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Abstract

We prove asymptotic convergence for a gen-
eral class of k-means algorithms performed
over streaming data from a distribution—
the centers asymptotically converge to the
set of stationary points of the k-means ob-
jective function. To do so, we show that on-
line k-means over a distribution can be inter-
preted as stochastic gradient descent with a
stochastic learning rate schedule. Then, we
prove convergence by extending techniques
used in optimization literature to handle set-
tings where center-specific learning rates may
depend on the past trajectory of the centers.

1 INTRODUCTION

Lloyd’s algorithm (Lloyd, 1982) is a popular iterative
procedure for k-means clustering on a finite dataset
in Rd. At each step, the algorithm proposes k centers,
say W1, . . . ,Wk ∈ Rd. Each data point is then mapped
to its closest center, partitioning the dataset into k
clusters. The update simply sets each center to the
mean of its corresponding cluster data.

Because each step requires a pass over the whole
dataset, large-scale data and streaming settings often
use online variants of k-means, which compute updates
on single or mini-batches of data points.

Consider online k-means algorithms with updates that
(i) receive a data point X, (ii) find the closest center
Wi among W1, . . . ,Wk, and (iii) update Wi using X.
The long-term behavior of this procedure is unknown
when applied to a never-ending stream of data points
that is drawn from an underlying distribution p on Rd.
This leads to the following question:

If X(1), X(2), . . . come from an underlying
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data distribution p, do these forms of online
k-means algorithms converge to local optima
of the k-means cost function f on p?

A motivating example for analysis Bottou and
Bengio (1995) define an online k-means algorithm used
in practice, which we call the online Lloyd’s algorithm
(see Appendix A). For each i = 1, . . . , k, it simply sets
the center Wi to the mean of all its previous updates,
which can be computed in a streaming fashion. It does
so by maintaining a counter Ni for the number of times
each center has been updated so far. If Wi is the center
closest to the next data point X, the update is:

Wi ←Wi −
1

Ni + 1

(
Wi −X

)
and Ni ← Ni + 1.

Generalizing, we consider a broader family of online
k-means algorithms whose update is of the form:

Wi ←Wi −Hi ·
(
Wi −X

)
where X is a random data point drawn from p and i is
the index of the closest center Wi to X. Furthermore,
Hi ∈ [0, 1] is a center-specific stochastic learning rate
that may depend arbitrarily on the past. This yields a
simple geometric meaning to the Wi’s: each is a convex
combination of all its previous updates.

Challenges to analysis Despite its algorithmic
simplicity, online k-means has yet eluded analysis.
While k-means can often be analyzed by recasting it
as stochastic gradient descent (SGD), this is a set-
ting for which existing optimization literature is in-
sufficient. The difficulty is that centers can learn at
different rates that possibly depend on the whole his-
tory of the algorithm. To circumvent the issue, pre-
vious work (e.g. Tang and Monteleoni (2017)) replace
the center-specific learning rate of 1

Ni+1 by a uniform-

across-centers and deterministic learning rate, say 1
n ,

where n is the number of elapsed iterations.

Our main contributions We prove that a large
family of online k-means algorithms asymptotically
converge under reasonable assumptions to the set of
stationary points of the k-means objective. We show:
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Algorithm online k-means
Initialize: k arbitrary distinct centers W ∈ Rk×d from the support of p

1. for iteration n = 0, 1, 2, . . .

2. do sample data point X ∼ p
3. identify closest center i← arg minj∈[k] ‖Wj −X‖
4. update closest center Wi ←Wi −Hi ·

(
Wi −X

)
algorithm. A class of online k-means algorithms. Here, W = (W1, . . . ,Wk) is the tuple of k centers
maintained by the algorithm and Hi ∈ [0, 1] is a (stochastic) learning rate for the ith center. X is a
random sample from data distribution p. See Section 2 for additional notation.

(i) Connection to SGD We prove that algorithms
in this family precisely perform stochastic gradient
descent on the k-means cost function in Lemma 2.2.
While known for k-means over finite datasets (Bottou
and Bengio, 1995), the result does not trivially extend
to distributions—the essential difference is that there
are finitely many ways to cluster a finite dataset, but
infinitely many ways to cluster Rd.

(ii) Convergence of online k-means Standard
techniques from optimization literature (e.g. Bertsekas
and Tsitsiklis (2000)) are able to analyze SGD with
uniform learning rates, but they are unable to han-
dle the variant of SGD performed by online k-means,
which has center-specific learning rates. To show con-
vergence, we extend the techniques from Bertsekas and
Tsitsiklis (2000) to cover non-uniform learning rates.

Of course, not every choice of non-uniform learning
rates will lead to convergence, especially as the learn-
ing rates Hi’s may be chosen adversarially. As an ex-
treme example, an adversary can set the learning rate
of a center Wi to zero; the iterates will never con-
verge to a stationary point. To prove convergence, we
need to impose additional conditions. The key prop-
erty that we shall require for convergence is that if a
center Wi is far from its cluster mean—the mean of
its Voronoi cell—then with constant probability, it is
updated at a rate not too much slower than the rest
of the centers. Theorem 4.2 proves convergence.

(iii) Generalized Lloyd’s algorithm While the
online Lloyd’s algorithm falls into the family of on-
line k-means algorithms we consider, it turns out that
it is particularly difficult to analyze. It is poorly con-
ditioned in the sense that nothing seems to prevent it-
erates from making rare but large jumps—it is unclear
whether online Lloyd’s satisfies the assumptions from
our convergence theorem. Furthermore, online Lloyd’s
may differ significantly from the original Lloyd’s algo-
rithm in the offline setting. In the original algorithm,
centers are updated to the mean of the current clus-

ters. But in online Lloyd’s, centers are set to the mean
of all previous updates. But this mean-of-all-previous-
updates does not generally well-approximate the mean
of the current cluster because the underlying clusters
drift about throughout the whole algorithm.

Instead, to design an online version of Lloyd’s algo-
rithm with asymptotic guarantees, we start from the
interpretation of Lloyd’s algorithm as preconditioned
gradient descent. Then, we define the generalized on-
line Lloyd’s algorithm in Appendix A as its stochastic
analog, which concurrently keeps an estimate of the
preconditioner. We prove the consistency of our esti-
mator to the Lloyd preconditioner in Appendix E.

For the following theorem, we say that a k-tuple of
centers w ∈ Rk×d is degenerate if at least two of the
centers coincide, wi = wj for some i 6= j. The follow-
ing theorem is an informal restatement of Theorem 5.1.

Theorem (informal). Let p be a continuous density
with bounded support on Rd and f its k-means cost
function. Suppose that the set of stationary points
{∇f = 0} has no degenerate limit points. Then,
the generalized online Lloyd’s algorithm asymptoti-
cally converges to the set of stationary points:

lim sup
n→∞

inf
w∈{∇f=0}

‖W (n) − w‖ = 0.

1.1 Related work

An essential goal of unsupervised learning is to sim-
plify the signal from data, while preserving meaning
relevant for downstream tasks. In k-means clustering
or vector quantization, this simplification is achieved
by discretizing the data space Rd into a finite set of
prototypes w1, . . . , wk ∈ Rd. Any data point can then
be clustered with/approximated by the nearest wi.
Thus, given a data distribution p on Rd, it is natu-
ral to aim to find a discretization w = (w1, . . . , wk)
that minimizes the average `22-reconstruction error:

E
X∼p

[
min
i∈[k]

‖wi −X‖2
]

=

∫
min
i∈[k]

‖wi − x‖2 p(x) dx.
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But since we do not generally access p directly but
through random samples—its empirical measures—
this raises the statistical question of how much data
is theoretically required to estimate an optimal clus-
tering. To this end, Pollard (1981) shows under weak
assumptions that the optimal clustering of empirical
measures converge almost surely to the optimal clus-
tering of p. This was also followed by much work in the
clustering and vector quantization community show-
ing rates of convergence; see Bachem et al. (2017) and
their related works section.

However, recovering an (arbitrarily) optimal clustering
of an empirical measure quickly becomes computation-
ally infeasible as the size of the dataset grows (Aloise
et al., 2009; Awasthi et al., 2015), so in practice, sim-
ple heuristics such as Lloyd’s algorithm are used to
find local optima (Lloyd, 1982). Regarding such algo-
rithms, Pollard remarks: “I do not know whether the
techniques to be developed in this paper can be applied
to prove consistency results for [existing efficient algo-
rithms that find] locally optimal partitions.” While we
do not develop on his technique, we show that online
k-means asymptotically converges to stationary points
of the reconstruction error—equivalently, the k-means
cost function—almost surely.

To analyze online k-means on finite datasets, Bottou
and Bengio (1995) reinterpret the update as gradi-
ent descent, which Tang and Monteleoni (2017) use
to prove convergence given uniform and deterministic
learning rates, attaining rates of convergence. We con-
sider the setting of online k-means over a data distri-
bution with non-uniform and stochastic learning rates.
We show convergence but leave open the question of
rates: one challenge that immediately arises that there
may be uncountably many stationary points in the dis-
tributional setting. In contrast, the set of stationary
points in the finite setting is also finite—hence isolated.

For our analysis of SGD, we make use of common
frameworks to prove convergence (Bertsekas and Tsit-
siklis, 2000; Li and Orabona, 2019). However, much of
the general theory covers only uniform learning rates.
Our work introduces a technique that may be applied
to prove convergence for more general SGD-based algo-
rithms with non-uniform and stochastic learning rates.

In our analysis of the k-means cost function, we show
that it admits a family of tangent quadratic upper
bounds (Appendix B). This suggests that k-means
over distributions, as in the finite setting, fits into the
majorization-minimization (MM) scheme (see Mairal
(2015)). It would also be of interest to generalize our
work to iterative or online MM algorithms as in Cappé
and Moulines (2009); Karimi et al. (2019).

2 PRELIMINARIES

Let p be a density on Rd with bounded second mo-
ment. Notice that because p is a density, any Lebesgue
measure zero set also has zero probability mass. We
denote a tuple of k centers or prototypes in Rd by
w =

(
w1, . . . , wk

)
∈ Rk×d. Define the following:

• V (w) =
(
V1(w), . . . , Vk(w)

)
is the induced

Voronoi partitioning1 of Rd by w

Vi(w) =

{
x ∈ Rd : wi ∈ arg min

wj

‖wj − x‖
}

• P (w) =
(
P1(w), . . . , Pk(w)

)
is the probability

mass of each of the Voronoi partitions

Pi(w) =

∫
Vi(w)

p(x) dx

• M(w) =
(
M1(w), . . . ,Mk(w)

)
is the mean/center

of mass of each of the Voronoi partitions

Mi(w) =
1

Pi(w)

∫
Vi(w)

x p(x) dx.

While these functions are defined for all w ∈ Rk×d, we
will be able to restrict our analysis to the set of non-
degenerate tuples, where none of the centers coincides:

D := {w ∈ Rk×d : wi 6= wj , ∀i 6= j}.

Later on, we will restrict the support of p to a closed
ball B(0, R) centered at the origin of radius R in Rd.
Let DR be the set of non-degenerate tuples in B(0, R):

DR := {w ∈ D : wi ∈ B(0, R), ∀i ∈ [k]}.

As last bits of notation, given a Borel set S ⊂ Rd with
positive probability mass p(S) > 0, let p

∣∣
S

denote the
distribution obtained by restricting p onto S. Finally,
we will also let [k] denote the set {1, . . . , k}.

2.1 The k-means problem

The k-means objective is to minimize:

f(w) :=
1

2

∑
i∈[k]

∫
Vi(w)

‖wi − x‖2 p(x) dx. (1)

While the k-means cost is non-convex, we show that it
is smooth on D. Therefore, we aim for convergence to
stationary points—the iterates W (n) approach the set
of stationary points {∇f = 0} in the limit as n→∞.

1Strictly speaking, V (w) does not partition Rk×d be-
cause adjacent partitions Vi(w) and Vj(w) share boundary
points. However, boundary points form a measure zero set,
so we will encounter no problems.
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Algorithm generalized online k-means
Initialize: k arbitrary distinct centers W (0) ∈ Rk×d from the support of p

1. for n = 0, 1, 2, . . .

2. do sample data points X
(n+1)
i ∼ p

∣∣
Vi(W (n))

for i = 1, . . . , k

3. update all centers W
(n+1)
i ←W

(n)
i −H(n+1)

i ·
(
W

(n)
i −X(n+1)

i

)
algorithm. The class of online k-means algorithms analyzed in this work, generalizing online k-means
by allowing multiple centers to be updated each iteration. This framework easily further generalizes to
an online mini-batch setting, see Remark 2.3. To recover the single-center update, see Remark 2.4.

Definition 2.1 (Asymptotic convergence). Let D be
a domain and f : D → R differentiable. We say that a
sequence of points (w(n))∞n=0 in D asymptotically con-
verges to stationary points of f if all limit points of
(w(n))∞n=0 are stationary points of f ,⋂

n≥0

(w(n′))n′≥n ⊂ {∇f = 0}.

Computing the derivative of the k-means cost (1) with
respect to w is relatively involved because the both the
domain of integration and the integrand depend on w.

Lemma 2.2 (Gradient of k-means objective). Let p
be a density on Rd with EX∼p

[
‖X‖2

]
< ∞. Let f

be the k-means objective (1). Then f is continuously
differentiable on D, where:

∇wi f(w) = Pi(w) ·
(
wi −Mi(w)

)
. (2)

Proof sketch. A change in f due to a small pertur-
bation at w to w + ε can be broken down into two
parts. First, for points x ∈ Vi(w) ∩ Vi(w + ε) that re-
main within the ith Voronoi region, the accumulated
change in cost is due to shifting the ith center,

1

2

∫
Vi(w)∩Vi(w+ε)

(
‖wi + εi − x‖2 − ‖wi − x‖2

)
p(x) dx.

Note that in the limit as ε approaches 0, the domain
of integration is the points in the interior of Vi(w).

Second, for points x ∈ Vi(w) ∩ Vj(w + ε) that switch
from the ith to the jth Voronoi region, the change
in cost is due to switching regions. Note that in the
limit as ε approaches 0, these points are on the bound-
ary Vi(w) ∩ Vj(w). But as points on the boundary
Vi(w) ∩ Vj(w) are equally distant from either the ith
and jth centers, this second term overall contributes
nothing to the first-order change in f . It turns out that
the derivative of f can be computed by treating the
domains of integration as fixed. By dominated conver-

gence, we can move the derivative past the integral:

∇wif(w) =
1

2

∫
Vi(w)

∇wi‖wi − x‖2 p(x) dx

=

∫
Vi(w)

(wi − x) p(x) dx.

Substituting the definition of Pi and Mi completes the
proof. Appendix B makes this argument rigorous.

2.2 Online k-means algorithms

In this work, we analyze the family of generalized on-
line k-means algorithms. In Section 1, we motivated
online k-means, which updates a single center per it-
eration. The generalized family is a superset of algo-
rithms in which multiple centers can be updated each
step. Here, the update to the ith center is computed
using data drawn from the ith Voronoi cell:

Xi ∼ p
∣∣
Vi(W )

.

Remark 2.3 (A further generalization). As ad hoc
notation for this remark, let pi(W ) := p|Vi(W ) so that
the update Xi is drawn from pi(W ). It turns out that
the only properties we use about pi(W ) are that:

(i) pi(W ) has mean Mi(W ), and

(ii) pi(W ) is supported only in the interior of Vi(W ).

So, the update distributions pi(W ) may be general-
ized to any satisfying (i) and (ii). For example, the
result of this paper holds for an online mini-batch set-
ting, where the update Xi is computed by averaging
multiple draws from p|Vi(W ). But let us refrain from
adding even more notation and simply assume that the
update distributions are p|Vi(W ).

Remark 2.4 (Recovering the single-center update).
Notice that the earlier online k-means is a specific case
of generalized online k-means, where the learning rate
(H1, . . . ,Hk) is supported only on the ith coordinate—
only Hi is nonzero—with probability Pi(W ).



Sanjoy Dasgupta, Gaurav Mahajan, Geelon So

3 CONVERGENCE OF COST

For the k-means cost to be finite, the distribution p
must have bounded second moment. But for our con-
vergence analysis, we make a stronger, but fairly com-
mon, bounded support assumption (e.g. Bartlett et al.
(1998); Ben-David (2007); Paul et al. (2021)):

Assumption 3.1. Assume p has bounded support,
i.e. PrX∼p(‖X‖ > R) = 0 for some R > 0.

We also make assumptions on the learning rates used
in generalized online k-means. Let X(n) and H(n) be

the tuples
(
X

(n)
1 , . . . , X

(n)
k

)
and

(
H

(n)
1 , . . . ,H

(n)
k

)
.

Assumption 3.2. Let
(
Fn
)∞
n=0

be the natural filtra-
tion associated to the generalized online k-means al-
gorithm. That is, let F0 = σ

(
W (0)

)
be the σ-algebra

generated by W (0), and let Fn = σ
(
X(n), H(n),Fn−1

)
contain all information up to iteration n. Assume:

(1) If Pi(W
(n)) = 0, then H

(n+1)
i = 0 almost surely.

(2) H(n+1) and X(n+1) are conditionally independent
given Fn.

(3) 0 ≤ H(n+1)
i ≤ 1.

The first assumption helps us avoid the ill-defined sit-
uation of drawing from Vi(W

(n)) when Pi(W
(n)) = 0.

We require Hi
(n+1) = 0 a.s. so that Xi

(n+1) may be
arbitrary, since it goes unused in the update.

The second assumption ensures that H(n+1) does not
depend on X(n+1), so that the update direction is an
unbiased estimate of gradient descent.

The final assumption is simplifying and natural: the
update is a convex combination of the previous center
and new data point. It also follows that W (n) remains
in D, the set of non-degenerate tuples almost surely:

Lemma 3.1. Let 0 ≤ H(n+1)
i ≤ 1. Then W (n) ∈ D is

non-degenerate for all n ∈ N almost surely.

With Assumption 3.1, we also have that all centers and
updates takes place in the closed ball B(0, R) ⊂ Rd
of radius R almost surely. As this is a region with
diameter 2R, the amount that each center moves can
be controlled by bounding the learning rates:

Lemma 3.2. Suppose PrX∼p(‖X‖ > R) = 0. Let

H
(n)
i ≤ 1 for all n ∈ N and i ∈ [k]. If n > m, then:

‖W (m) −W (n)‖ ≤ 2R ·
∑
i∈[k]

∑
m≤n′<n

H
(n′+1)
i a.s.

We do not lose much for making this assumption, and
at any rate, we shall require the learning rate to con-
verge to zero in our convergence analysis. From now
on, we implicitly make Assumptions 3.1 and 3.2.

3.1 Convergence analysis

The first result we give is the asymptotic convergence
of the k-means cost, f(W (n)), which will be based on
a supermartingale argument commonly used in prov-
ing the convergence of stochastic gradient descent. Re-
call that a bounded and monotonically decreasing real-
valued sequence converges to a real value. This re-
mains true in the random setting. A supermartingale
is a noisy sequence that in expectation decreases mono-
tonically. Provided that the noise can be controlled,
then the martingale convergence theorem shows that
such a stochastic sequence will converge to some real-
valued random variable, e.g. see Durrett (2019).

Proposition 3.3 (Convergence of cost). Let(
W (n)

)∞
n=0

be a sequence generated by the generalized
online k-means algorithm. If the following converges:

∞∑
n=1

∑
i∈[k]

(
H

(n)
i

)2
<∞ a.s.,

then there is an R-valued random variable f∗ such that
f(W (n)) converges to f∗ almost surely.

Proof sketch. Lemma B.3 shows that for every w ∈ D,
there is a quadratic upper bound tangent to f at w:

f(w′) ≤ f(w) +∇f(w)>(w′ − w) +
1

2
‖w′ − w‖2.

To lower bounds the amount f decreases at each iter-
ation, let w′ = W (n+1) and w = W (n). Recall:

W
(n+1)
i −W (n)

i = −H(n+1)
i ·

(
W

(n)
i −X(n+1)

i

)︸ ︷︷ ︸
noisy direction

.

This implies that in expectation, the algorithm takes
a step in the direction of the negative gradient:

∇wif(W (n)) = Pi(W
(n)) ·

(
W

(n)
i −Mi(W

(n))
)︸ ︷︷ ︸

expected direction

.

Suppose we are able to neglect the quadratic term
1
2‖w

′−w‖2 of the upper bound. Then this shows that

f(W (n)) is a supermartingale; f decreases in expecta-
tion each iteration since it takes a step in the direction
of the negative gradient. In order to apply the martin-
gale convergence theorem, we need to know not only
that the expected value decreases, but that the total
amount of noise is bounded. Indeed, the noise at each
step can be bounded by Lemma 3.2. In particular,

Var
(
‖W (n+1)

i −W (n)
i ‖

)
≤
∑
i∈[k]

E
[∥∥W (n+1)

i −W (n)
i

∥∥2
]

≤ 4R2
∑
i∈[k]

(
H

(n+1)
i

)2
.
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Thus the total noise of the process is finite:∑
n∈N

Var
(
‖W (n+1) −W (n)‖

)
<∞ a.s.

Martingale convergence shows that f(W (n)) converges.

Of course, we cannot just drop the quadratic term
in the upper bound. But notice that the quadratic
terms form convergent series; each term is dominated
by terms of a convergent series:

1

2

∥∥W (n+1) −W (n)
∥∥2 ≤ 2R2

∑
i∈[k]

(
H

(n+1)
i

)2
.

Therefore, except for a convergent series, f(W (n)) is a
supermartingale. Martingale convergence applies here
too. Appendix C fills in the technical details.

4 CONVERGENCE OF ITERATES

Our main result is the convergence of the k-means it-
erates W (n) to the set of stationary points {∇f = 0}.
For this, we need an additional assumption. Recall
that Lemmas 3.1 and 3.2 show that the iterates W (n)

are non-degenerate and bounded—they are contained
in DR (defined in Section 2). From now on, we restrict
all sets to the topological subspace DR ⊂ Rk×d. For
example, when we write {∇f = 0}, we implicitly mean
{∇f = 0} ∩ DR. We assume:

Assumption 4.1. The set {∇f = 0} of stationary
points is compact in DR.

Geometrically, this means that {∇f = 0} has no de-
generate limit point (see Lemma 4.1’s proof). This lets
us prove that W (n) converges to {∇f = 0} by showing
that ∇f(W (n)) converges to zero. Formally, we apply
Lemma D.4, which relies on (i) the continuity of ∇f ,
and (ii) the existence of a compact subset of DR con-
taining {∇f = 0}. Indeed, a consequence is that level
sets {‖∇f‖ ≤ ε} are compact for small enough ε.

Lemma 4.1. Let {∇f = 0} be compact in DR. There
exists ε0 > 0 so that if ε ∈ [0, ε0], the sets {‖∇f‖ ≤ ε}
and {‖∇wif‖ ≤ ε} are compact in DR for i ∈ [k].

From here on, we additionally make Assumption 4.1.

4.1 Convergence analysis

The key idea here is to link the convergence of
∇f(W (n)) → 0 to that of f(W (n)) → f∗. Broadly
speaking, we need to impose conditions on the learn-
ing rate so that whenever ‖∇f(W (n))‖ is larger than
some ε, then the cost likely decreases by some δ. The
Borel-Cantelli lemma (Lemma D.5) would then show
that if the gradient is large infinitely often, then the

cost must also decrease by a large amount infinitely
often. But as the cost converges, this cannot happen.

Were we in the noiseless gradient descent setting, we
could—in a single step—turn a large gradient into a
large decrease in cost. We simply ensure that the iter-
ates move in a direction that significantly decreases f
by lower bounding the learning rates for centers i ∈ [k]
with large gradients ∇wif . However, in our setting,
the true gradient direction is obscured by the presence
of noise, and so lower bounding the learning rates by
a constant no longer guarantees a decrease in cost.

Instead, in the stochastic gradient descent setting, we
can—over many steps—turn a region with large gradi-
ents into a large decrease in cost, with high probabil-
ity. Since our learning rate decays to zero, eventually,
whenever we enter a region with large gradients, we
remain in that region for sufficiently many iterations
so as to average out the noise and recover the under-
lying signal to move along the negative gradient direc-
tion. As in the noiseless setting, we want the choice of
learning rate to not disproportionately dampen learn-
ing for centers i ∈ [k] with large gradients ∇wif . In
other words, the iterates should not leave this region
of large gradients before having accumulated enough
learning on those centers with large gradients.

As a motivating adversarial example, suppose we de-
crease the learning rates for centers with large gradi-
ents while increasing the rates for centers with small
gradients. Then, the iterates may escape the region
with large gradients by moving orthogonally to the
gradient descent direction, not significantly decreas-
ing the function value. And as an extreme example,

if we never update the ith center, so H
(n+1)
i ≡ 0 for

all n, then the cost f(W (n)) may converge while the
gradients ‖∇f(W (n))‖ may never converge to zero.

To preclude these examples, we need to be able
to control the learning rates whenever the gradient
‖∇wif(W (m))‖ becomes large for center i ∈ [k] at iter-
ation m. But because the convergence of cost analysis
required the learning rates to decay to zero (Proposi-
tion 3.3), to accumulate the same amount of learning,
we will need to control the learning rates over increas-
ingly many iterations as m→∞. In particular, if the
gradient becomes large at iteration m, we shall aim to
control the learning rates during the interval between
m and a future horizon T (m), for some appropriately
chosen function T : N→ N.

We impose two types of conditions on the learning
rate. The first condition allows us to ensure that the it-
erates remain within the region of large gradients dur-
ing the interval from m to T (m). Recall Lemma 3.2
showed that we can bound the total displacement be-
tween W (m) and W (T (m)) by bounding the accumu-
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lated learning rates; the first condition is of the form:∑
j∈[k]

∑
m≤n<T (m)

H
(n+1)
j < r.

The second condition ensures that we accumulate
enough learning for the center i ∈ [k] with large gradi-
ents, so that the cost decreases by a constant between
iterations m and T (m),∑

m≤n<T (m)

H
(n+1)
i > s.

In fact, it is enough that these conditions hold with
constant probability.

Theorem 4.2 (Convergence of iterates). Let W (n)

and H(n+1) be as in Proposition 3.3. Suppose that for
all i ∈ [k], ε > 0, and sufficiently small r > 0, there
exists T : N→ N, m0 ∈ N, and some s, c > 0 so that:

Pr

( ∑
j∈[k]

∑
m≤n<T (m)

H
(n+1)
j < r and

∑
m≤n<T (m)

H
(n+1)
i > s

∣∣∣∣∣Fm, ‖∇wif(W (m))‖ > ε

)
> c,

for any m > m0. W (n) asymptotically converges to
stationary points of the k-means cost f almost surely.

Proof sketch. We show for any ε > 0 and i ∈ [k], the
gradient ‖∇wif(W (n))‖ is greater than ε only finitely
often. Suppose that for all w ∈ DR with large gradient
‖∇wif(w)‖ > ε, there is a region around w also with
large gradients. In particular, that ‖∇wif(w′)‖ > ε

2 if
‖w − w′‖ < R0 for some R0 depending on ε.

Let r0 = R0/2R and choose r < r0. Then, we obtain:

‖W (m) −W (n)‖ < R0,

for all m ≤ n < T (m) whenever the first event in
the probability in the theorem statement holds. This
follows from Lemma 3.2, which bounds this displace-
ment through the learning rate bound r0. In short,
with constant probability during this interval, the ith
gradient remains large, ‖∇wif(W (n))‖ > ε

2 .

Since the ith gradient remains large, the cost is likely
to decrease significantly as long as the ith center is
updated enough times. Lemma C.1 relates the learn-
ing rate to the decrease in cost, so that if the second
event in the probability statement holds, then the cost
decreases by at least:

∑
m≤n<T (m)

H
(n+1)
i ‖∇wif(W (n))‖2 > sε2

4
,

if we may neglect the noise terms of Lemma C.1. And
so if ‖∇wif(W (n))‖ > ε infinitely often, then the cost
must decrease by a constant infinitely often by Borel-
Cantelli, contradicting the convergence of the cost.

The proof is only slightly more complicated because
of noise, but not significantly so as the noise forms a
convergent series (Lemma C.2). As a result, there is
a random time M after which a deterministic cost de-
crease of sε2/4 will completely dominate any increase
of cost due to the noise term.

The remaining technical complication is our implicit
assumption earlier that ‖∇wif‖ is uniformly continu-
ous on DR, which would allow us to find a constant
R0 given ε that holds for all ‖∇wif(w)‖ > ε. Though
w 7→ ‖∇wif(w)‖ is continuous on DR, it is not guaran-
teed to be uniformly continuous since DR is not com-
pact. Our solution is to apply Lemma 4.1 to find an
ε0 > 0 for which {‖∇wif‖ ≤ ε0} is compact, so:

DR = {‖∇wif‖ ≤ ε0} ∪ {‖∇wif‖ > ε0}. (3)

The first subset is compact, so uniform continuity
holds. On the second subset, we rule out the possibil-
ities that (i) the iterates eventually remain in this set,
and (ii) the iterates exit and re-enter this set infinitely
often. Case (i) is impossible by an argument akin to
our earlier one on [ε, ε0]. In fact, here we can bypass
finding R0 altogether since the iterates are guaranteed
to remain in a region with large gradients forever. Case
(ii) is impossible because this forces the iterates to en-
ter [ε, ε0] infinitely often once the learning rate has
become sufficiently small. Thus for all ε > 0, the iter-
ates eventually never return to {‖∇wif‖ > ε}.

We prove a slightly more general theorem in Theo-
rem D.1, which makes the decomposition (3) explicit.
We introduce separate conditions on the learning rate
on {‖∇wif‖ ∈ [ε, ε0]} and {‖∇wif‖ > ε0}; that way,
we can remove the learning rate upper bound condi-
tion where we do not need it.

5 AN ONLINE LLOYD’S METHOD

Let us return now to extending Lloyd’s algorithm into
the online setting. Lloyd’s algorithm is defined to it-
eratively set each center wi to Mi(w),

wi ←Mi(w).

Since ∇wif(w) = Pi(w) ·
(
wi −Mi(w)

)
, the Lloyd up-

date is precisely preconditioned gradient descent, where
the preconditioner at w for the ith center is Pi(w)−1.

wi ← wi −
1

Pi(w)
∇wif(w).
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A noiseless gradient descent algorithm is often con-
verted into a stochastic one by introducing decaying
learning rates (Bottou, 1998), which allows the noise
to average out over time. Applying the common de-
cay rate of n−1, we might aim for an update that, in
expectation, looks like:

wi ← wi −
1

nPi(w)
∇wif(w).

As a first pass at designing the stochastic version of
Lloyd’s algorithm, suppose that we had access directly
to p. Then, we might consider the following idealized
learning rate achieving the above expected update:

H
(n+1)
ideal,i ←

1{I(n+1) = i}
nPi(W (n))

,

where I(n+1) is the index of the updated center; it is
drawn from the distribution P (W (n)) over [k].

The online Lloyd’s algorithm described in Section 1
could be considered as a rough approximation to this
idealized learning rate. Recall its update:

H
(n+1)
OL,i ←

1{I(n+1) = i}
N

(n)
i + 1

,

where N
(n)
i is the update count for the ith center. If

P (W (n)) does not vary much over time, then:

1

N
(n)
i + 1

≈ 1

nPi(W (n))
.

In other words, the online Lloyd’s update appears to
approximate the idealized learning rate by applying a
stochastic preconditioner computed on:

P̂
(n)
i =

N
(n)
i

n
.

This algorithm naively assumes that P̂
(n)
i is a rea-

sonable estimator of Pi
(n) := Pi(W

(n)). Because the
Voronoi partitions is drifting throughout the whole al-
gorithm, this assumption is generally false.

However, the main issue with online Lloyd’s is not its
naiveté. Rather, the issue lies with the idealized pre-
conditioner Pi(w)−1, which is poorly conditioned—it
can become arbitrarily large. While this is not a prob-
lem in the noiseless setting, in the stochastic setting,
the learning rate cannot become unbounded.

As a second pass, let us consider a second idealized
online Lloyd’s, where we introduce an upper bounding
rate of t−1

n for some sequence tn. Set the learning rate:

H
(n+1)
ideal′,i ←

1{I(n+1) = i}
max

{
nP

(n)
i , tn

} .

We refrain from preconditioning when Pi(w) < tn/n.
Note that if tn = o(n), then we can expect the set
of points on which the algorithm will precondition to
grow. Of course, this is idealized since we generally do
not have direct access to p to compute Pi(w) with.

This motivates what we call the generalized online
Lloyd’s algorithm, which simultaneously constructs an

estimator P̂
(n)
i of Pi

(n) based on the empirical rate at
which the ith center has recently been updated in the
past sn steps, for some sequence sn. Then, we set:

H
(n+1)
i ← 1{I(n+1) = i}

max
{
nP̂

(n)
i , tn

} . (4)

On the one hand, in order to obtain a low-bias estima-
tor, we need sn = o(n) so that updates in the distant
past are forgotten. But on the other, we would like
the estimator to concentrate as n goes to infinity, so

we also require sn ↑ ∞. To specify P̂
(n)
i , we define:

P̂
(n)
i =

1

sn

∑
n◦≤n′<n

1{I(n′+1) = i} (5)

where we denote n◦ = n−sn, and where sn and tn are
non-decreasing sequences.

By introducing conditions on sn and tn, we show that

P̂
(n)
i is a consistent estimator of Pi

(n) in Appendix E.
Furthermore, we obtain the following convergence the-
orem, as a corollary of Theorem D.1.

Theorem 5.1 (Convergence of iterates, generalized

online Lloyd’s). Let H
(n)
j and P̂

(n)
j as in (4 and 5).

Let sn and tn be non-decreasing sequences satisfying:

lim
n→∞

n2/3 log n

sn
= lim
n→∞

sn log sn
tn

= lim
n→∞

tn
n

= 0.

If p is continuous, then W (n) asymptotically converges
to stationary points of its k-means cost almost surely.

Proof sketch. To apply Theorem 4.2, we need to show
that with constant probability:∑

j∈[k]

∑
m≤n<T (m)

H
(n+1)
j < r

and
∑

m≤n<T (m)

H
(n+1)
i > s,

whenever ‖∇wif(W (m))‖ ≥ ε. We achieve this by
proving tighter bounds in expectation:∑
j∈[k]

∑
m≤n<T (m)

E
[
H

(n+1)
j

∣∣∣Fn] < r/100

and
∑

m≤n<T (m)

E
[
H

(n+1)
i

∣∣∣Fn] > 100s,
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which can be converted into bounds in probability by
the Markov’s and Azuma-Hoeffding’s inequalities.

Notice that the conditional expectation is:

E
[
H

(n+1)
j

∣∣∣Fn] =
P

(n)
j

max{nP̂ (n)
j , tn}

.

Assume P
(n)
j is not too small and that P̂

(n)
j = P

(n)
j ,

so the estimator is perfect. Then in fact:

E
[
H

(n+1)
j

∣∣∣Fn] =
1

n
.

Define the map Tr : N→ N so that Tr(m) is the unique
natural number so that:∑

m≤n<Tr(m)

1

n
≤ r <

∑
m≤n≤Tr(m)

1

n
.

We obtain the desired conditional expectation bounds
if we set T ≡ TCr with C = 1/100k and s = Cr/100.

We assumed (i) P
(n)
j is not too small and (i) P̂

(n)
j is

perfect; neither is true in general. The first caveat is
easier to deal with; the fear is that the centers with
low update probabilities may sporadically contribute
a large amount 1/tn, when compared to the 1/n of
the other centers. However, our conditions on sn and
tn ensure that centers with small Voronoi masses also
have little effect on the overall behavior. For the sec-
ond, we show that the estimator is highly concentrated
around its true mean (Lemma E.10).

To sketch why P̂
(n)
j concentrates about P

(n)
j , we have:

P̂
(n)
j =

1

sn

∑
n◦≤n′<n

1{I(n′+1) = j}

and P
(n′)
j = E

[
1{I(n′+1) = j}

∣∣∣Fn′] .
Azuma-Hoeffding’s shows that P̂

(n)
j concentrates:

Pr

∣∣∣∣P̂ (n)
j − 1

sn

∑
n◦≤n′<n

P
(n′)
j

∣∣∣∣ ≥ a
∣∣∣∣∣∣Fn◦


≤ 2 exp

(
−1

2
sna

2

)
.

We just need to show that P
(n′)
j remains close to P

(n)
j

over this interval. Suppose that Pj were L-Lipschitz.
Then for all n◦ ≤ n′ < n,∣∣∣P (n′)

j − P (n)
j

∣∣∣ ≤ 2RL ·
∑
j′′∈[k]

∑
n◦≤n′′<n

H
(n′′+1)
j′′ .

The right-hand side goes to zero almost surely under
our conditions on sn and tn (Lemma E.9).

This would be the proof if Pj were globally Lipschitz
on DR. But this is not generally the case. For exam-
ple, consider the 2-means problem on R2. When the
two centers are very close together, then the Voronoi
cells they produce are much more sensitive to small
perturbations than when they are far apart.

However, it is the case that when p is continuous, then
Pj : DR → [0, 1] is locally Lipschitz (Lemma E.11), so
that Pj is Lipschitz on compact subsets K of DR.

A slight complication arises in each step of this proof
because cannot directly condition on the iterates re-
maining in K; conditioning on a future event de-
stroys the martingale property required by Azuma-
Hoeffding’s. To overcome this issue, we construct a
core-set K◦ ⊂ K so that if W (n◦) is initially in K◦ and
the accumulated learning rate is bounded:

W (n◦) ∈ K◦ and
∑
j∈[k]

∑
n◦≤n′<n

H
(n′+1)
j < r◦,

then W (n′) remains in K almost surely throughout the
interval n◦ ≤ n′ ≤ n. As this construction splits the
analysis into two cases (iterates in and outside K), in
the actual proof, this theorem follows from the more
general Theorem D.1, which allows us to break the
analysis down into these two cases.

Appendix E makes this argument rigorous.
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Convergence of online k-means:
Supplementary Materials

• Appendix A: algorithms considered in this paper

• Appendix B: analysis of the k-means cost f

– Proposition B.1 shows that f has a family of quadratic upper bounds

– Lemma 2.2 computes the gradient of f

– Lemma B.3 combines the previous two results to give an analytic upper bound on f

• Appendix C: convergence analysis for cost f(W (n))

– Lemma C.1 uses Lemma B.3 to upper bound f(W (n+1))− f(W (n))

– Lemma C.2 proves that noise terms in Lemma C.1 forms a convergent series

– Proposition 3.3 proves that the cost f(W (n)) converges almost surely

• Appendix D: convergence analysis for iterates W (n)

– Lemma 3.1 shows that we can restrict the analysis to non-degenerate tuples of centers D
– Lemma 3.2 shows that we can bound ‖W (m) −W (n)‖ by bounding the learning rates instead

– Theorem D.1 is our general convergence result for iterates

∗ Lemma D.4 shows that convergence of W (n) can be passed to convergence of ∇f(W (n))→ 0

– Theorem 4.2 is a simplified version of Theorem D.1 seen in the main body

∗ Lemma D.2 and Lemma 4.1 shows that Theorem 4.2 satisfies the conditions in Theorem D.1

• Appendix E: analysis of the generalized online Lloyd’s algorithm

– Theorem 5.1 proves the convergence of generalized online Lloyd’s through Theorem D.1

∗ Lemma E.4 shows half of condition (A1) of Theorem D.1: total learning rates upper bound

∗ Lemma E.6 shows other half of (A1): learning rates lower bound for centers with large gradients

· Both Lemma E.4 and Lemma E.6 make use of the concentration of P̂
(n)
j shown in Lemma E.9

and Lemma E.10, which requires that the maps Pj are locally Lipschitz, shown in Lemma E.11

· They also make use of purely analytic lemmas Lemma E.12 and Corollary E.13

∗ Lemma E.7 shows condition (A2) of Theorem D.1

– Lemma E.9 shows that the accumulated learning rate over the window of sn iterations goes to zero

– Lemma E.10 shows that the estimator P̂
(n)
j is consistent with non-asymptotic concentration rates

– Lemma E.11 proves that Pj is locally Lipschitz, an assumption of Lemma E.10

– Lemma E.12 and Corollary E.13 are auxiliary technical lemmas to analyze T (m)
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A Algorithms considered in this paper

The first algorithm we present is perhaps the most natural algorithm, online k-means: draw a data point X ∼ p
to update the closest center Wi.

Algorithm online k-means
Initialize: k arbitrary distinct centers W ∈ Rk×d from the support of p

1. for iteration n = 0, 1, 2, . . .

2. do sample data point X ∼ p
3. identify closest center i← arg minj∈[k] ‖Wj −X‖
4. update closest center Wi ←Wi −Hi ·

(
Wi −X

)
algorithm. A class of online k-means algorithms that updates a single center per iteration.

The online Lloyd’s algorithm is a specific instance of online k-means, where the learning rate Hi is chosen so
that each center Wi is simply the mean of all its previous updates.

Algorithm online Lloyd’s
Initialize: k arbitrary distinct centers W ∈ Rk×d from the support of p

1. for n = 0, 1, 2, . . .

2. sample data point X ∼ p
3. identify closest center I ← arg mini∈[k] ‖Wi −X‖
4. update counter NI ← NI + 1

5. update center WI ←WI −
1

NI
·
(
WI −X

)
algorithm. A simple online k-means algorithm introduced by Bottou and Bengio (1995). At any point
in time, each center Wi is the mean of all its previous updates.

However, as we discuss in Section 5, the online Lloyd’s algorithm appears to be ill-conditioned, and as a result,
we do not know whether it converges asymptotically to stationary points of the k-means cost. Instead, by viewing
Lloyd’s algorithm as a preconditioned gradient descent, we are able to generalize it to the online setting in a
way to achieve asymptotic convergence. In addition to the centers Wi, the algorithm also maintains estimators
P̂i for the rate at which the ith center was updated in the previous sn time steps.

Algorithm generalized online Lloyd’s
Initialize: k arbitrary distinct centers W ∈ Rk×d from the support of p

1. for n = 0, 1, 2, . . .

2. sample data point X ∼ p
3. let Wi be the closest center to X

4. update P̂i ←
1

sn
·# of times ith center was updated in last sn timesteps

5. update center Wi ←Wi −
1

max{nP̂i, tn}
·
(
Wi −X

)
algorithm. A generalization of online Lloyd’s with asymptotic convergence to stationary points guar-
antees, for example, when sn = n2/3+ε and tn = n2/3+2ε for ε > 0 (Theorem 5.1). Note that online
Lloyd’s is recovered when sn = n and tn = 0, but without convergence guarantees.
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For analysis, we consider a slight generalization where multiple centers may be updated at a time. A single-center
update is recovered if the learning rate H = (H1, . . . ,Hk) has at most one non-zero component.

Algorithm generalized online k-means
Initialize: k arbitrary distinct centers W ∈ Rk×d from the support of p

1. for n = 0, 1, 2, . . .

2. do sample data points Xi ∼ p
∣∣
Vi(W )

for i = 1, . . . , k

3. update all centers Wi ←Wi −Hi ·
(
Wi −Xi

)
algorithm. The class of online k-means algorithms analyzed in this work, generalizing online k-means
by allowing multiple centers to be updated each iteration.
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B Analysis of the k-means cost

In order to analyze the k-means algorithm through the lens of gradient descent, we need to be able to prove
smoothness properties and calculate the gradient of the k-means objective,

f(w) :=
1

2

∑
i∈[k]

∫
Vi(w)

‖wi − x‖2 p(x) dx. (1)

But because the domains and integrands depend on w simultaneously, taking the gradient is not so straightfor-
ward. To simplify analysis, we can fix the Voronoi partition with respect to some tuple of centers w′ ∈ Rk×d in
order to define a family of surrogate objectives parametrized by w′,

g(w;w′) :=
1

2

∑
i∈[k]

∫
Vi(w′)

‖wi − x‖2 p(x) dx. (6)

B.1 Family of upper bounds of the cost

It turns out that {g( · ;w′) : w′ ∈ Rk×d} forms a family of convex, quadratic upper bounds of f . That g( · ;w′)
is convex and quadratic is easy to see, since it is a sum of convex combinations of convex quadratic functions.
The following proposition shows that g dominates f .

Proposition B.1. Let p be a density on Rd with bounded second moment. Let f be the k-means objective (1)
and g be the k-means surrogate (6). Then for all w,w′ ∈ Rk×d,

f(w) ≤ g(w;w′).

Proof. Notice that by definition, f(w) = g(w;w). We claim that:

f(w) = g(w;w) ≤ g(w;w′). (7)

To see this, note that g is an integral accumulating ‖wi − x‖2 when x is in the ith partition. The integral only
decreases if x moves into its Voronoi partition, j∗ = arg min ‖wj − x‖2,

g(w;w′) =
1

2

∫
Rk×d

∑
i∈[k]

‖wi − x‖2 · 1Vi(w′)(x) p(x) dx

≥ 1

2

∫
Rk×d

min
i∈[k]

‖wi − x‖2 p(x) dx

= g(w;w),

where 1Vi(w′)(x) is the indicator of Vi(w
′). The inequality holds as the first integrand dominates the second.

B.2 Gradient of the cost

While taking the derivative of f is nontrivial, taking the derivative of g is much easier; by dominated convergence,
the derivative with respect to w is:

∇wig(w;w′) =

∫
Vi(w′)

(wi − x) p(x) dx

= Pi(w
′) ·
(
wi −Mi(w

′)
)
. (8)

We provide two proofs computing the gradient of f : (i) an elementary proof based on a local approximation
f(w + ε) = g(w + ε;w) + errorw(ε), and (ii) a short proof using results from differential geometry. Our target:

Lemma 2.2 (Gradient of k-means objective). Let p be a density on Rd with EX∼p
[
‖X‖2

]
< ∞. Let f be the

k-means objective (1). Then f is continuously differentiable on D, where:

∇wi f(w) = Pi(w) ·
(
wi −Mi(w)

)
. (2)
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Given the form of the gradient (2), it is straightforward to show continuity:

Proof of continuous gradient. Assuming (2), the following holds:

‖∇wif(w + ε)−∇wif(w)‖

=
∥∥∫

Vi(w+ε)

(wi + εi − x) p(x) dx−
∫
Vi(w)

(wi − x) p(x) dx
∥∥

≤
∫
Vi(w+ε)∩Vi(w)

‖εi‖ p(x) dx+ 2

∫
Vi(w+ε)∆Vi(w)

(
‖wi − x‖+ ‖εi‖

)
p(x) dx,

where ∆ is the symmetric difference operator. Taking as ‖ε‖ → 0, the limit of both integrals converge to zero
by dominated convergence, proving continuity.

We now show (2) through two different approaches.

B.2.1 An elementary proof

If ε is a small perturbation, we can write f(w + ε) = g(w + ε;w) + errorw(ε), where the error is accumulated
over points near the boundaries of the partitions Vi(w). In the proof, we show that errorw(ε) = o

(
‖ε‖
)
, so only

the g(w + ε;w) term contributes to the derivative of f(w).

Proof of Lemma 2.2. Fix w, h ∈ Rk×d where ‖h‖ = 1. We proceed by computing the directional derivative
Dhf(w) along h. Notice that:

f(w) =
1

2

∑
i∈[k]

∫
Vi

‖wi − x‖2 p(x) dx and f(w + th) =
1

2

∑
i∈[k]

∫
V ti

‖wi + thi − x‖2 p(x) dx,

where we let Vi and V ti respectively abbreviate Vi(w) and Vi(w + th) for t > 0. Notice that:

V ti =
[
Vi ∪

(
V ti \ Vi

)]
\
(
Vi \ V ti

)
,

where (i) Vi and
(
V ti \ Vi

)
are disjoint and (ii) Vi contains

(
Vi \ V ti

)
. It follows that:

f(w + th) =
1

2

∑
i∈[k]

∫
Vi

‖wi + thi − x‖2 p(x) dx

+
1

2

∑
i∈[k]

(∫
V ti \Vi

‖wi + thi − x‖2 p(x) dx −
∫
Vi\V ti

‖wi + thi − x‖2 p(x) dx

)
.

We claim that this second line is o(t). Assuming this for now, it follows that the derivative is:

Dhf(w) = lim
t→0

1

t

(
f(w + th)− f(w)

)
= lim
t→0

1

t

1

2

∑
i∈[k]

∫
Vi

(
‖wi + thi − x‖2 − ‖wi − x‖2

)
p(x) dx

+ lim
t→0

o(t)

t
= Dhg(w;w),

where the derivative Dhg(w;w) is taken only over the first argument (i.e. the partition Vi is fixed). But this
implies that ∇w f(w) = ∇w g(w;w′) when w′ = w. Applying (8), we obtain:

∇wi f(w) = Pi(w) ·
(
wi −Mi(w)

)
.

To finish the proof, we need to show that the above second line is o(t). We claim it is equal to:

1

2

∑
i 6=j

∫
V tj→i

(
‖wi + thi − x‖2 − ‖wj + thj − x‖2

)
p(x) dx, (9)
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where the domain of the integral V tj→i =
(
V ti \ Vi

)
∩
(
Vj \ V tj

)
is the set of points x ∈ Rd that originally began

in the jth partition Vj(w) but after the small perturbation, ended up in the ith partition Vi(w + th). Indeed,
V ti \ Vi is the disjoint union

⋃
j V

t
j→i, since every point in V ti not originally in Vi must have come from some

other partition Vj . Similarly, Vj \ V tj =
⋃
i V

t
j→i.

Intuitively, if x swaps partitions due to a small perturbation, then ‖wi − x‖2 ∼ ‖wj − x‖2. In fact, we will show
that the magnitude of ‖wi + thi−x‖2−‖wj + thj −x‖2 is O(t‖x‖) for x ∈ V tj→i. First, to simplify notation, let:

α =
wi − wj

2
β =

wi + wj
2

γ =
hi − hj

2
δ =

hi + hj
2

.

By the polarization identity, we have:

‖wi − x‖2 − ‖wj − x‖2 = 4
〈
α, β − x

〉
‖wi + thi − x‖2 − ‖wj + thj − x‖2 = 4

〈
α+ tγ, β + tδ − x

〉
.

Furthermore, because x ∈ V tj→i, we have the inequalities:

‖wj − x‖2 ≤ ‖wi − x‖2 and ‖wi + thi − x‖2 ≤ ‖wj + thj − x‖2.

Plugging in the equality from polarization, we obtain:

‖wi + thi − x‖2 − ‖wj + thj − x‖2︸ ︷︷ ︸
≤0

= ‖wi − x‖2 − ‖wj − x‖2︸ ︷︷ ︸
≥0

+ 4t
(
〈α, δ〉+ 〈γ, β − x〉+ t〈γ, δ〉

)
,

which implies that
∣∣‖wi + thi − x‖2 − ‖wj + thj − x‖2

∣∣ ≤ Ct(‖x‖ + 1) when t < 1, where C is a constant that
may depend on w. It follows that:∣∣∣∣∣

∫
V tj→i

(
‖wi + thi − x‖2 − ‖wj + thj − x‖2

)
p(x) dx

∣∣∣∣∣ ≤
∫
V tj→i

Ct(‖x‖+ 1) p(x) dx.

As E
p

[
‖X‖2

]
<∞, we know p also has bounded first moment. By dominated convergence:

lim
t→0

1

t

∫
V tj→i

Ct(‖x‖+ 1) p(x) dx = 0,

since V tj→i decreases to some measure zero subset of Vi ∩ Vj . And so, (9) is o(t).

B.2.2 A short proof using Leibniz integral rule

Suppose we are given an integral where both its domain and integrand are time-varying. Then the derivative of
that integral is given by Leibniz rule:

d

dt

∫ b(t)

a(t)

F (x, t) dx =

∫ b(t)

a(t)

∂F (x, t)

∂t
dx+

(
b′(t)F

(
b(t), t

)
− a′(t)F

(
a(t), t

))
.

In particular, we break down the time derivative into two pieces: (i) the accumulated time derivative at each point
in the domain, and (ii) the weighted velocity at the boundary at which the domain is expanding or contracting.
In higher dimensions, the time derivative of a volume integral can be decomposed into the same two pieces.

But generalizing Leibniz rule to higher dimensions, we need some notation. Let Ω(t) ⊂ Rn be a smoothly time-
varying differentiable n-manifold for t ∈ (−τ, τ) with boundary S(t) = ∂Ω(t). That is, there is a domain U ⊂ Rn
and a continuously differentiable map φ : (−τ, τ)× U → Rn where φt is a diffeomorphism of U onto Ω(t).

We write x = x(t, u) = φ(t, u) and v = ∂x/∂t. For points x ∈ S(t) on the boundary, denote the surface normal
by N = N(x). The surface velocity at x ∈ S(t) is defined as C(x) = N>v, which is an invariant in the sense
that it is coordinate-independent (Grinfeld, 2013).
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Theorem B.2 (General Leibniz rule, Grinfeld (2013)). Let Ω(t) ⊂ Rn be a smoothly time-varying smooth n-
manifold with boundary S(t) over times t ∈ (−τ, τ). Let C(t, x) be the surface velocity of the point x ∈ S(t) at
time t. If F : (−τ, τ)× Rn → Rm is smooth, then for t ∈ (−τ, τ):

d

dt

∫
Ω(t)

F dΩ =

∫
Ω(t)

∂F

∂t
dΩ +

∫
S(t)

F CdS.

As a result, if we consider the directional derivative of our objective f in the direction of h,

d

dt
f(w + th) =

1

2

∑
i∈[k]

d

dt

∫
Vi(w+th)

‖wi + thi − x‖2p(x) dx, (10)

each of the integrals will split into two: (i) the integrals computing the accumulated rate of change, and (ii) those
computing weighted surface velocities at the boundaries of the Voronoi partition. The first exactly coincides with
d
dt g(w+ th;w). The second terms vanish since the weighted surface velocities at the boundaries of two partitions
exactly cancel each other out. Formally, we have:

Proof of Lemma 2.2. Fix w, h ∈ Rk×d where h is unit. The directional derivative Dhf(w) is given by (10)
evaluated at time t = 0. Applying the general Leibniz rule yields:

Dhf(w) =
∑
i∈[k]

h>i

∫
Vi(w)

(wi − x)p(x) dx+
1

2

∑
i∈[k]

∫
∂Vi(w)

‖wi − x‖2p(x)CidS, (11)

where Ci(x) is the surface velocity of a point x ∈ ∂Vi(w) at time 0. Notice that if x ∈ ∂Vi(w), then it is also
contained in exactly one other boundary, x ∈ ∂Vj(w). On the one hand, the weight of the integrands are equal
‖wi−x‖2p(x) = ‖wj −x‖2p(x). But on the other, the surface velocities of x of ∂Vi ∩∂Vj are equal and opposite,
Ci(x) = −Cj(x), since it is an invariant. Therefore,∫

∂iV (w)∩∂jV (w)

(
‖wi − x‖2p(x)Ci

)
+
(
‖wj − x‖2p(x)Cj

)
dS = 0.

Thus, the second set of integrals in (11) vanishes. By the chain rule, Dhf(w) = h>∇f(w), so:

∇wi f(w) =

∫
Vi(w)

(wi − x)p(x) dx.

B.3 An analytic upper bound of the cost

Because g( · ;w′) is quadratic, we can describe the upper bound analytically using our computation of ∇f .

Lemma B.3 (Quadratic upper bound). Let p a density on Rd have bounded second moment. If f is the k-means
objective (1), then for all w,w+ ∈ Rk×d

f(w+) ≤ f(w) +
〈
∇f(w), w+ − w

〉
+

1

2
(w+ − w)>H (w+ − w), (12)

where we let H = Hw g(w;w) be the Hessian of g( · ;w). In particular,

f(w+) ≤ f(w) +
〈
∇f(w), w+ − w

〉
+

1

2
‖w+ − w‖2. (13)

Proof. Let w,w+ ∈ Rk×d. Recall that f(w+) is upper bounded by g(w+;w) by Proposition B.1. Because g( · ;w)
is quadratic, it is equal to its second-order Taylor expansion. Then, we have:

f(w+) ≤ g(w+;w) = g(w;w) +
〈
∇wg(w;w), w+ − w

〉
+

1

2
(w+ − w)>H (w+ − w).

The first assertion (12) follows because f(w) = g(w;w) and ∇f(w) = ∇w g(w;w).
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Notice that the Hessian H is constant since g is quadratic:

Hw g(w+;w) ij =

{
Pi(w) Id×d i = j

0 i 6= j,
(14)

where Id×d is the d-dimensional identity matrix. Because P (w) is a probability vector, the spectral norm is
bounded, ‖Hw+ g(w+;w)‖∗ = max

i∈[k]
Pi(w) ≤ 1. From this, (13) immediately follows.
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C Convergence of cost

Lemma C.1. Let f be the k-means cost and let (W (n), H(n), X(n))∞t=1 be generated by the generalized online
k-means algorithm. Then:

f(W (n+1)) ≤ f(W (n))−An+1 +Nn+1, (15)

where An+1 is the exact gradient descent term and Nn+1 = −Bn+1 + Cn+1 is the noise term:

• An+1 =
∑
i∈[k]

H
(n+1)
i P−1

i (W (n))‖∇wif(W (n))‖2

• Bn+1 =
∑
i∈[k]

H
(n+1)
i ∇wif(W (n))>

(
Mi(W

(n))−X(n+1)
i

)
• Cn+1 =

1

2

∑
i∈[k]

(
H

(n+1)
i

)2‖W (n)
i −X(n+1)

i ‖2.

In particular, (An)∞n=1 and (Cn)∞n=1 are nonnegative sequences; and, since H(n+1) and X(n+1) are conditionally
independent given Fn, (Bn)∞n=1 is a martingale difference sequence.

Proof. We simply rewrite the update in the following form:

W
(n+1)
i = W

(n)
i −H(n+1)

i

(
W

(n)
i −Mi(W

(n)) +Mi(W
(n))−X(n+1)

i

)
= W

(n)
i −H(n+1)

i Pi(W
(n))−1∇wif(W (n))−H(n+1)

i

(
Mi(W

(n))−X(n+1)
i

)
, (16)

where the second line follows from Lemma 2.2 showing ∇wif(w) = Pi(w)
(
wi −Mi(w)

)
. Recall the quadratic

upper bound in Lemma B.3, reproduced here:

f(W (n+1)) ≤ f(W (n)) + 〈∇f(W (n)),W (n+1) −W (n)〉+
1

2
‖W (n+1) −W (n)‖2 (13)

Combining (13) and (16) immediately yields (15).

Lemma C.2. Let (Nn)∞n=1 as in Lemma C.1. Suppose that:

∞∑
n=1

∑
i∈[k]

(
H

(n)
i

)2
<∞ a.s.

Then the series

∞∑
n=1

Nn = −
∞∑
n=1

Bn +

∞∑
n=1

Cn <∞ converges almost surely.

Proof. Assumption 3.1 and 3.2 imply that the all iterates W
(n)
i and updates Xi

(n+1) remain in the closed ball
B(0, R). Recall from Lemma 2.2 that ∇wif(w) = Pi(w) ·

(
w −Mi(w)

)
. Thus:∣∣∇wif(W (n))>

(
Mi(W

(n))−X(n+1)
i

)∣∣ < 4R2 and ‖W (n)
i −X(n+1)

i ‖2 < 4R2.

The series
∑
Bn converges almost surely by martingale convergence, Theorem C.3, which we may apply as:

∞∑
n=1

E[B2
n] ≤ 16R4 ·

∞∑
n=1

∑
i∈[k]

(
H

(n)
i

)2
<∞.

The series
∑
Cn converges almost surely since it is dominated by a convergent series:

∞∑
n=1

Cn ≤ 2R2 ·
∞∑
n=1

∑
i∈[k]

(
H

(n)
i

)2
<∞.
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First we show that the cost f(W (n)) converges. Notice that if the noise term Nn+1 in Lemma C.1 did not contain
the nonnegative Cn+1 term, then f(W (n)) is seen to be a supermartingale bounded below since f ≥ 0. Then,
the convergence of f(W (n)) would immediately follow from the martingale convergence theorem. But in reality,
f(W (n)) is just almost a supermartingale. Still, we can obtain convergence since

∑
Cn < ∞ converges almost

surely, from Lemma C.2. This next lemma proves this formally.

Proposition 3.3 (Convergence of cost). Let
(
W (n)

)∞
n=0

be a sequence generated by the generalized online
k-means algorithm. If the following converges:

∞∑
n=1

∑
i∈[k]

(
H

(n)
i

)2
<∞ a.s.,

then there is an R-valued random variable f∗ such that f(W (n)) converges to f∗ almost surely.

Proof. Let (Mn)∞n=1 be defined by:

Mn+1 = f(W (n+1))−
n∑
τ=0

Cτ+1.

Lemma C.1 shows that Mn is an Fn-supermartingale:

E
[
Mn+1

∣∣Fn] ≤ f(W (n))− E
[
An+1 +Bn+1 − Cn+1

∣∣Fn]− E

[
n−1∑
τ=0

Cτ+1 + Cn+1

∣∣∣∣∣Fn
]

= f(W (n))−
n−1∑
τ=0

Cτ+1 − E[An+1 | Fn] ≤Mn,

where we used the fact that (An)∞n=1 is nonnegative and (Bn)∞t=0 is an Fn-martingale. Furthermore, (Cn)∞n=1 is
nonnegative and Lemma C.2 shows that

∑
Cn <∞ converges, the supermartingale is bounded below:

−∞ < −
∞∑
t=1

Cn ≤Mn.

By the martingale convergence theorem, both (Mn)∞n=1 and f(W (n)) converge almost surely.

Theorem C.3 (Martingale convergence theorem, Durrett (2019)). Let (Mn)n∈N be a (sub)martingale with:

sup
n∈N

E
[
M+
n

]
<∞,

where M+
n := max{0,Mn}. Then as n→∞, Mn converges a.s. to a limit M with E[|M |] <∞.

Remark C.4 (Specific forms of martingale convergence). We use two specific forms of Theorem C.3 in our
proofs. The first applies to martingale difference sequences (Bn)n∈N. Let Mn =

∑n
m=1Bn. Since the terms in a

martingale difference sequence are orthogonal, we have for all n ∈ N:

E
[
M+
n

]2 ≤ E

[( n∑
m=1

Bm

)2
]

=

n∑
m=1

E
[
B2
m

]
.

It follows that the condition

∞∑
n=1

E[B2
n] <∞ implies sup

n∈N
E
[
M+
n

]
<∞.

The other applies to lower bounded supermartingales (Mn)n∈N. As (−Mn)n∈N is then an upper bounded sub-
martingale, it converges to some −M . We may apply martingale convergence: let c ∈ R be a lower bound such
that Mn > c almost surely. Then −Mn is a submartingale with sup

n∈N
E
[
−M+

n

]
≤ max{0,−c} <∞.
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D Convergence of iterates

Lemma 3.1. Let 0 ≤ H(n+1)
i ≤ 1. Then W (n) ∈ D is non-degenerate for all n ∈ N almost surely.

Proof. By assumption, W (0) ∈ D. It suffices to show by induction that W (n+1) is non-degenerate almost surely if
W (n) is non-degenerate. Notice that Wi

(n+1) ∈ Vi(W (n)) since it is a convex combination of points in the Voronoi

region Vi(W
(n)). Therefore, the only way for two initially distinct centers Wi

(n+1) and Wj
(n+1) to possibly meet

is if the updates Xi
(n+1) and Xj

(n+1) are come from the boundary of their Voronoi regions. But because the
boundary is a measure zero set, this occurs almost never.

Lemma 3.2. Suppose PrX∼p(‖X‖ > R) = 0. Let H
(n)
i ≤ 1 for all n ∈ N and i ∈ [k]. If n > m, then:

‖W (m) −W (n)‖ ≤ 2R ·
∑
i∈[k]

∑
m≤n′<n

H
(n′+1)
i a.s.

Proof. We claim that W
(n)
i ∈ B(0, R) for all n ∈ N0. This is shown true by induction. Assumption 3.1 states

that p is supported only in B(0, R). Since W
(0)
i comes from the support of p, this claim holds for n = 0. If

W
(n)
i ∈ B(0, R), then W

(n+1)
i is a convex combination of points in B(0, R) almost surely:

W
(n+1)
i =

(
1−H(n+1)

i

)
·W (n)

i +H
(n+1)
i ·X(n+1)

i ,

since H
(n+1)
i ∈ [0, 1] and X

(n+1)
i ∼ p.

As a result of this, we can upper bound the displacement:

‖W (m) −W (n)‖
(i)

≤
∑
j∈[k]

∥∥W (m)
j −W (n)

j

∥∥
(ii)

≤
∑
j∈[k]

∑
m≤n′<n

∥∥H(n′+1)
j ·

(
W

(n′)
i −X(n′+1)

i

)∥∥
(iii)

≤ 2R ·
∑
j∈[k]

∑
m≤n′<n

H
(n′+1)
j , (17)

where (i) follows from Minkowski’s inequality, (ii) follows from triangle inequality, and (iii) follows from our

initial claim since W
(n′)
i , X

(n′+1)
i ∈ B(0, R) almost surely, so that ‖W (n′)

i −X(n′+1)
i ‖ < 2R.

Theorem D.1 (Convergence of iterates, generalized). Let (W (n))∞n=0 and H(n+1) be as in Proposition 3.3.
Suppose there exists ε0 > 0 such that {‖∇f‖ ≤ ε0} is compact, and for all i ∈ [k],

(A1) For any ε ∈ (0, ε0), there is an r0 ≡ r0(ε) > 0 so that if r ∈ (0, r0), then there exist T : N → N, m0 ∈ N,
and s, c > 0, which may all depend on ε and r, so that:

Pr

∑
j∈[k]

∑
m≤n<T (m)

H
(n+1)
j < r and

∑
m≤n<T (m)

H
(n+1)
i > s

∣∣∣∣∣∣Fm, ‖∇wif(W (m))‖ ∈ [ε, ε0)

 > c,

for any m > m0, and,

(A2) If lim inf
n→∞

‖∇wif(W (n))‖ ≥ ε0, then
∑
n∈N

H
(n)
i =∞ almost surely.

Then, W (n) asymptotically converges to stationary points of f almost surely, where f is the k-means cost (1).
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Proof. We claim that for all ε > 0, the iterates W (n) eventually never return to the set {‖∇f‖ > ε} almost
surely. If so, then the sequence of gradients converges to zero ‖∇f(W (n))‖ → 0 almost surely, since the claim
holds simultaneously for any countable sequence of εj ↓ 0. Because the map w 7→ ‖∇f(w)‖ is continuous and
the iterates eventually remain in a compact region {‖∇f‖ ≤ ε0}, the convergence of gradients ‖∇f(W (n))‖ to
zero implies the almost sure convergence of the iterates W (n) to the set of stationary points (Lemma D.4):

lim sup
n→∞

inf
{w:∇f(w)=0}

‖W (n) − w‖ = 0 a.s.

The claim remains to be proven: that the iterates W (n) eventually never return to the set {‖∇f‖ > ε} for
all ε > 0. Note that ‖∇f(w)‖ is upper bounded by

∑
i∈[k] ‖∇wif(w)‖, so it suffices to consider each center

individually and show that the iterates eventually never return to the set {‖∇wif‖ > ε
k}. And so, we show that

for all i ∈ [k] and ε > 0, if ‖∇wif(W (n))‖ > ε infinitely often, then f(W (n)) does not converge. As this would
contradict Proposition 3.3, we indeed have ‖∇wif(W (n))‖ > ε finitely often almost surely.

We first consider the case ε < ε0 and show that the iterates eventually never return to the set {‖∇wif‖ ∈ [ε, ε0)}.
Fix i ∈ [k] and any ε ∈ (0, ε0). Note that {‖∇wif‖ ≤ ε

2} and {‖∇wif‖ ∈ [ε, ε0]} are disjoint compact sets; because
w 7→ ‖∇f(w)‖ is continuous, they are closed subsets of the compact set {‖∇f‖ ≤ ε0}. And so, these two sets
are bounded away from each other by some distance R0 > 0. Without loss of generality, we may assume that r0

given in (A1) satisfies r0 ≤ R0/2R. Fix any r ∈ (0, r0).

We may now apply condition (A1) to control the behavior of the iterates for a non-negligible number of iterations
upon entering the set {‖∇wif‖ ∈ [ε, ε0)}. In particular, given (ε, r), let (T,m0, s, c) be chosen so that (A1) holds.
Suppose at time m > m0, the iterate W (m) enters this set. For parsimony, call the two events within the first
probability in the theorem statement Ξ1 and Ξ2,

Ξ1 =

∑
j∈[k]

∑
m≤n<T (m)

H
(n+1)
j < r

 and Ξ2 =

 ∑
m≤n<T (m)

H
(n+1)
i > s

 .

We show that given m is sufficiently large, if both of these events hold, then the iterates will remain in the set
{‖∇wif‖ > ε

2} for a sufficient amount of time to decrease f(W (n)) by a constant amount. This will allow us to

apply Borel-Cantelli to show that f(W (n)) does not converge. For the first claim, recall that Lemma 3.2 bounds
the distance iterates travel away from W (m) via the summed learning rates:∑

j∈[k]

∑
m≤n<T (m)

H
(n+1)
j < r =⇒ sup

m≤n<T (m)

‖W (m) −W (n)‖ < 2R · r < R0.

Consequently, Ξ1 implies that ‖∇wif(W (n))‖ > ε
2 on the interval m ≤ n < T (m). The second event Ξ2 can be

used to show that f(W (n)) decreases a constant amount on this interval. Lemma C.1 shows for all n ∈ N,

f
(
W (n)

)
≤ f

(
W (m)

)
−

∑
m≤n′<n

An′+1 +
∑

m≤n′<n

Nn′+1.

Lemma C.2 shows that
∑∞
n=0Nn+1 converges almost surely, so that

∑
m≤n′<nNn′+1 < δ when m is sufficiently

large. More precisely, for any δ > 0, there almost surely exists an N-random variable Mδ so that:∣∣∣∣ ∑
n′≥Mδ

Nn′+1

∣∣∣∣ < δ/2.

In particular,
∑
m≤n′<nNn′+1 < δ holds for all m > Mδ. Let m′ = T (m)− 1. Then:

f
(
W (m′)

) (i)

≤ f
(
W (m)

)
−

∑
m≤n<m′

∑
j∈[k]

H
(n+1)
j P−1

j (W (n))‖∇wjf(W (n))‖2 + δ

(ii)

≤ f(W (m))− ε2

4

∑
m≤n<m′

H
(n+1)
i + δ

(iii)

≤ f(W (m))− sε2

4
+ δ

(iv)
< f(W (m))− δ,
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where (i) substitutes in the expression for An+1, (ii) drops the summation over other centers except for i, and
‖∇wif(W (n))‖ > ε

2 holds if the first event occurs, (iii) follows if Ξ2 occurs, and (iv) sets δ < sε2/8.

We have thus shown that if condition (A1) holds, m > max{m0,Mδ}, and δ < sε2/8, then:

Pr

(
f(W (n)) < f(W (m))− δ for some m ≤ n < T (m)

∣∣∣∣Fm, ‖∇wif(W (m))‖ ∈ [ε, ε0)

)
> c. (18)

That is, if ‖∇wif(W (m))‖ is large at iteration m, then with positive probability, within a bounded amount of
time, f(W (n)) will decrease by a constant amount δ. But we also know that f(W (n)) converges almost surely to
some f∗, by Proposition 3.3, and so decreases by δ only a finite number of times. We claim that by Borel-Cantelli,
Lemma D.5, the event ‖∇wif(W (n))‖ ∈ [ε, ε0) must also occur only finitely often.

Assume for the sake of contradiction that ‖∇wif(W (n))‖ ∈ [ε, ε0) infinitely often. Then we can define the infinite
sequence of stopping times:

τ0 = 0 and τj+1 = inf{n > τj + T (τj) : ‖∇wif(W (n))‖ ∈ [ε, ε0)}.

Then (18) states that when τj > max{m0,M},

Pr
(
f(W (n)) < f(W (τj))− δ for some τj ≤ n < T (τj)

∣∣∣Fτj) > c′,

where the event in the probability is Fτj+1-measurable. Borel-Cantelli, Lemma D.5, then implies that f(W (n))

decreases by a constant amount δ infinitely often, which contradicts the convergence of f(W (n)).

To finish the proof, we need to show that the iterates eventually never return to the set {‖∇wif‖ ≥ ε0}. We do
this by ruling out (i) after some iteration m, the iterates never leave this set, and (ii) the iterates exit and re-enter

this set infinitely often. The first case is impossible, for then condition (A2) implies that
∑
n∈NH

(n)
i =∞ almost

surely. By Lemma C.1, this leads to an unbounded decrease in cost,

lim inf
N→∞

f(W (N)) ≤ lim
N→∞

f(W (m))− ε2
0

∑
m≤n<N

H
(n+1)
i + δ

 = −∞.

The second case is also impossible; when the learning rates become sufficiently small, each time the iterates
leave {‖∇wif‖ ≥ ε0}, they must enter {‖∇wif‖ ∈ [ε, ε0)}. Thus, the iterates eventually never return to
{‖∇wif‖ ≥ ε0}. This shows that for all ε > 0, we almost surely have ‖∇wif(W (n))‖ > ε finitely often.

We now prove Theorem 4.2, the simplified version of Theorem D.1 seen in the main body of the paper (reproduced
below the next lemma). While simpler, it imposes a stronger condition on the learning rate:

Lemma D.2. Let i ∈ [k] and ε > 0. Suppose there exists T : N→ N, m0 ∈ N, and s, c > 0,

Pr

 ∑
m≤n<T (m)

H
(n+1)
i > s

∣∣∣∣∣∣Fm, ‖∇wif(W (m))‖ > ε

 > c,

for all m > m0. Then lim inf
n→∞

‖∇wif(W (n))‖ ≥ ε implies
∑
n∈N

H
(n)
i =∞ almost surely.

Proof. Suppose that there is an N-random variable M such that if m > M , then ‖∇wif(W (m))‖ ≥ ε. That is,
the limit infimum condition holds. By assumption, we have:

Pr

 ∑
m≤n<T (m)

H
(n+1)
i > s

∣∣∣∣∣∣Fm,m > max{m0,M}

 > c.

The Borel-Cantelli lemma (Lemma D.5) shows that there are infinitely many (non-overlapping) intervals mj ≤
n < Tr(mj) on which the sum of H

(n+1)
i is at least s, and so the total sum is infinite almost surely.
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Lemma 4.1. Let {∇f = 0} be compact in DR. There exists ε0 > 0 so that if ε ∈ [0, ε0], the sets {‖∇f‖ ≤ ε}
and {‖∇wif‖ ≤ ε} are compact in DR for i ∈ [k].

Proof. Because the inclusion map ι : DR → Rk×d is continuous, if {∇f = 0} is compact in DR, then it is compact
in Rk×d. On the other hand, the set of degenerate points Z := Rk×d \ D is closed in Rk×d, for it is the union of
closed sets Aij for i 6= j defined by:

Aij := {‖wi − wj‖ = 0}.

Recall that if a closed set and a compact set in a metric space are disjoint, then they are separated by some
positive distance α > 0. So, as {∇f = 0} and Z are disjoint, no limit point of {∇f = 0} is degenerate.

And, because ∇f is continuous on D, this implies that that there exists ε0 > 0 such that {‖∇f‖ ≤ ε0} is
compact. In particular, the α/2-expansion of {∇f = 0} is compact in D, where the α/2-expansion is the set of
points a distance less than or equal to α/2 from a stationary point. Additionally, its boundary is compact and
separated from {∇f = 0}, so w 7→ ‖∇f(w)‖ attains a minimum 2ε0 > 0 on it. It follows by continuity that
{‖∇f‖ ≤ ε} for any ε ∈ [0, ε0] is a closed set contained in the α/2-expansion, hence compact.

The following lemma is used later in Appendix E, using the same argument to show compactness:

Lemma D.3. Let ε0 > 0 be given so that the set {‖∇wif‖ ≤ ε0} is compact. Fix 0 ≤ ε ≤ ε′ ≤ ε0. Then the
level set K := {‖∇wif‖ ∈ [ε, ε′]} is a nonempty compact set.

Proof. By Lemma 2.2, the map φ : w 7→ ‖∇wif(w)‖ is continuous. Since K = φ−1([ε, ε′]) is the inverse of a
closed set, it is a closed subset of {‖∇wif‖ ≤ ε0}, hence compact. Furthermore, K is nonempty; if this were not
the case, then we claim that {‖∇wif‖ ≤ ε} = DR. But this cannot be as DR is not compact.

As for the claim, note that the map w 7→ ‖∇wif(w)‖ is continuous and that the set {‖∇wif‖ = 0} is nonempty.
So if there were some point w ∈ DR with ‖∇wif(w)‖ > ε, then the intermediate value theorem implies that
there is some other point w′ with ‖∇wif(w′)‖ = ε, which violates our assumption.

Theorem 4.2 (Convergence of iterates). Let W (n) and H(n+1) be as in Proposition 3.3. Suppose that for all
i ∈ [k], ε > 0, and sufficiently small r > 0, there exists T : N→ N, m0 ∈ N, and some s, c > 0 so that:

Pr

∑
j∈[k]

∑
m≤n<T (m)

H
(n+1)
j < r and

∑
m≤n<T (m)

H
(n+1)
i > s

∣∣∣∣∣∣Fm, ‖∇wif(W (m))‖ > ε

 > c,

for any m > m0. Then, W (n) asymptotically converges to stationary points of the k-means cost f almost surely.

Proof. By Lemma 4.1, there exists ε0 such that {‖∇wif‖ ≤ ε0} is compact for all i ∈ [k]. The conclusion
follows from verifying the conditions of Theorem D.1. Condition (A1) is assumed. Condition (A2) follows from
Lemma D.2, in which we set the ε parameter to ε0.

Lemma D.4. Let (K, d) be a compact metric space and h : K → R≥0 continuous. Define its zero set as
Z = {x ∈ K : h(x) = 0}. For all ε > 0, there exists δ > 0 such that h(x) < δ implies d(x, Z) < ε.

Proof by contradiction. Suppose there exists some sequence xn that remains bounded away from Z, so that
d(xn, Z) ≥ ε, but h(xn) converges to zero. Then, by compactness, there is a convergent subsequence xnk → x.
By continuity, h(x) = 0, so that x ∈ Z. This is a contradiction; all the xn are ε-bounded away from Z.

Lemma D.5 (Second Borel-Cantelli lemma, Durrett (2019)). Let (Ω,F , P ) be a probability space, and let Fn,
n ≥ 0 be a filtration with F0 = {∅,Ω} and let Bn, n ≥ 1 a sequence of events with Bn ∈ Fn. Then:

{
Bn occurs infinitely often

}
=

{ ∞∑
n=1

P (Bn | Fn−1) =∞
}
.
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E Analysis of the generalized online Lloyd’s algorithm

In this section, we prove the convergence for the generalized online Lloyd’s learning rate reproduced here:

H
(n+1)
j =

1{I(n+1) = j}
max{nP̂ (n)

j , tn}
and P̂

(n)
j =

1

sn

∑
n◦≤n′<n

1{I(n′+1) = j}. (4)

where we denote n◦ = n− sn, and where sn and tn are non-decreasing sequences. Denote P
(n)
j := Pj(W

(n)).

Theorem 5.1 (Convergence of iterates, generalized online Lloyd’s). Let H
(n)
j and P̂

(n)
j as in (4 and 5). Let sn

and tn be non-decreasing sequences satisfying:

lim
n→∞

n2/3 log n

sn
= lim
n→∞

sn log sn
tn

= lim
n→∞

tn
n

= 0.

If p is continuous, then W (n) asymptotically converges to stationary points of its k-means cost almost surely.

Remark E.1 (Existence of sn and tn). Note that it is fairly easy to construct sequences sn and tn satisfying
the condition of Theorem 5.1. In particular, let sn = nα and tn = nβ , where 2/3 < α < β < 1.

We show convergence by verifying conditions (A1) and (A2) of Theorem D.1. The bulk of our effort is spent on
the first condition. Here is a brief guide to the objects in this analysis. Recall the form of (A1):

Pr

∑
j∈[k]

∑
m≤n<T (m)

H
(n+1)
j < r and

∑
m≤n<T (m)

H
(n+1)
i > s

∣∣∣∣∣∣Fm, ‖∇wif(W (m))‖ ∈ [ε, ε0)

 > c.

Since H
(n+1)
j depends on the estimator P̂

(n)
j , there are two time units of analysis: (i) many short intervals of

length sn from n◦ to n used to compute the estimators, and (ii) the much longer interval from m to T (m) over
which we aim to bound the behavior of the accumulated learning rates.

It turns out that our ability to control P̂
(n)
j depends on how smooth the maps Pj : DR → [0, 1] are on a

neighborhood of the trajectory of the iterates during the short intervals. The main issue is that the Pj ’s are not
nice everywhere on DR. All is not lost though, for (A1) requires these bounds only when ‖∇wif(W (m))‖ ≤ ε0.
Hope remains if {‖∇wif‖ ≤ ε0} lies in some region K of DR on which the maps Pj are well-behaved. Indeed,
we shall be able to find such a K onto which we can restrict our analysis. But we cannot simply condition on a
future event that the trajectories remain in K, since many of the tools we use from martingale analysis break if
we do so. To handle this, let us define the notion of a core set.

Definition E.2 (r-core set). Given S ⊂ DR, we say that S◦ is an r-core set of S if for all m,n ∈ N,

W (m) ∈ S◦ and
∑
j∈[k]

∑
m≤n′<n

H
(n′+1)
j < r =⇒ ∀m ≤ n′ ≤ n, W (n′) ∈ S a.s. (19)

In other words, if we are presently in an r-core set W (m) ∈ S◦, then we are guaranteed to remain in S so long
as the accumulated learning rate does not exceed r.

Remark E.3. Recall from Lemma 3.2 that the displacement in iterates is bounded by the accumulated learning
rate by an additional factor of 2R. It follows that S◦ is an r-core set of S whenever (i) S◦ is contained in S, and
(ii) S◦ is separated from the boundary ∂S by a distance of 2R · r. Here, ∂S := closure(S) \ interior(S).

If we find an r◦-core setK◦ ofK, we can ensure that iterates remain inK from times n◦ through n wheneverW (n◦)

begins in K◦ and the accumulated learning rates do not exceed r◦. It turns out that we will eventually always
be able to upper bound the accumulated learning rate by r◦; in fact, Lemma E.9 shows that the accumulated
learning rate over this short interval n◦ to n converges to zero.

This allows us to analyze P̂
(n)
j . For example, if W (n◦) ∈ K◦, Lemma E.10 applies Azuma-Hoeffding’s to show

that the estimator is consistent. In fact, it is concentrated with high probability:

Pr

( ∣∣∣P̂ (n)
j − P (n)

j

∣∣∣ ≤ an ∣∣∣∣Fn◦ , W (n◦) ∈ K◦
)
> 1− 1

n
. (20)
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where an → 0 is a sequence depending on sn and tn that converges to zero.

So far, our discussion has focused on the analyses over the short intervals. But, we also have to bound the
behavior of the learning rates over the long interval from m to T (m). Here, we run into the same issue: at
time m, we cannot condition on the future event that the iterates remain in K◦, which we need to control the
individual learning rates. We need to be able to be able to choose K◦ and K so that {‖∇wif‖ ≤ ε0} is an r0-core
set of K◦. This is in fact possible; we obtain a sequence of core sets seen in Figure 1.

DR

K

K◦

Figure 1: A sequence of subsets: {∇f = 0} ⊂ {‖∇wif‖ ≤ ε0} ⊂ K◦ ⊂ K ⊂ DR. The page is DR. As
Pj is not well-behaved over all of DR, we construct a compact subset K (light gray) over which the
maps Pj are L-Lipschitz. K contains an r◦-core set K◦ (gray), allowing Lemma E.10 to control the
behavior of estimators over short intervals of length sn when W (n◦) ∈ K◦. To control the learning
rates over the long interval m to T (m), we chose K◦ and K so that {‖∇wif‖ ≤ ε0} (dark gray) is
an r0-core set of K◦. We show in Lemma E.4 that when iterates start within this set, then they do
not exit K◦ with constant probability during the long interval. The white squiggly line depicts the
trajectory of such a sequence of iterates. Notice that {‖∇wif‖ ≤ ε0} contains the set of stationary
points (black).

E.1 Proof of Theorem 5.1

Fix ε0 > 0 so that K := {‖∇wif‖ ≤ 3ε0} is compact; such an ε0 exists by Lemma 4.1. Because each of the
Pj : DR → [0, 1] is locally Lipschitz by Lemma E.11, there exists a constant L > 0 so that they are all L-Lipschitz
on K. Put K◦ := {‖∇wif‖ ≤ 2ε0}. Then K◦ is bounded away from ∂K := {‖∇wif‖ = 3ε0}, since both are
disjoint, non-empty, and compact sets, by Lemma D.3. Thus, Remark E.3 implies that K◦ is an r◦-core set of
K for some r◦ > 0. Similarly, {‖∇wif‖ ≤ ε0} is an r0-core set of K◦ for some r0 > 0.

We also define the sequence:

an := c ·
(

1

tn◦
+
sn log sn

n

)
and c := max{1, 256kRL}. (21)

For any r > 0, define the function Tr : N→ N so that Tr(m) is the unique natural number so that:∑
m≤n<Tr(m)

1

n
≤ r <

∑
m≤n≤Tr(m)

1

n
. (22)
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Because {‖∇wif‖ ≤ ε0} is an r0-core set of K◦, the following lemma shows that we can choose T so that
eventually, whenever W (m) ∈ {‖∇wif‖ ≤ ε0}, then iterates will remain in K◦ for the whole duration from m
through T (m) with constant probability. In fact, it more generally verifies the first half of condition (A1).

Lemma E.4. Let H
(n)
j and P̂

(n)
j be defined as in (4), and let sn and tn be non-decreasing sequences in N. Let

ε0,K,K◦, L, r◦, r0, an, c be given as above. Let 0 < r < min{ln 2, r0}. Assume that there exists m0 ∈ N such that
for all n ≥ m0, the following hold:

(a) 4n2/3(log 2n)1/3 ≤ sn ≤ 1
2n− 1

(b) an < min{cr◦/16k, tn/n}

(c) s2n/tn < r/12k.

Then, the function T ≡ TCr where C = 1/18k satisfies for all m ≥ m0:

Pr

∑
j∈[k]

∑
m≤n<T (m)

H
(n+1)
j ≥ r

∣∣∣∣∣∣Fm, ‖∇wif(W (m))‖ ≤ ε0

 ≤ 1

3
.

Proof of Lemma E.4. The essence of the proof will be to apply Markov’s inequality by bounding the expectation

of the summed learning rates. Since H
(n+1)
j is of the form:

H
(n+1)
j =

1{I(n+1) = j}
max{nP̂ (n)

j , tn}
,

we upper bound it via the concentration result (20) of Lemma E.10, which lower bounds P̂
(n)
j when iterates have

not strayed out of K◦ by time n◦. Then, we apply Markov’s to a related stopped process that sets learning rates
to zero once iterates exit K◦. Let (Zn)n>m be the accumulated learning rates from time m,

Zn =
∑
j∈[k]

∑
m≤n′<n

H
(n′+1)
j .

Define τ as the exit time from K◦ and (Zn∧τ )n>m be the stopped process:

τ := min
n≥m
{W (n) /∈ K◦} and Zn∧τ =

∑
j∈[k]

∑
m≤n′<n∧τ

H
(n′+1)
j , (23)

where n∧ τ := min{n, τ}. We conditioned on W (m) ∈ {‖∇wif‖ ≤ ε0} to be initially in an r0-core set of K◦. So,
the iterates will remain in K◦ through iteration n if Zn < r0. We claim that if r < r0, then the events {Zn < r}
and {Zn∧τ < r} are equal. Indeed, we have that if Zn < r < r0, then Zn∧τ = Zn. And because the accumulated
learning rate when the process stops Zτ must be at least r0, we also have that if Zn∧τ < r < r0, then the process
has not stopped yet, so that Zn∧τ = Zn. Thus:

Pr
(
Zn ≥ r

∣∣∣Fm, ‖∇wif(W (m))‖ ≤ ε0

)
= Pr

(
Zn∧τ ≥ r

∣∣∣∣Fm, ‖∇wif(W (m))‖ ≤ ε0

)
.

We now bound the right-hand side by bounding the expected value of ZT (m)∧τ and applying Markov’s. The
expected value of ZT (m)∧τ can be bounded by considering each term within the summation (23) individually:

E
[
ZT (m)∧τ

∣∣∣Fm, ‖∇wif(W (m))‖ ≤ ε0

]
≤
∑
j∈[k]

∑
m≤n<T (m)

E
[
H

(n+1)
j

∣∣∣Fm, ‖∇wif(W (m))‖ ≤ ε0, τ > n◦

]
.
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Consider two intervals: (1) a warm-up interval m ≤ n ≤ m+ sT (m) during which n◦ < m is possible, and (2) the
tail interval m + sT (m) < n < T (m) ∧ τ during which n◦ ≥ m holds. For interval (1), we use the coarse bound

Hj
(n+1) ≤ t−1

m . In interval (2), for any center j ∈ [k] and iteration m+ sT (m) ≤ n < T (m), we have:

E
[
H

(n+1)
j

∣∣∣Fm, ‖∇wif(W (m))‖ ≤ ε0, τ > n◦

]
(i)
= E

[
E
[
H

(n+1)
j

∣∣∣Fn] ∣∣∣Fm, ‖∇wif(W (m))‖ ≤ ε0, τ > n◦

]
(ii)
= E

[
P

(n)
j

max{nP̂ (n)
j , tn}

∣∣∣∣∣Fm, ‖∇wif(W (m))‖ ≤ ε0, τ > n◦

]
(iii)

≤ 3

n
.

where (i) follows from the tower law for conditional expectations, (ii) from plugging in the form of H
(n+1)
j , and

(iii) we must prove. But assuming this to be the case, we then have the upper bound:

E
[
ZT (m)∧τ

∣∣∣Fm, ‖∇wif(W (m))‖ ≤ ε0

]
≤
k(sT (m) + 1)

tm
+

∑
m≤n<T (m)

3k

n
≤ r

3
,

where the last inequality holds because m0 is sufficiently large so that s2m/tm < r/12k in condition (c) holds,
and because T ≡ TCr, where C = 1/18k. In particular, we assumed that Cr < ln 2, so Corollary E.13 shows
that T (m) ≤ 2m; as sn is non-decreasing, sT (m) + 1 ≤ 2s2m. Thus, the first term is upper bounded by r/6. The
second term is less than r/6 by the definition of T . The lemma follows from Markov’s inequality.

Only inequality (iii) above is left. Since n◦ ≥ m, by the tower law again, it suffices to show:

E

[
P

(n)
j

max{nP̂ (n)
j , tn}

∣∣∣∣∣Fn◦ , τ > n◦

]
≤ 3

n
.

Note that because τ > n◦, we have W (n◦) ∈ K◦. This along with conditions (a) and (b) shows that Lemma E.9
and Lemma E.10 may be applied; we use them as follows. Consider two cases separately:

{P (n◦)
j ≤ an} and {P (n◦)

j > an}.

Lemma E.9 shows that P
(n◦)
j and P

(n)
j are almost surely within an/8 of each other. Thus in the first case:

E

[
P

(n)
j

max{nP̂ (n)
j , tn}

∣∣∣∣∣Fn◦ , τ > n◦ P
(n◦)
j ≤ an

]
≤ 9

8

an
tn
≤ 3

n
,

where the last inequality holds because we assumed that an/tn ≤ 1
n .

In the second case, Lemma E.10 shows that P
(n)
j /P̂

(n)
j < 2 with probability at least 1− 1

n . Because H
(n+1)
j ≤ 1,

the failure mode contributes at most 1
n to the expectation:

E

[
P

(n)
j

max{nP̂ (n)
j , tn}

∣∣∣∣∣Fn◦ , τ > n◦, P
(n◦)
j > an

]
≤ 2

n
+

1

n
≤ 3

n
.

Remark E.5. As we mentioned earlier, when r, T and m0 are defined as in Lemma E.4, this result shows that
the iterates from m through T (m) remain in K◦ with probability at least 2/3 when m ≥ m0. This is because we
conditioned on W (m) ∈ {‖∇wif‖ ≤ ε0}, which is an r0-core set of K◦, and we assumed r < r0.

Introducing a few more conditions, which we highlight in blue, leads to all of (A1).
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Lemma E.6. Let H
(n)
j and P̂

(n)
j be defined as in (4), and let sn and tn be non-decreasing sequences in N. Let

ε0,K,K◦, L, r◦, r0, an, c be given as above. Let ε ∈ (0, ε0) and also let 0 < r < min{ln 2, r0, ε/8R
2L, 1

C ln 7
6}. Set

s = Cr/8. Assume that there exists m0 ∈ N such that for all n ≥ m0, the following hold:

(a) 4n2/3(log 2n)1/3 ≤ sn ≤ min{ 1
2n− 1, 1

2 (eCr/2 − 1)n− eCr/2}

(b) an < min{cr◦/16k, tn/n, ε/4R}

(c) s2n/tn < r/12k.

(d) eCr/2
√

2n ln 6/s < tn < nε/8R.

Then, the function T ≡ TCr where C = 1/18k satisfies for all m ≥ m0:

Pr

∑
j∈[k]

∑
m≤n<T (m)

H
(n+1)
j < r and

∑
m≤n<T (m)

H
(n+1)
i > s

∣∣∣∣∣∣Fm, ‖∇wif(W (m))‖ ∈ [ε, ε0)

 >
1

3
.

Proof of Lemma E.6. The learning rate H
(n+1)
i has conditional expectation:

E
[
H

(n+1)
i

∣∣∣Fn] = E

[
1{I(n+1) = i}

max{nP̂ (n)
i , tn}

∣∣∣∣∣Fn
]

=
P

(n)
i

max{nP̂ (n)
i , tn}

.

Thus, the sequence H
(n+1)
i − E

[
H

(n+1)
i

∣∣∣Fn] is a martingale difference sequence with bounded increments:∣∣∣∣∣1{I(n+1) = i} − P (n)
i

max{nP̂ (n)
i , tn}

∣∣∣∣∣ ≤ 1

tn
.

Define µ and ν as follows:

µ :=
∑

m≤n<T (m)

P
(n)
i

max{nP̂ (n)
i , tn}

and ν :=

 ∑
m≤n<T (m)

1

t2n

−1

.

Azuma-Hoeffding’s implies that the accumulated learning rates for the ith center concentrates about µ,

Pr

 ∑
m≤n<T (m)

H
(n+1)
i > µ− s

∣∣∣∣∣∣Fm, ‖∇wif(W (m))‖ ∈ [ε, ε0)

 > 1− exp

(
−1

2
νs2

)
>

5

6
, (24)

where the last inequality follows from:

ν =

 ∑
m≤n<T (m)

1

t2n

−1

(i)

≥ 1

eCr − 1

t2m
m

(ii)
>

2 ln 6

s2
,

since (i) T (m) −m ≤ (eCr − 1)m by Corollary E.13 and tn is non-decreasing, and (ii) tn > eCr/2
√

2n ln 6/s by
assumption (d). We also claim that:

Pr

∑
j∈[k]

∑
m≤n<T (m)

H
(n+1)
j < r and µ > 2s

∣∣∣∣Fm, ‖∇wif(W (m))‖ ∈ [ε, ε0)

 >
1

2
. (25)

Assuming the claim, we obtain the desired result by combining (24) and (25) by a union bound.

Now, only the claim remains, but let’s first reduce notation. Denote the two events in (25) by Ξ and E,

Ξ =

∑
j∈[k]

∑
m≤n<T (m)

H
(n+1)
j < r

 and E :=

 ∑
m≤n<T (m)

P
(n)
i

max{nP̂ (n)
i , tn}

> 2s

 ,
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and let F = Fm, ‖∇wif(W (m))‖ ∈ [ε, ε0) denote the conditioning; (25) states that Pr
(
Ξ ∩ E |F

)
> 1/2. From

Lemma E.4, we have Pr(Ξ |F) > 2/3. Thus, we just need to show that the event E|F also likely holds. This
turns out to be the case if for nearly all iterations between m and T (m), the conditional expectation satisfies:

P
(n)
i

max{nP̂ (n)
i , tn}

>
1

2n
. (26)

Again to reduce notation, denote the event in (26) by En. Then specifically, E occurs if all events En occur over
times m+ sT (m) ≤ n < T (m). This is due the definition of T , which implies the following:

∑
m+sT (m)≤n<T (m)

1

2n

(i)

≥ 1

2
log

T (m)

m+ sT (m)

(ii)

≥ 1

2
log

eCr(m− 1)

m+ sT (m)

(iii)

≥ 2s,

where (i) follows from Lemma E.12, (ii) from Corollary E.13, and (iii) from setting s = Cr/8 and our choice
of upper bound on sn. In particular, because r < ln 2, Corollary E.13 shows that T (m) ≤ 2m. Since sn is
non-decreasing, sT (m) ≤ s2m ≤ (eCr/2 − 1)m− eCr/2. A little bit of algebra then verifies (iii).

The natural way to prove (25) would then be to union bound the probability of failure:

Pr

(
Ξc ∪ Ec

∣∣∣∣F) ≤ Pr

(
Ξc
∣∣∣∣F)+

∑
m+sT (m)≤n<T (m)

Pr

(
Ecn

∣∣∣∣F) .
This turns out to be too coarse of a bound for us; there is too much overcounting of certain outcomes in Ξc that
are also contained in Ecn. Instead, we use a finer union bound—since the first term Pr(Ξc |F) already accounts
for the bad outcomes in Ξc, the remaining sum needs only measure the outcomes in Ecn ∩ Ξ. In fact, we only
loosen the bound if we measure outcomes in Ecn ∩ Ξn, for a superset Ξn ⊃ Ξ. Thus:

Pr

(
Ξc ∪ Ec

∣∣∣∣F) ≤ Pr

(
Ξc
∣∣∣∣F)+

∑
m+sT (m)≤n<T (m)

Pr

(
Ecn ∩ Ξ

∣∣∣∣F)

≤ Pr

(
Ξc
∣∣∣∣F)+

∑
m+sT (m)≤n<T (m)

Pr

(
Ecn ∩ Ξn

∣∣∣∣F)

≤ Pr

(
Ξc
∣∣∣∣F)+

∑
m+sT (m)≤n<T (m)

Pr

(
Ecn

∣∣∣∣F,Ξn) , (27)

where in the last step, we use the general fact that Pr(A ∩B) ≤ Pr(A |B).

Lemma E.4 bounds the first term in (27) with Pr(Ξc |F) ≤ 1/3. For the others, notice that conditioned on F,
the event Ξ, which bounds the accumulated learning rates by r, implies the Fn◦ -measurable events:

Ξn :=
{
W (n◦) ∈ K◦ and P

(n◦)
i ≥ ε

4R

}
.

This is because r < min{r0, ε/8R
2L}. If Ξ |F occurs, the bound r < r0 implies that all iterates remain in K◦, as

discussed in Remark E.5. Furthermore, since Pi is L-Lipschitz on K◦, we also have for all m ≤ n ≤ T (m),∣∣∣P (n)
i − P (m)

i

∣∣∣ ≤ 2RL ·
∑
j∈[k]

∑
m≤n′<n

H
(n′+1)
j ≤ 2RLr.

Thus, r < ε/8R2L implies 2RLr < ε/4R. So, P
(n)
i is lower bounded because P

(m)
i ≥ ε/2R. This comes from

the gradient, ∇wif(w) = Pi(w) ·
(
wi −Mi(w)

)
, and that the initial iterate satisfies ‖∇wif(W (m))‖ ≥ ε.
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We claim that Pr(Ecn |F,Ξn) ≤ 1
n . If this is the case, then (27) implies (25):

Pr

(
Ξc ∪ Ec

∣∣∣∣F) ≤ 1

3
+

∑
m+sT (m)≤n<T (m)

1

n

(i)

≤ 1

3
+
T (m)−m

m

(ii)

≤ 1

3
+
(
eCr − 1

) (iii)

≤ 1

2
,

where we use (i) 1
m ≥

1
n on this interval, (ii) T (m)−m ≤ (eCr − 1)m, and (iii) r < 1

C ln 7
6 .

Now, all that is left is to verify that Pr(Ecn |F,Ξn) is bounded above:

Pr

(
P

(n)
i

max{nP̂ (n)
i , tn}

≤ 1

2n

∣∣∣∣∣Fm, ‖∇wif(W (m))‖ ∈ [ε, ε0), W (n◦) ∈ K◦, P (n◦)
i ≥ ε

4R

)
≤ 1

n
.

This is true by Lemma E.10, which shows multiplicative concentration 1
2P

(n)
i < P̂

(n)
i < 2P

(n)
i with probability

at least 1− 1
n . This lemma applies because Ξn is Fn◦ -measurable with n◦ > m, since we only consider iterations

n between m + sT (m) and T (m), and because ε/4R > an. Concentration implies En: the left tail bound shows

that max{nP̂ (n)
i , tn} = nP̂

(n)
i as tn < nε/8R and P

(n)
i ≥ ε/4R; the right tail shows P

(n)
i /nP̂

(n)
i < 1/2n.

We now verify condition (A2) of Theorem D.1. The proof remixes techniques used to prove (A1). If ‖∇wif‖ is

lower bounded by a constant, then so is Pi. And so P̂
(n)
i will also be lower bounded by a constant with high

probability. On average H
(n+1)
i is on the order of n−1, whose sum diverges.

Lemma E.7. Let H
(n)
j and P̂

(n)
j be defined as in (4) and lim

n→∞

log n

sn
= lim
n→∞

tn
n

= 0. Let ε0 > 0. Then:

lim inf
n→∞

‖∇wif(W (n))‖ ≥ ε0 =⇒
∑
n∈N

H
(n)
i =∞ a.s.

Proof of Lemma E.7. We saw in the proof of Lemma E.6 that P
(n)
i > ε0/2R is implied by ‖∇wif(W (n))‖ > ε,

since the gradient is ∇wif(w) = Pi(w) ·
(
wi −Mi(w)

)
. Therefore, if the limit infimum condition holds, then

there exists a random variable N ∈ N such that if n > N , then:

P
(n)
i ≥ ε0

4R
.

That is, the probability of updating the center i eventually remains at least ε0/4R. Thus, P̂
(n)
i > ε0/8R holds

with high probability at any sufficiently large iteration. In particular, if n is large enough to satisfy n◦ > N and

sn >
128R2

ε20
lnn, then Azuma-Hoeffding’s implies (Lemma E.10 uses the same technique),

Pr

(
P̂

(n)
j ≤ ε0

8R

∣∣∣∣Fn◦) ≤ Pr

P̂ (n)
j ≤ 1

sn

∑
n◦≤n<n

P
(n′)
j − ε0

8R

∣∣∣∣∣∣Fn◦
 ≤ exp

(
− snε

2
0

128R2

)
≤ 1

n
.

This bound on P̂
(n)
i implies one on H

(n+1)
i . In particular, if n is sufficiently large so that tn < nε0/8R, then:

Pr

(
H

(n+1)
i =

P
(n)
i

max{nP̂ (n)
i , tn}

=
P

(n)
i

nP̂
(n)
i

≥ 1

n

ε0

4R

∣∣∣∣∣Fn◦
)
> 1− 1

n
,

where the inequality in gray comes from the lower bound P
(n)
i ≥ ε0/4R and the upper bound P̂

(n)
i ≤ 1. And so,

we have that for n sufficiently large:

Pr

 ∑
m≤n′<Tr(m)

H
(n′+1)
i > c

∣∣∣∣∣∣Fn◦
 > 1− r,

where we may take r < 1 and we set c = rε0/4R. This inequality follows directly from a union bound and the
definition of Tr. Borel-Cantelli implies that the accumulated learning on the ith center increases by c infinitely
often, which implies that

∑
n∈NHi

(n) diverges.
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Under assumptions on sn and tn, the conditions of Lemma E.6 and Lemma E.7 are verified. Thus, conditions
(A1) and (A2) of Theorem D.1 are satisfied, proving Theorem 5.1. �

Remark E.8 (Generalized union bound). The modified union bound used in Lemma E.6 may be of generic
interest: let (Ω,F , P ) be a probability space. Let A,B,C ∈ F be events such that Ac ⊂ C. Then:

P (A ∪B)
(i)
= P (A) + P (B ∩Ac)

(ii)

≤ P (A) + P (B ∩ C)
(iii)

≤ P (A) + P (B |C),

where (i) A ∪ B is the disjoint union A t (B ∩ Ac), (ii) B ∩ Ac ⊂ B ∩ C, and (iii) P (B ∩ C) ≤ P (C)P (B |C).
This is useful because P (B |C) may in general be easier to bound than P (B |Ac), as was our case.

E.2 Consistency and concentration of P̂
(n)
j

The estimator P̂
(n)
j for P

(n)
j := Pj(W

(n)) is consistent, provided Pj is locally Lipschitz and (sn, tn) satisfies:

1

tn
→ 0 and

sn log sn
n

→ 0, as n→∞.

Specifically, we give non-asymptotic rates of concentration in Lemma E.10.

The estimator P̂
(n)
j depends on the trajectory of the past sn iterates up to that point. In particular, since I(n′+1)

is drawn from P (W (n′)), Azuma-Hoeffding’s shows that the estimator tends to concentrate around:

1

sn

∑
n◦≤n′<n

P
(n′)
j .

Therefore, P̂
(n)
j concentrates around P

(n)
j , as long as P

(n′)
j does not vary too much over n◦ ≤ n′ ≤ n. The

amount of variation can be bounded because the maps Pj : DR → [0, 1] are locally Lipschitz (Lemma E.11). We
just need to ensure that the iterates do not move too much—we achieve this by upper bounding the accumulated
learning rates between n◦ and n, achieved by the next lemma: by bounding the learning rates, we can control
the change in Pj whenever iterates stay within a region K on which Pj is L-Lipschitz.

Lemma E.9. Let H
(n)
j and P̂

(n)
j be defined as in (4). If e ≤ sn + 1 ≤ n

2 , then:

∑
j∈[k]

∑
n◦≤n′<n

H
(n′+1)
j ≤ 16k

tn◦
+

16ksn log sn
n

a.s.

Let K ⊂ DR be given so that the restriction Pj
∣∣
K

: K → [0, 1] is L-Lipschitz. Conditioned on W (n◦), . . . ,W (n)

remaining in K, then for all n◦ ≤ n′ ≤ n:∣∣∣P (n′)
j − P (n)

j

∣∣∣ ≤ 32kRL ·
(

1

tn◦
+
sn log sn

n

)
a.s. (28)

Proof. Fix j ∈ [k]. The following chain of inequalities holds almost surely:

∑
n◦≤n′<n

H
(n′+1)
j ≤

∑
n◦≤n′<n

1{I(n′+1) = j}
max{n′ · P̂ (n′)

j , tn′}

≤ 1

tn◦
+

sn−1∑
n′=1

1

(n− sn) · n′sn
≤ 1

tn◦
+

16sn log sn
n

a.s.

The first equality expands the definition of the learning rate (4). The next inequality comes the worst-case

scenario where the jth center has had no recent updates (so that P̂
(n−sn)
j = 0), and it is updated every single

time following during this window of length sn. We’ve re-indexed the sum by subtracting n−sn from the original

index. For the first term, since P̂j
(n−sn) = 0, we use the bound H

(n◦+1)
j ≤ t−1

n◦ . And for the rest, we bound
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each P̂
(n′)
j by 1

sn
, 2
sn
, . . . , sn−1

sn
, respectively. This is the worst-case scenario, since delaying an update simply

introduces a zero in the sum and shifts the rest of the bounds to the right. The final inequality upper bounds
the partial sums of the harmonic series, and uses the assumption e ≤ sn ≤ n

2 .

For the second bound, Lemma 3.2 converts the learning rate bound to one over distance ‖W (n′) − W (n)‖,
introducing a factor of 2R. Then, Lipschitz continuity bounds |P (n′)

j − P (n)
j | by introducing a factor of L.

The analysis to show that P̂
(n)
j concentrates around P

(n)
j would be quite straightforward if Pj were globally

Lipschitz—then we could use Lemma E.9 to design conditions on sn and tn to force the accumulated learning
rates to go to zero over periods of sn,

lim
n→∞

∑
j∈[k]

∑
n◦≤n′<n

H
(n′+1)
j = 0.

Thus over a small interval sn, the iterates would remain close together, and the bias of P̂
(n)
j would be forced to

zero in the limit. And if sn ↑ ∞, then Azuma-Hoeffding’s would imply increasingly tight concentration.

Unfortunately, Pj is not generally globally Lipschitz; the local Lipschitz constant at w ∈ DR depends on the
distances between centers ‖wj − wj′‖, so we need to perform our analysis on a subset K ⊂ DR on which Pj is
L-Lipschitz. While we need to know that the iterates W (n◦), . . . ,W (n) remain in K, this event is not generally
contained in Fn◦ . Directly conditioning on it would introduce new dependencies that prevent us from applying
Azuma-Hoeffding’s. We can overcome this issue by conditioning on an Fn◦ -measurable event contained within
this event instead: that W (n◦) is contained in K◦, some r◦-core set of K.

Lemma E.10 (Estimator concentration). Let H
(n)
j and P̂

(n)
j be defined as in (4). Let K ⊂ DR be given so that

the restriction Pj
∣∣
K

: K → [0, 1] is L-Lipschitz. Let K◦ be an r◦-core set of K. Let c = max{1, 256kRL} and

an = c ·
(

1
tn◦

+ sn log sn
n

)
. If sn satisfies 4n2/3(log 2n)1/3 ≤ sn ≤ n

2 − 1 and an < cr◦/16k, then:

Pr

(∣∣∣P̂ (n)
j − P (n)

j

∣∣∣ < 3

8
an

∣∣∣∣Fn◦ , W (n◦) ∈ K◦
)
> 1− 1

n
.

In particular, a multiplicative bound holds:

Pr

(
1

2
P

(n)
j < P̂

(n)
j < 2P

(n)
j

∣∣∣∣Fn◦ , P (n◦)
j > an, W

(n◦) ∈ K◦
)
> 1− 1

n
.

Proof. The following sequence during the interval n◦ ≤ n′ < n is a martingale difference sequence:

1{I(n′+1) = j} − P (n′)
j .

In fact, since the event {W (n◦) ∈ K◦} is Fn◦ -measurable, we can condition on it, and the sequence remains a

martingale difference sequence. Then, P̂
(n)
j is concentrated:

Pr

∣∣∣∣P̂ (n)
j − 1

sn

∑
n◦≤n′<n

P
(n′)
j

∣∣∣∣ ≥ an
4

∣∣∣∣∣∣Fn◦ , W (n◦) ∈ K◦

 (i)

≤ 2 exp

(
−sna

2
n

32

)
(ii)

≤ 2 exp

(
− s3

n

64n2

)
(iii)

≤ 1

n
,

where (i) follows from Azuma-Hoeffding’s, (ii) from 1
32a

2
n ≥ 1

64s
2
n/n

2 since c ≥ 1, and (iii) from plugging in the
lower bound on sn in the theorem statement.

To complete the theorem, we need to relate P
(n′)
j to P

(n)
j , which we can do whenever the iterates remain in K.

Indeed, we conditioned on W (n◦) ∈ K◦, and we also have:

∑
j∈[k]

∑
n◦≤n′<n

H
(n′+1)
j

(i)

≤ 16kan
c

(ii)
< r◦ a.s.,
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where (i) is the first result of Lemma E.9, which we may apply since 4 ≤ sn ≤ n
2 − 1, and (ii) we assumed that

an < cr◦/16k. By the core-set property of K◦, the iterates remain in K during this interval on which Pj is
L-Lipschitz. We can now apply the second result (28) of Lemma E.9, which shows that for all n◦ ≤ n′ ≤ n,∣∣∣P (n′)

j − P (n)
j

∣∣∣ ≤ 32kRL ·
(

1

tn◦
+
sn log sn

n

)
≤ an

8
a.s.

By triangle inequality: ∣∣∣∣ 1

sn

∑
n◦≤n′<n

P
(n′)
j − P (n)

j

∣∣∣∣ ≤ an
8

a.s.

A further application of triangle inequality yields the desired additive concentration bound:

Pr

(∣∣∣P̂ (n)
j − P (n)

j

∣∣∣ ≥ 3

8
an

∣∣∣∣Fn◦ , W (n◦) ∈ K◦
)
≤ 1

n
.

If we further condition on the Fn◦ -measurable event {P (n◦)
j > an}, then (28) implies P

(n)
j > 7

8an, from which
we also obtain the multiplicative bound.

E.3 Local Lipschitzness of Pj

Lemma E.11 (Pj is locally Lipschitz). Let p be a density supported in the closed ball B(0, R). If p is continuous
on B(0, R), then then the maps Pj : DR → [0, 1] are locally Lipschitz.

Proof. We first prove this in the setting where there are only two centers (i.e. k = 2), before generalizing. Given
two tuples of centers w,w′ ∈ DR. Then the difference Pj(w)− Pj(w′) is:

Pj(w)− Pj(w′) =

∫
Vj(w)\Vj(w′)

p(x) dx−
∫
Vj(w′)\Vj(w)

p(x) dx.

Since p is continuous on the closed set B(0, R), it attains a maximum pmax = sup p(x) < ∞. Let λ be the
Lebesgue measure. It follows by triangle inequality that:

|Pj(w)− Pj(w′)| ≤ pmax ·
(
λ
(
Vj(w) \ Vj(w′)

)
+ λ
(
Vj(w

′) \ Vj(w)
))
.

Therefore, to prove that Pj is locally Lipschitz, we need to bound how much the jth Voronoi can grow/shrink when
the two centers w are perturbed slightly to w′ ∈ DR. As w ∈ DR, the two centers are separated ‖w1 − w2‖ > 0.
We claim that if the perturbation ‖w−w′‖ is a factor smaller than the separation, ‖w−w′‖ ≤ 1

4‖w1−w2‖, then
the jth Voronoi region can only grow linearly with ‖w − w′‖,

λ
(
Vj(w

′) \ Vj(w)
)
≤ Lw‖w − w′‖,

for some Lw > 0. And, the same can be said for the other term, measuring how much the region can shrink. If
this claim holds, then Pj is locally Lipschitz, where the local Lipschitz constant at w is pmax · 2Lw.

Fix w ∈ DR and let 2r = ‖w1 − w2‖ be the separation of its two centers. By a change of coordinates, we may
without loss of generality assume that:

w1 = (−r, 0, . . . , 0) and w2 = (r, 0 . . . , 0).

Therefore, the boundary of their Voronoi partitions is the hyperplane {x ∈ Rd : x1 = 0}. We now show that if
the perturbed centers w′ satisfy ‖w − w′‖ = ε ≤ r

2 , then V1(w′) is contained in the halfspace:

V1(w′) ⊂
{
x ∈ Rd : x1 ≤

(
1 +

2R

r

)
ε

}
,

from which local Lipschitzness follows:

λ
(
V1(w′) \ V1(w)

)
≤ (2R)d−1

(
1 +

2R

r

)
· ‖w − w′‖,
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w1 w2

w′1

w′2

Figure 2: A two-dimensional projection of the 2-means problem in Rd. The light gray disk represents
the support of the distribution p, which has a diameter of 2R. The initial tuple w = (w1, w2)
partitions the space along the vertical hyperplane. After a small perturbation to w′ = (w′1, w

′
2),

a new Voronoi partition is induced, where the black region corresponds the symmetric difference
V1(w)∆V1(w′) = V2(w)∆V2(w′). The probability mass of this region can be upper bounded by the
rectangular gray region whose width is O(‖w − w′‖) and lengths in all other directions are 2R.

since V1(w′) \ V1(w) is contained in the rectangular region where the last d− 1 coordinates have length 2R and
the first coordinate length (1 + 2R/r)ε. Figure 2 depicts this argument.

We show that V1(w′) is contained in the above halfspace by upper bounding the first coordinate of points in
V1(w′). Note that the new boundary induced by w′ is the hyperplane H intersecting 1

2 (w′1 +w′2) defined by the
normal vector w′1 − w′2:

H :=
1

2
(w′1 + w′2) +

{
x ∈ Rd : (w′1 − w′2)>x = 0

}
.

Thus, V1(w′) is to the left of H. The first term 1
2‖w

′
1 +w′2‖ contributes at most ε to the first coordinate of points

in H, since ‖w − w′‖ = ε. Since after the change of coordinates, all points in B(0, R) must now be at most a
distance of 2R away from 1

2 (w′1 + w′2), we just need to bound the first coordinate of points in:{
x ∈ B(0, 2R) : (w′1 − w′2)>x = 0

}
.

Let w′1 − w′2 = (α1, . . . , αd). Then if x in this set satisfies:

|x1| =
∣∣∣∣α2x2 + · · ·+ αdxd

α1

∣∣∣∣ ≤ ‖w′1 − w′2‖ · ‖x‖r
,

by Cauchy-Schwarz and the fact that |α1| ≥ r, which follows from the form of w and that the perturbation is
less than r/2. That is, |x1| ≤ 2Rε/r. This shows that V1(w′) is contained the above halfspace.

At this point, we have shown the result for k = 2. The setting for general k is an easy extension. Let ∆ be the
symmetric difference. Then as before, we need to show:

λ
(
Vj(w)∆Vj(w

′)
)
≤ 2Lw‖w − w′‖,

for some Lw > 0 and w′ in a neighborhood of w.

Given w and fixed j, consider a collection of k − 1 induced 2-means problems constructed on w̃` := (wj , w`) for

` 6= j. Let Ṽ map the 2-center w̃ ∈ R2×d to its Voronoi partitions. Then:

Vj(w)∆Vj(w
′) ⊂

⋃
` 6=j

Ṽj(w̃`)∆Ṽj(w̃
′
`).



Convergence of online k-means

It follows that we may reduce to the 2-center case, since:

λ
(
Vj(w)∆Vj(w

′)
)
≤
∑
` 6=j

λ
(
Ṽj(w̃`)∆Ṽj(w̃

′
`)
)

E.4 Properties of T (m)

Recall we defined for r > 0, the function Tr : N→ N so that Tr(m) is the unique natural number so that:∑
m≤n<Tr(m)

1

n
≤ r <

∑
m≤n≤Tr(m)

1

n
. (22)

The following lemma and corollary give properties of Tr.

Lemma E.12. Let 1 < m < m′ be in N. Then:

log
m′

m
≤

∑
m≤n<m′

1

n
≤ log

m′ − 1

m− 1
.

Proof.

log
m′

m
≤
∫ m′

m

1

x
dx ≤

∑
m≤n<m′

1

n
≤
∫ m′

m

1

x− 1
dx = log

m′ − 1

m− 1
.

Corollary E.13. Let r > 0. Let α := er − 1 and set T ≡ Tr. Then:

α(m− 1) ≤ T (m)−m ≤ αm.

Proof. Combining Lemma E.12 with the definition of T (m), we have:

log
T (m)

m
≤

∑
m≤n<T (m)

1

n
≤ r <

∑
m≤n<T (m)+1

1

n
≤ log

T (m)− 1

m− 1
.

Rearranging yields the result.
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