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Abstract

LIME (Locally Interpretable Model-Agnostic
Explanations) has become a popular way of
generating explanations for tabular, image
and natural language models, providing in-
sight into why an instance was given a par-
ticular classification. In this paper we adapt
LIME to time series classification, an under-
explored area with existing approaches fail-
ing to account for the structure of this kind
of data. We frame the non-trivial challenge
of adapting LIME to time series classifica-
tion as the following open questions: “What
is a meaningful interpretable representation
of a time series?”, “How does one realisti-
cally perturb a time series?” and “What is a
local neighbourhood around a time series?”.
We propose solutions to all three questions
and combine them into a novel time series
explanation framework called LIMESegment,
which outperforms existing adaptations of
LIME to time series on a variety of classi-
fication tasks.

1 INTRODUCTION

The proliferation of edge devices, digitization of med-
ical records and tracking of online activity has led to
extensive Time Series (TS) datasets. T'S Classification
(TSC) has thus recently grown in popularity. However,
when compared to image processing, TSC remains rel-
atively unexplored. The application of traditional sta-
tistical models (i.e. logistic regression) to TSC is not
trivial, attributed to the ambiguity surrounding TS
representation (Esling and Agonl [2012). Deep learn-
ing, whose architecture is more suited to high dimen-
sional data, has potential to unlock the information
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embedded in TS datasets in the same way it has done
for image and natural language (Lim and Zohren|
2021). However, the instability of deep approaches
to TSC has hindered its adoption in practice (Lim
and Zohren, [2021). The adoption of machine learning
depends on its trustworthiness (Ignatiev, 2020)). Ex-
plainable AT (XAI) bridges the gap between complex
machine learning behaviour and human understand-
ing and has helped build trust in machine learning. A
significant proportion of research in XAT is dedicated
to the development of feature importance explanations
which identify the most salient parts of the model in-
put given an output. Of these, Locally Interpretable
Model-Agnostic Explanations (LIME) (Ribeiro et al.|
2016|) has become the most popular. Adapting LIME
to TSC improves understanding of TS latent repre-
sentations in deep architectures, offers insight into the
way bias presents in a TS and builds trust for end-
users interacting with TS based Al systems. Adapting
LIME for TS however, is not trivial. A key component
of LIME is that input data is mapped to interpretable
concepts for an end user to understand. For exam-
ple, groups of pixels can easily be grouped together to
form objects in an image. In contrast, there is no obvi-
ous way of grouping TS observations together to form
meaningful concepts. We address these limitations in
this paper such that, given a TSC model and an indi-
vidual TS to be explained, we obtain explanations of
the form: “The individual’s temperature over the first
hour in hospital was most influential to the classifier’s
prediction of survival from septic shock”.

2 RELATED WORK

In this section we begin by introducing Locally
Interpretable Model-Agnostic Explanations (LIME)
(Ribeiro et al., |2016) which forms the basis of our
framework. We outline the challenges of adapting
LIME to TS and review current approaches.

In LIME, the original feature space is transformed into
an interpretable representation of human understand-
able concepts dependent on data type. Given as input
a dataset X, the black box classifier f : R? — R, the
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instance to be explained x € R? its associated classi-
fication Yy € R, LIME applies a mapping from the
original instance x into its interpretable representa-
tion o(x). If x is an image, o(.) is often a grouping
over the original pixel space into human interpretable
“super pixels”. o(x) = 1% can therefore be under-
stood as a vector of ones to indicate each superpixel is
“turned on” in the instance to be explained where d’
corresponds to the number of “super pixels” (d' < d).
LIME then generates new samples o(z) by randomly
“turning off” dimensions of the interpretable represen-
tation through drawing nonzero elements of o(x) uni-
formly at random. LIME converts the set of generated
samples o(Z) into the original feature space to obtain
the labels Yz = f(Z). LIME approximates the be-
haviour of f with an explanation model, g : RY - R.
Commonly, a linear model such as ridge regression is
selected as g. An exponential kernel K., (0(x),0(Z))
is used to weight g such that generated samples which
are more similar to the instance to be explained have
more of an effect on the resulting explanation. LIME
uses the coefficients of g, w € RY to be used as an
explanation of x.

Adapting LIME to TS: A univariate time series
sample is a temporally ordered set of T' observations
x = [z1;@e;..;xp]. Given a dataset of univariate
time series samples X € RN*T a TS to be explained
x € RT where T denotes the number of observations,
a black box classifier f : RT — R, and Y, = f(x),
the predicted class of the example to be explained,
we are interested in generating a surrogate model g
around x in order to identify the most salient fea-
tures of x with regards to Yx. There is limited lit-
erature on TS explainability compared to image and
natural language for which a plethora of established
frameworks exist. Feature importance based explana-
tions have limited success when applied to TS as any
adaptation requires the consideration of the temporal
nature of the input space. [Tonekaboni et al.| (2020)
introduce FIT, an explainability framework which de-
fines the importance of each observation based on its
contribution to the black box model’s distributional
shift. Similarly, Rooke et al.| (2021) extend FIT into
WinlIT which measures the effect on distribution shift
of groups of observations. [Labaien et al.|(2020]) instead
suggest a framework which finds the minimum pertur-
bation required to change a TS classification. Clos-
est to our framework is that of |Guillemé et al.| (2019)
and |Neves et al.| (2021) which directly adapt LIME
to TS. Any adaptation of LIME to TS data must ad-
dress the following considerations: 1) How to find an
interpretable representation of x 2) How to generate
samples in the neighbourhood of x 3) How to define
locality around x. The following section argues how
existing adaptations of LIME to TS make simplifying

assumptions which we improve upon in our framework,
LIMESegment.

Interpretable Representation of a TS: For TS,
transformation into an interpretable representation
follows the same intuition as images where an expla-
nation involving a single observation would be non-
useful to an end user and fail to capture salient prop-
erties of the TS. It follows that the transformation
involves segmenting the TS into a lower dimensional
representation. However, T'S does not lend itself nat-
urally to “conceptualisation”, (grouping of observa-
tions in a meaningful way), in the same way as su-
per pixels intuitively conceptualise images. In their
respective adaptions of LIME to TS, |Guillemé et al.
(2019) and Neves et al| (2021)) use arbitrarily deter-
mined, fixed length windows. Segmenting in the time
domain assumes that neighboring observations have a
similar impact on the predictions of the model. Intu-
itively we would want the “super segments” of a TS
to capture homogeneous regions of behaviour. For ex-
ample, given a TS recording an individual’s activity
over the period of a day, “super segments” correspond
to the various activities (sleeping, walking). An ar-
bitrary segmentation may result in non-homogeneous
segments with conflicting properties or homogeneous
regions spanning multiple segments. This segmenta-
tion challenge is encapsulated by Open Question 1:
“How do we meaningfully segment a TS into an in-
terpretable representation where each “super segment”
corresponds to a homogeneous region?” The challenge
of time series segmentation has been studied exten-
sively throughout the change point detection litera-
ture which use changes in the statistical properties of
a signal to determine the temporal indexes which in-
dicate changes of underlying behaviour. Many change
point detection methods segment via optimising over
a specified cost function. The L1 and L2 cost func-
tions detect changes in the median and mean of the
signal respectively and more recently, cost functions
have been proposed which detect changes in the sta-
tistical properties of the latent embedded signal |Gar-
reau and Arlot| (2018]). Techniques which efficiently
return an ordering over the set of possible segmenta-
tions include dynamic programming (Guédon, [2013)
and pruning (Killick et al., [2012). From the perspec-
tive of explainability, change point detection optimises
a different segmentation objective than that outlined
above. Consider two TS where the second is exactly
the same as the first yet its temporal ordering has
been reversed. Change point analysis may not detect
a change point in between the two as the statistical
properties and associated probability densities of both
TS are the same. However, the reversed shape of the
second TS corresponds to a pattern with contrasting
semantic meaning (intuitively a temperature spike and
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then fall is different from a temperature fall and then
spike). For this reason, we seek a segmentation ap-
proach which is sensitive to the changes in shape of
the underlying time series. |Gharghabi et al.| (2017)
define this challenge as “semantic sgementation” of a
TS and propose a segmentation framework built on the
intuition that homogeneous segments are likely to be
composed of similarly shaped shorter sub-sequences.
In contrast, propose an alternative se-
mantic segmentation framework by searching for “T'S
chains” which can be thought of as consecutive sub-
sequences with similar shape. While these methods
are effective on T'S with super segments consisting of
repeated shape patterns they cannot be applied to TS
with segments composed of diverse shapes. This mo-
tivates the development of our proposed semantic seg-
mentation framework NNSegment which relaxes the
assumption that super segments contain solely similar
sub-sequences, replacing it with the assumption that a
time series will contain a mixture of similarly shaped
super segments alongside anomalous super segments,
allowing for the semantic segmentation of a wider class
of time series.

Generating TS Samples: After conceptualising a
TS into its interpretable “super segment” representa-
tion it is then a challenge to generate new samples its
local neighbourhood. LIME does this by “turning off”
concepts. To apply this intuition to “super segments”,
we must specify what it means to “delete” information
from a TS. Perturbation approaches for image data
include replacing the super pixel with some constant
value, injecting noise, or blurring the image. These
techniques can also be applied to TS:
replace segments with mean valued segments
and |Guillemé et al.| (2019) replace segments with ran-
domly selected authentic segments from the original
dataset. As is the case with image super pixels, we are
generally interested in simulating natural T'S samples,
leading to more meaningful perturbations.
land Nguyen| (2020) show how applying blur, zero and
random perturbations result in visually unrealistic im-
ages which retain some proportion of the salient infor-
mation contained in the super pixel. They propose an
alternative generative perturbation, Inpainter, which
replaces super pixels with realistic background con-
tent. Figure [I] shows the application of blur perturba-
tion to a T'S. Unlike perturbed images, there is no ob-
vious visual implication of the perturbation approach
on the realism of the resulting T'S. This therefore raises
Open Question 2: “What constitutes realistic back-
ground content for TS?”

Defining Locality: An important concept in LIME
is the weighting over generated samples, used as in-
put to the interpretable model, to encapsulate the in-

Original TS Blurred TS
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Figure 1: Effect of applying blur (via a Gaussian Fil-
ter) to an example “super segment” located at indexes
[200 : 300]. Unable to confirm visually whether result-
ing perturbed TS is realistic.
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Figure 2: Example TS x° and three generated samples
with zero perturbations. x! at index [0 : 100]; x2 at
indexes [200 : 300]; x3 at index [350 : 400].

tuition that samples closer to the instance to be ex-
plained should have more influence on the generated
explanations. In LIME, this weighting is determined
by the distance between each new sample and the in-
stance to be explained in their interpretable repre-
sentation. It has been shown by |Garreau and Mar-|
that weights depend only on the num-
ber of inactivated super pixels in each generated sam-
ple. For a TS, this distance measure fails to take
into account the global distance between the gener-
ated sample and the original instance. Figure [2| visu-
alises an example TS x° with six super segments and
change points at indexes [100, 200, 300, 350, 400] where
o(xY) = [1,1,1,1,1,1]. We generate three new sam-
ples as o(x!) = [0,1,1,1,1,1], o(x?) = [1,1,0,1,1,1],
o(x3) =[1,1,1,1,0,1]. Under Euclidean distance each
of the generated samples would be equidistant from
Xo. However, we can see that perturbation to shorter
length super segments (x3), are more similar to the
original instance than longer perturbations. Moreover,
even for “super segments” of equal length we can use
Figureto argue that x? is closer to x° than x' as x?
maintains more motif structure than x! which raises
Open Question 3: “How do we measure distance be-
tween two TS that accurately reflects local neighbour-
hood round x%”
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Figure 3: Intuition behind NNSegment. TS composed
of motifs (shaded deep red) and anomalies (shaded
pale red). Arrows connect current window with its
nearest neighbour. Blue arrows at indexes 10 and 11
represent windows where adjacency holds. Magenta
arrows at indexes 110 and 111 indicate adjacent win-
dows where adjacency is broken. In this case ws = 10
and p(wi00,W110) > p(W110,W120), indicating a cp
at the beginning of the window, at index i = 110
which is added to the set of potential change points
cp. Green arrows at indexes 90 and 91 also indi-
cate windows where adjacency is broken. In this case,
p(Wao, W100) > p(Wso, Woo) thus ¢ = 100 is added to
cp. In this example, p(wgg, W100) > p(W100, W110) im-
plying that the cp at ¢ = 100 is more likely than that
at ¢ = 110.

3 METHOD

We now present our framework for adapting LIME to
TS. We first address each open question raised above
and proceed to formalise our resulting explanation al-
gorithm LIMESegment.

Meaningful Conceptualisation via NNSegment:
To address Open Question 1, we propose a segmen-
tation algorithm which uses both the shape and the
statistical properties of the TS to identify change
points. Given a TS x of length T, our segmenta-
tion algorithm, NNSegment returns a set of change
points cp = [cp1; epe; ...; cprv], where T” is the number
of change points in x. Each ¢p; (j € T”) indicates the
temporal index i € T of x where there is a change in
behaviour. NNSegment is built on the assumption that
neighbouring observations are likely to represent the
same behaviour. We can thus group these neighbour-
ing observations together into “super segments” which
may be either repeating motifs or randomly occurring
anomalies. Our segmentation approach is based on
the assumption that regularly occurring motifs will be
similar in shape and therefore use normalised cross cor-
relation (Definition (1) which has had much success on
pattern matching tasks (Zhao et al., |2006).

Definition 1 Given a TS x = [z1;...;x7], the sim-

ilarity between two sub-sequences of length ws is de-
noted as P(Xs1,Xs2) where Xs1 = [Ts1;.o Tsltws)
and Xsa = [Ts2..;Ts2qws|, can be defined as
the normalised cross correlation function such that

_ Elxs1—px ] [Xs2—tx
w(xslaXSZ) - P :10x52 =

resent sub-sequence mean and variance respectively

L where W and o Tep-

NNSegment first decomposes x into overlapping win-
dows of size ws which are then used to identify “super
segments” in x. x decomposed into its windowed rep-
resentation is the set w = [wy;...;Wr_,s] . For each
window w; = [} ...; Titws), the index of its nearest
neighbour wy,, (i) is determined by finding the win-
dow with which it shares minimal cross correlation:
Wnn (1) = argmin;(Y(w;w;)) : j € T —ws. After
finding the nearest neighbours of all windows, our in-
tuition, demonstrated in Figure is that adjacent
windows which belong to a homogeneous region of be-
haviour will follow an adjacency pattern (Definition [2)).
When adjacency is broken, we assume the behaviour
of the TS has changed and the corresponding index
represents the end of a super segment.

Definition 2 Given a TS x and two adjacent win-
dows at index i and i + 1. Adjacency holds at window
index i if Wpn (1) +1 = wpp(i +1)

For anomalies, adjacent windows are likely to break
the adjacency property. However, this does not nec-
essarily signify the end of the “super segment”. To
account for these potentially erroneous change points
we include a normalisation term which uses the statis-
tical properties of the preceding and following window
to determined if a true change point has occurred. We
define the difference in statistical properties between

(wi) (w;)
g(wi) — Z(wj))| where

u and o represent window mean and variance respec-
tively. For each window w; which breaks the adja-
cency property, we calculate the values of p(w;, W;_s)
P(Wi, W,ts) to account for change points at the end of
a window which have caused the break of adjacency.
If p(Wi, Wi—ws) > p(W;, Witys) the change point is
more likely to have occured at the beginning of the
window whereas if p(W;, W;_ys) < p(Wi, Witws) the
change point is more likely to have occurred at the
end of the window. We sort the vector of p(.) and
return the index i of w; corresponding to the great-
est T” changes in statistical properties as our vector
cp. Under the assumption that every observation x;
either forms part of a motif or anomaly, we formally
introduce NNSegment in Algorithm [1] which requires
parametrising with window size, ws and the number
of user-specified change points 7".

two windows as p(w;,w;) = |(

Perturbing a TS with Realistic Background
Content: To address Open Question 2 we employ
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Algorithm 1: Nearest Neighbour Segment
(NNSegment)
Input : TS x, window length ws, number of

Change Points T’
Output: cp: vector of change points in x
w < [w;] i €T —ws;
Wnn < argmin;(Y(w,w;)) 14,7 € T — ws;
cp [ ;
fort €T —ws do
if wpp(i+1) # wpp(i) + 1 then
if [(p(Wi, Wizws))| > [(p(Wi, Witws))]
then
| ep < cp+[i
end
; else
| cp + cp+ [i +ws]
end

5
end

end
cp « sort(cp) by p(.);
Cp < [cp1; Cp2; ..s cppv];

findings from harmonic analysis: Any TS x can be
represented as a composition of harmonic oscilla-
tions in the frequency domain such that x = x, =
7 we?™@dt. T, can be viewed as a distribution
over the frequency content of the signal. Maxima
in the frequency domain reflect a high proportion of
the signal oscillating at that frequency. It has been
shown that realistic background content represents a
global property of an image and is not necessarily the
local low frequency content but the most commonly
occurring global frequency information (Agarwal and
. A TS’ frequency distribution varies
considerably over time. Applying a low pass filter to,
or blurring a segment, is therefore not necessarily a
true reflection of removing the salient signal content.
Instead we propose replacing a “super segment” with
a background content segment, artificially generated
by identifying the frequency band which has the high-
est representation, with lowest variance in the original
signal.

To understand how the spectral density of a TS
changes over time we use the Discrete Short Time Fre-
quency Transform (STFT). Given a TS x = [z1;...; 2 7]
where x is considered a discrete time representation
of the underlying phenomenon, the STFT converts x
into its time-frequency representation by taking the
Fourier transform of x multiplied by a sliding win-
dow which is non-zero only for a fixed small length
ws: STFT(x,ws,w) = L= _xw(T — ws)DFTr where
DFTyp = e T represents the Fourier transform, w is

a) original signal b) STFT of original signal

]

amplitude

.0
0 200 400 600 800 1000 400 600 800
time time

Figure 4: Intuition behind RBP. Original signal (a)
composed of background signal and varying frequency
sine waves at indexes: [0 : 100], [400 : 500] and [600 :
800]. b) shows the spectrogram obtained by applying
STFT to the original signal. The spectogram captures
the background signal which remains constant through
time as well as the shorter length “content” sine waves
at their respective frequencies.

the frequency parameter and w(.) is a window func-
tion parametrised by window size. The STFT, when
applied to a discrete TS results in a matrix which
records magnitude and phase for each point in time
and frequency. We are interested in filtering the sig-
nal by selecting only the background content. Given
STFT(x) we therefore find the most persistent fre-
quency by first selecting only the magnitude response
as |f¢| and then finding the frequency band which has
the highest value over time with minimal variance:
Fpersist = argmamfggI;:B : f,t € {STFT(x)} where

g EH::B is the mean magnitude response normalised by

its standard deviation of a selected frequency band
over time. To use this background content to mean-
ingfully perturb our original TS we convert Fpeysist
into the original time domain via the inverse STFT,
from which, the relevant segments of background con-
tent can be chosen to replace parts of the original sig-
nal. Our realistic background perturbation algorithm,
RBP is shown in Algorithm [2 and Figure [4] shows the
STET applied to an example TS, demonstrating our
background frequency intuition.

Measuring Distance between two T'S: To address
Open Question 3, we employ Dynamic Time Warp-
ing (DTW), introduced by Bellman and Kalabal (1959)
to address the limitations of the Euclidean distance
in measuring the similarity between two TS. DTW
(formally defined in the Supplementary Material) ig-
nores both global and local shifts in the time dimen-
sion to give a more accurate similarity between two
TS. For generating explanations, and more specifi-
cally, generating the weighting between the instance
to be explained and the generated samples, this prop-
erty of DTW is very useful. For the example sam-
ples shown in Figure [2} we obtain dprw (x°,x1) = 16,
dprw (x°,x2) = 10 and dprw (x°,x®) = 1 which cap-
tures the intuition that perturbations applied to the
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Algorithm 2: Realistic Background Perturbation
(RBP)
Input

: TS x of length T', window size ws,
frequency parameter w, change point
indexes cp, perturbation segments o(z)

Output: Perturbed TS z

Xotpt < STFT(x,w,ws);

Fpe'r-sist < Xstft [argmaxf gE}fZB] : fa te Xstfts
;

f
R=STFT! (Fpersist,w, ws)
Z < X;
for z in T" do
if o(x;) == 0 then
| z[epi : epita] < Rlep; @ cpisa]
end

end

more significant “super segments” of the original TS
should represent a more dissimilar resulting sample.

LIMESegment: Algorithm [3| details our framework,
LIMESegment, for generating local TS explanations.
Problem Statement: Given an example TS to be
explained x and an underlying black box classifier f :
RT — R, alongside the predicted label of x, Yy =
f(x), we build a surrogate model g in the locality of x
to generate explanations in the interpretable domain
o(x).

We first transform x into its interpretable representa-
tion o(x) = 17" which corresponds to a vector of ones
for each “super segment” found by NNSegment. We
generate n random samples Z = [z1;...;Zy] in the lo-
cality of o(x) according to a Bernoulli sampler. Each
coordinate o(z;) (i € T') of o(z;) is i.i.d Bernoulli
distributed with parameter % We use RBP to con-
vert each o(z;) into TS z;. Given our transformed TS
dataset Z we can obtain predicted sample labels Yz =
f(Z). To determine the distances to be used as weight-
ings m to the surrogate model g we first normalise
compute DTW (z,Z) between x and each z; (j € n).
These distances are then z-normalised DTW, _,,prm (Z)
and passed to an exponential kernel with scale pa-
2
rameter [, m = exp(u) We use Linear
Ridge Regression as our surrogate model ¢ and in-
terpret the feature weight vector w = [wy;...; wr] as
our “super segment” importances and resulting expla-
nations. We argue that the combination of a mean-
ingful segmentation algorithm NNSegment and realis-
tic perturbation RBP alongside the use of DTW re-
sults in a more appropriate adaptation of LIME to TS
than existing methods (Guillemé et al., [2019; Neves
et al., 2021)), which we evaluate extensively Section
4. A weakness of our framework is the necessity to
parametrise both RBP and NNSegment with appro-

priate window sizes, a common problem in TS mining.
Additionally, NNSegment, does not address the fre-
quency coherence assumption where neighbouring fre-
quency bands have similar impact on the behaviour of
the black box. However, we argue that segmentation
in the time domain is the most human-interpretable
way of conceptualising a TS and trade off this as-
sumption for interpretability. To compute NNSegment
we use the STUMPY library (Law], [2019) which runs
in O(n?) if n is the length of the TS. However, the
STUMPY library can be approximated with SCRIMP
where 1% of the pairwise similarities are computed.
The RBP algorithm is dependent on the STFT which
operates in O(nlogn) time. While the DTW Al-
gorithm runs in O(n?) we made use the FastDTW
approximation (Salvador and Chan| [2007)) algorithm
which operates in O(n) time. LIMESegment explores
what meaningful TS explanations could look like and
leave amortisation and methods which address longer
length, multivariate T'S with missing values for future
work. All project code and experiments can be found
at |https://github.com/TortySivill/LIMESegment!

Algorithm 3: LIMESegment

Input : TS x, Black Box Classier f, no. of
generated samples to generate n

Input : Bernoulli Sampler B, Linear Model
RidgeRegression

Input : NNSegment, window size ws, Number
of Change Points T"

Input : DTW, RBP, window size ws, frequency

parameter w

Output: Segment Importances w
cp < NNSegment(x,ws,T");
o(x) « [1]7";
for i € n do

O’(Zj) — [Bo, ey BT/];

z; < RBP(x,ws,w,cp,0(z;));
end

Yz < [(Z);
DTW, _porm(Z) < DTW(:;)ZT)‘;:DZT)W(x,Z)

2
T emp( 7DTszlno7‘m(Z) )

w < RidgeRegression(o(Z),Yz, )

)

4 EXPERIMENTAL EVALUATION

To evaluate the explanations generated by
LIMESegment, we first evaluate NNSegment, RBP
and the DTW distance measure separately in their
capability of addressing Open Questions 1,2.3 raised
in Section 2. We then evaluate the explanations
generated by LIMESegment on a variety of TSC
tasks. Full experimental configuration details can be
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NNSegment FLUSS DynP  BotUp Original RBP Zero Random Blur
F-Score Acc 1.0 0.36 0.49 0.52 0.47
Synthetic 0.60 0.00 0.23 0.28
Apnea 0.42 0.16 0.20 0.25 Table 2: Classification accuracy after applying various
Hausdorff perturbation methods to Synthetic TS.
Synthetic  0.05 0.76 0.37 0.34
Apnea 0.30 0.40 0.74 0.40

Table 1: F-score and Hausdorff distance from applying
NNSegment, FLUSS, Dynamic Programming with L2
Cost and Bottom Up with L2 cost segmentation algo-
rithms to the Synthetic Dataset and Apnea Dataset.
Higher F-score and lower Hausdorff Distance reflects
better segmentation.

found in the Supplementary Material.

Semantic Segmentation: To evaluate NNSegment
in addressing Open Question 1, we use Hausdorff Dis-
tance and F-Score. The Hausdorff Distance (HD)
is the greatest temporal distance between a true
change point ¢p® and predicted change point cp? for
a given TS of length T" and change point vector cp
of length T": HD(cpt,cp?) = %ﬁﬂp?l) for i €
T’ (Aminikhanghahi and Cookl 2017). The F-score
is the harmonic mean of the Precision and Recall
of the predicted change points: FScore(cp?, cp?) =
cp'Nep?
cptﬁcpp+(wt\cxﬁ?”;rczﬂ’\cz?t) ’
with FLUSS, the semantic segmentation algorithm
closest to our work (Gharghabi et al., |2017)) as well
as two benchmark change point detection algorithms:
DynP, Dynamic Programming with L2 Cost Func-
tion and BotUp, Bottom Up segmentation with L2
Cost Function. Both change point methods are im-
plemented using the Ruptures Python Framework
(Truong et al. [2020). We use synthetic TS and
and examples from the Apnea-ECG dataset (Penzel
et al., 2000) for evaluation. The Synthetic TS are
generated by concatenating six super segments. Fach
segment and its respective frequency composition is
taken to represent a homogeneous region of activ-
ity. The Apnea dataset contains ECG recordings of
70 participants with labelled apnea events. Table
shows how NNSegment outperforms FLUSS and both
Change Point detection algorithms across both met-
rics and both datasets evaluated. We attribute the
superiority of NNSegment over FLUSS to the dif-
ference in intuition driving both algorithms. Unlike
NNSegment, FLUSS assumes all similar behaviour oc-
curs in the same segment and fails to take into ac-
count for repeating patterns. We attribute the supe-
riority of NNSegment over DynP and BotUp to the
high proportion of motifs in both datasets. We note
that NNSegment is not designed to function as well
on datasets with a high proportion of anomalies and
motivate this for future work.

We compare NNSegment

Euclidean DTW
Simple Synthetic 0.11 0.49
Complex Synthetic  0.17 0.22
ECG200 0.55 0.63

Table 3: Mean RSSI after applying LIMESegment
with DTW and Euclidean based locality weights

Realistic Background Perturbation: To evaluate
RBP on Open Question 2 we ask the following: How
capable is RBP at generating background content?
How capable is RBP at generating realistic new sam-
ples? To evaluate the former we use the intuition of
Agarwal and Nguyen! (2020) adapted to TS: after ap-
plying a perturbation to a test set, the more successful
the perturbation, the worse the classification perfor-
mance. We generate a synthetic binary TS dataset
where each TS has five “super segments”. The class-
wise difference is contained solely in the final super-
segment. We select a 1D Convolutional Neural Net-
work as our black box. We perturb the final segment
of each evaluation TS with either RBP, blurring, ze-
roed, or random values and obtain classification accu-
racy on each perturbed dataset. Results are shown in
Table 2| where we can see a significant accuracy de-
crease following all perturbations. However, the accu-
racy decrease is most significant for RBP. To eval-
uate whether the TS perturbed RBP produces more
realistic TS than blurring, noise and zero perturba-
tions we build on the theory of |Chen et al.| (2020),
who show how unrealistic samples allow an adversary
differentiate between data points coming from the in-
put distribution and instances generated via pertur-
bation. To test how realistically RBP generates new
samples we train a new classifier, a 1D CNN, on a bi-
nary class synthetic TS dataset. Class A contains TS
with five “super segments”. Class B contains the TS
of Class A after undergoing a perturbation. We train
the classifier on the dataset and compare the validation
loss curve for varying perturbation strategies including
RBP, blurring, zeroed, random. The more realistic
the perturbation, the more difficult it will be for the
classifier to learn and generalise. Results are displayed
in Figure [5] which confirms our earlier claim that blur,
zero and random perturbation result in unrealistic T'S.

Locality: To evaluate DTW on Open Question 3, we
assume that a failure to correctly sample in the local-
ity of x results in unstable LIME explanations. To
measure the stability of explanations we adapt the ex-
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model loss
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Figure 5: Validation loss of training neural network
classifier on synthetic datasets composed of varying
perturbation methods. A validation curve which falls
quickly to near zero indicates that the model has suc-
cessfully learned to separate each class and has gener-
alised well to the validation set. RBP does not have
a smoothly decreasing loss curve and has not reached
stable low loss which indicates that the black box is
unable to differentiate between perturbed and non-
perturbed TS.

planation stability metric of [Visani et al| (2020) to
introduce Ranked Segment Stability Index (RSSI) as
the proportion of concordant (equal) pairs out of all
w pairs of segment importance vectors for a given
TS after running the explanation algorithm for n itera-
tions. Full description of RSSI is included in the Sup-
plementary Materials. To show how DTW improves
stability of LIME explanations we generate two syn-
thetic binary class TS datasets. Across both datasets
each TS has five “super segments”. In “simple syn-
thetic”, the class difference occurs in the final super
segment of each TS. In “complex synthetic” the class
difference is spread evenly across the initial and fi-
nal super segments. We also evaluate the stability of
LIMESegment on the ECG200 dataset from the UCR
TS repository (Chen et al., [2015]). We use a 1D CNN
as our black box classifier. For each TS we obtain two
sets of segment importances by running LIMESegment
using DTW as well as running LIMESegment with Eu-
clidean distance. To establish the stability of each set
of segment importances we repeat this process 50 times
for each TS. Table [3] shows RSSI of explanations un-
der DTW is greater than those of Euclidean distance
implying that comparing the similarity of generated
TS to the original TS in their raw form according to
DTW results in more stable explanations.

To evaluate LIMFESegment as a tool for generating
useful explanations we evaluate: 1) How faithful is
LIMESegment to the original black box classfier?
We define Faithfulness as the decrease in classification
confidence of the black-box when removing the most

important “super-segment” from the TS as returned
by its explanation. If LIMFESegment has correctly
identified the most important “super-segment”; its re-
moval will result in large decrease in prediction con-
fidence. We adopt the same approach as [Neves et al.
(2021)) whereby removing a selected segment from the
TS corresponds to replacing it with reversed segment
values. To measure the faithfulness of LIMESegment
we measure the mean drop in prediction probability
after segment removal for each TS in the test set. 2)
How robust is LIMESegment to small variations
in the input space? Ideally, an end-user would want
their explanations to be robust to small changes in the
input space such that anomalous observations don’t
influence the resulting explanation. In this work we
measure Robustness by observing the difference in ex-
planation generated for a TS before and after it has
been perturbed with randomly generated noise. We
report the proportion of TS whose explanations are
unchanged following perturbation as our measure of
Robustness.

To evaluate Robustness and Faithfulness of
LIMESegment we use three black box classifiers:
K Nearest Neighbour, a 1D CNN and the state-of-
the-art TS classification LSTM proposed by [Karim
et al| (2019). We train each classifier on twelve
randomly selected binary TS datasets from the UCR
repository (Chen et all [2015). We evaluate the per-
formance of LIMESegment against the performance
of the LIME TS adaptations of (Guillemé et al.|
2019), and [Neves et al| (2021). Full details of the
experimental setup can be found in the Supplemen-
tary Material. For each dataset we measure the
mean Faithfulness and Robustness across classifiers
alongside the standard deviation. Table [] reports five
individual datasets alongside the mean Faithfulness
and Robustness across all twelve datasets evaluated
(all). Explanations generated under LIMESegment
are significantly more Robust than the framework
of [Neves et al.| (2021) and |Guillemé et al.| (2019)) for
all datasets evaluated. While LIMESegment is also
more Faithful than Neves et al.| (2021)) and |Guillemé
et al. (2019), individual dataset results are nuanced:
LIMESegment applied to instances of the Strawberry
dataset achieves significantly superior Faithfulness
across all three classifiers than the frameworks of
Guillemé et al| (2019) and Neves et al.| (2021). We
observe that generally, the most important segment
as returned by LIMFEsegment occurs in the middle of
these TS and is roughly of length 20. [de Abreu Fontes
et al| (2021) introduce a wavelength importance
classifier and show how the Strawberry dataset can
be accurately classified by retaining just 4% of the
original signal. Our result confirms this finding and
shows how LIMFEsegment successfully identifies the
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[strawbcrry[ handout [ yoga [ ecg200 [chinatown[ all
Faithfulness

L[0.35+0.10/0.084+0.05[0.10+0.06/0.20£0.18/0.05+0.09(0.10+0.06
G| 0.054+0.04|0.054+0.06|0.064+0.03|0.13+0.18|0.03+0.06 | 0.04+0.05
N|0.07£0.04 |0.16+0.14|0.05+0.04|0.164+0.14|0.054+0.09|0.06+0.05
Robustness
1.00+0.20|0.40+0.20({0.704+0.36(/0.88+0.20{0.98+0.03|0.74+0.14
0.20+0.35[0.0040.00|0.60£0.53|0.33£0.580.67+£0.58 | 0.42£0.22
0.00+0.00[0.1040.17]0.5240.40|0.4540.05|0.67£0.58 | 0.34£0.23

zQc

Table 4: Mean and Standard Deviation of Faithful-
ness (F) and Robustness (R) of LIMESegment (L),
Guillemé et al|(2019) (G) and [Neves et al.| (2021) (N)
explanations after training KNN, CNN and LSTM on
12 datasets from UCR repository (Chen et al., 2015))
(all) alongside individual results of five datasets. As
L and G require user defined segmentation we report
the best results obtained with segment length of 5%,
10%, or 20% of TS length.

most significant segment of the TS whose removal
results in a significant decrease in performance,
exemplifying the benefits of meaningful over arbitrary
segmentation.

LIMESegment in Practice: We now present
LIMESegment in a healthcare setting to exemplify
the insights TSC explanations offer. ~ We apply
LIMESegment to the prediction of in-hospital sur-
vival post-septic shock onset using temperature fluc-
tuations, where it has been shown in the literature
how fever in septic shock patients is strongly as-
sociated with lower mortality probability (Sundén-
Cullberg et all |2017)). For this study, the “Sepsis
Cohort” was selected as a subset of the MIMIC IIT
dataset according to the method of [Komorowski et al.
(2018). The MIMIC III Sepsis Cohort includes all z-
normalised vital sign observations 24 hours before until
48 hours after presumed onset of sepsis.

We train a 1D CNN on 1130 TS and randomly se-
lect TS from a test set to generate explanations via
LIMESegment. Four example TS and associated seg-
ment importances are shown in Figure [6] For the
True Negative (individual dies) and True Positive (in-
dividual survives), the segment following sepsis on-
set is most influential for the resulting classification
which aligns with sepsis research reporting elevated
peak temperature in the first 24 hours following sep-
sis onset is associated with decreased in-hospital mor-
tality (Young et al., [2012)), This kind of explanation
guided observation demonstrates how LIMESegment
could be used to offer medical insight to an end-user.
Figure [6] shows how, for the False Negative exam-
ple, the most influential segment in its incorrect clas-
sification is of similar shape to the True Negative’s
most influential segment: temperature significantly
dips and sharply rises, giving insight into why this
sample was incorrectly classified by the black box. To

Temperature and Explanations for Four Septic Shock Patients
True Negative False Negative

5 vku‘*
True Positive

[ H

False Positive

/fv_\/L

15 20 o

15 20

10 10
Observation Index Observation Index

Figure 6: Each TS is labelled as either a True Neg-
ative or Positive, where the black box has correctly
classified the instance or, as a False Positive or Nega-
tive where the black box has misclassified the sample.
Each “super segment” as returned by LIMESegment
is shaded either blue or red. Red shading indicates
the segment importance supports the black box predic-
tion and blue indicates the segment importance con-
tradicts the black box prediction. Opacity indicates
greater segment importance. The yellow vertical line
indicates sepsis onset for each individual. For both cor-
rectly classified instances LIMESegment has detected
the time of sepsis onset in its segmentation.

further evaluate the LIMESegment algorithm on the
Sepsis Cohort we compare Faithfulness and Robust-
ness of LIMESegment with |Guillemé et al.| (2019)) and
Neves et al.| (2021)) on each test sample. LIMESegment
obtains Faithfulness of 0.29 and Robustness of 1.0,
Guillemé et al.| (2019) obtains Faithfulness of 0.02 and
Robustness of 0.90, and Neves et al.| (2021) obtains
Faithfulness of 0.12 and Robustness of 0.72, demon-
strating how LIMFESegment outperforms state-of-the-
art TS LIME adaptations on real-world data.

5 CONCLUSION

We present our adaptation of LIME to TS by combin-
ing solutions to open challenges in T'S mining into an
explanation framework. Our segmentation algorithm,
NNSegment outperforms existing work in finding ho-
mogeneous regions of TS activity. Our perturbation
algorithm, RBP, outperforms existing standard per-
turbation approaches and we have shown how the use
of DTW instead of Euclidean distance results in more
stable explanations. LIMESegment has been shown to
produce more Faithful and Robust explanations than
the existing state-of-the-art adaptation of LIME to TS
(Guillemé et al., 2019 [Neves et all [2021)). In future
work we wish to generate realistic local TS using gen-
erative methods; adapt LIMESegment for multivariate
TSC and evaluate LIMESegment with a user-study to
understand how humans interpret TS explanations.
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Supplementary Material:
LIMESegment: Meaningful, Realistic Time Series Explanations

A DTW ALGORITHM

A central component of LIMESegment is the use of the Dynamic Time Warping (DTW) distance measure to
weight the surrogate model. DTW is formally specified in Algorithm

Algorithm 4: Dynamic Time Warping (DTW)

Input : TS x!={z1,...,27},x*> = {z1,...,21}
Output: Distprw (x!,x?)
DTW «+ array[0:T,0:T"];
w — max(w, |(T = T)|);
for i € T| do
for j € [T'] do
| DTWIi, j] « oo
end

end
DTWI0,0] < 0 for i € T] do
for j € [max(1,i —w) : min(T",i 4+ w)] do
| DITW]i,j] + 0
end
end
for i € T do
for j € [max(1,i —w) : min(T’,i 4+ w)] do
¢ = d(x*[i], x?[j];
DTWIi, j] + ¢+ min(DTW]i — 1, 5], DTW[i,j — 1, DTW][i — 1,5 — 1])
end
end
return DTW [T, T"]

B EXPERIMENT DETAILS

B.1 Semantic Segmentation

To evaluate our proposed NNSegment segmentation algorithm we compare its performance with the segmentation
algorithm FLUSS (Gharghabi et al.,[2017) which requires as input the Matrix Profile for a given time series (TS).
The Matrix Profile, an algorithm proposed by|Yeh et al.[(2016) is a vector that stores the (z-normalized) Euclidean
distance between any subsequence within a TS and its nearest neighbor. We also evaluated NNSegment against
the Dynamic Programming Search and the Bottom Up Search change point detection algorithms. To evaluate
segmentation algorithms we use F-score and Hausdorff Distance which were selected as they are commonly used
in the image processing literature to evaluate semantic segmentation algorithms (Taha and Hanbury, [2015)). The
datasets selected for evaluation are a Synthetic dataset and the Apnea ECG dataset (Penzel et al., 2000). TS of
the Synthetic dataset were generated via Algorithm [5] We generated 50 Synthetic TS in total, each of length 500.
When applied to Synthetic TS, NNSegment was parametrised with ws = 10,¢p = 5. FLUSS was parametrised
with ws = 10, R = 5. DynP and Botup were both paremetrised with the L2 cost function. The Apnea ECG
dataset contains 70 records, split into a test and train set each of size 35. Each sample records a continuous
ECG signal of a respective human participant sleeping for a duration of seven to ten hours. Each sample is
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accompanied with a set of human-labelled annotations recording the time of onset and duration of apnea events.
We take each apnea event and the intervals of non-apena sleep between as homogeneous regions of activity. For
simplicity, each TS was aggregated from recording ten samples per second to one sample per second. For TS of
the Apnea dataset, NNSegment was parametrised with ws = 60 and ¢p set to the number of annotations for each
sample. FLUSS was parametrised with ws = 60 and R was determined according to the number of annotations
for each sample.

Algorithm 5: Synthetic Segmentation T'S Generation
Output: TS T

w,o0 +10,0.2 ;

sl < Normal(u, o,100);

w0 < 10,0.03 ;

$2 < Normal(u, o, 100);

w,o < 10,0.1 ;

$3 <= Normal(u, o,100);

T <+ sl+524 83+ 52+ sl

B.2 Realistic Background Perturbation

To evaluate the proposed RBP algorithm we first measure the performance decrease after perturbing TS with
RBP, zero, blur and random. We begin by generating a Synthetic binary TS dataset. Class A is created via
Algorithm [6] generating 500 samples in total. Class B is created via Algorithm [7] generating 500 samples in
total. We split the resulting Synthetic Dataset into a train and test set each of size 500. On the train set,
we train a 1D convolutional neural network (CNN) of architecture outlined in Figure (7| for 100 epochs, batch
size of 64 and validation split of 0.4 using the ADAM optimiser and sparse categorical cross entropy as the loss
function. We obtain an accuracy of 1.0 on our test set. To evaluate the performance decrease following each
perturbation we perturb each individual TS in the test set from index 400 to 500 with RBP, ZeroPerturb(T'S[400 :
500) = [0]!%9) RandomPerturb(TS[400 : 500]) = [RandInt(—100,100)]°° or BlurPerturb(TS[400 : 500]) =
GaussianFilter(T'S[400 : 500],0) with ¢ = 0.1 We evaluate the model accuracy on each perturbed test set and
report this as our measure of performance decrease. To evaluate RBP at generating realistic TS we create a new
binary dataset for each perturbation type. Class A is generated via Algorithm [6] and Class B is generated via
Algorithm [6] and then perturbed as above. Each dataset contains 500 TS samples which are all used to train
the CNN as depicted in Figure [7| under the same configuration as above. We record and plot the validation loss
after each epoch and use this to compare the realism of each perturbation strategy.

Algorithm 6: Synthetic Class A
Output: TS T

w,o0 +0,0.35 ;

noise <— Normal(p,o,100);

freq + sin([0; ...; 500]);

bg < freq + noise ;

te < sin([(0;...; 100] = 20);

fs (059

£8[400 : 500] « tc;

T+ bg+ fs

B.3 Locality

To evaluate the use of Dynamic Time Warping (DTW) distance against Euclidean distance in measuring the
similarity between TS instances we construct two synthetic datasets: Simple Synthetic (Class A: Algorithm @]
Class B: Algorithm [7)) and Complex Synthetic (Class A: Algorithm [§| Class B: Algorithm @) . We generate a
train and test set of 500 TS. We also evaluate the stability of explanations on the ECG200 dataset (Olszewski,
2001)) which tracks the electrical activity of one heartbeat for 100 train and 100 test participants. Each TS is
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Figure 7: Network architecture of Concurrent Neural Network employed throughout study

input: | [(7, 300, 1)]
input_5: InputLayer
output: | [(?, 500, 1)]
y
input: (7,500, 1)
convld_12: ConvlD
output: | (7,500, 64)
Y
o o input: | (7,500, 64)
batch_normalization_12: BatchNormalization
output: | (7,500, 64)
input: | (7,500, 64)
re_lu_12: ReLU |——"F——
output: | (7,500, 64)
y
input: | (7,500, 64)
convld_13: ConvlD
output: | (7,500, 64)
Y
o o input: | (7,300, 64)
batch_normalization_13: BatchNormalization
output: | (?,500,64)
Y
input: | (7,500, 64)
re_lu_13: ReLU
output: | (7,500, 064)
y
input: | (7,500, 64)
convld_14: ConvlD
output: | (7,500, 64)
Y
o o input: | (7,500, 64)
batch_normalization_14: BatchNormalization
output: | (7,500, 64)
input: | (7,500, 64)
re_lu_l4: ReLU
output: | (7,500, 64)
Y
. ) input: | (7,500, 64)
global_average_poolingld_4: GlobalAveragePooling| D
output: (7,064)
Y
input: 2,64
dense_4: Dense P ( )
output: | (2,2)

Algorithm 7: Synthetic Class B

Output: TS T

w0 +—0,0.35;

noise < Normal(u,c,100);
freq < sin([0; ...; 500]);

bg <+ freq + noise ;

te « sin([(0; ...; 100] * 5);
s < [0]5%0;

£s[400 : 500] « tc;

T+ bg+ fs
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of length 96 and the associated class labels are either “Normal heartbeat” or “Myocardial Infarction”. We train
the 1D CNN as depicted in Figure [7] on each dataset for 100 epochs, batch size of 64 and validation split of 0.4
using the ADAM optimiser and sparse categorical cross entropy as the loss function and obtain accuracy of 1.0
on both Synthetic datasets and 0.78 on ECG200.

To measure explanation stability we introduce Ranked Segment Stability Index (RSSI) which takes as input a
set of t ordered segment importances «; = [Jj;]"|w; < w1 where w is the segment importance vector returned
by the TS explanation framework. After making ¢ calls to each explanation framework, for each pair of ordered
super segment importances, a;,a;li,j € t, we count the number of concordant pairs (4, j) for which a; = «;.
RSSI is therefore the proportion of concordant (equal) pairs out of all pairs of segment importance vectors for a

given TS. To obtain the results reported in Table 3 of the original paper, we run LIMESegment initialised with

=DIWeyorm (@ )) a5 well as LIMESegment initialised with Euclidean

distance as its distance measure (m <+ exp(w)) where [ = (0.757")% 50 times for each TS. We
report the mean (over every TS in the test set) RSSI per dataset and distance measure.

DTW as its distance measure (7 < exp(

Algorithm 8: Complex Synthetic Class A
Output: TS T

w0 +—0,0.35;

noise < Normal(u,o,100);
freq < sin([0;...; 500]);

bg < freq + noise ;

fs [0

te + sin([0;...;100] * 15);
£s[100 : 200] « tc;

tc < sin([0;...; 100] * 20);
£s[400 : 500] + tc;

T+ bg+ fs

Algorithm 9: Complex Synthetic Class B
Output: TS T

w0 4 0,0.35;

noise < Normal(p, o, 100);
freq « sin([0; ...; 500]);

bg < freq + noise ;

fs [0

te + sin([(0; ...; 100] * 10);
£5[100 : 200] « te;

te + sin([0;...;100] * 5);
£s[400 : 500] « tc;

T+ bg+ fs

B.4 Explanation Faithfulness and Robustness

To evaluate the Faithfulness and Robustness of each LIME adaptation we compare the explanations generated
for three classifiers: a 1D CNN as detailed by Figure [/, K-Neighbour algorithm with DTW distance measure
and neighbours of one as implemented in [Faouzi and Janati (2020)), a state-of-the-art hybrid LSTM, CNN model
as implemented by [Karim et al.| (2019)). We randomly select twelve binary TS datasets from the UCR dataset
repository (Chen et al., 2015) whose details are specified in Table|5| The neural network classifiers were trained
dependent on dataset as per details specified in Table[5] where we also report resulting test accuracy of the trained
models. As the explanation frameworks of Neves et al| (2021 and |Guillemé et al.| (2019) depend on arbitrary
segmentation we document the selected segment size in Table [5| To ensure fairness of results we measured the
Fairness and Robustness of the frameworks of [Neves et al.| (2021) and |Guillemé et al.| (2019)) under multiple
segmentation approaches and report the best results in Table [5] We also report the window size parameter and
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Coffee Strawb GPAge Hand Yoga ECG GPGender Dodger China FreezerST House20 Worms

TS Length 286 235 150 2709 426 96 150 288 24 301 3000 900
Train 28 613 135 1000 300 100 50 20 20 150 34 181
Test 28 370 316 370 3000 100 150 138 345 2850 101 7
Batch Size

(CNN&LSTM) 8 32 16 64 32 16 8 8 8 32 8 16
Epochs

(CNN&LSTM) 200 200 200 200 200 200 200 200 200 200 200 200
KNN Accuracy 1.00 0.94 1.00 0.84 0.81 0.77 0.99 0.88 0.97 0.71 0.85 0.63
CNN Accuracy 1.00 0.95 1.00 0.91 0.78 0.89 0.99 0.76 0.94 0.69 0.71 0.68
LSTM Accuracy 1.00 0.96 1.00 0.87 0.90 0.87 1.00 0.87 0.96 0.72 0.77 0.78
L: window size/cp 10/5 10/5 10/4 100/8 10/5 10/2 10/4 10/5 3/2 10/5 100/8 10/6
N & G: ws:

TSlength/5 10 5 5 10 5 5 10 10 5 10 10 10
or TSlength/10

KNN & L: F 0.01 0.04 0.01 0.02 0.10 0.04 0.02 0.00 0.00 0.03 0.00 0.05
KNN & G: F 0.01 0.03 0.00 0.00 0.10 0.04 0.02 0.00 0.00 0.03 0.00 0.01
KNN & N: F 0.01 0.00 0.00 0.00 0.09 0.02 0.02 0.00 0.00 0.03 0.00 0.00
CNN & L: F 0.05 0.49 0.03 0.11 0.15 0.17 0.02 0.12 0.16 0.25 0.25 0.06
CNN & G: F 0.00 0.10 0.00 0.05 0.05 0.01 0.02 0.00 0.10 0.00 0.01 0.00
CNN & N: F 0.00 0.00 0.00 0.27 0.02 0.15 0.02 0.01 0.16 0.16 0.02 0.03
LSTM & L: F 0.04 0.55 0.01 0.10 0.04 0.40 0.02 0.00 0.00 0.01 0.00 0.04
LSTM & G: F 0.00 0.00 0.00 0.11 0.04 0.34 0.02 0.00 0.00 0.01 0.00 0.02
LSTM & N: F 0.00 0.12 0.00 0.20 0.04 0.30 0.02 0.00 0.00 0.00 0.00 0.06
KNN & L: R 1.00 1.00 0.90 0.65 1.00 1.00 0.95 1.00 1.00 1.00 1.00 0.45
KNN & G: R 1.00 0.60 0.00 0.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 0.15
KNN & N: R 0.60 0.00 0.00 0.00 0.70 0.40 0.00 1.00 1.00 1.00 1.00 0.00
CNN & L: R 0.20 1.00 1.00 0.25 0.30 1.00 0.95 0.50 0.95 0.35 0.70 0.15
CNN & G: R 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CNN & N: R 0.00 0.00 0.00 0.00 0.05 0.5 0.05 0.00 0.00 0.00 0.00 0.00
LSTM & L: R 0.45 1.00 0.90 0.40 0.80 0.65 1.00 1.00 1.00 1.00 0.90 0.45
LSTM & G: R 0.00 0.00 0.00 0.00 0.80 0.00 0.00 1.00 1.00 1.00 1.00 0.00
LSTM & N: R 0.00 0.00 0.00 0.30 0.80 0.45 0.00 1.00 1.00 0.00 0.05 0.35

Table 5: Overall results table listing all twelve datasets evaluated in this study: Coffee, Strawberry, GunPointOld-
vsYoung, HandOutlines, ECG200, GunPointManvsWoman, DodgerLoopGame, Chinatown, FreezerSmallTrain,
HouseTwenty, WormsTwoClass. Rows 1 and 2 display the dataset information. Rows 3 and 4 show the configu-
ration details for the neural network classifiers. Rows 5,6,7 show the resulting test accuracy after training each
classifier. Row 8 shows the parametrisation of LIMESegment (L) algorithm. Row 9 shows the optimal segment
length for the explanation frameworks of |Guillemé et al| (2019) (G) and [Neves et al| (2021) (N). Rows 10 - 18
show the Faithfulness (F) under each classifier and explanation framework. Rows 19 - 27 show the Robustness
(R) under each classifier and explanation framework.

threshold cp required for LIMFEsegment in Table [5| For brevity we select just five individual datasets to report
in Table 4 of the original paper (Strawberry, HandOutlines, Yoga, ECG200 and Chinatown) whose results are
calculated as the mean Robustness and Faithfulness over each classifier alongside the standard deviation for each
dataset. The “all” column in the original paper calculates the mean and standard deviation of Faithfulness and
Robustness over all twelve datasets evaluated for each explanation framework.

B.5 LIMESegment In Practice

To evaluate the use of LIMESegment on the Sepsis Cohort of the MIMIC Dataset we adopt the approach of
Komorowski et al.| (2018)) which generates a dataset of total of 256230 sepsis patients. We further pre-process
the dataset by selecting the patients who have 20 observations over the 36 hour period. We create a balanced
dataset by selecting 590 temperature TS of patients of each class (0: patient dies, 1: patient survives). We divide
this dataset into a train/test split of size 500/90 and train our 1D CNN as specified by Figure [7| for 200 epochs
with a batch size of 64 obtaining accuracy of 0.80. We continue by generating explanations for each TS in the
test set according to LIMESegment (window size = 3, ¢p = 4), and the frameworks of [Neves et al.| (2021]) and
Guillemé et al.| (2019) (segment size = 4).
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