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Abstract

Information-theoretic measures have been
widely adopted in the design of features for
learning and decision problems. Inspired by
this, we look at the relationship between i) a
weak form of information loss in the Shannon
sense and ii) operational loss in the mini-
mum probability of error (MPE) sense when
considering a family of lossy continuous repre-
sentations of an observation. Our first result
offers a lower bound on a weak form of in-
formation loss as a function of its respective
operation loss when adopting a discrete lossy
representation (quantization) instead of the
original raw observation. From this, our main
result shows that a specific form of vanishing
information loss (a weak notion of asymptotic
informational sufficiency) implies a vanishing
MPE loss (or asymptotic operational suffi-
ciency) when considering a family of lossy
continuous representations. Our theoretical
findings support the observation that the se-
lection of feature representations that attempt
to capture informational sufficiency is appro-
priate for learning, but this design principle
is a rather conservative if the intended goal
is achieving MPE in classification. On this
last point, we discuss about studying weak
forms of informational sufficiencies to achieve
operational sufficiency in learning settings.

1 INTRODUCTION

Given a continuous random object X, the problem
of representation learning formalizes the task of find-
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ing lossy descriptions (or features) of X, denoted by
U, that are sufficient (in some sense) to discriminate
a target discrete variable of interest Y (e.g., a class
or concept). In numerous contexts, the raw observa-
tion X lives in a finite dimensional continuous space
Rd. In this mixed continuous-discrete setting, a rea-
sonable assumption is that the raw X is redundant,
i.e., there are many explanatory factors that interact
in the expression of X beyond Y and, consequently,
a lossy description (aka coding) U has the potential
to fully capture almost all, or ideally all, the infor-
mation that X offers to discriminate Y [Bengio et al.,
2013]. Supporting this idea, it has been shown that
under some structural conditions [Bloem-Reddy and
Teh, 2020, Dubois et al., 2021], there is a lossy de-
scription U = g(X) that is information sufficient in
the sense that I(X;Y ) = I(U ;Y ), where I(X;Y ) de-
notes the mutual information (MI) between X and Y
[Cover and Thomas, 2006]. From the data-processing
inequality [Cover and Thomas, 2006, Gray, 1990a], in-
formational sufficiency implies that I(X;Y |U) = 0,
meaning that X and Y are conditionally independent
given U . A relevant context where this strong Markov
separation structure arises is in problems with prob-
abilisitic symmetries or invariances with respect to a
group of transformations [Bloem-Reddy and Teh, 2020,
Dubois et al., 2021].

In practice, lossy descriptions have been instrumental in
learning problems because they regularize the hypothe-
sis space by reducing the complexity/dimensionality of
the features, thus providing better generalization from
training to unseen testing conditions, which is arguably
the cornerstone of the learning problem [Xu and Man-
nor, 2012, Bousquet and Elisseeff, 2002, Shalev-Shwartz
et al., 2010, Devroye et al., 1996, Bousquet et al., 2004].
There is a large body of work that addresses the de-
sign of lossy representations from data. Many of these
approaches rely on the use of information-theoretic mea-
sures to quantify the predictive relationship between X
and Y , using for instance MI I(X;Y ), or conditional en-
tropy H(Y |X) or other approaches [Achille and Soatto,
2018a, Amjad and Geiger, 2019, Alemi et al., 2017,
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Achille and Soatto, 2018b]. Along the same lines of
learning a minimal (or compressed) sufficient represen-
tation fromX, the Information Bottleneck (IB) method
has been adopted in learning and decision [Amjad and
Geiger, 2019, Alemi et al., 2017, Achille and Soatto,
2018b, Tishby et al., 1999, Vera et al., 2018] to optimize
a tradeoff between relevance I(U ;Y ) and compression
I(U ;X) over a collection of probabilistic mappings (or
channels) from X to a (latent) variable U [Zaidi et al.,
2020]. There is also a deterministic version of the IB
problem where the objective is to find the optimal
tradeoff between I(Y,U) and H(U) where U is gener-
ated through a family of finite (alphabet) deterministic
mappings (or quantizations) of X [Tishby et al., 1999,
Strouse and Schwab, 2017, Tegmark and Wu, 2019].

In the context of learning representation as outlined
above, the concept of (asymptotic) sufficiency can be
introduced: an infinite collection of lossy descriptions
U1, U2, .... of X is said to be information sufficient (IS)
if limi→∞ I(Ui;Y ) = I(X;Y ). On the other hand, a
collection U1, U2, .... is said to be operationally sufficient
(OS) if the performance of classifying Y from Ui, in the
minimum probability of error (MPE) sense, achieves—
as i tends to infinity—the performance of the optimal
MPE classifier that uses X losslessly to predict Y .
Then, a natural question is the following: If a method
designs a collection of IS descriptions, is this collection
also OS? More generally, is there a strictly weak notion
of IS that implies OS?

To address these questions, in this paper, we focus on
studying the interplay between a weak form of infor-
mation loss and the operation loss over a family of
problems (models) induced by lossy continuous repre-
sentations of X. In particular, we consider a model
(X,Y ) with joint distribution µX,Y and a family of
lossy representations (encoders) {Ui}i≥1 of X, where
Ui = gi(X) is a continuous mapping, and µUi,Y de-
notes the joint distribution of (Ui, Y ). In this con-
text, we introduce a weak form of information loss1
I((r∗(X), Ui);Y )−I(Ui;Y ) ≤ I(X;Y )−I(Ui;Y ) where
r∗(X) denotes the MPE decision rule 2 (a finite-size
representation of X).

1.1 Contributions

Justifying our weak information loss selection, for the
case of discrete representation (i.e., Ui is induced by
a vector quantizer (VQ)), Theorem 1 presents a lower
bound for I((r∗(X), Ui);Y )− I(Ui;Y ) as a function of
the operation loss

∫
Ui(1−maxy∈Y µY |Ui(y|u))dµUi(u)−∫

X (1 − maxy∈Y µY |X(y|x))dµX(x) ≥ 0 attributed to
the use of Ui instead of X in classifying Y . Using

1This loss is formally introduced in Definition 3.
2r∗(·) is formally introduced in (9).

this bound, our main result (Theorem 2) shows that
if {Ui}i≥1 is weakly information sufficient (WIS), in
the sense that limi→∞ [I((r∗(X), Ui);Y )− I(Ui;Y )] =
limi→∞ I(r∗(X);Y |Ui) = 0, then {Ui}i≥1 is opera-
tionally sufficient (OS) to discriminate Y (i.e., Ui
achieves the MPE of X in the limit). In other words, a
form of informational sufficiency (strictly weaker than
IS mentioned above) implies a vanishing operation loss
when {Ui}i≥1 is a family of general continuous repre-
sentations of X.

On the technical side, we derive Theorem 2 using the
bound presented in Theorem 1: i.e., the argument goes
from discrete (VQ) to continuous representations. In
particular, we build the argument from the scenario
of discrete (finite alphabet) representations to prove
Theorem 2 in the general continuous (in Section 4.2).
The proofs of Theorems 2 and 1 rely on two important
information theoretic results: The first by Ho and
Verdú [2010] that characterizes, using a specific rate-
distortion function [Cover and Thomas, 2006], a tight
upper bound for the conditional entropy (equivocation
entropy) given an error probability and the second by
Liese et al. [2006] on asymptotic sufficient partitions
for mutual information.

1.2 Related Work

Our analyses relate fundamentally to the interplay be-
tween (minimum) probability of error and conditional
entropy (or equivocation entropy) that has been stud-
ied systematically in information theory [Feder and
Merhav, 1994, Ho and Verdú, 2010, Prasad, 2015]. One
of the most recognized results in this area is Fano’s
inequality 3 that offers a lower bound for the prob-
ability of error as a function of the entropy [Cover
and Thomas, 2006]. A refined analysis between con-
ditional entropy and minimum error probability was
presented by Feder and Merhav [1994]. They explored
the interplay between these quantities providing tight
(achievable) lower and upper bounds for the conditional
entropy given a minimum error probability restriction.
Refining this analysis, Ho and Verdú [2010] studied a
more specific problem that is relevant in the Bayesian
treatment of classification: given the prior distribu-
tion of Y (µY ), they were interested in the interplay
between the error probability of predicting Y from
an observation X and the conditional entropy of Y
given X when X is a discrete (finite-alphabet) obser-
vation. They provided a closed-form expression for
the maximal conditional entropy that can be achieved
as a function of the prior distribution µY and the
minimum probability error ε in the non-trivial regime

3H(Y |X) ≤ h(`(µX,Y )) + `(µX,Y ) log(|Y| − 1) where
h(r) = −r log(r)− (1− r) log(1− r) is the binary entropy
[Cover and Thomas, 2006].
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when ε ≤ (1−maxy∈Y µy(y)). These results offer tight
(achievable) bounds between conditional entropy and
error probability, thus providing refined and special-
ized versions of Fano’s type of bounds4 [Ho and Verdú,
2010]. A relevant corollary of these bounds is the fact
that a vanishing probability of error implies a vanishing
conditional entropy. The converse result is also true
under some conditions [Feder and Merhav, 1994]. Then,
in cases when the classification task is almost perfect
or degenerate (zero probability of error), the interplay
between error probability and conditional entropy is
rather evident (zero error ⇔ zero conditional entropy).
This interplay, however, is less evident for the majority
of cases that deviate from this highly discriminative
context as it is clearly presented in [Feder and Merhav,
1994, Ho and Verdú, 2010].

The focus of our work is different from the results
mentioned in this subsection as we are interested in
the interplay between a form of information loss and
its respective operation loss over a family of problems
(models) induced by lossy representations of X.

1.3 Organization

The rest of the paper is organized as follows. Sections
2 and 3 formalize our main question and introduce
notation, required concepts and preliminary results.
Section 4 presents the statement and interpretations of
the main asymptotic result (Theorem 2). The proof of
Theorem 2 is sketched in Section D. Discussion, final
remarks and extensions are elaborated in Sections 5 and
5.1. The proofs of the main two results of this paper
and the presentation of supporting technical arguments
are relegated to the Supplementary Material.

2 PRELIMINARIES

Let us consider a decision problem expressed in terms
of the joint model (probability) µX,Y ∈ P(X × Y) of
a vector (X,Y ) where Y takes values in a finite space
Y = {1, ..,M} (e.g., a class label) and X takes values
in a continuous finite dimensional space X = Rd. On
the operational side, the minimum probability of error
(MPE) of predicting Y using X as an observation, given
the the model µX,Y , is expressed by

`(µX,Y ) ≡
∫
X

(1−max
y∈Y

µY |X(y|x))dµX(x), (1)

where µY |X(·|x) denotes the probability mass function
(pmf) of Y conditional to the event {X = x} and µX
denotes the marginal probability of X in X . On the

4Indeed, these bounds were extended to countably-
infinite alphabets, a regime for which Fano’s original in-
equality has not been defined.

information side, the conditional entropy of Y given X
— also known as the equivocation entropy (EE) [Feder
and Merhav, 1994, Ho and Verdú, 2010] — is

H(Y |X) ≡
∫
X
H(µY |X(·|x))dµX(x), (2)

where

H(µY |X(·|x)) ≡ −
∑
y∈Y

µY |X(y|x) logµY |X(y|x) ≤ logM

is the Shannon entropy of µY |X(·|x) ∈ P(Y) [Gray,
1990a, Cover and Thomas, 2006]. The mutual informa-
tion (MI) of µX,Y is [Gray, 1990a, Cover and Thomas,
2006]

I(µX,Y ) = I(X;Y ) ≡ H(µY )−H(Y |X). (3)

The standard notation for MI is I(X;Y ), however we
also use I(µX,Y ) to emphasize that MI is a functional
of the joint distribution µX,Y .

2.1 Representations (Encoder) of X

A representation of X is a measurable function η :
(Rd,B(Rd))→ (U ,B(U)) where U is the representation
space with its respected sigma field denoted by B(U). In
general, we are interested in the case of a lossy mapping
η(·). To begin our analysis, particular attention will
be given to the relevant case where |U| = K < ∞,
meaning that η(·) is a vector quantizer (VQ) of X.
This VQ induces the following finite partition on X of
size K:5

πη ≡
{
η−1({u}), u ∈ U

}
, (4)

where it follows that η(x) =
∑
u∈U u · 1η−1({u})(x).

In general, we denote by U ≡ η(X) the representation
of X induced by η(·), and we denote by µU,Y the joint
distribution of (U, Y ) (induced by µX,Y and η(·)) in
U × Y . As the expressions in (1) and (3) are functions
of the model µX,Y , they can be extended naturally
to µU,Y , where i) `(µU,Y ) is the MPE of predicting Y
from U , and ii) I(µU,Y ) = I(U ;Y ) is the MI between
U and Y .

2.2 Information Loss and Operation Loss

We are interested in the information loss (IL) of using
U (instead of X) to resolve Y in the Shannon sense.
This can be measured naturally by

I(µX,Y )− I(µU,Y ) = I(X;Y |U) ≥ 0, (5)

where the identity in (5) comes from the chain rule
of MI and the definition of the conditional MI [Gray,

5The main result of this work is for continuous repre-
sentations. However, studying the case of finite VQs is
instrumental as elaborated in Sections 4.1 and D.
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1990a, Cover and Thomas, 2006]. The main objective
of this work is to understand how an information loss
of the form in (5) relates to its respective operation
loss (OL) of using U (instead of X) to classify Y in
the MPE sense, i.e.,

`(µU,Y )− `(µX,Y ) ≥ 0. (6)

In the following sections, we will study the interplay
between a relaxed (weak) information loss expression
(of the form in (5)) and the operation loss introduced
in (6) in different contexts.

3 FORMALIZATION AND BASIC
RESULTS

Let us consider a family of mappings ηi : X → Ui,
indexed by i ∈ N, where Ui is a continuous space,
for example a finite dimensional Euclidean space Rq.
Using ηi(·), we consider the representation variable
Ui = ηi(X) (e.g., a feature) and the respective joint
distribution of (Ui, Y ) characterized by µUi,Y in Ui×Y .
At this point, we introduce the following asymptotic
definitions for informational and operational sufficiency,
respectively.

Definition 1 A sequence of representations {ηi(·)}i≥1

(and its respective representation variables {Ui}i≥1) for
X is said to be operationally sufficient (OS) for the
model µX,Y (in the MPE sense) if

lim
i−→∞

`(µUi,Y ) = `(µX,Y ). (7)

Definition 2 A sequence of representations {ηi(·)}i≥1

for X (and {Ui}i≥1, respectively) is said to be infor-
mation sufficient (IS) for µX,Y if

lim
i−→∞

I(µUi,Y ) = I(µX,Y ). (8)

Let us introduce a weak version of IS for µX,Y . For this,
let us recall that the MPE rule (a sufficient statistics)
is a quantizer of X of size M = |Y| given by6

r̃µX,Y (x) ≡ arg max
y∈Y

µY |X(y|x). (9)

This rule induces both a (distribution dependent) par-
tition of X given by7

π∗ ≡
{
A∗y ≡ r̃−1

µX,Y ({y}), y ∈ Y
}
, (10)

and a finite alphabet lossy representation of X given
by Ũ ≡ r̃µX,Y (X) ∈ Y.

6The optimal rule in (9) is not unique. If for some x
many y achieves the minimum in (9), we select the smallest
one to define r̃µX,Y (x).

7where r̃µX,Y (x) =
∑
y∈Y 1A∗y (x) · y.

Definition 3 A sequence of representations {ηi(·)}i≥1

for X (and {Ui}i≥1, respectively) is said to be weakly
information sufficient (WIS) for µX,Y if

lim
i−→∞

I(µ(Ũ,Ui),Y
)− I(µUi,Y )︸ ︷︷ ︸

I(Y ;Ũ |Ui)≥0

= 0, (11)

where I(Y ; Ũ |Ui) is the conditional MI between Y and
Ũ given Ui [Cover and Thomas, 2006].

3.1 Preliminary Analysis

Let us first consider the discrete case where Ui =
{1, .., ki} for any i ≥ 1. In this context, we can
elaborate expressions for I(µ(Ũ,Ui),Y

)− I(µUi,Y ) and
`(µUi,Y )− `(µX,Y ). For this, let us consider the finite
partition induced by the mapping ηi(·) which is given
by

πηi ≡
{
Bi,j ≡ η−1

i ({j}), j ∈ Ui = {1, .., ki}
}
, (12)

where ηi(x) =
∑
j∈Ui 1Bi,j (x) · j.

The following results present useful expressions for the
losses in (6) and (5) in terms of the model µX,Y and
the cells of π∗ and πηi , respectively.

Proposition 1 8 `(µUi,Y ) − `(µX,Y ) =∑
Bi,j∈πηi

µX(Bi,j) · g(µX,Y , Bi,j) where

g(µX,Y , Bi,j) ≡
[
1−max

y∈Y
µY |X(y|Bi,j)

]
−∑

A∗u∈π∗

µX(A∗u ∩Bi,j)
µX(Bi,j)

[
1−max

y∈Y
µY |X(y|A∗u ∩Bi,j)

]
≥ 0.

(13)

The operation loss in Proposition 1 is expressed as the
weighted sum of the terms {g(µX,Y , Bi,j)}Bi,j∈πηi , each
one of them associated with a non-negative contribution
(in the loss) indexed by individual cells of πηi .

Remark 1 The term g(µX,Y , Bi,j) ≥ 0 can be in-
terpreted as the gain in MPE from a “prior sce-
nario" where the marginal distribution of Y follows
(µY |X(y|Bi,j))y∈Y ∈ P(Y) to a “posterior scenario"
where we observe Ũ = r̃µX,Y (X) to classify Y un-
der the joint conditional model (µŨ,Y |X(u, y|Bi,j) ≡
µX,Y (A∗u∩Bi,j×{y})

µX(Bi,j)
)(u,y)∈Y2 in P(Y × Y).9

On the information loss, instead of looking at
I(X;Y |Ui) in (5), we decided to consider the MI loss
of observing Ui with respect to a re-defined reference

8The proof is presented in the Supplementary Material.
9This Bayesian gain interpretation of the term

g(µX,Y , Bi,j) will be central for the results in Section 4.
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case where we observe the pair (Ũ = r̃µX,Y (X), Ui),
which is a deterministic function of X. Intuitively, this
choice is based on the observation that Ũ is a sufficient
statistic for X in the operational MPE sense, see Eq.(9).
Consequently, our re-defined information loss is

Proposition 2 10 I(µ(Ũ,Ui),Y
) − I(µUi,Y ) =∑

Bi,j∈πi µX(Bi,j) · I(Ũ ;Y |X ∈ Bi,j), where

I(Ũ ;Y |X ∈ Bi,j) ≡ H(µY |X(·|Bi,j))−∑
A∗u∈π∗

µX(A∗u ∩Bi,j)
µX(Bi,j)

H(µY |X(·|A∗u ∩Bi,j)) (14)

is the MI between Y and Ũ =
∑
u∈Y u · 1A∗u(X) condi-

tioning on the event {X ∈ Bi,j}.

Alternatively, we have that I(µ(Ũ,Ui),Y
)− I(µUi,Y ) =

I(Ũ , Ui;Y )− I(Ui;Y ) = I(Ũ ;Y |Ui).

Remark 2 Based on Remark 1, it is worth noting the
conceptual connection between g(µX,Y , Bi,j) in (13),
which is the prior risk minus the posterior risk in the
MPE sense condition on {X ∈ Bi,j}, and I(Ũ ;Y |X ∈
Bi,j) in (14), which is the prior minus the poste-
rior Shannon entropy condition on the same event
{X ∈ Bi,j}.

4 MAIN RESULTS

Before presenting the main result of this work (Theorem
2), it is relevant to find a lower bound on the informa-
tion loss expressed in Proposition 2 as a function of
the operation loss expressed in Proposition 1. For that,
we introduce the following instrumental lemma:

Lemma 1 [Ho and Verdú, 2010, Th.4] Let us consider
Y a random variable in Y = {1, ..,M} and a finite
observation space X such that |X | ≥M . If we denote
by P(X|Y) the collection of conditional probabilities
from Y to X (or channels), then for any non-negative
ε ≤ (1−max

y∈Y
µY (y))︸ ︷︷ ︸

the prior error of µY

, it follows that

f(µY , ε) ≡ min
ρX|Y ∈P(X|Y) st. `(ρX|Y µY )=ε

I(ρX|Y µY )

= H(µY )−H(R(µY , ε)) ≥ 0, (15)

where ρX|Y · µY is a joint probability in P(X ×Y) and
R(µY , ε) ∈ P(Y) is a well-defined probability, function
of both µY and ε. 11

10The proof is presented in the Supplementary Material.
11The closed-form expression of the probability R(µY , ε)

is presented in [Ho and Verdú, 2010]. This expression is
presented in the Supplementary Material (see Eqs.(53)-
(55)).

This result offers a tight (achievable) lower bound
on the minimum MI achieved by a family of joint
models in P(X × Y) that satisfies two conditions:
i) they meet an MPE restriction parametrized by
ε ∈ [0, 1−maxy∈Y µY (y)] and ii) they have a marginal
distribution on Y given by a fixed model µY ∈
P(Y). Importantly, for the non-trivial case when
ε < (1 − maxy∈Y µY (y)), Ho and Verdú [2010] show
that H(µY ) > H(R(µY , ε))⇒ f(µY , ε) > 0, while for
the trivial case when ε = (1−maxy∈Y µY (y)) they show
that R(µY , ε) = µY ⇒ f(µY , ε) = 0 [Ho and Verdú,
2010]. 12

Remark 3 Considering a discrete observation X such
that (X,Y ) ∼ µX,Y , Lemma 1 can be used directly
to obtain a lower bound for I(X;Y ) = I(µX,Y ) as a
function of `(µX;Y ). More precisely from (15), we have
that

I(X;Y ) = I(µX,Y ) ≥ f(µY , `(µX,Y ))

= H(Y )−H(R(µY , `(µX,Y ))). (16)

Importantly, the bound in (16) recovers the known fact
that if `(µX;Y ) < (1−maxy∈Y µY (y)) then I(X;Y ) > 0,
or, conversely, I(X;Y ) = 0 (zero information) implies
`(µX;Y ) = (1 − maxy∈Y µY (y)), i.e., a zero gain in
MPE (from the prior) when observing X.

4.1 A Non-Asymptotic Result

Returning to our original mixed continuous-discrete
setting (Section 2), the application of Lemma 1 in the
context of our weak information loss vs. operation loss
analysis offers the following result:

Theorem 1 Let us consider our model µX,Y and a
finite alphabet (vector quantizer) lossy representation
Ui (induced by ηi(·)) of X, then

I(µ(Ũ,Ui),Y
)− I(µUi,Y ) ≥∑

Bi,j∈πi

µX(Bi,j)×[
H(µY |X(·|Bi,j))−H(R(µY |X(·|Bi,j), εi,j)

]
(17)

where

εi,j =

[
1−max

y∈Y
µY |X(y|Bi,j)

]
− g(µX,Y , Bi,j)

=
∑

A∗u∈π∗

µX(A∗u ∩Bi,j)
µX(Bi,j)

[
1−max

y∈Y
µY |X(y|A∗u ∩Bi,j)

]
and g(µX,Y , Bi,j) is in (13).

12In information theory, the function f(µY , ε) in (15) is
a special case of the celebrated rate-distortion function of a
memoryless source (i.i.d.) with marginal distribution µY
and distortion function given by the hamming distance (or
the 0-1 loss) [Gray, 1990b].
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Remarks and implications of Theorem 1:

1. The lower bound on the information loss in (17)
is an explicit function of the decomposition of the
operation loss presented below in (18). On the
proof, the expression in (17) comes from interpret-
ing the operational loss in (18) as the sum of some
posterior minus prior MPE gains (see Remark 1)
and the application of Lemma 1 in this context
(see the proof of this result in the Supplementary
Material).

2. Corollary 1 Let us assume a positive operation
loss, i.e., `(µUi,Y )− `(µX,Y ) =∑

Bi,j∈πi

µX(Bi,j) · g(µX,Y , Bi,j) > 0 (18)

then from Theorem 1 it follows that I(µ(Ũ,Ui),Y
)−

I(µUi,Y ) > 0.
Proof of Corollary 1: Assuming that
`(µUi,Y ) − `(µX,Y ) > 0 in (18), this im-
plies that at least one component j of the
sum satisfies that g(µX,Y , Bi,j) > 0 ⇔
εi,j <

[
1−maxy∈Y µY |X(y|Bi,j)

]
(see (18)).

Then Lemma 1 implies that H(µY |X(·|Bi,j)) −
H(R(µY |X(·|Bi,j), εi,j) > 0. This last inequality
and (17) suffice to show that

I(µX,Y )−I(µUi,Y ) ≥ I(µ(Ũ,Ui),Y
)−I(µUi,Y ) > 0.

(19)
The first inequality in (19) comes from the fact
that (Ũ , Ui) is a deterministic function of X and
the second comes from (17). �
Therefore, a non-zero operation loss on using Ui
instead of X (stated in (18)) implies a respective
non-zero weak information loss as stated in (19).

3. Corollary 1 implies that if Ui = ηi(X) (for some
finite i) is weakly information sufficient in the
sense that I(µ(Ũ,Ui),Y

)−I(µUi,Y ) = I(Ũ ;Y |Ui) =

0, then `(µUi,Y ) = `(µX,Y ), i.e., ηi (and Ui) is
operational sufficient for µX,Y .

4. It is worth noting that for a large clases of mod-
els (continuous in nature), Ui being weakly infor-
mation sufficient, i.e., I(Ũ ;Y |Ui) = 0, is strictly
weaker than asking that Ui is information suf-
ficient for µX,Y , i.e., I(X;Y |Ui) = 0. In fact,
I(X;Y |Ui) = 0 implies that I(Ũ ;Y |Ui) = 0 from
the observation that Ũ is a deterministic function
of X and the chain rule of the MI [Cover and
Thomas, 2006], but the converse result is not true
in general.13

13In contrast, examples for µX,Y can be constructed (dis-
crete in nature) where I(X;Y ) = I(Ũ ;Y ). Here, Ũ (a
discrete variable of size M) is IS for µX,Y . In this trivial
discrete context, I(X;Y |Ui)=I(Ũ ;Y |Ui) independent of Ui.

5. The difference between the pure information loss
(IL), i.e., I(X;Y |Ui), and the weak information
loss (WIL), i.e., I(Ũ ;Y |Ui), is further discussed in
Section 4.3 and its non-zero discrepancy is illus-
trated by an example in Section 4.4.

4.2 The Asymptotic Result

The following is the main asymptotic result of this work
that shows that a family of weakly IS representations
(continuous in general) for µ ∈ P(X × Y) is operation
sufficient for µ. This result can be interpreted as a
non-trivial asymptotic extension of Corollary 1 (from
Theorem 1).

Theorem 2 Let {Ui}i≥1 be a sequence of represen-
tations for X obtained from {ηi(·)}i≥1. If {Ui}i≥1 is
WIS for µX,Y (Definition 3), then {Ui, i ≥ 1} is OS
for µX,Y (Definition 1).

Remarks about the statement of Theorem 2 and its
interpretation:

1. The proof of Theorem 2 (Section 4 in the Supple-
mental Material) shows that if a family of repre-
sentations {Ui}i≥1 is not operationally sufficient,
i.e., lim infi→∞ `(µUi,Y )− `(µX,Y ) > 0, then

lim inf
i→∞

I(µ(Ũ,Ui),Y
)− I(µUi,Y ) =

lim inf
i→∞

I(Ũ ;Y |Ui) > 0. (20)

2. The condition (11) (WIS in Definition 3) means
that as i tends to infinity, Ui captures all the
information (in the Shannon sense) that Ũ has to
offer to resolve the uncertainty of Y . In general
for continuos models, we have that I(Ũ ;Y ) <
I(X;Y ) because Ũ is an M size quantized version
of X (see Eq.(10)). Then, the sufficient condition
stated in (11) is strictly weaker (for a large class of
models) than asking for informational sufficiency
(Definition 2).

3. The condition in (11) and Theorem 2 further em-
phasize the fact that achieving pure sufficiency
in the Shannon sense is very conservative if the
operational objective is classification, as a strictly
weaker notion does exist that guarantees oper-
ational sufficiency. An example is presented in
Section 4.4 that illustrates this point.

4. Complementing the previous point, it is evident
that {Ui}i≥1 being operationally sufficient for
µX,Y does not imply that {Ui}i≥1 is information
sufficient for µX,Y , in general. We illustrate this
with an example in Section 4.4. Conversely, if
{Ui}i≥1 is not OS, then lim supi→∞ I(µUi,Y ) <
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I(µX,Y ) considering that I(µ(Ũ,Ui),Y
) ≤ I(µX,Y )

for any i ≥ 1 and (20).

5. Finally, it is worth mentioning that WIS, as a
condition on {ηi(·)}i≥1, is theoretically interesting
for the reasons mentioned in previous points, but
it is unnatural in terms of its practical adoption
for feature design in a learning context. The rea-
son is that the reference representation Ũ (used
in (11)) is a function of the model µX,Y , which
is by construction unavailable in learning. This
limitation motivates further research on extensions
of Theorem 2 into learning settings as discussed
in Section 5.

4.3 How much weaker is WIS than IS?

On the significance of our main result (Theorem 2), a
key aspect is to analyze and evaluate much weaker is
the WIS condition used in Theorem 2 from the tradi-
tional IS. The analysis implies looking at the differences
between the information losses, i.e., the difference be-
tween I(X;Y ) and I((Ũ , Ui);Y ). On this, we could
say that:

• The analysis of IL-WIL = I(X;Y ) −
I((Ũ , Ui);Y ) ≥ 0 depends on the model
µX,Y and the representation Ui. The weak
information loss uses Ũ (a quantized version of X
of size M) as a reference, while IL uses X, which
is a continuous random variable in the context of
our general model µX;Y .

• We know from information theory that I(X;Y ) is
the supremum of the discrete MI between η(X)
and Y over all possible finite-size quantizers η(·)
[Liese et al., 2006, Silva and Narayanan, 2010a,
Vajda, 2002] (result in the Supplemental). The
scenario where MI is not achieved by any finite size
version of X makes the model µX,Y continuous
from a MI point of view [Liese et al., 2006, Silva
and Narayanan, 2010a, Vajda, 2002]. In contrast, a
model where a quantized version of X achieves the
MI between X and Y makes the model µX,Y dis-
crete from a MI point of view [Cover and Thomas,
2006].

• Assuming the non-trivial case that µX;Y (the
model) is continuous, i.e., I(X;Y ) is not achieved
by any finite-alphabet function (or vector quanti-
zation) of X, we have that for any representation
ηi(·) (Ui) that is a VQ: I((Ũ , Ui);Y ) < I(X;Y ).
Consequently, WIL is strictly smaller than IL for
the rich case where we have a continuous model
and finite alphabet representations.

• On the previous point, the continuous scenario for
µX;Y is an essential case study for the analysis

presented in this paper as we do not impose any
structural assumptions on µX,Y . Also, in practical
domains of continuous observations, it is reason-
able to consider that a quantized (digital) version
of X induces a non-zero loss of mutual information
about Y .

4.4 An illustrative Example

To illustrate the gap between WIS and IS and the
potential significance of our result, here we present a
simple construction to analyze the interplay between
IS vs. OS and WIS vs. OS.

• Y takes two values in {1, 2} with µY (1) = µY (2) =
1/2.

• X given Y follows a Gaussian distribution:
X ∼ Normal(K,σ) when Y = 1 and X ∼
Normal(−K,σ) when Y = 2. K > 0 and σ > 0
(the parameters).

• the MPE decision is: Ũ = 1 if X ≥ 0 and Ũ = 2
if X < 0.

• Let us consider the following collec-
tion of indexed partitions: π1 =
{(−∞,−1/2), [−1/2, 1/2], (1/2,∞)}; π2 =
{(−∞,−1/4), [−1/4, 1/4], (1/4,∞)}; . . .
πi =

{
(−∞,−1/2i), [−1/2i, 1/2i], (1/2i,∞)

}
,....

• If we denote by A1
i , A2

i and A3
i the cells of πi,

these produce a VQ of X determined by: Ui = 1 if
X ∈ A1

i , Ui = 2 if X ∈ A2
i , and Ui = 3 if X ∈ A3

i .

• It is simple to show that I(Ui;Y ) < I(X;Y ) (as
the model is continuous) [Liese et al., 2006, Silva
and Narayanan, 2010a, Cover and Thomas, 2006]
and that limi→∞ I(Ui;Y ) < I(X;Y ). In other
words, the collection {Ui}i≥1 is not information
sufficient: i.e, I(X;Y )− I(Ui;Y ) is not vanishing
as i tends to infinity.

• In contrast, by the construction of this family,
Ui determines Ũ in the limit (it follows that
limi→∞H(Ũ |Ui) = 0) and, consequently, we have
that limi→∞ I(Ũ ;Y |Ui) = 0 [Cover and Thomas,
2006]. Therefore, this family of representations
{Ui}i≥1 is WIS.

• Finally, from Theorem 2, {Ui}i≥1 is OS (Def. 1)
but not IS (Def.2).

This simple construction offers a scenario where the
difference between IL and WIL is strictly positive and
relevant for any i. This discrepancy is non-trivial when
i grows: WIL tends to zero, but IL does not. Indeed,
WIS (Def. 3) is strictly weaker than IS (Def.2) in
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this example. Furthermore, we observe that IL as a
criterion is blind on predicting the quality of {Ui}i≥1 to
achieve the MPE in (1). In the extended version of this
paper, we show other constructions (VQs) and models
where the same finding illustrated in this example is
experimentally observed [Silva et al., 2021].

4.5 Overview of the Proof of Theorem 2:
from Discrete to Continuous
Representations

The proof of Theorem 2 is divided in two main stages
(details in Section D of the Supplementary Material).
The first stage (in Section D.1, Suplemental) restricts
the analysis to the important case of finite alphabet
representations, or vector quantizers of X. In this
discrete context, we use results from information theory
to show that WIS implies OS (see Theorem 3 and
its proof in Sections E and F of the Supplementary
Material). The decision to begin studying the case of
finite alphabet representations was essential because it
offers a path to adopt concrete results on the interplay
between probability of error and conditional entropy
only available for discrete random variables (see Section
4.1 and Section D.1 of the Supplementary Material).

In the second stage of the proof (in Section D.2 of
the Supplementary Material), we make a connection
between the discrete (Theorem 3 in the Supplementary
Material) and the continuous result (Theorem 2). Im-
portantly, the finite alphabet result is used as a building
block to extend the proof argument to the continuous
case stated in Theorem 2. For this objective, results
on information sufficient partitions for mutual informa-
tion were instrumental [Liese et al., 2006] (details in
Sections D.2 of the Supplemental Material).

5 SUMMARY, DISCUSSION AND
EXTENSIONS

This work offers new results to understand the inter-
play between information loss (in the Shannon sense)
and operational loss (in the classical MPE sense) when
considering a general family of lossy representations of
an observation vector X in Rd. Our main asymptotic
result (Theorem 2) supports the idea that creating a
family of information sufficient representations is an
adequate criterion in the sense that these representa-
tions have a vanishing residual error with respect to
the MPE decision acting on X to classify (a class) Y .
On the other hand, our result also shows that pure
informational sufficiency (in the sense of Def. 2) is a
conservative criterion. Indeed, Theorem 2 shows that
a strictly weaker notion of informational sufficiency
(in the form of Def. 3) suffices to obtain the required
operational result.

To give practical significance to our main result, we
have worked on extensions of Theorem 2 in a learning
setting where µX,Y is unknown, but it belongs to a col-
lection of models Λ (prior knowledge). In an extended
version of this paper [Silva et al., 2021, Sec. VII], we
studied how the structure of Λ can be used to deter-
mine less conservative (and non-oracle) weak forms
of informational sufficiency that could be adopted by
algorithms that select representations from data. We
studied the case where Λ is the family of invariant
models (invariant to the action of a compact group)
[Bloem-Reddy and Teh, 2020, Dubois et al., 2021],
where it is possible to determine “a non-oracle" surro-
gate of r∗(·) (in Theorem 2) that extends our result
(WIS implies OS) in a learning scenario [Silva et al.,
2021].

Finally, on the optimality of the WIS condition in
Theorem 2, in the extended version of this paper [Silva
et al., 2021, Sec.V], we proved that when the MAP
rule in (9) is unique (almost surely w.r.t. to the model
µX,Y ), then “WIS is equivalent to OS”. This last result
shows a context where WIS (as a condition) is tight
and optimal, in the sense that no weaker representation
condition on {Ui}i≥1 could be found to guarantee OS.

5.1 A Broader Perspective on the
Application of these Results

The analysis presented in this work about the inter-
play between vanishing information and operation loss
offers relevant insight in learning settings. First, our
results support the universality of approximating (or
learning) compressed representations that capture the
mutual information between X and Y , for example,
via minimization of the conditional entropy H(Y |U),
or maximization of I(U ;Y ). This is a widely adopted
criterion in representation learning, in the form of max-
imizing empirical versions of the mutual information,
or alternatively, minimizing empirical versions of the
conditional entropy over a family of compressed rep-
resentations of X [Amjad and Geiger, 2019, Alemi
et al., 2017, Achille and Soatto, 2018b, Vera et al.,
2018, Strouse and Schwab, 2017, Tegmark and Wu,
2019].

On the other hand, the implication of Theorem 2 is
relevant in the sense that we show evidence that pure
IS could be very conservative as a condition to achieve
OS in some scenarios. On this dimension, we introduce
a weaker (strictly weaker in many cases) information
sufficient condition that imply OS for classification.

We know that our main result (WIS=>OS) by itself
does not offer a direct practical strategy for represen-
tation learning. However, our findings could motivate
practical avenues of research: for instance, finding "non-
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oracle" information losses, inspirited by WIS, weaker
than IS (for some models or family of models) that
could be adopted in practice to learn sufficient represen-
tation from data in the MPE sense. In this direction,
we have worked on extending Theorem 2 to come out
with a non-oracle WIS condition under some prior in-
formation (µX,Y is invariant to the action of a compact
group of transformations). These results are presented
in an extended version of this paper in [Silva et al.,
2021].

Concerning the notion of informational sufficiency stud-
ied in this paper, there is an interesting connection with
the analysis and results used for mutual information
estimation. On the approximation error analysis of
this estimation (learning) problem, there are numerous
results in the literature guaranteeing that a collection
of representations (partitions) are asymptotically suffi-
cient for approximating the mutual information I(X;Y )
[Berlinet and Vajda, 2005, Liese et al., 2006, Vajda,
2002], or information sufficient in the language of this
paper. These results offer concrete conditions and con-
structions for finite-size representations (VQ) that in
light of Theorem 2 will be operationally sufficient for
classification. In this context, it is worth noting the
family of data-driven constructions studied in [Silva and
Narayanan, 2010a, 2007, 2010b, Vajda, 2002, Darbellay
and Vajda, 1999, Gonzales and Silva, 2020, Gonzales
et al., 2022]. These are data-driven representations (or
representations learned from data) that are informa-
tion sufficient (with probability one) and, consequently,
they are operationally sufficient (with probability one)
as a corollary our main result in Theorem 2. The for-
malizations of these connections are presented in the
extended version of this paper in [Silva et al., 2021, Sec.
VI].

Finally, we emphasize that our findings are purely from
an information-theoretic perspective of sufficiency and,
if put in practice, the features resulting from the ideas
laid out here need to be exhaustively examined. We
are at a time when automatic feature discovery has
reached an unprecedented efficiency in terms of perfor-
mance metrics, however, when dealing with sensible
human-centered scenarios and datasets, operational
efficiency should not be the unique criterion and we
must also consider societal implications, fairness, and
interpretability.
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A PROPOSITION 1

Proposition 1 `(µUi,Y )− `(µX,Y ) =
∑
Bi,j∈πηi

µX(Bi,j) · g(µX,Y , Bi,j) where

g(µX,Y , Bi,j) ≡
[
1−max

y∈Y
µY |X(y|Bi,j)

]
−
∑

A∗u∈π∗

µX(A∗u ∩Bi,j)
µX(Bi,j)

[
1−max

y∈Y
µY |X(y|A∗u ∩Bi,j)

]
. (21)

Proof: From Bayes decision, it is known that Ũ = r̃µX,Y (X) is a sufficient statistic of X in the operational
sense, i.e., `(µŨ,Y ) = `(µX,Y ). For this analysis, it is useful to consider the augmented observation vector (Ũ , Ui),
where its error `(µ(Ũ,Ui),Y

) is at most the error achieved by Ũ . Consequently, we have that `(µ(Ũ,Ui),Y
) = `(µX,Y ).

This identity helps us to express the loss in (6) conveniently:

`(µUi,Y )− `(µX,Y ) = `(µUi,Y )− `(µ(Ũ,Ui),Y
) =

∑
Bi,j∈πi

µX(Bi,j)

[
1−max

y∈Y
µY |X(y|Bi,j)

]

−
∑

A∗u∈π∗

∑
Bi,j∈πi

µX(Bi,j ∩A∗u)

[
1−max

y∈Y
µY |X(y|A∗u ∩Bi,j)

]
. (22)

Finally (13) follows directly from (22).

B PROPOSITION 2

Proposition 2 I(µ(Ũ,Ui),Y
)− I(µUi,Y ) =

∑
Bi,j∈πi µX(Bi,j) · I(Ũ ;Y |X ∈ Bi,j), where

I(Ũ ;Y |X ∈ Bi,j) ≡ H(µY |X(·|Bi,j))−
∑

A∗u∈π∗

µX(A∗u ∩Bi,j)
µX(Bi,j)

H(µY |X(·|A∗u ∩Bi,j)) (23)

is the MI between Y and Ũ =
∑
u∈Y u · 1A∗u(X) conditioning on the event {X ∈ Bi,j}.

Proof: From the definition of MI and the discrete nature of the joint vector (Ũ , Ui) [Cover and Thomas,
2006], we have that

I(µ(Ũ,Ui),Y
) = H(Y )−

∑
A∗u∈π∗

∑
Bi,j∈πi

µX(Bi,j ∩A∗u) · H(µY |X(·|A∗u ∩Bi,j)). (24)

On the other hand, I(µUi,Y ) = H(Y )−
∑
Bi,j∈πi µX(Bi,j) · H(µY |X(·|Bi,j)). The result in (14) derives directly

from these expressions.

C PROOF OF THEOREM 1

Theorem 1 Let us consider our model µX,Y and a finite alphabet lossy representation Ui (induced by ηi(·)) of
X, then

I(µ(Ũ,Ui),Y
)− I(µUi,Y ) ≥

∑
Bi,j∈πi

µX(Bi,j)
[
H(µY |X(·|Bi,j))−H(R(µY |X(·|Bi,j), εi,j)

]
≥ 0, (25)
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where εi,j =
[
1−maxy∈Y µY |X(y|Bi,j)

]
− g(µX,Y , Bi,j) and g(µX,Y , Bi,j) is in Eq.(13) (of the main paper).

Proof: Let us first look at the definition of g(µX,Y , B) in (13). This is a function of the model µX,Y , the
partition π∗ =

{
A∗y, y ∈ Y

}
in (10) and a set B ⊂ X . In particular, we have that

g(µX,Y , B) =

[
1−max

y∈Y
µY |X(y|B)

]
−
∑

A∗u∈π∗
µX(A∗u|B) ·

[
1−max

y∈Y
µY |X(y|A∗u ∩B)

]
. (26)

The first term on the RHS of (26) can be seen as the prior minimum error probability of a random variable Ỹ in
Y with marginal probability (vỸ (y) ≡ µY |X(y|B))y∈Y ∈ P(Y). On the other hand, the second term on the RHS
of (26) can be seen as the MPE of a joint vector (X̃, Ỹ ) in Y × Y with probability vX̃,Ỹ in P(Y × Y) defined by

vX̃,Ỹ (u, y) ≡ µX,Y (A∗u ∩B × {y})
µX(B)

, ∀(u, y) ∈ Y2. (27)

The second term in (26) is precisely `(vX̃,Ỹ ). Adopting Lemma 1 in this context, we can use its corollary in (16)
to obtain that

I(vX̃,Ỹ ) = I(X̃; Ỹ ) ≥ H(Ỹ )−H(R(vỸ , `(vX̃,Ỹ )))

= H(vỸ )−H(R(vỸ , `(vX̃,Ỹ )))

= H(µY |X(·|B))−H(R(µY |X(·|B), `(µX̃,Ỹ ))) (28)

where `(vX̃,Ỹ ) =
[
1−maxy∈Y µY |X(y|B)

]
− g(µX,Y , B) from (26) and the construction of vX̃,Ỹ in (27). The

inequality in (28) is obtained as a function of B ⊂ X , as it is used to construct vX̃,Ỹ in (27).

Returning to the main object of interest of this result, we have that

I(µ(Ũ,Ui),Y
)− I(µUi,Y ) = I(Ũ ;Y |Ui) =

∑
Bi,j∈πi

µX(Bi,j) · I(Ũ ;Y |X = Bi,j). (29)

The first equality is by the chain rule of MI and the second is by definition of the conditional MI [Cover and
Thomas, 2006]. Finally we recognize that I(Ũ ;Y |X = B) = I(µŨ ;Y |X(·|B)), where µŨ ;Y |X(·|B) is precisely the
distribution vX̃,Ỹ defined in (27). Consequently, applying (28) in each Bi,j ∈ πi, we have that

I(µ(Ũ,Ui),Y
)− I(µUi,Y ) ≥

∑
Bi,j∈πi

µX(Bi,j) ·
[
H(µY |X(·|Bi.j))−H(R(µY |X(·|Bi,j), εi,j))

]
where εi,j =

[
1−maxy∈Y µY |X(y|Bi,j)

]
− g(µX,Y , Bi,j).

D THEOREM 2: FORM DISCRETE TO CONTINUOUS
REPRESENTATIONS

Theorem 2 Let {Ui}i≥1 be a sequence of representations for X obtained from {ηi(·)}i≥1. If {Ui}i≥1 is WIS for
µX,Y (Definition 3), then {Ui}i≥1 is OS for µX,Y (Definition 1).

D.1 Discrete version of Theorem 2

Theorem 3 Let {Ui}i≥1 be a sequence of representations for X obtained from {ηi(·)}i≥1 where |Ui| <∞ for any
i ≥ 1. If {Ui}i≥1 is WIS for µX,Y then {Ui}i≥1 is OS for µX,Y .

The proof of Theorem 3 is presented in Section E.

Technical remarks about the proof of Theorem 3:

1. The proof of this result uses a sample-wise version of the inequality presented in (17) (in Theorem 1) as a
key element in the argument.
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2. Another important technical element of the proof was characterizing and analyzing the following information
object:

Iloss(ε,M) ≡ min
v∈Pε([M ])

{H(v)−H(R(v, prior(v)− ε))} , (30)

where Pε([M ]) ≡ {v ∈ P([M ]), prior(v) ≥ ε} and M = |Y|. Indeed, a non-trivial part of this argument was
to prove that Iloss(ε,M) > 0 for some values of ε > 0 (see Theorem 4 and Appendix F). To achieve this
result, we derived an explicit lower bound for Iloss(ε,M) function of ε and M .

D.2 Proof of Theorem 2

Proof: Without loss of generality, let us assume that ηi : X → Ui is such that Ui ⊂ U = Rq for some q ≥ 114.
Here we use a result from the seminal work of Liese, Morales and Vajda [Liese et al., 2006] on asymptotic sufficient
partition for MI. In particular, in the context of our work we have the following:

Lemma 2 [Liese et al., 2006] There is an infinite collection of finite-size embedded partitions π1 � π2 . . . ⊂ B(Rq)
of U = Rq such that for any model µX,Y ∈ P(X × Y) and any measurable function η : X → U it follows that

lim
i→∞

I(Y ;mπi(η(X))) = I(Y ; η(X)), (31)

where
mπi(u) ≡

∑
Al∈πi

l · 1Al(u) ∈ {1, .., |πi|} , ∀u ∈ U (32)

denotes the lossy function (vector quantizer) induced by the partition πi = {Al, l = 1, .., |πi|}.

Lemma 2 is a remarkable implication of the work by Liese et al. [2006]. This result shows the existence of a
finite-size quantization family that approximates (universally) any well-defined MI on a continuous space in the
sense presented in (31).

In the context of this argument, we can use the universal embedded quantization {πi}i≥1 of U stated in Lemma 2
to obtain as a direct corollary of Lemma 2 that for any ηj : X → U

lim
i→∞

I((Ũ ,mπi(Uj));Y )− I(mπi(Uj);Y ) = I((Ũ , Uj);Y )− I(Uj ;Y ) = I(Ũ ;Y |Uj) ≥ 0, (33)

where Uj = ηj(X) and Ũ = r̃µX,Y (X) ∈ Y (see Eq.(9)).

On the other hand, from the hypothesis that assumes that {ηj(·)}j≥1 is WIS, we have that

lim
j→∞

I(Ũ ;Y |Uj = ηj(X)) = 0. (34)

Let us consider an arbitrary sequence (εn)n≥1 ∈ R+ \ {0} such that εn → 0 as n tends to infinity. Using (33) we
have that for any j ≥ 1 there exists i∗j (εj , ηj) ≥ 1 sufficiently large such that15

εj + I(Ũ ;Y |Uj) > I((Ũ ,mπi∗
j
(Uj));Y )− I(mπi∗

j
(Uj);Y )︸ ︷︷ ︸

I(Ũ ;Y |mπi∗
j

(Uj)))

> I(Ũ ;Y |Uj)− εj . (35)

In (35), it is worth noticing that mπi∗
j
(Uj) = mπi∗

j
◦ ηj(X). Then, we can define

η̃j ≡ mπi∗
j
◦ ηj : X →

{
1, ..,

∣∣∣πi∗j ∣∣∣ <∞} , (36)

which is a finite alphabet representation (vector quantization) of X. Therefore using {ηj(·)}j≥1 and (εn)n≥1, we
have constructed a family of finite alphabet lossy representations of X, which we denoted by {η̃j(·)}j≥1 in (36),
satisfying that

lim
j→∞

I(Ũ ;Y |η̃j(X))) = 0, (37)

14The general case derives directly from the argument presented for this case, and it only requires the introduction of
additional notations that occludes the proof flow.

15For what follows, we omitted the dependency on εj and ηj(·) in i∗j to simplify the notation.



On the Interplay between Information Loss and Operation Loss in Representations for Classification

from (35), (34), and the fact (εn)n≥1 is o(1). Therefore, (37) means that {η̃j(·)}j≥1 is weakly information sufficient
(Def. 3). Then, Theorem 3 implies that

lim
j→∞

[
`(µη̃j(X),Y )− `(µX,Y )

]
= 0. (38)

Finally, by construction, we have that η̃j(X) = mπi∗
j
◦ ηj(X). Then, η̃j(X) is indeed a deterministic function of

ηj(X) for any j. Therefore, from classical results on Bayes decision `(µη̃j(X),Y ) ≥ `(µηj(X),Y ), which concludes
the proof from (38).

E PROOF OF THEOREM 3

Let us begin introducing some preliminaries that will be used in the main argument in Section E.2.

E.1 Preliminaries

Let us consider a finite alphabet representation η : X → U where |U| <∞. Using the expressions presented in
Propositions 1 and 2 and the interplay between them, determined in Theorem 1, we define the information loss
density (ILD) and the operational loss density (OLD) associated with η(·) as follows:

`η(x) ≡
∑
A∈πη

1A(x) · g(µX,Y , A) ≥ 0, ∀x ∈ X (39)

Iη(x) ≡
∑
A∈πη

1A(x) · I(Ũ ;Y |X ∈ A) ≥ 0, ∀x ∈ X . (40)

It is useful to denote by πη(x) the cell in πη that contains x ∈ X . Using this notation we have that `η(x) =

g(µX,Y , πη(x)) and Iη(x) = I(Ũ ;Y |X ∈ πη(x)). The names of `η(·) and Iη(·) come from the observation that

EX {`η(X)} = `(µU,Y )− `(µX,Y )

EX {Iη(X)} = I(µ(Ũ,U),Y )− I(µU,Y ), (41)

where U = η(X).

From the proof of Theorem 1, we obtain the following sample-wise inequality: for any A ∈ B(X )

I(Ũ ;Y |X ∈ A) ≥ H(µY |X(·|A))−H(R(µY |X(·|A), prior(µY |X(·|A))− g(µX,Y , A))), (42)

where prior(µY ) ≡ (1−maxy∈Y µY (y)) denotes the prior risk of a model µY ∈ P(Y). Adopting this inequality, it
follows that for any x ∈ X

Iη(x) ≥ H(µY |X(·|πη(x)))−H(R(µY |X(·|πη(x)), prior(µY |X(·|πη(x)))− `η(x))). (43)

Then Iη(x) (the ILD) is lower bounded by a function of the posterior model µY |X(·|πη(x)) ∈ P(Y) and the gain
of observing Ũ when the prior distribution on Y is µY |X(·|πη(x)), i.e.,

[
prior(µY |X(·|πη(x)))− `η(x))

]
=

∑
A∗u∈π∗

µX(A∗u|πη(x)) ·
[
1−max

y∈Y
µY |X(y|A∗u ∩ πη(x))

]
≥ 0.

Let us assume that we have a family of WIS representations for µX,Y (Definition 3) given by {ηi(·)}i≥1 where
ηi : X → Ui and |Ui| <∞ for any i. Using the definition of the ILD in (40) and (41), it follows that

lim
i−→∞

EX {Iηi(X)} = 0. (44)

As Iηi(x) ≤ log |Y| (uniformly in i and x), the convergence in (44) is equivalent to the convergence in probability
of (Iηi(X))i≥1, i.e., ∀ε > 0 it follows that limi→∞ P ({Iηi(X) > ε}) = 0.
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Using again (41), the proof reduces to verify that

lim
i−→∞

EX {`ηi(X)} = 0. (45)

Again `ηi(x) is uniformly bounded by 1, then the convergence in (45) is equivalent to the convergence in probability
of the random sequence (`ηi(X))i≥1, i.e., for any ε > 0

lim
i→∞

P ({`ηi(X) > ε}) = 0. (46)

E.2 Main Argument

Proof: Let us prove the result by contradiction. Let us assume that {ηi(·)}i≥1 is not OS. Then, there exists
ε > 0 such that lim infi→∞ µX(Biε) > 0 where Biε ≡ ({x, `ηi(x) > ε}) ⊂ X . Then, we can pick δ > 0 and N > 0,
such that for any i ≥ N ,

µX(Biε) ≥ δ. (47)

Using the definition of the function R(v, ε) in [Ho and Verdú, 2010] (see (15) in Lemma 1 ), for any v ∈ P(Y), it
follows — from the expression of f(v, ε) in (15) — that H(R(v, ε1)) ≥ H(R(v, ε2)) when ε1 ≥ ε2; therefore, from
(43), if x ∈ Biε, we have that

Iηi(x) ≥ H(µY |X(·|πi(x)))−H(R(µY |X(·|πi(x)), prior(µY |X(·|πi(x)))− ε)) (48)

where πi(x) is a shorthand for πηi(x).

The bound in (48) will be central to prove the result: a lower bound on the information loss density function of
the operation loss density that is lower bounded by ε > 0. More precisely, given ε > 0, we proceed by finding a
uniform lower bound for

H(v)−H(R(v, prior(v)− ε)) (49)

over all models v ∈ P(Y) that are admissible in the sense that prior(v) ≥ ε.

In particular, we will consider the following general information vs. operation loss problem:

Iloss(ε,M) ≡ min
v∈Pε([M ])

{H(v)−H(R(v, prior(v)− ε))} , (50)

where

Pε([M ]) ≡ {v ∈ P([M ]), prior(v) ≥ ε} . (51)

In this notation, we use Y = [M ] ≡ {1, ..,M} to make explicit the role that the cardinality of Y plays in this
analysis. Importantly, we have the following (information loss vs. operation loss) interplay result that shows that
a non-zero operation loss (ε > 0) implies a positive information loss for any M ≥ 1:

Theorem 4 ∀M ≥ 1, and for any ε ∈ (0, 1− 1/M ], it follows that Iloss(ε,M) > 0.

The proof of this result requires (non-trivial) technical elements that are presented in Section F of this Suplemental.

Returning to the main proof argument, by definition of the operation loss density in (39), we have that
`ni(x) ≤ prior(µY |X(·|πi(x))), which implies that µY |X(·|πi(x)) ∈ P`ni (x)([M ]) in (51). Then using (48) and (50),
for any x ∈ Biε (considering that ε < `ηi(x) if x ∈ Biε)

Iηi(x) ≥ H(µY |X(·|πi(x)))−H(R(µY |X(·|πi(x)), prior(µY |X(·|πi(x)))− ε))
≥ min
v∈Pε([M ])

{H(v)−H(R(v, prior(v)− ε))} = Iloss(ε,M), (52)

where the second inequality comes from the observation that µY |X(·|πi(x)) ∈ P`ni (x)([M ]) ⊂ Pε([M ]) from (51).

At this point, we use Theorem 4: we have that for any x ∈ Biε, Iηi(x) ≥ Iloss(ε,M) > 0. In particular, we have
that for any ε̄ ∈ (0, Iloss(ε,M)), Biε ⊂ Aiε̄ ≡ {x ∈ X , Iηi(x) > ε̄}. Then using the hypothesis in (47), we have that
for any i ≥ N µX(Aiε̄) ≥ µX(Biε̄) ≥ δ > 0. This implies that (Iηi(X))i≥1 does not converge to zero in probability,
which from the argument presented in Section E.1 contradicts the fact that {ηi(·)}i≥1 is WIS. This concludes the
proof of Theorem 3.
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F PROOF OF THEOREM 4

Proof: Given a probability µ ∈ Pε([M ]) (see Eq.(51)), Ho and Verdú [2010] presented a closed-form analytical
expression for R(µ, prior(µ)− ε) (the details are presented in [Ho and Verdú, 2010]) appearing in the definition
of Iloss(ε,M) in (50). To present this induced distribution more clearly, we assume, without loss of generality,
that µ(1) ≥ µ(2) ≥ . . . ≥ µ(M). Then µε ≡ R(µ, prior(µ)− ε) has the following structure: 16

µε(1) = µ(1) + ε ≤ 1 (53)
µε(2) = θ

. . .

µε(K) = θ (54)
µε(K + 1) = µ(K + 1)

. . .

µε(M) = µ(M). (55)

where both K ∈ {2, ..,M} and θ ∈ (0, µ(1)) are functions of µ and ε > 0 satisfying the following condition:

K∑
j=2

(µ(i)− θ) = ε > 0, (56)

which makes µε a well-defined probability in P([M ]).17

Therefore, using (53), (54) and (55), we have that for any µ ∈ Pε([M ]):

H(µ)−H(µε) = µ(1) log
1

µ(1)
− (µ(1) + ε) log

1

µ(1) + ε

+

K(µ,ε)∑
j=2

µ(j) log
1

µ(j)
− (K(µ, ε)− 1) · θ(µ, ε) log

1

θ(µ, ε)
, (57)

where here we make explicit the dependency of K and θ on µ and ε. From the construction of µε (Eqs.(53), (54),
(55) and the condition in (56)), it is important to note that θ(µ, ε) < µ(K) ≤ µ(K − 1) . . . ≤ µ(1). At this point,
we will use the following result:

Lemma 3 ∀ε > 0 and for any µ ∈ Pε([M ]), it follows that

K(µ,ε)∑
j=2

µ(j) log
1

µ(j)
≥ (θ(µ, ε) + ε) log

1

θ(µ, ε) + ε
+ (K(µ, ε)− 2)θ(µ, ε) log

1

θ(µ, ε)
. (58)

The proof is presented in Section G of this Suplemental.

Remark 4 The proof of Lemma 3 comes from the use of some information-theoretic inequalities, similar to
the arguments used to prove that the Shannon entropy over a finite alphabet is minimized with a degenerated
distribution [Cover and Thomas, 2006, Gray, 1990a].

Applying Lemma 3 in (57), we have that for all µ ∈ Pε([M ]):

H(µ)−H(µε) ≥ µ(1) log
1

µ(1)
− (µ(1) + ε) log

1

µ(1) + ε

+

[
(θ(µ, ε) + ε) log

1

θ(µ, ε) + ε
− θ(µ, ε) log

1

θ(µ, ε)

]
. (59)

16To simplify notation µ(j) denotes µ({j}), i.e., µ(j) is a short-hand of the probability mass function (pmf).
17Ho and Verdú [2010] show that for any ε ≤ prior(µ), ∃θ ∈ [0, µ(1)) and K ∈ {2, ..,M} that meet the condition in (56).
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Using the fact that θ(µ, ε) < µ(K) ≤ µ(K − 1) . . . ≤ µ(1), and that
∑K(µ,ε)
j=2 (µ(j)− θ(µ, ε)) = ε (see Eq.(56)), it

is simple to verify that18

µ(2)− θ(µ, ε) ≥ ε

K − 1
, (60)

which implies that θ(µ, ε) ≤ µ(2)− ε/(K − 1).

On the other hand, if we consider the following function used in (59):

f1(θ, ε) ≡ (θ + ε) log
1

θ + ε
− θ log

1

θ
, (61)

∂f1(θ,ε)
∂θ (θ, ε) = log θ

θ+ε < 0, then f1(θ, ε) is strictly decreasing in the domain θ > 0, for any ε > 0. Therefore from
(60), we have that f1(θ(µ, ε), ε) ≥ f1(µ(2)− ε/(K − 1), ε). Applying this last inequality in (59), we have that

H(µ)−H(µε) ≥ −f1(µ(1), ε) + f1(θ(µ, ε), ε)

≥ −f1(µ(1), ε) + f1(µ(2)− ε/(K − 1), ε). (62)

Furthermore, µ(2)− ε/(K − 1) ≤ µ(2)− ε/(M − 1), which offers a bound that is independent of K(µ, ε). Finally,
we have that

H(µ)−H(µε) ≥ −f1(µ(1), ε) + f1(µ(2)− ε/(M − 1), ε). (63)

At this point, we return to our main problem:

Iloss(ε,M) = min
µ∈Pε([M ])

H(µ)−H(µε)

≥ min
µ(1)∈[1/M,1−ε]

(
−f1(µ(1), ε) + min

µ(2)∈[0,min{µ(1),1−µ(1)}]
(f1(µ(2)− ε/(M − 1), ε))

)
, (64)

where the lower bound in (64) comes from (63) and the fact that µ(1) = max {µ(j), j ∈ [M ]} ∈ [1/M, 1− ε] if
µ ∈ Pε([M ]). For the rest of the proof, we concentrate on the analysis of the RHS of (64), where we recognize for
the second optimization (from left to right) in (64) two scenarios.

Case 1 (the restriction µ(2) ≤ µ(1) is active in (64)): If we restrict the second optimization problem in (64)
to the case where µ(1) ≤ 1− µ(1), this scenario implies that µ(1) ≤ 1

2 . In addition, we have that µ(1) ≥ 1/M
(achieved for the case of a uniform distribution in [M ]). Then under this hypothesis, it follows that

Iloss(ε,M) ≥ min
µ(1)∈[1/M,1/2]

−f1(µ(1), ε) + f1(µ(1)− ε/(M − 1), ε), (65)

the last bound from (64) using the fact that f1(x, ε) is strictly decreasing for x ∈ (0,∞) for any ε > 0. Let us
define f̃(x, ε) ≡ −f1(x, ε) + f1(x − ε/(M − 1), ε). It is simple to verify that ∂f̃(x,ε)

∂x < 0 for any x > 019. This
implies that

Iloss(ε,M) ≥ f̃(1/2, ε) = f1

(
1/2− ε

M − 1
, ε

)
− f1 (1/2, ε) > 0, (66)

using again that (f1 (x, ε))x>0 is strictly decreasing for any ε > 0.

Case 2 (the restriction µ(2) ≤ 1− µ(1) is active in (64)): If we restrict the second optimization problem in (64)
to the case where 1− µ(1) < µ(1), this scenario implies that µ(1) > 1

2 . In addition, as µ ∈ Pε([M ]), it follows
that µ(1) ≤ 1− ε. Therefore, under this hypothesis,

Iloss(ε,M) ≥ min
µ(1)∈(1/2,1−ε]

−f1(µ(1), ε) + f1((1− µ(1))− ε/(M − 1), ε), (67)

18This because µ(2)− θ(µ, ε) ≥ µ(3)− θ(µ, ε) ≥ . . . ≥ µ(K)− θ(µ, ε) > 0.
19 ∂f̃(x,ε)

∂x
= log ψε(x)

ψε(x−ε/(M−1))
< 0 for any x > 0, where ψε(x) ≡ (1 + ε/x).
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the last bound from (64) using the fact that (f1(x, ε))x∈(0,∞) is strictly decreasing for any ε > 0. In this case, we

consider φ̃(x, ε) ≡ −f1(x, ε) + f1((1 − x) − ε/(M − 1), ε). It is simple to verify that ∂φ̃(x,ε)
∂x > 0 for any x > 0.

Consequently, we have that

Iloss(ε,M) ≥ φ̃(1/2, ε) = f1

(
1/2− ε

M − 1
, ε

)
− f1 (1/2, ε) > 0. (68)

Interestingly in (68) and (66), we arrived to the same positive closed-form lower bound for Iloss(ε,M), which
concludes the proof of Theorem 4.

G PROOF OF LEMMA 3

Proof: Let us consider an arbitrary µ ∈ Pε([M ]), where we have that µ(1) ≥ µ(2) ≥ . . . µ(K) > θ and that∑K
j=2(µ(j) − θ) = ε. In this analysis, the dependency of K and θ on µ and ε will be considered implicit. We

consider the conditional probability µ̃ ≡ µ(·|β) ∈ P([M ]) for the set β = {2, . . . ,K}, i.e.,

µ̃(2) =
µ(2)

θ(K − 1) + ε
≥ θ̃ ≡ θ

θ(K − 1) + ε
> 0,

. . .

µ̃(K) =
µ(K)

θ(K − 1) + ε
≥ θ̃. (69)

In this context, it is instrumental to introduce the following family of admissible distributions {ē2, . . . , ēK} ⊂
P([M ]) with support in β, where ēj is given by

ēj(2) = θ̃, . . . ,

ēj(j − 1) = θ̃,

ēj(j) = θ̃ +
ε

θ(K − 1) + ε
,

ēj(j + 1) = θ̃, . . . ,

ēj(K) = θ̃.

(70)

Importantly, it is simple to verify that µ̃ (in (69)) can be written as a convex combination of our admissible
family {ē2, . . . , ēK}, i.e., ∃(w2, .., wK) ∈ [0, 1]K−1 such that

∑K
j=2 wj = 1 and

µ̃ =

K∑
j=2

wj · ēj , (71)

where wj = µ̃(j)−θ̃
ε̃ with ε̃ ≡ ε

θ(K−1)+ε > 0.

Let us define two random variables Z and O such that Z takes values in [M ] and O takes values in {2, ..,K} and

PZ|O(·|k) = ēk ∈ P([M ]), and PO(k) = wk, (72)

∀k ∈ {2, ..,K}. By construction, PZ =
∑K
j=2 wj · ēj = µ̃. Therefore, we can use that H(Z|O) ≤ H(Z) [Cover and

Thomas, 2006], which implies that
∑K
j=2 wj · H(ēj) ≤ H(µ̃). Finally, by the invariant of the entropy to one-to-one

permutations, H(ē2) = . . . = H(ēK), then we have that H(ē2) ≤ H(µ̃), which is equivalent to

(θ̃ + ε̃) log
1

θ̃ + ε̃
+ (K − 2)θ̃ log

1

θ̃
≤ H(µ̃). (73)
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Returning to our original problem, we have that

K∑
j=2

µ(j) log
1

µ(j)
= µ(β)H(µ̃) + µ(β) log

1

µ(β)
≥

(θ(K − 1) + ε) ·
[
(θ̃ + ε̃) log

1

θ̃ + ε̃
+ (K − 2)θ̃ log

1

θ̃

]
+ (θ(K − 1) + ε) log

1

(θ(K − 1) + ε)

= (θ + ε) log
(K − 1)θ + ε

θ + ε
+ (K − 2)θ log

(K − 1)θ + ε

θ
+ (θ(K − 1) + ε) log

1

(θ(K − 1) + ε)

= (θ + ε) log
1

θ + ε
+ (K − 2)θ log

1

θ
, (74)

where for the first inequality we use the lower bound in (73) and the fact that µ(β) = θ(K − 1) + ε, and for the
first equality we use that θ̃ = θ/((K − 1)θ + ε) and ε̃ = ε/((K − 1)θ + ε). Finally, (74) proves the result.
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