance and improve prediction performance.
Nonetheless, the rates exhibited by RF are still signif-

icantly slower than the minimax rates for sparse addi-
tive models, hinting at fundamental limits we are yet
to understand.

Our results further the conversation about how deci-
sion tree algorithms can be improved, and suggest that
they should be modified to more easily learn global
structure. One natural idea on how to do this is to
adopt some type of hierarchical shrinkage or global
pooling. Another is to combine tree-based methods
with linear or additive methods in a way that incor-
porates the statistical advantages of both classes of
methods, in the vein of Friedman and Popescu (2008)’s
RuleFit.4 Recently, Bloniarz et al. (2016) and Fried-
berg et al. (2020) suggested using the RF kernel in con-
junction with local linear (or polynomial) regression,
while Künzel et al. (2019) replaced the constant predic-
tion over leaf with a linear model. These works, how-
ever, aim at modifying RF to better exploit smooth-
ness, and do not directly address the loss in power
for detecting global structure that comes from parti-
tioning the covariate space. Furthermore, the focus
on forests forestalls the possibility of preserving inter-
pretability.

Taking a step back to look at the bigger picture, we
believe that it is important to analyze the general-
ization performance of CART and other decision tree
algorithms on other generative regression models in or-
der to further elicit their inductive biases. The same
type of analyses can also be applied to other machine
learning algorithms. Since real world data sets often
present some structure that can be exploited using the
right inductive bias, this research agenda will allow us
to better identify which algorithm to use in a given
application, especially in settings, such as the estima-
tion of heterogeneous treatment effects, where a held
out test set is not available. Moreover, as seen in this
paper, such investigations can yield inspiration for im-
proving existing algorithms.

The approach we follow is different from the classical
paradigm of statistical estimation, which starts with
an estimation problem, and then searches for estima-
tion procedures that can achieve some form of optimal-
ity. Instead, as is common in machine learning, we take
an algorithm as the primitive object of investigation,
and seek to analyze its performance under different
generative models to elicit its inductive bias. This ap-
proach is more aligned with modern data analysis, in
which we seldom have a good grasp over the functional
form of the data generating process, leading to a hand-

4Given the interest of practitioners in using tree-based
methods to identify interactions in genomics (Chen and
Ishwaran, 2012; Boulesteix et al., 2012; Basu et al., 2018;
Behr et al., 2021), it is fair to say that this is a key strength
of trees and RF.
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ful of general purpose algorithms being used for the
vast majority of prediction problems. This embrace of
suboptimality is consistent with viewing the models as
approximations – an old tradition in the statistical lit-
erature (Huber (1967); Box (1979); Grenander (1981);
Geman and Hwang (1982); Buja et al. (2019)).

We have only scratched the surface of investigating the
inductive biases of decision trees, RF, gradient boost-
ing, and other tree-based methods, and envision an
abundant garden for future work.
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A Proof of Theorem 3.1

We first state and prove a tighter and more complicated version of the bias-variance decomposition of the expected
risk. For notational convenience, we denote

ÊC{y} := Ê{y|x ∈ C} =
1

N(C)
∑

x(i)∈C

y(i).

Proposition A.1 (Bias-variance decomposition of risk). Assume the regression model (1). Given a partition p
and a training set Dn, the expected squared error risk satisfies the following upper and lower bounds

ER(f̂(−; p,Dn)) ≥
∑
C∈p

Var{f(x) | x ∈ C}
(
ν{C}+

1

n

)
+
|p|σ2

n
+ E1 − E2 (14)

ER(f̂(−; p,Dn)) ≤
∑
C∈p

Var{f(x) | x ∈ C}
(
ν{C}+

6

n

)
+

6|p|σ2

n
+ E1 (15)

where

E1 =
∑
C∈p

E{f(x) | x ∈ C}2 (1− ν{C})n ν{C}.

E2 =
1

n

∑
C∈p

(
Var{f(x) | x ∈ C}+ σ2

)
(1− ν{C})n .

Proof. First consider a cell C, with x ∈ C. Supposing that N(C) 6= 0, We have

EDn
{(

f(x)− ÊC{y}
)2
| N(C)

}
= EDn


f(x)− 1

N(C)
∑

x(i)∈C

(
f(x(i)) + εi

)2

N(C)


= EDn


f(x)− 1

N(C)
∑

x(i)∈C

f(x(i))

2

N(C)

+
σ2

N(C)
.

Taking a further conditional expectation with respect to x ∈ C, we see that the distribution x is the same as
that of each x(i). We can therefore compute

Ex

EDn


f(x)− 1

N(C)
∑

x(i)∈C

f(x(i))

2

N(C)

 x ∈ C

 =

(
1 +

1

N(C)

)
Var{f(x) | x ∈ C}.

Putting these two calculations together, and interchanging the order of expectation, we have

EDn
{
Ex

{(
f(x)− ÊC{y}

)2
| x ∈ C

}
| N(C)

}
= Ex

{
EDn

{(
f(x)− ÊC{y}

)2
| N(C)

}
| x ∈ C

}
= Var{f(x) | x ∈ C}+

Var{f(x) | x ∈ C}+ σ2

N(C)
.
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Recall our convention that we set ÊC{y} = 0 if N(C) = 0. We may then write

EDn,x
{(

f(x)− f̂(x)
)2

x ∈ C
}

= EDn,x
{(

f(x)− f̂(x)
)2

1{N(C) 6= 0} x ∈ C
}

+ EDn,x
{(

f(x)− f̂(x)
)2

1{N(C) = 0} x ∈ C
}

= EDn
{
EDn

{
Ex

{(
f(x)− ÊC{y}

)2
x ∈ C

}
N(C)

}
1{N(C) 6= 0}

}
+ E

{
f(x)2 x ∈ C

}
P{N(C) = 0}

= Var{f(x) | x ∈ C}P{N(C) 6= 0}+ E
{
f(x)2 x ∈ C

}
P{N(C) = 0}

+
(
Var{f(x) | x ∈ C}+ σ2

)
EDn

{
1{N(C) 6= 0}

N(C)

}
(16)

Note that

E
{
f(x)2 x ∈ C

}
= Var{f(x) | x ∈ C}+ E{f(x) x ∈ C}2

so that the first two terms on the right hand side of (16) can be rewritten as

Var{f(x) | x ∈ C}+ E{f(x) x ∈ C}2P{N(C) = 0}

We continue by providing upper and lower bounds for EDn
{

1{N(C)6=0}
N(C)

}
. For the upper bound, recall that N(C) is

a binomial random variable, and so has variance smaller than its expectation. This allows to apply Chebyshev’s
inequality to get

P
{
|N(C)− EN(C)| ≥ EN(C)

2

}
≤ EN(C)(

1
2EN(C)

)2
=

4

EN(C)

Next, since 1{N(C)6=0}
N(C) ≤ 1 we have

E
{
1{N(C) 6= 0}

N(C)

}
≤ 2

EN(C)
P
{
N(C) ≥ EN(C)

2

}
+ P

{
N(C) ≤ EN(C)

2

}
≤ 2

EN(C)
+

4

EN(C)

=
6

EN(C)
.

The right hand side of (16) is bounded above by

Var{f(x) | x ∈ C}+ E{f(x) x ∈ C}2P{N(C) = 0}+
6

EN(C)
(
Var{f(x) | x ∈ C}+ σ2

)
Observe that P{N(C) = 0} = (1−ν{C})n, and EN(C) = nν{C}. Taking expectation with respect to x then gives

EDn,x
{(

f(x)− f̂(x)
)2}

≤
∑
C∈p

Var{f(x) | x ∈ C}ν{C}+
∑
C∈p

E{f(x) x ∈ C}2(1− ν{C})nν{C}

+
6

n

∑
C∈p

(
Var{f(x) | x ∈ C}+ σ2

)
.

Rearranging this gives (15).
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The lower bound is follows from Cauchy-Schwarz. We have

P{N(C) 6= 0} = E
{
N(C)1/21{N(C) 6= 0}

N(C)1/2

}
≤ E{N(C)}E

{
1{N(C) 6= 0}

N(C)

}
.

Rearranging this gives

E
{
1{N(C) 6= 0}

N(C)

}
≥ P{N(C) 6= 0}

EN(C)

=
1− P{N(C) = 0}

EN(C)
.

The right hand side of (16) is bounded below by

Var{f(x) | x ∈ C}+ E{f(x) x ∈ C}2P{N(C) = 0}+
1− P{N(C) = 0}

EN(C)
(
Var{f(x) | x ∈ C}+ σ2

)
.

Taking expectation with respect to x then gives

EDn,x
{(

f(x)− f̂(x)
)2}

≥
∑
C∈p

Var{f(x) | x ∈ C}ν{C}+
1

n

∑
C∈p

(
Var{f(x) | x ∈ C}+ σ2

)
.

+
∑
C∈p

(
E{f(x) x ∈ C}2ν{C} − Var{f(x) | x ∈ C}+ σ2

n

)
(1− ν{C})n.

Rearranging this gives (14).

Proof of Theorem 3.1. We use the fact that for any cell C,

(1− ν{C})n ≤
(

1− 1

n

)n
≤ 1

2
.

As such, the term E2 in (14) is at most

E2 ≤
1

2n

∑
C∈p

Var{f(x) | x ∈ C}+
|p|σ2

2n
.

After performing cancellations, we get (4). The upper bound follows similarly.

B Proofs for rate-distortion argument

Lemma B.1 (Rates over product distributions). Suppose ν = ν1 × ν2 × · · · × νd is a product distribution on
X ⊂ Rd. For all D > 0, we have

R(D; ν,β) ≥ inf∑
j β

2
jDj≤D

d∑
j=1

R(Dj ; νj , 1).

Proof. Let x̂ follow the conditional distribution achieving the infimum in the definition of R(D; ν,β). Following
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the calculations in Chapter 10 of Cover and Thomas (2012), we have

R(D; ν,β) = I(x; x̂)

=

d∑
j=1

h(xj)−
d∑
j=1

h(xj |x1:j−1, x̂)

≥
d∑
j=1

h(xj)−
d∑
j=1

h(xj |x̂j)

=

d∑
j=1

I(xj ; x̂j).

Note that xj ∼ νj for j = 1, . . . , d. Denoting δj := E
{

(xj − x̂j)2
}

for each j, we can therefore write

I(xj ; x̂j) ≥ R(Dj ; νj , 1).

Finally, observe that
d∑
j=1

β2
j δj = E

{
‖x− x̂‖2β

}
≤ D,

so taking the infimum over possible values of δj ’s satisfying this constraint gives us the statement of the lemma.

Lemma B.2 (Rates for dominated weighted norms). Let β and β′ be two vectors such as β2
j ≥ (β′j)

2 for
j = 1, . . . , d. Then for all D > 0, we have

R(D; ν,β) ≥ R(D; ν,β′).

Proof. Obvious from the definition of the rate as an infimum.

Lemma B.3 (Univariate rates). Let ν0 be a continuous distribution on R. Then we have

R(D; ν0, 1) ≥
(
h(ν0)− 1

2
log(2πeD)

)
∨ 0.

If ν0 is Bernoulli with parameter 0 < π0 ≤ 1/2, then we have the tighter bound:

R(D; ν0, 1) ≥ (H(π0)−H(D)) ∨ 0.

Proof. We once again follow the calculations in Chapter 10 of Cover and Thomas (2012). Let x̂ follow the
conditional distribution achieving the infimum in the definition of R(D; ν0, 1). Then

R(D; ν0, 1) = I(x; x̂)

= h(x)− h(x|x̂)

= h(x)− h(x− x̂|x̂)

≥ h(x)− h(x− x̂).

Next, we use the maximum entropy property of the normal distribution to write

h(x− x̂) ≤ 1

2
log(2πeD).

Combining this with the observation that mutual information is non-negative completes the proof of the first
statement. For the second statement, we repeat the same arguments with discrete entropy, and observe that

H(x− x̂) = H(D).
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Lemma B.4 (Rate bound for Boolean covariates). Assume the conditions of Theorem B.5. The rate distortion
function may be lowered bounded as

R(D; ν,β) ≥
∑

j : β2
j≥ : m−1

β,π(D) log((1−πj)/(πj))

H(πj)−H
(

1

1 + eβ
2
j /m

−1
β,π(D)

)
(17)

Proof. Combining Lemmas B.1 and B.3, we get

R(D; ν,β) ≥ inf∑
j β

2
jDj≤D

d∑
j=1

(H(πj)−H(Dj)) ∨ 0. (18)

The right hand side is equivalent to the solution of the following convex optimization program:

min

d∑
j=1

H(πj)−H(δj) s.t.

d∑
j=1

β2
j δj ≤ D, δj ≤ πj for j = 1, 2, . . . , d.

The Lagrangian of this program is

L(δ,λ) =

d∑
j=1

H(πj)−H(δj) + λ0

 d∑
j=1

β2
j δj −D

+

d∑
j=1

λj(δj − πj).

Differentiating with respect to δj , we get

dL

dδj
= log

(
δj

1− δj

)
+ λ0β

2
j + λj .

Let δ∗j , j = 1, . . . , d and λ∗j , j = 0, . . . d denote the solution to KKT conditions. The above equation yields

δ∗j =
1

1 + eλ
∗
j+λ

∗
0β

2
j

.

By complementary slackness, we have either λ∗j = 0 or δ∗j = πj for each j. It is easy to see that this implies

δ∗j = πj ∧
1

1 + eβ
2
j /α

where α is chosen so that

D =

d∑
j=1

β2
j δ
∗
j = mβ,π(α).

Plugging these values of δj into (18) gives us (17).

Theorem B.5 (Lower bounds for additive Boolean models). Assume the regression model (1) and that the
conditional mean function is linear: f(x) = βTx. Assume that the covariate space is the hypercube {0, 1}d,
and that the covariates are independent, with xj ∼ Ber(πj), 0 ≤ πj ≤ 1

2 , for j = 1, . . . , d. Define the function

mβ,π :

(
0,max

j

β2
j

log((1− πj)/πj)

)
→ R via the formula

mβ,π(α) =

d∑
j=1

β2
j

(
πj ∧

1

1 + eβ
2
j /α

)
(19)

and notice that it is strictly increasing and hence invertible on its domain. Then we have

R∗(f, ν, n) ≥ 1

2
inf
D>0

{
D +

σ22R(D)

n

}
, (20)
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where

R(D) =
∑

j : β2
j≥ : m−1

β,π(D) log((1−πj)/(πj))

H(πj)−H
(

1

1 + eβ
2
j /m

−1
β,π(D)

)
.

In particular, if πj = π for j = 1 . . . d, and min
j∈S
|βj | ≥ β0 > 0 for some subset of indices S of size s, then we have

R∗(f, ν, n) ≥ sβ2
0

2

(
1−

(
2esnβ2

0

2sH(π)σ2

) 1
s−1

)
. (21)

Proof. The first statement in the theorem follows immediately from plugging in the bound from Lemma B.4 into
Lemma 4.1. For the second statement, we first use Lemma B.2 to see that it suffices to bound R(D; ν, β̃), where
β̃j = β0 for j ∈ S, and β̃j = 0 for j /∈ S. One can check that

mβ̃,π(α) = sβ2
0

(
π ∧ 1

1 + eβ
2
0/α

)
,

and so
1

1 + e
β2
j /m

−1

β̃,π
(D)

=
D

sβ2
0

∧ π.

Plugging this formula into (17), we get

R(D; ν, β̃) ≥ s
(
H(π)−H

(
D

sβ2
0

))
∨ 0. (22)

For D
sβ2

0
≤ π, we expand

2sR(D;ν,β) ≥
(
D

sβ2
0

) D

β20

(
1− D

sβ2
0

)s(1− D

sβ20

)

≥ e−s
(

1− D

sβ2
0

)s
, (23)

where the second inequality comes from applying Lemma B.6. Optimizing the expression

D +
σ2

n

(
2H(π)

e

)s(
1− D

sβ2
0

)s
in D, we see that the minimum is achieved at

D = sβ2
0

(
1−

(
2esnβ2

0

2sH(π)σ2

) 1
s−1

)
.

Finally, plugging this into equation (6) completes the proof.

Lemma B.6. For any 0 < p ≤ 1
2 , we have

(
p

1−p

)p
≥ e−1.

Proof. We compute

log

(
p

1− p

)
= − log

(
1− p
p

)
= − log

(
1

p
− 1

)
≥ −1

p
+ 2.

As such, we have (
p

1− p

)p
= exp

(
p log

(
p

1− p

))
≥ e−1.
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C Proofs for covering argument

The primary goal of this section is to prove the following more general version of Theorem 5.1.

Theorem C.1 (Lower bound for additive models on unit length cube). Assume the regression model (1), with
f be defined as in (2), and assume that the covariate space is the unit length cube [0, 1]d. Suppose φj ∈ C1([0, 1])
for j = 1, . . . , d. Let I1, I2, . . . , Id ⊂ [0, 1] be sub-intervals, and suppose that β ∈ Rd is a vector of non-negative
values such that for each j = 1, . . . , d,

min
t∈Ij

∣∣φ′j(t)∣∣ ≥ βj .
Denote K = {x : xj ∈ Ij for j = 1, . . . , d}. Assume that ν is a continuous distribution with density q, and denote
qmin = min

x∈K
q(x). Define the function gβ : [0,max

j
βj ]→ R via the formula

gβ(α) = α2|{j : βj ≥ α}|+
∑

j : βj<α

β2
j , (24)

and notice that it is strictly increasing and thus invertible on its domain. Then the oracle expected risk is lower
bounded as

R∗(f, ν, n) ≥ inf
D>0

D +
µ(K)σ2

4n

∏
j : βj≥g−1

β (12D/qminµ(K))

(
βj

g−1β (12D/qminµ(K))

), (25)

with the convention that g−1β (t) = ∞ whenever t is out of the range of gβ. In particular, if min
j∈S

min
t∈Ij

∣∣φ′j(t)∣∣ ≥
β0 > 0 for some subset of indices S ⊂ [d] of size s, then we have

R∗(f, ν, n) ≥ sµ(K)

(
β2
0qmin
12

)s/(s+2)(
σ2

4n

)2/(s+2)

. (26)

We first work with the uniform measure, and relate the conditional variance over a cell with the weighted sum
of its squared side lengths. This is the equivalent of (7) in the rate-distortion argument.

Lemma C.2 (Variance and side lengths). Let µ be the uniform measure on [0, 1]d. Let C ⊂ [0, 1]d be a cell. Let
f be an additive model as in (2), and assume that each component function φj is continuously differentiable with
βj := min

aj≤t≤bj

∣∣φ′j(t)∣∣, where aj and bj are the lower and upper limits respectively of C with respect to coordinate

j. Then we have

Varµ{f(x) | x ∈ C} ≥ 1

6

d∑
j=1

β2
j (bj − aj)2. (27)

Proof. Note that φ1(x1), . . . , φ(xj) are independent given the uniform distribution on C. As such, we have

Var{f(x) | x ∈ C} =

d∑
j=1

Var{φj(xj) | x ∈ C}.

We can then further write

Var{φj(xj) | x ∈ C} =
1

2
E
{

(φj(t)− φj(t′))
2
}

where t, t′ are independent random variables drawn uniformly from [aj , bj ]. For fixed t, t′, we use the mean value
theorem together with our lower bound on |φ′j | to write

(φj(t)− φj(t′))
2

= φ′j(t̃)
2(t− t′)2 ≥ β2

j (t− t′)2.

Since the expectation of the right hand side satisfies

E
{
β2
j (t− t′)2

}
=
β2
j (bj − aj)2

6
,

we immediately obtain (27).
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Next, we use this to compute the maximum volume of a cell under a constraint on its conditional variance. This
is similar to the argument in the proof of Theorem 4.2.

Lemma C.3 (Variance and volume). Assume the conditions of Lemma C.2, and that

Varµ{f(x) | x ∈ C} ≤ D.

Then the volume of C satisfies the upper bound

µ(C) ≤
∏

j : βj≥g−1
β (6D)

(
g−1β (6D)

βj

)
. (28)

Proof. Let lj = bj−aj denote the side length of C along coordinate j. By Lemma C.2, we have
∑d
j=1 β

2
j (bj−aj)2 ≤

6D. Since µ(C) =
∏d
j=1 lj , we therefore need to solve the convex optimization problem:

min

d∏
j=1

l−1j s.t.

d∑
j=1

β2
j l

2
j ≤ 6D, lj ≤ 1 for j = 1, 2, . . . , d.

The Lagrangian of this program is

L(l, λ) =

d∏
j=1

l−1j + λ0

 d∑
j=1

β2
j l

2
j − 6D

+

d∑
j=1

λj(lj − 1).

Differentiating with respect to lj , we get

dL

dlj
= −l−2j

∏
k 6=j

l−1k + 12λ0β
2
j lj + λj .

Let l∗j , j = 1, . . . , d and λ∗j , j = 0, . . . , d denote the solution to the KKT conditions. Our goal is to solve for the
l∗j ’s. The above equation yields

(l∗j )
2 =

1

12λ∗0β
2
j

∏d
j=1 l

∗
j

−
λ∗j l
∗
j

12λ∗0β
2
j

.

Notice that the first term is proportional to β−2j . Furthermore, by complementary slackness, we have λ∗j = 0 or
l∗j = 1 for each j. If the former holds, then the second term is equal to 0, so that l∗j = α/βj for some constant
α. Putting everything together, we get

l∗j =
α

βj
∧ 1 (29)

where α is chosen so that

6D =

d∑
j=1

β2
j (l∗j )

2 = gβ(α).

This implies that

µ(C) ≤
d∏
j=1

l∗j =
∏

j : βj≥g−1
β (6D)

(
g−1β (6D)

βj

)

as we wanted.

The proof of this lemma allows us to interpret the function gβ: The value gβ(α) is a bound for the weighted
sum of optimal squared side lengths, given the choice of α in (29). Hence, for any D > 0, g−1β (D) is the value of
α that ensures that this weighted sum, and hence the conditional variance, is bounded by the value D.

We are now ready to combine these ingredients to prove Theorem C.1. The proof proceeds by first using Lemmas
C.4 and C.5 to reduce to the case of uniform measure on a subset. Equipped with Lemma C.3, we can then
lower bound the size of the partition using a volumetric argument. More detailed calculations involving the gβ
function yield the second statement.
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Proof of Theorem C.1. Let p be any permissible partition. Define

D :=
∑
C∈p

Varν{f(x) | x ∈ C}ν{C}.

The goal is now to find a lower bound on |p| in terms of D. To do this, we first transform the above bound via
Lemma C.4 and Lemma C.5 to get

D ≥ qmin
∑
C∈p

Varµ{f(x) | x ∈ C ∩ K}µ{C ∩ K}.

Dividing both sides by qminµ(K), we get the expression

D̃ ≥
∑
C∈p

p̃(C)Varµ{f(x) | x ∈ C ∩ K}

where D̃ := D
qminµ(K) , and the weights p̃(C) := µ(C∩K)

µ(K) satisfy
∑
C∈p p̃(C) = 1. By Markov’s inequality, we can

therefore find a subcollection C ⊂ p such that the following two conditions hold:∑
C∈C

p̃(C) ≥ 1

2
(30)

and
Varµ{f(x) | x ∈ C ∩ K} ≤ 2D̃ (31)

for C ∈ C. We now proceed as follows. First, we rewrite (30) as∑
C∈C

µ{C ∩ K} ≥ µ(K)

2
.

Next, noting that each C ∩ K, being the intersection of two cells, is itself a cell, we can make use of Lemma C.3
and (31) to get

µ(C ∩ K) ≤
∏

j : βj≥g−1
β (12D/qminµ(K))

(
g−1β (12D/qminµ(K))

βj

)
.

Combining the last two statements and rearranging gives

|C| ≥ µ(K)

2

∏
j : βj≥g−1

β (12D/qminµ(K))

(
βj

g−1β (12D/qminµ(K))

)
. (32)

Since the right hand side of (32) is also a lower bound for |p|, we may plug it into (4) to get the first statement
of the theorem.

For the second statement, it is easy to check that gβ(α) ≥ sα2 for α < β0, and so we have

g−1β (12D/qminµ(K)) ≥
(

12D

sqminµ(K)

)1/2

.

This implies that

∏
j : βj≥g−1

β (12D/qminµ(K))

(
βj

g−1β (12D/qminµ(K))

)
=

(
sβ2

0qminµ(K)

12D

)s/2
.

We plug this into the right hand side of (25) and differentiate to get

1− sµ(K)σ2

4n

(
sβ2

0qminµ(K)

12

)s/2
D−s/2−1.
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Setting this to be zero and solving for D gives

D = sµ(K)

(
β2
0qmin
12

)s/(s+2)(
σ2

4n

)2/(s+2)

,

which gives us the bound we want.

Proof of Proposition 5.2. Similar to the proof of Lemma C.2, we can show that

Varµ{f(x) | x ∈ C} ≤ β2
max

6

∑
j∈S

lj(C)2

where lj(C) is the length of C along coordinate j. As such, if we set

lj =

(
D

6s‖q‖∞β2
max

)1/2

∧ 1

for j ∈ S and lj = 1 for j /∈ S, then we have

Varν{f(x) | x ∈ C} ≤ D.

Tessellating the unit cube with cells of these dimensions gives us a valid partition, whose approximation error is
upper bounded by D. We count how many cells are in this partition using a volumetric argument. Each cell has

Euclidean volume at least
(

D
6s‖q‖∞β2

max

)s/2
. Meanwhile, it is easy to see that the union of the cells is contained

in a rectangular region with side lengths equal to 1 in the coordinates with index j /∈ S, and equal to 2 in the

coordinates with index j ∈ S. This means that there are at most
(

24s‖q‖∞β2
max

D

)s/2
cells.

Choose

D = 24s‖q‖∞β2
max

(
σ2

n

)2/(s+2)

.

Then, the second term in (5) is bounded by

6σ2

n

(
24s‖q‖∞β2

max

D

)s/2
≤ 6σ2

n

( n
σ2

) 2
s+2 ·

s
2

= 6

(
σ2

n

)2/(s+2)

.

Finally, to take care of the error term E(p), we compute

(1− ν{C})n =

(
1−

(
D

24sβmax

)s/2)n

=

(
1−

(
σ2

n

)s/(s+2)
)n

≤ exp

(
−n
(
σ2

n

)s/(s+2)
)

= exp
(
−σ2s/(s+2)n2/(s+2)

)
.

This allows us to bound
E(p) ≤ ‖f‖2∞ exp

(
−σ2s/(s+2)n2/(s+2)

)
.

Plugging these values into (5) completes the proof.

Lemma C.4 (Change of measure). Let ν be a distribution on [0, 1]d. Let C ⊂ [0, 1]d be a cell such that ν has
density q(x) on C satisfying min

x∈C
q(x) ≥ qmin. Then we have

Varν{f(x) | x ∈ C}ν{C} ≥ qminVarµ{f(x) | x ∈ C}µ{C}. (33)
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Proof. We compute

Varν{f(x) | x ∈ C}ν{C} =

∫
x∈C

(f(x)− E{f(x) | x ∈ C})2q(x)dx

≥ qmin
∫
x∈C

(f(x)− E{f(x) | x ∈ C})2dx

= qminVarµ{f(x) | x ∈ C}µ{C}.

Lemma C.5 (Restricting to sub-rectangle). Let ν be a distribution on [0, 1]d. Let C1 ⊂ C2 ⊂ [0, 1]d be nested
cells. Then

Varν{f(x) | x ∈ C1}ν{C1} ≤ Varν{f(x) | x ∈ C2}ν{C2} (34)

Proof. This is proved similarly to the previous lemma.

D Numerical Experiments

Details of experimental design and algorithm settings for our numerical experiments with tree-based methods
fitted to sparse linear models with continuous and Boolean features is shown below. Results are displayed in
Figures 2 and 3 for the continuous and Boolean case respectively.

Experimental design: For Figures 2 and 3, we simulate data from a sparse linear generative model y = βTx+ε
with x ∼ Unif

(
[0, 1]d

)
and x ∼ Unif

(
{0, 1}d

)
respectively. In all of the experiments, we varied n, but fixed d = 50,

σ2 = 0.01, and set βj = 1 for j = 1, . . . , s, and βj = 0 otherwise, where s is a sparsity parameter. We ran the
experiments with both s = 10 and s = 20, and plotted the results for each setting in panel A and panel B
respectively for all of the figures. We computed the generalization error using a test set of size 500, averaging
the results over 25 runs.

Algorithm settings: The algorithm settings are identical to those as described in Section 5.

Figure 2: Scaling of the test set error for CART and RF for a sparse linear generative model y = βTx + ε with
x ∼ Unif

(
[0, 1]d

)
.We show the scaling with respect to n for (A) s = 10, and (B) s = 20.
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Figure 3: Scaling of the test set error for CART and RF for a sparse linear generative model y = βTx + ε with
x ∼ {0, 1}d and each xj ∼ Ber( 1

2 ).We show the scaling with respect to n for (A) s = 10, and (B) s = 20.


