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Abstract

As machine learning is increasingly deployed
in the real world, it is paramount that we
develop the tools necessary to analyze the
decision-making of the models we train and
deploy to end-users. Recently, researchers
have shown that influence functions, a sta-
tistical measure of sample impact, can ap-
proximate the effects of training samples on
classification accuracy for deep neural net-
works. However, this prior work only applies
to supervised learning, where training and
testing share an objective function. No ap-
proaches currently exist for estimating the in-
fluence of unsupervised training examples for
deep learning models. To bring explainability
to unsupervised and semi-supervised training
regimes, we derive the first theoretical and
empirical demonstration that influence func-
tions can be extended to handle mismatched
training and testing (i.e., “cross-loss”) settings.
Our formulation enables us to compute the
influence in an unsupervised learning setup,
explain cluster memberships, and identify and
augment biases in language models. Our ex-
periments show that our cross-loss influence
estimates even exceed matched-objective in-
fluence estimation relative to ground-truth
sample impact.

1 INTRODUCTION

Deep learning has become a ubiquitous tool in domains
from speech-recognition (Bengio and Heigold, 2014)
to knowledge-discovery (Tshitoyan et al., 2019), ow-
ing to large datasets, increasing computation power,
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and the development of powerful unsupervised and
semi-supervised learning techniques. With the prolif-
eration of these models in the real world, it is ever-
more vital that researchers are able to interrogate their
learned models and understand their training data to
prevent erroneous or malicious models from being re-
leased (Doshi-Velez and Kim, 2017). In this work, we
derive the first quantitative method to interrogate and
augment the decision-making of deep learning mod-
els trained without explicitly labeled data, e.g. for
self-supervised or unsupervised pre-training.

To quantitatively explain the impact of training
data, influence functions have emerged as a powerful
tool (Koh and Liang, 2017). Influence functions provide
an estimate of the “influence” of every training example
on a trained model’s performance for a test example.
Unfortunately, this prior work cannot be applied when
a model is trained via one objective and tested with
another, such as in unsupervised or self-supervised
applications (e.g., clustering or masked-language mod-
eling (Vaswani et al., 2017)). If these systems exhibit
sub-optimal decision-making or even bias (Bolukbasi
et al., 2016; Lum and Isaac, 2016), researchers must
be able to understand and rectify a model’s erroneous
decision-making. With such “cross-loss” paradigms be-
coming ubiquitous and seeing real-world deployments,
we critically need methods to explain these models and
their datasets.

In this work, we present cross-loss influence functions
(CLIF), a novel extension of influence functions that
permits use across separate training and testing ob-
jectives. Our formulation enables researchers to un-
derstand a training sample’s effect on deep network
representations, even when these models are learned
without explicit labeling. We demonstrate the power
of our approach on a synthetic dataset and a set of
word embedding models, demonstrating that CLIF
correlates with ground-truth influence as reliably as
matched-objective influence functions. Further, we
show that CLIF can be used to identify sequences that
contribute to arbitrary properties of learned word em-
beddings, such as cluster membership or bias scores.
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Figure 1: Taking a word embedding model and its training data, our approach explains properties of word
embeddings (e.g., a high score on a racial bias test) by identifying which training samples are contributing most
to these properties. We employ these training samples to augment the model. The relationship between Race and
Religion is explored in Section 4.3.1.

Our novel extension to influence functions contributes
a powerful tool for interrogating large datasets, and
generalizes the technique to an array of modern deep
learning deployments.

We graphically depict the novel capability of our ap-
proach for a candidate application to explainability and
debiasing in Figure 1. Upon finding racial bias in a
word embedding model, our approach takes the trained
word embedding model with the original dataset and
identifies the individual training sequences which con-
tribute most significantly to the racial bias. With the
most relevant sequences identified, we can fine-tune
the model and undo the influence of these sequences,
mitigating the negative bias.

2 RELATED WORK

Explainability Explainable machine learning is a
growing area of research seeking to help researchers
and practitioners alike ensure the desired functions of
their machine learning models. As the field receives
increased attention, various explainability mechanisms
have been proposed, including interpretable neural net-
work approaches (Wang et al., 2016), natural language
generation of explanations (Mullenbach et al., 2018;
Wiegreffe and Pinter, 2019; Chen et al., 2021), and
many others Hoffman et al. (2018); Holzinger et al.
(2020); Linardatos et al. (2021). One promising direc-
tion is case-based reasoning or explanation by exam-
ple (Caruana et al., 1999, 2015), in which a model re-
turns an explanatory sample for each model prediction.
Our CLIF approach affords explanation by example,
finding training samples to explain model properties.

In large datasets, finding relevant samples for expla-
nation is not a trivial task, as similarity metrics re-
veal related data but not explanatory data. Koh and
Liang (2017) introduced the influence function to deep
networks as a means of discovering the magnitude of

each training sample’s impact on a deep network’s fi-
nal prediction for an unseen test case. The approach
of Brunet et al. (2018) extends influence functions to
GloVe (Pennington et al., 2014); however, this method
is designed specifically for GloVe embeddings with co-
occurrence matrix rather than neural networks with
arbitrary pre-training objectives. Han et al. (2020)
apply the influence function to supervised sentiment
analysis and natural language inference tasks, again
being classification tasks with matched train and test
objectives. Finally, Barshan et al. (2020) introduce a
normalization scheme for influence functions to improve
robustness to outliers.

Our work is unique in that we are the first to generalize
influence functions to mismatched training and test-
ing loss functions. Our approach enables researchers
to take a model trained without supervision, such as
deep unsupervised learning (Xie et al., 2016) or word
embedding models, and explain relationships between
embeddings.

Bias in Word Embeddings Word embeddings
have emerged as a standard for representing language
in neural networks, and are therefore ubiquitous in
language-based systems. A standard approach to learn
these embeddings is Word2Vec (Mikolov et al., 2013)
which transforms words from one-hot dictionary indices
into information-rich vectors. Research has shown that
Word2Vec embeddings capture a word’s meaning and
offer powerful representations of words used in many
settings (Bakarov, 2018). Transformer-based models,
such as BERT (Devlin et al., 2018), build contextual
sequence representations by applying attention mecha-
nisms to word-embeddings, leveraging information in
the embeddings.

Bolukbasi et al. (2016) were among the first to discover
the inherent biases in word embeddings, a finding that
has been replicated in transformers (Basta et al., 2019;
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Kurita et al., 2019; Silva et al., 2021) and more (Costa-
jussà et al., 2019; Swinger et al., 2019; Nissim et al.,
2020). Caliskan et al. (2017) presented the Word Em-
bedding Association Test (WEAT) to test word em-
beddings for implicit bias, e.g. by aligning male with
math and female with arts. Our definition of bias and
its implications is given in Section 7.

3 APPROACH

The aim of our work is to help explain the proper-
ties of representations learned via any objectives (e.g.,
unsupervised or semi-supervised learning) by finding
training examples which are most responsible for those
properties. Here, we consider an embedding model pa-
rameterized by θ. For every test example, zte, we want
to find the effect of increasing the weight of a training
sample ztr on the model’s performance on zte. Koh
and Liang (2017) show that the effect of upweighting
ztr is given by Equation 1.

L(zte, ztr) = −∇θL(zte, θ̂)TH−1

θ̂
∇θL(ztr, θ̂) (1)

Hθ̂ is the Hessian of the loss function with respect to
model parameters θ. Koh and Liang (2017) leverage
recent work (Agarwal et al., 2016) to efficiently estimate
the inverse Hessian-vector product (HVP).

3.1 Explaining Deep Network
Representations

The original influence function from Equation 1 as-
sumes that the loss function remains the same for both
sets of samples zte and ztr. We instead seek to compute
influence on representations learned by any deep learn-
ing models, even if the training and testing tasks are
different. To compute the effects of training samples
on arbitrary properties of the model’s learned represen-
tation, e.g. cluster centroids or scores on a bias test,
we need an approach that can compute influence across
multiple different objectives.

To address this need for cross-loss influence estima-
tion, we relax the assumption that both loss functions
must be the same. Building on prior work (Agarwal
et al., 2016), we estimate the HVP via any twice-
differentiable objective, thus providing the overall loss
landscape for deep network representations as they are
refined. This approach is in contrast to prior uses of the
influence function for deep networks, which estimated
the HVP according to a supervised-learning objective
that matched the test task.

We now provide analytical proof for this approach to ob-
taining explanations for mismatched objectives. First,
we review the original influence function formulation,
using a training objective to estimate the effect of each

sample on the model parameters. Second, we prove a
novel theorem enabling us to substitute any differen-
tiable testing loss function in our cross-loss influence
function rather than requiring testing and training loss
functions to be equivalent.

Theorem 1. Exchanging the testing loss function of
Equation 1 for an arbitrary differentiable objective, we
can compute the influence of training examples on the
new objective.

Proof. Koh and Liang (2017) derive that the effect of
upweighting a single sample, z, on models parameter-
ized by θ̂ is defined by Equation 2.

Iup,params(z) :=
dθ̂ε,z
dε

∣∣∣
ε=0

= −H−1

θ̂
∇L(z, θ̂) (2)

Here, θ̂ is the model parameterization that minimizes
the loss L. Equation 2 models the impact of taking an
infinitesimally small stochastic gradient descent step
evaluated at the test data point, z. The updated pa-
rameters, θ̂ε,z, are given by the satisfaction of Equation
3.

θ̂ε,z := argmin
θ∈Θ

1

N

N∑
i=1

L(zi, θ) + εL(z, θ) (3)

For θ̂ε,z, we can estimate the rate of change for a loss
function on a new sample dL(zte, θ̂ε,z) with respect
to the original model parameters θ by combining the
derivative of the loss function with the rate of change
for θ̂ε,z as a function of ε, as in Equation 4.

IupL(z, zte) :=
dL(zte, θ̂ε,z)

dε

∣∣∣
ε=0

=

[
dL(zte, θ̂)

dθ̂

dθ̂ε,z
dε

]
ε=0

(4)

It follows, then, that the influence of upweighting a
sample z on a different loss function L′ is given in
Equation 5.

IupL
′(z, zte) :=

dL′(zte, θ̂ε,z)

dε

∣∣∣
ε=0

=

[
dL′(zte, θ̂)

dθ̂

dθ̂ε,z
dε

]
ε=0

(5)

This derivation indicates that we can estimate the
influence of changing parameters on a new loss function
L′, as the influence is determined as a function of θ,
which exists as the current model parameters. To
estimate influence, we want to estimate how the value
of L′ will change as θ̂ is modified by ε-sized gradient
steps (i.e., how would upweighting a sample affect the
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final L′?). The rate of change of this effect is given
as dθ̂ε,z

dε . Finally, we can estimate this change given
Equation 2 with our training loss L.

This result proves that influence functions can be ex-
tended to any problem with a twice-differentiable train-
ing objective, opening up a wide array of new domains
for explanation with influential examples. In the re-
mainder of the paper, we empirically validate this
analytical result, and present example scenarios for
deployment of our CLIF formulation.

4 EXPERIMENTS

We conduct four experiments utilizing our approach
to explain deep network representations. The first
is validation of our approach for explainability on a
synthetic dataset, verifying our results with leave-one-
out retraining and straightforward data visualization.
Next, we apply our approach using a small language
dataset which we can fully review, allowing us to closely
examine select examples as a case-study (Section 4.2).
Third, we conduct a thorough test of our approach on
a dataset which a human could not reasonable review
manually, which we additionally follow-up with an
in-depth exploration of spurious correlations that our
method can discover, but that human annotators would
likely miss (Section 4.3.1). Finally, we present a novel
approach to word-embedding augmentation for bias
mitigation using samples discovered by our approach
(Section 4.4).

4.1 Clustering Accuracy: Synthetic Data

In this section, we to demonstrate that CLIF can un-
cover influential training data for models trained via
unsupervised learning (i.e., clustering). In this exper-
iment, we apply Deep Embedded Clustering (DEC)
(Xie et al., 2016) to a synthetic dataset to learn a lower-
dimensional representation of the data in the form of
clusters. We then change contexts to consider a super-
vised learning loss, LNLL, the negative log-likelihood
loss for predicting the correct cluster, y, given a data
point, z. This experiment serves as an ideal test do-
main for CLIF as we are able to empirically validate
all influence predictions over the entire dataset in ad-
dition to comparing to a matched-objective influence
estimation.

In our experiment, we train a model to learn three clus-
ter centroids on a mixture of gaussians (MOG) dataset,
shown in Figure 2. With the synthetic dataset, we
train two models– one via supervised learning (using
the LNLL objective), and one via DEC. With these two
models, we compare two approaches to influence esti-

(a) Empirical MOG Influ-
ence

(b) Predicted MOG Influ-
ence

Figure 2: (Left) After leave-one-out retraining with
the entire dataset, we identify the ten most influential
samples which amplify and mitigate classification loss
in our MOG dataset. (Right) We show the ten most
amplifying or mitigating samples according to CLIF.

mation: (1) using the original influence function, with
LNLL as the training and testing loss function (Equa-
tion 6), and (2) using DEC (ignoring the ground truth
labels in training) and testing with LNLL(Equation 7).
The testing loss is evaluated with respect to a predic-
tion, ŷ, and ground-truth, y, for data points, z, with
training labels, ẑ.

L = −∇θLNLL(ŷ, y)TH−1
θ ∇θLNLL(ẑ, θ(z)) (6)

L = −∇θLNLL(ŷ, y)TH−1
θ ∇θLDEC(θ(z)) (7)

This comparison allows us to establish the correlation
between the actual, empirical influence of each sample
and the predicted influence with CLIF.

For each data point in this experiment, we ask the
question: “Which points in the dataset have contributed
to this sample being assigned to the correct or incorrect
class?” We provide an example of the estimated and
actual influence on a single point in Figure 2, showing
the efficacy of our approach.

We pass all samples through the influence function in
addition to performing leave-one-out (LOO) retraining
across the entire dataset, allowing us to compare the
predicted vs. actual influence of every point in the
dataset on every other point, and obtain a Pearson’s
correlation coefficient between predicted and actual
influence for all samples.

With matched train and test objectives (i.e. Equa-
tion 6), we observe one class in which 100% Pearson
correlation coefficients for LOO retraining are > 0.8
(i.e. 100% > 0.8). We also see strong performance
in the remaining classes (38% > 0.8 and 36% > 0.8).
When applying CLIF (i.e. Equation 7), we see a an
even stronger correlation, with one class again achiev-
ing near-perfect correlation (100% > 0.8), and the re-
maining classes correlating more closely than matched-
objective predictions (52% > 0.8 and 44% > 0.8). This
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result demonstrates the utility of CLIF as the
cross-loss influence correlation is higher than
the matched-objective influence correlation.

4.2 Nearest Neighbors: Science Fiction

We next evaluate the efficacy of CLIF in explaining
word embedding nearest-neighbor relationships for a sci-
ence fiction dataset, DSCI (Ammanabrolu et al., 2019),
bringing our synthetic-dataset experiments to real text
data. This dataset includes over 2,000 plot summaries
from a handful of science fiction television programs.
We expect CLIF will be able to find salient sentences
in the plot summaries which explain an embedding’s
local neighborhood.

Throughout our word embedding experiments, we lever-
age the Skip-gram model, which is based on the idea
that words nearby in a sentence are more related than
distant words. Each word, ~wj , in a sequence is paired
with its neighbors in a context window to create a set
of k context-word pairs [~c1, ~wj ], [~c2, ~wj ], ...[~ck, ~wj ]. One
also draws a set of unrelated words, Ni, from the entire
corpus according to their frequency to serve as negative
examples. Each word ~wj , context ~c, and negative-set,
Ni, tuple 〈~wj ,~c,Ni〉 is then an input to the neural net-
work, which is tasked with minimizing the difference
between ~wj and ~c and maximizing the difference be-
tween ~wj and all negative samples in Ni, as shown in
Equation 8, where σ is the sigmoid function.

LSG(~wj ,~c,Ni) = E
~n∼Ni

[σ(~wTj ~n)]− σ(~wTj ~c) (8)

After training a set of Skip-gram word embeddings on
DSCI , we then examine nearest-neighbors for differ-
ent words in the dataset, and apply CLIF to discover
more about the these nearest-neighbor relationships.
We leverage CLIF with a mean-squared error (MSE)
loss modification, given in Equation 9. The MSE loss
function is the difference between where an embedding
e was initialized, EI(e), and where it finishes train-
ing, EF (e), which models the question “Which training
samples are most responsible for moving e to its final
location/neighborhood?”

L(e, zt) = −∇θMSE(e)TH−1
θ ∇θLSG(zt) (9)

We specifically investigate three case studies from our
dataset: a Star Wars villain named “Dooku”, a Star Trek
hero “Kirk”, and the main character of Doctor Who,
the “Doctor.” We observe that Dooku is ultimately
placed into a group of villains (including terms such
as “exploits,” “confrontation,” and “fighters”), Kirk is
near other Star Trek captains and characteristics of his
character (including words such as “Janeway,” “beams,”
and “flirting”), and the Doctor is placed into a Doctor

Who neighborhood (including other names from the
show such as “Donna,” “Rory,” and “Gallifrey”).

We ask, “Which samples moved each word to their final
neighborhood?” and “Which samples would push them
out?” Applying CLIF to DSCI , we surface the most
influential plot summaries for each word embedding
and present a subset of instances in Table 1.

We observe that samples returned by CLIF intuitively
match the neighbors for each word in our case study.
For Dooku, CLIF returns reinforcing plot summaries
involving Dooku as a villain (“Dooku as a place holder
Sith apprentice and ally in the war,”), while plot sum-
maries that would move Dooku away from his final
position include flashback plots before his character
turned evil (“now ... Jinn,”). The Doctor’s reinforcing
plot summaries include Doctor Who episodes, while
other uses of the word “doctor” would move the word
embedding away from its Doctor Who neighborhood
(e.g., references to doctors in other shows). Finally, we
observe that original Star Trek episodes reinforce Kirk’s
association with Star Trek concepts, while references
to Kirk from other shows, such as Futurama, serve to
move Kirk’s embedding away due to the abnormal use
of “Kirk” in novel contexts (e.g., with new characters
and locations).

4.3 Model Bias: Wiki Neutrality Corpus

We have thus far shown that our approach success-
fully discovers influential samples for a synthetic MOG
dataset and a dataset of plot summaries, each of which
is we can manually review. Next, we evaluate CLIF
on a relatively large dataset–large enough to prevent
full human annotation. We leverage a larger dataset
of Wikipedia edits from Pryzant et al. (Pryzant et al.,
2019) containing 180,000 sentences pairs, each consist-
ing of a point-of-view biased sentence and its neutral-
ized counterpart. Due to this dataset’s significantly
increased size, this experiment provides us with a do-
main which is much more representative of a real-world
machine learning deployment scenario for de-biasing.

In order to quantify bias with an objective function,
we leverage the Word Embedding Association Test
(WEAT) (Caliskan et al., 2017). For each set of “tar-
get” words (e.g., male) and “attribute” words (e.g.,
math) which comprise a WEAT, the WEAT score in-
dicates the effect size for a bias in the word embed-
dings1. The tests for this dataset involve four relevant
WEATs from prior work: gender-career (WEATC),
gender-math (WEATM ), gender-art (WEATA), and
race-pleasantness (WEATR).

CLIF for a WEAT objective is shown in Equation 10.

1A formal definition is included in the appendix.
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Table 1: Influential Training Data Explaining Sci-Fi Nearest Neighbors.

Dooku
“... Wars, such as seeking Dooku as a place holder Sith apprentice and ally in the war.”

Reinforcing “the Sith sees will be easily manipulated”
Excerpts, A Doctor

“Using the psychic paper, the Doctor presents credentials”
“The Doctor begins scanning the house with the sonic screwdriver”
Kirk
“A landing party from the USS Enterprise comprised of Captain Kirk, Scott, Dr. McCoy, ...”
“Due to this transporter accident, Kirk has been split into two beings”

Dooku
“The young Padawan Dooku had recently been appointed to Jedi Thame Cerulian.”

Removing ..now a full-pledged Jedi, Dooku began to train young Qui-Gon Jinn.”
excerpts, M Doctor

“Amy Wong and Leela drag Fry and Bender to the gym and Doctor Zoidberg tags along.”
“Elsewhere on Deep Space 9, Doctor Bashir is called to the wardroom”
Kirk
“Zapp Brannigan is holding a court martial in the Planet Express Ship, ...”
“ When Riker explains that they came from the starship Enterprise, Scott reacts under...”

The WEAT loss function uses the absolute value of
the effect size as the test loss value, and asks, “Which
samples are most responsible for high amounts of bias?”
Explanatory examples and results are presented here
for the set of all point-of-view biased samples, DB , and
in the appendix for the set of neutralized samples, DN .

L(WEAT, ztr) = −∇θWEATTH−1
θ ∇θLSG(ztr)

(10)

To establish the bias inherent in the datasets, the results
of the four WEATs are given in Table 3 as “Original.”
We leverage CLIF for WEAT (Equation 10) to identify
sources of bias, as shown in Table 2. We note that many
examples which are best for mitigating the bias inherent
in the word embeddings are not necessarily neutral
but are instead biased in an orthogonal or antilinear
direction to the existing bias, such as aligning male
with art. This finding is discussed further in Section
5. The examples our method returns for amplifying or
mitigating bias demonstrate that our method can open
the black box of representation learning and explain
the genesis word embedding properties.

4.3.1 Case Study: Hidden Influential
Concepts

CLIF enables us to find seemingly unrelated concepts
that are highly influential to model bias. For example,
investigating the samples which are most influential
for the WEATR over DN , reveals that two of the most
influential samples appear completely unrelated to the
WEATR:

• “In Jewish self-hatred, a person exhibits a strong
shame or hatred of their Jewish identity, of other
Jews, or of the Jewish religion.”

• “Islamophobia is the irrational fear and or hatred
of Islam, Muslims, or Islamic culture.”

We can see that there are no words from the WEAT
target set for race, or words from the pleasant set,
but instead the samples align a religion concept with
unpleasant. This finding is important, as it suggests
that even a manual review of datasets may be inade-
quate – unwanted biases may be lurking in non-obvious
correlations that are only revealed through a more
quantitative approach.

To understand these non-obvious examples, we con-
struct a WEAT with only one set of attribute concepts,
comparing the target concepts (names) in WEATR
to the religious terms above. We find that African-
American names have twice the mean cosine-similarity
to religious terms (0.12 vs 0.06) compared to European-
American, and the one-sided WEAT score is −1.11.
This alignment sheds light on the curious set of influen-
tial examples. Rather than finding examples where un-
pleasant terms coincide with African-American names,
we found samples in which concepts that are strongly
aligned with African-American names (i.e., religion)
are aligned with unpleasant terms. Not only is our
approach crucial for revealing such findings, but we
also present avenues to mitigate these biases (Section
4.4).



Andrew Silva, Rohit Chopra, Matthew Gombolay

Table 2: Examples of Influential Samples for Word Embedding Association Test Scores in DB

WEAT Set Example Cause
Career A “The vice president has an office in the building but his primary office Aligns male

is next door in the Eisenhower executive office building.” and business.
Career M “Classical violinist Joshua Bell joins bluegrass musicians Sam Bush and Breaks alignment of

Mike Marshall and the versatile Meyer on the album.” male and career.
Math A “Maxwell’s 〈NUM〉 formulation was in terms of 〈NUM〉 Aligns male

equations in 〈NUM〉 variables although he later attempted and math.
a quaternion formulation that proved awkward”

Math M “Most programming languages are designed around computation Aligns female
whereas Alice is designed around storytelling and thus has greater and math.
appeal to female students.”

Art A “Gentry claim that his critics are not able to supply actual Aligns male
scientific evidence to combat his work” and science.

Art M “However his subsequent performance received almost universal acclaim.” Aligns male and art.
Race A “Afterward, Mario, Peach, and the others then begin their well Aligns EA names

deserved vacation and pleasant
Race M “President Barack Obama returned from vacation sporting Aligns AA names

Oliver Peoples sunglasses and pleasant

4.4 Bias Removal or Reinforcement

In our final experiment, we empirically validate our
approach to explainability by using the results of our
influence estimation to augment properties of word
embeddings. With an ordered set of all influential
examples, we separate the samples into two sets which
have the greatest effect on bias: training examples that
amplify bias, A, and training examples that mitigate
bias, M . We assert that we have found influential
samples if we are able to reduce bias according to
WEAT by removing the effects of the bias-amplifiers
(A) or by reinforcing the effects of bias-mitigators (M).
We remove the effects of A by calculating training
losses for each sample, a ∈ A, and then taking gradient
steps in the opposite direction. Similarly, we reinforce
the effects of M by fine-tuning over M . Finally, we
experiment with the combination of both removing the
effects of A and reinforcing the effects of M in tandem.
Set sizes for A and M are given in the appendix.

In these experiments, we compare our fine-tuning debi-
asing to gender-dimension debiasing from prior work
(Bolukbasi et al., 2016). We test fine-tune debiasing
both with and without gender-dimension debiasing,
showing that it always yields word embeddings with
a weaker biased effect (i.e., more neutral embeddings).
Results for our experiments are given in Table 3, where
a zero-effect size indicates neutral embeddings accord-
ing to WEAT.

We find that augmenting word embeddings with train-
ing examples in A and M reduces and even removes
bias as measured by WEAT. We present an auxiliary ex-
periment in the appendix in which we exchange sets A

and M and see that they further polarize the data and
increase bias. Taken together, these findings further
demonstrate that our approach finds samples of impor-
tance (i.e. strong cross-loss influence) and that fine-
tuning with such samples meaningfully affects dataset
bias according to WEAT.

Finally, we compare the method from Bolukbasi et al.
(2016) to ours on both DB and DN . In Table 3, we find
that our approach is effective at reducing high gender
and racial bias. On the other hand, the method of
Bolukbasi et al. (2016) performs very poorly for racial
bias. This poor result can be explained by a reliance
on an assumed “bias-vector.” Unfortunately, if the bias’
magnitude is not large enough or if the bias-vector is
inaccurate, applying the method of Bolukbasi et al.
(2016) can increase bias. This effect is visible in the
Gender Career test on DN in Table 3.

As our approach does not make assumptions about
dimensions of bias vectors, our method may be applied
even if bias is already low. We can therefore apply
prior work (Bolukbasi et al., 2016) first and then apply
our fine-tuning on top, an approach shown in the “Ours
(post (Bolukbasi et al., 2016))” row of Table 3. This
combination almost always yields the most neutral
results. Ultimately our final experiment has shown
that our approach to explainability is quantitatively
verified on a large dataset of real-world language data,
enabling insight into sources of bias and enabling us to
even remove unwanted model bias without the tenuous
assumptions of prior work.
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Table 3: WEAT Effect Sizes Across DB and DN . Zero Means Unbiased. Bold Highlights Least Bias.

DB DN

Method Gender Gender Gender Race Gender Gender Gender Race
Career Math Arts Pleasant Career Math Arts Pleasant

Original 0.48 0.52 -0.43 0.53 -0.05 0.66 -0.82 0.55
Bolukbasi et al. (2016) 0.008 0.12 -0.04 0.53 -0.29 0.16 0.09 0.71
Ours 0.01 0.10 0.01 0.02 -0.01 -0.02 -0.11 -0.07
Ours (post Bolukbasi et al. (2016)) 0.000 0.009 -0.05 0.07 -0.07 -0.01 -0.01 -0.03

5 DISCUSSION

Our novel derivation of CLIF brings newfound explain-
ability to deep network representations through iden-
tification of relevant training examples. Our method
permits insight into deep network representations, even
with unsupervised and self-supervised training objec-
tives, and offers an approach to mitigating bias by
fine-tuning a trained model with discovered samples.
Our experimental results in Section 4 demonstrate the
powerful potential of our method to both explain and
manipulate deep network representations.

In our synthetic data domain (Section 4.1), we evalu-
ated the predicted and actual influence of all samples
in the dataset using both matched and mismatched ob-
jectives. When compared to ground-truth influence, we
found that mismatched objectives with CLIF yielded
higher average correlation (65.5%> 0.8) than influence
functions with matched-objective settings (58%< 0.8).
Through this experiment, we empirically validated our
approach in an example deployment scenario of un-
supervised pre-training with multiple classes, before
moving into the word embedding domains.

Applying CLIF to explaining properties of science-
fiction concepts, we provide another case study of our
approach applied to explaining nearest-neighbors. Af-
ter examining the nearest-neighbors of different word
embeddings (Dooku, Kirk, and Doctor), we find that
CLIF surfaces highly relevant plot summaries for each
word both as reinforcing examples (e.g., original Star
Trek or Doctor Who episodes) or removing examples
(e.g., Futurama episodes).

In our bias explainability domain (Section 4.3), we
discovered that samples which mitigate bias are often
ones which would encourage greater diversity in the
target sets. For example, we see in Table 2 that one
sample which lowers the WEATC score for DB is one
which aligns male with music. While WEATC tests
for relative career-family alignment, encouraging male
to move closer to music is also a viable strategy for
reducing the strength of the male-career association rel-
ative to the male-family or female-career associations.
Similar approaches to reducing the WEAT scores can

be seen throughout Table 2 and the appendix, where
simply aligning male and female concepts with more
diverse concepts can have the effect of lowering overall
bias. We find that these diversification trends apply
unless the WEAT effect is already sufficiently close to
zero, as the WEATC in DN .

Finally, we have shown that our work improves the state
of the art in bias-dimension neutralization through com-
plementary fine-tuning on relevant training data. As
prior work is founded on the assumption that the prin-
cipal component of a set of biased words is correlated
with a bias dimension, we find that their approach
increases bias if applied to a set of already-neutralized
embeddings, as this principal component assumption
is then no longer valid. However, with enough of a
“gender” component, prior work can significantly lower
bias, and our approach can then continue to reduce
bias that is missed by prior work, nearly perfectly neu-
tralizing WEAT effects. As prior work only includes
a very small list of racial words to establish a “race”
dimension, the method underperforms on the WEATR
test. Fine-tuning with CLIF circumvents this issue,
permitting modification of learned embeddings with
influential samples and having more substantial effect
on model bias.

6 LIMITATIONS

Our work is predicated on two core assumptions. First,
we assume that downstream task performance can be
predicted by first-order interactions with a training
objective. For example, in our WEAT and Skip-gram
embedding examples, our work assumes that WEAT ef-
fects can be explained directly by the Skip-gram losses
in our training data. However, as we showed in our case
study on hidden concepts (Section 4.3.1) such assump-
tions are not always valid. In cases where downstream
task performance (e.g. a WEAT effect) is explained by
second-order relationships, our method will yield seem-
ingly unrelated training data (e.g. sequences about
religious concepts).

The second core assumption within our work is that
we have access to all training data used for the model.
Influence calculation for training data requires access
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to the training data, in order to calculate each sample’s
effect on some cross-loss objective. In private federated
learning setups, continual learning setups, or other
paradigms where we may not retain access to static
training data, then our method will not be able to
highlight historically relevant samples– we can only
consider samples that we can directly process.

7 SOCIETAL IMPACT

Deep learning is prevalent in the real world, and em-
bedding models are foundational to the deployment
of deep learning at-scale. Whether as video-encoders,
word-embedding models, speech-encoders, or others,
embedding models enable the success of on-device ma-
chine learning and provide the basis for modern ma-
chine learning research and deployment. Furthermore,
prior research has already shown that many deploy-
ments of machine learning research contain inherent
biases (Silva et al., 2021; Bolukbasi et al., 2016; Lum
and Isaac, 2016). As such, it is imperative that the
research community develop and evaluate a diverse
set of tools for discovering and eliminating bias. Our
work contributes one such tool, which we demonstrate
may be used in conjunction with prior work or for
independent dataset interrogation.

Crucially, our work relies on a definition of bias and an
objective function to represent that definition. Proper
application of our approach to de-biasing or fairness
will require careful definition of such objectives. Recent
work (Blodgett et al., 2020) has called bias research
into question for poor motivation, unclear definition,
and a lack of grounding. In our work, “bias” refers to a
mismatch in alignment between neutral words, such as
“microscope,” with gendered words, such as “brother”
and “sister.” The WEAT (Caliskan et al., 2017) was
adapted from well-established psychology literature on
the Implicit Association Test (Greenwald et al., 1998)
as a means of estimating inequality in word embedding
cosine similarities. We specifically investigate WEAT
effects in our work, and are therefore investigating a
mismatch in cosine similarities of embeddings when we
discuss bias. Implications for this bias are explored
further in the original WEAT work, specifically that
language models may “acquire historical cultural associ-
ations, some of which may be objectionable,”(Caliskan
et al., 2017) and that these associations may be prop-
agated or misused in downstream applications. Our
work explicitly offers explainability into the WEAT and
its effects, and we make no further claims with respect
to its definition of bias or its implications. To apply our
approach to other measures of bias and fairness would
require engineering and evaluating a new objective.

8 CONCLUSION

We have presented an extension to influence functions
for estimating sample importance in deep networks
with arbitrary train and test objectives. Our exten-
sion allows us to explain deep network representations
by revealing which training samples are the most rel-
evant to final test performance, even for tests which
are unrelated to the training task, such as bias tests.
We demonstrated this approach by explaining various
deep network representations, as well as by fine-tuning
Word2Vec models to alter the model’s inherent biases.
Our approach affords greater explainability across a va-
riety of problems and makes the influence function more
broadly available to researchers in machine learning as
a tool for model and dataset interrogation.
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Supplementary Material for: Cross-Loss Influence Functions to
Explain Deep Network Representations

A CLIF Algorithmic Walkthrough

Here we present a pseudocode block for the CLIF calculation in our work. Calculation of gradients is done
using PyTorch (e.g. list(grad(loss_val, list(model.parameters()), create_graph=True))). Our code is available at
https://github.com/CORE-Robotics-Lab/Cross_Loss_Influence_Functions

Algorithm 1 CLIF Calculation
1: Given: Test objective, LTe, Twice-differentiable training objective, LTr
2: Given: Trained model parameters θ, Dataset D
3: Given: Embeddings to explain ε
4: Initialize: Influential samples E ← ∅
5: for d ∈ D do
6: zd ← ∇θLTe(θ, ε) // Calculate test-size effect on ε under θ
7: ld ← ∇θLTr(θ, d) // Calculate training impact of d on θ
8: hd ← ∇θ(ld ∗ zd) // Compute Hessian of ld with respect to zd under θ
9: E ← E ∪ (ld · hd) // Store magnitude of gradient effects on hd with respect to ld under θ
10: end for
11: return sorted(E) // Return ordered list of influential samples

B WEAT Loss

In order to quantify bias with an objective function, we leverage the Word Embedding Association Test (WEAT)
(Caliskan et al., 2017). For each set of “target” words (e.g., male) and “attribute” words (e.g., math) which
comprise a WEAT, we take every word ~w in target sets X and Y and compute its average cosine similarity with
each set of attributes, A and B. With cs as the cosine-similarity function, the score is given in Equation 11, and
the WEAT effect is given in Equation 12.

s(~w,A,B) = E
~a∼A

[cs(~w,~a)]− E
~b∼B

[cs(~w,~b)] (11)

WEAT =
E
~w∼X

[s(~w,A,B)]− E
~w∼Y

[s(~w,A,B)]

E
~w∼X∪Y

[σ(s(~w,A,B))2]
(12)

L(WEAT, ztr) = −∇θWEATTH−1
θ ∇θLSG(ztr) (13)

The tests for this dataset involve four relevant WEATs from prior work: gender-career (WEATC), gender-math
(WEATM ), gender-art (WEATA), and race-pleasantness (WEATR).

Our cross-loss influence function for a WEAT objective is shown in Equation 13. The WEAT loss function uses
the absolute value of the effect size as the test loss value.
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B.1 WEAT Derivative

The WEAT objective consists of a set of cosine similarity comparisons, computing the difference in mean cosine-
similarity between two sets of words (the target sets) with a third set (the attribute set). To compute the WEAT
derivative analytically, one must compute the derivative of the cosine similarity between two words (given in
Equation 14), and apply the product and chain rules to the resulting derivative equations.

∂cos(a, b)

∂ai
=

bi
|b| · |a|

− cos(a, b) ai
|a|2

(14)

C WEAT Examples

Examples of the WEATs that we use are given in Table 4. Note that some tests, such as Math and Art overlap
very heavily, meaning that correcting one score often involves correcting both.

D Over-Biasing Experiments

We conduct an auxiliary experiment to validate the claim that our approach has found samples which are relevant
to the model’s inherent bias. Rather than attempting to undo or neutralize inherent bias, we instead reverse the
process described in the main paper and instead amplify the inherent biases.

Ordinarily, we mitigate bias by reinforcing the effects of “mitigating” samples, M , and undoing the effects of
“amplifying” samples A. In this experiment, we swap sets M and A, polarizing the models as much as possible.
Our results are given in Tables 5 & 6. Curiously, the WEATR effect flips for both datasets, DB and DN . Even
so, the overall bias in each dataset is clearly exacerbated, as WEAT effects are nearly perfectly polarized for most
tests. Even the near-neutral WEATC on DN has been increased substantially. While we would never want to
apply such dataset augmentations in the wild, the ability of our discovered samples to so greatly amplify inherent
dataset biases provides addition empirical support for our approach.

E Bias Experiments on DN

In this section, we include results which further support our central hypotheses: proof of bias mitigation through
amplifying and mitigating samples across four WEATs, given in Figures 3 & 4, and a set of samples which are
among the highest in influence on the WEAT scores, given in Table 7. In each subfigure, we show the score on the
corresponding WEAT for four different sets of updated word embeddings: corrections applied to neutralize the
score on WEATC (Career Correction), WEATM (Math Correction), WEATA (Art Correction), and WEATR
(Race Correction). We expect to see that corrections for each test effectively undo the discovered bias, and that
the gender-aligned tests (WEATC , WEATM , and WEATA) move together.

We see an interesting case in DN in which initial bias is already very low (WEATC). The initial bias test scores
very near zero at −0.05, and resulting training examples are all quite neutral. Even when applied for hundreds
or thousands of iterations, the score on the bias test barely shifts upwards, gently approach zero but never
significantly over-correcting (Figure 4a).

To our surprise, we find that DN contains higher baseline bias than DB , despite containing copies of sentences
in DB which are explicitly neutralized to have no point of view. While counter-intuitive at first, the result is
reasonable as we examine more of the data which is responsible. For instance, the sentence “Harris left NASA in

Test Symbol X Y A B
Career WEATC john, greg, jeff amy, lisa, donna executive, office, salary home, wedding, family
Math WEATM male, boy, he female, girl, she math, geometry, numbers art, novel, drama
Art WEATA son, his, uncle daughter, hers, aunt poetry, dance, novel science, physics, nasa
Race WEATR josh, katie, jack theo, jasmine, leroy freedom, honor, love crash, ugly, hatred

Table 4: Word Embedding Association Test set examples. Tests are drawn from the original WEAT work (Caliskan
et al., 2017).
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Method Gender Gender Gender Race
Career Math Arts Pleasant

Original 0.48 0.52 -0.43 0.53
Over-Biased 0.94 1.61 -1.63 -1.72

Table 5: DB WEAT effects after over-biasing

Method Gender Gender Gender Race
Career Math Arts Pleasant

Original -0.05 0.66 -0.82 0.55
Over-Biased -0.69 1.85 -1.58 -1.61

Table 6: DN WEAT effects after over-biasing

April 〈NUM〉 but he continued in research,” does not contain bias which can be neutralized, the content simply
encourages alignment between male and science.

As shown in Table 7 and in examples from the main paper, we find that some of the strongest examples for each
dataset are the same, even after neutralization. In particular, the examples which affect the WEATM score are
often the same for DB and DN . Often times, these examples are reflective of the same male and science example
given above: content itself is inherently aligning genders and attributes, even without being bigoted or sexist in a
conventional sense. The finding that perspective-neutral content is responsible for bias again reinforces the need
for approaches which can both explain and mitigate bias in word embeddings, as we are not simply able to screen
out all content which introduces bias.

We find that there is a careful balance to strike between under- and over-correcting, a challenge shown in Figure
3a. While updating for 10 – 100 iterations might result in completely neutral gender-career word embeddings,
applying the updates 1000 times ends up significantly skewing the embeddings in the other direction, over-aligning
male with family and female with career.

While initially surprising, this result makes more sense as we begin to examine some of the members of sets A
and M (Table 7), where we see that training examples which reduce bias are rarely neutral. Instead, when bias
has a sufficiently high absolute value, the most helpful samples for correction are those which will over-correct
when over-applied.

We find that the fine-tuning with correction sets for related effects moves related biases. For example, applying
the Art Correction neutralizes the art bias, but also neutralizes career bias, as shown in Figure 3a. As we can see
in Table 7, one of the most influential samples to mitigate bias in WEATM is one which aligns female and math,
which has a side-effect of neutralizing WEATA.

F Amplifying and Mitigating Set Sizes

Amplifying set A and mitigating set M sizes for each dataset (DB and DN ) and correction set (WEATC – Career
Correction, WEATM – Math Correction, WEATA – Art Correction, and WEATR – Race Correction) are given
in Table 8.

G Dataset Tokenization

Tokenization is a crucial piece to any language modeling project. In this section, we outline and justify our
tokenization choices for the two datasets we considered in this work.

Science Fiction The goal of our experiments with DSCI is to cluster meaningful concepts (e.g., heroes vs.
villains, or Star Trek vs. Star Wars). To that end, we remove common stopwords and all words which are not
represented at least five times in the corpus, leaving us with a vocabulary of 15,282 tokens. Using words which
are represented at least five times means that we will have a denser corpus of commonly used tokens. Similarly,
stopwords are common in all plot summaries, but they do not contain information which we wish to capture.
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(a) Career Score, WEATC (b) Math Score, WEATM (c) Art Score, WEATA (d) Race score, WEATR

Figure 3: For the biased dataset, DB, we observe the effects on WEAT scores as we modify the augment the
word embedding model with samples discovered from our approach.

(a) Career score, WEATC (b) Math score, WEATM (c) Art score, WEATA (d) Race score, WEATR

Figure 4: For the neutralized dataset, DN , we observe the effects on WEAT scores as we modify the augment the
word embedding model with samples discovered from our approach.

WNC The goals of our experiments with DB and DN are twofold: explainability around gender and racial bias,
and augmentation of discovered biases. Because this set of experiments involves testing for gender bias specifically
around pronouns (which are common stopwords), we do not remove stopwords for this dataset. Instead, we use
the set of tokens generated in prior work, giving us a vocabulary of 25,355 tokens. Using a pre-made tokenization
allows us to improve the reproducibility of our work and helps us to avoid injecting our own bias into the words
that we search for. We use the same set of tokens for each dataset.

H Word Embedding Model Training

In this section, we briefly cover hyperparameters which would be necessary to reproduce our word embedding
models. For both approaches, negatives samples are drawn randomly from the entire training corpus (DSCI , DB ,
or DN ), and words are sampled according to their prevalence in the dataset.

Science Fiction We train an embedding model over DSCI for 100 epochs with a context window of three, five
negative samples per word-context pair, and an embedding dimension of 100. Training for so long allows for the
embeddings to form dense clusters with related concepts after passing through all of the data many times, rather
than clustering based on “first impressions” of the data.

WNC In keeping with prior work (Brunet et al., 2018), use a word embedding model with context window
size of ten and an embedding dimension of 100. We sample ten negative tokens per word-context pair, and we
train the model for sixty epochs. Despite having more data, we do not train this model for as long, as we do not
want concepts to form dense clusters or share meanings. We want the word embeddings to maintain their own
individual meanings and values, as they would in a real-world setting.
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WEAT Set Example Cause
Career A “It has elected people to public office.” Neutral
Career M “They had a long marriage with no children.” Neutral
Math A “Maxwell’s 〈NUM〉 formulation was in terms of 〈NUM〉 Aligns male

equations in 〈NUM〉 variables although he later and math
attempted a quaternion formulation”

Math M “Most programming languages are designed around computation Aligns female
whereas Alice is designed around storytelling and thus is claimed and math
to have greater appeal to female students.”

Art A “With her dance moves she is best known for her spins Aligns female
and her hip hop moves.” and art

Art M “His first album after his 〈NUM〉 farewell concerts was dance 1981.” Aligns male
and art

Race A “It is a popular place for camping and recreational vacation.” Aligns pleasant
topics

Race M “Nate Holden performing arts center, the center at 〈NUM〉 Aligns African-
18 west Washington boulevard is the home of the American and art
Ebony Repertory theater company.”

Table 7: Examples of influential samples for Word Embedding Association Test scores in DN . Many samples are
important in both versions of the WNC, indicating their importance in bias propagation.

Correction Set DB DN

Gender-Career A 0 5
Gender-Career M 100 0
Gender-Math A 0 0
Gender-Math M 100 100
Gender-Art A 0 1000
Gender-Art M 100 0
Race-PleasantnessA 0 0
Race-PleasantnessM 5 5

Table 8: Amplifying and Mitigating set sizes for DB and DN .

I Matched vs Cross-Loss Influence Correlations

In this section, we present correlation plots between matched and cross-loss influence functions for our synthetic
mixture-of-gaussians experiment (Figure 5. In each plot, empirical influence (i.e., the actual influence obtained via
leave-one-out re-training) is plotted on the x-axis, and the predicted influence (according to matched or cross-loss
influence functions) is depicted on the y-axis. We also plot a line of best-fit for each set of points, and present the
correlation co-efficient and p-value for the Pearson’s correlation in the legend.

These correlation plots show us the comparable or even improved correlation of cross-loss influence functions to
empirical influence relative to matched-loss influence functions. We observe that matched-loss influence functions
often provide estimates of influence that may be orders of magnitude off of ground-truth, while cross-loss influence
functions are less prone to such over-estimations.
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Figure 5: Correlation plots between cross-loss influence (blue points, orange line) and matched influence (red
points, purple line) with empirical, ground-truth influence. We observe better average correlation with cross-loss
influence functions.


