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Abstract

Out-of-distribution (OOD) detection is a
well-studied topic in supervised learning. Ex-
tending the successes in supervised learn-
ing methods to the reinforcement learning
(RL) setting, however, is difficult due to the
data generating process — RL agents ac-
tively query their environment for data, and
the data are a function of the policy fol-
lowed by the agent. An agent could thus
neglect a shift in the environment if its pol-
icy did not lead it to explore the aspect of
the environment that shifted. Therefore, to
achieve safe and robust generalization in RL,
there exists an unmet need for OOD detec-
tion through active experimentation. Here,
we attempt to bridge this lacuna by first
defining a causal framework for OOD sce-
narios or environments encountered by RL
agents in the wild. Then, we propose a
novel task: that of Out-of-Task Distribution
(OOTD) detection. We introduce an RL
agent that actively experiments in a test envi-
ronment and subsequently concludes whether
it is OOTD or not. We name our method
GalilAI, in honor of Galileo Galilei, as it dis-
covers, among other causal processes, that
gravitational acceleration is independent of
the mass of a body. Finally, we propose a
simple probabilistic neural network baseline
for comparison, which extends extant Model-
Based RL. We find that GalilAI outperforms
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the baseline significantly. See visualizations
of our method here.

1 Introduction and Related Work

Generalization to near-distribution shifts caused
by natural perturbations and Detection of out-of-
distribution shifts caused by artificial perturbations
(adversarial attacks) are central desiderata of modern
decision-making systems. Significant advances have
been made in supervised learning systems on both
fronts - with work in transfer/meta-learning aiding the
ability of ML systems to generalize across shifts in in-
put distributions [Schmidhuber, 2007, Santoro et al.,
2016, Finn et al., 2017]. Such methods learn internal
representations which are invariant to perturbations
occurring in data [Bengio, 2013]. These invariant rep-
resentations are subsequently used for domain adap-
tation [Zhao et al., 2019, Muandet et al., 2013], with
applications in music [Blumensath and Davies, 2005]
and speech [Serdyuk et al., 2016]. Out-of-distribution
Detection for the supervised learning domain has also
made significant advances [Hendrycks and Gimpel,
2016, DeVries and Taylor, 2018, Liang et al., 2017,
Goodfellow et al., 2014], with the development of both
training-time methods [Xiao et al., 2020] (alterations
to typical supervised training to make models robust
to OOD inputs) and inference-time methods (utilizing
the features of a fully trained model to detect OOD
samples)[Hsu et al., 2020].

While attempts have been made in generalization in
the space of sequential long-horizon RL and decision-
making [Finn et al., 2017, Nagabandi et al., 2018,
Gupta et al., 2018, Parisotto et al., 2015, Rakelly et al.,
2019, Zintgraf et al., 2019], Out-of-Distribution Detec-
tion is fairly unexplored. To our knowledge, our work
is the first that offers a concrete causal framework for
OOD Detection.

https://galil-ai.github.io/
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We motivate the need for OOD Detection in RL with
an example. Consider an agent that has learnt to land
an aircraft for various values of directions and velocity
of crosswinds. Now consider the situation when one of
the airplane’s engines fails when the agent is deployed.
Current RL systems would assume that the obser-
vations they receive from this test environment were
caused by perhaps high crosswinds and would subse-
quently increase fuel flow to the engines - a potentially
disastrous strategy. On the contrary, a seasoned pilot
might perform an experiment - perhaps yawing the
aircraft from side-to-side, concluding that due to the
low controllability of the aircraft, the engine was some-
how compromised. Our work extends that of Sontakke
et al. by utilizing advances in algorithmic information
theory and curiosity-based reinforcement learning to
“encourage” the RL agent to perform such experimen-
tal behaviors and conclude whether a test-time envi-
ronment is out-of-training-distribution or not.

During our experiments, we find that our agent discov-
ers the Galilean Equivalence Principle, managing
to successfully decouple the effect of mass and gravi-
tational acceleration. For this reason, we refer to the
agent as GalilAI (pronounced Galilei). The contribu-
tions of our work are as follows:

• Causal transfer: We offer a causal perspective
on transfer learning in RL and provide a theo-
retical framework for defining various classes of
transfer RL problems.

• Causal active experimentation (GalilAI)
for safe transfer RL: We extend the work of
Sontakke et al. to provide an algorithm aimed
at improving the safety of transfer reinforcement
learning by detecting whether a given test envi-
ronment is out-of-distribution or not. If an en-
vironment is detected as OOD, the agent could
relinquish control of a system to a human opera-
tor [Amodei et al., 2016].

• Probabilistic baseline: Due to a lack of prior
work in the field, we propose a simple probabilis-
tic neural network baseline for OOD Detection
of environments in RL. We compare GalilAI and
the PNN in complex robotic domains such as the
Causal World [Ahmed et al., 2020] and Mujoco
[Todorov et al., 2012a].

2 Preliminaries

Definition 1 (Causal factors) Consider the
POMDP (O, S, A, ϕ, θ, r) with observation space O,
state space S, action space A, the transition function
ϕ, emission function θ, and the reward function r.

Let o0:T ∈ OT denote a trajectory of observations of
length T . Let d(·, ·) : OT × OT → R+ be a distance
function defined on the space of trajectories of length
T . The set H = {h0,h1, . . . ,hK−1} is called a set
of ϵ−causal factors if for every hj ∈ H, there exists
a unique sequence of actions a0:T that clusters the
observation trajectories into m disjoint sets C1:m such
that ∀Ca, Cb, a minimum separation distance of ϵ is
ensured:

min{d(o0:T ,o
′
0:T ) : o0:T ∈ Ca,o

′
0:T ∈ Cb} > ϵ (1)

and that hj is the cause of the obtained trajectory of
states i.e. ∀v ̸= v′,

p(o0:T |do(hj = v),a0:T ) ̸= p(o0:T |do(hj = v′),a0:T )
(2)

where do(hj) corresponds to an intervention on the
value of the causal factor hj.

According to Definition 1, a causal factor hj is a vari-
able in the environment the value of which, when inter-
vened on (i.e., varied) using do(hj) over a set of values,
results in trajectories of observations that are divisible
into disjoint clusters C1:m under a particular sequence
of actions a0:T . These clusters represent the quantized
values of the causal factor. For example, mass, which
is a causal factor of a body, under an action sequence
of a grasping and lifting motion with fixed force, may
result in 2 clusters, liftable (low mass) and not-liftable
(high mass).

2.1 POMDPs and Causal POMDPs

Classical POMDPs (O, S, A, ϕ, θ, r) consist of an
observation space O, state space S, action space A,
the transition function ϕ, emission function θ, and the
reward function r. An agent in an unobserved state
st takes an action at and consequently causes a tran-
sition in the environment through ϕ(st+1|st,at). The
agent receives an observation ot+1 = θ(st+1) and a re-
ward rt+1 = r(st,at). Causal POMDPs explicitly
model the effects of causal factors on the transition
and emission functions by dividing the state into the
controllable state sct and the causal factor, H. The
causal factors of an environment cannot be manipu-
lated by the agent, but their values affect the outcome
of an action taken by the agent. Thus the transition
function of the controllable state is:

ϕ(sct+1|sct , fsel(H, sct ,at),at) (3)

where fsel is the implicit Causal Selector Function
which selects the subset of causal factors affecting the
transition defined as:

fsel : H× S ×A → ℘(H) (4)
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where ℘(H) is power-set of H and fsel(H, sct ,at) ⊂ H
is the set of effective causal factors for the transition
st → st+1 i.e., ∀v ̸= v′ and ∀hj ∈ fsel(H, sct ,at):

ϕ(sct+1|do(hj = v), sct ,at) ̸= ϕ(sct+1|do(hj = v′), sct ,at)
(5)

where do(hj) corresponds to an external intervention
on the factor hj in an environment.

Intuitively, this means that if an agent takes an ac-
tion at in the controllable state sct , the transition
to sct+1 is caused by a subset of the causal factors
fsel(H, sct ,at). For example, if a body on the ground
(i.e., state sct) is thrown upwards (i.e., action at), the
outcome st+1 is caused by the causal factor gravity
(i.e., fsel(H, sct ,at) = {gravity}), a singleton subset of
the global set of causal factors. The do() notation ex-
presses this causation. If an external intervention on a
causal factor is performed, e.g., if somehow the value
of gravity was changed from v to v′, the outcome of
throwing the body up from the ground, st+1, would be
different.

2.2 Algorithmic Information Theoretic View
on Causality

Causality can be motivated from the perspective of al-
gorithmic information theory [Janzing and Schölkopf,
2010]. Consider the Gated Directed Acyclic Graph of
the observed variable O and its causal parents (Fig-
ure 1). Each causal factor has its own causal mecha-
nism, jointly bringing about O. The action sequence
a0:T serves a gating mechanism, allowing or blocking
particular edges of the causal graph using the implicit
Causal Selector Function (Equation (4)). A central as-
sumption of our approach is that causal factors are in-
dependent, i.e., the Independent Mechanisms Assump-
tion [Schölkopf et al., 2012, Parascandolo et al., 2018,
Schölkopf, 2019]. The information in O is then the
sum of information “injected” into it from the multiple
causes, since, loosely speaking, for information to can-
cel, the mechanisms would need to be algorithmically
dependent [Janzing and Schölkopf, 2010]. Thus, the
information content in O will be greater for a larger
number of independent causal parents in the graph.

L(O) ∝ |PA(O))| (6)

where L(·) is the Minimum Description Length
(MDL), a tractable substitute of the Kolmogorov
Complexity [Rissanen, 1978, Grunwald, 2004]).

2.3 Causal Curiosity

Causal curiosity [Sontakke et al., 2021] allows an RL
agent to discover sequences of actions that bring out
the effect of a single causal factor while ignoring the

effects of all other. This is similar to how a hu-
man scientist studying multiple mechanisms in their
environment would behave whilst following the One-
Factor-at-a-Time (OFAT) paradigm of experiment de-
sign [Fisher, 1936]. For e.g., when interacting with ob-
jects of varying mass and shape, a human scientist will
learn a perfect lifting sequence that grasps all shapes
and then use it to test out the mass of each object.

Thus, Causal Curiosity selects one among multiple
competing causal mechanisms and generates a se-
quence of actions that bring out the effect of the se-
lected mechanism. This is done by attempting to learn
a simple model of the environment with capacity low
enough to learn about only a single causal mecha-
nism at a time. One could conceive of this by as-
suming that the generative model for O, M has low
Kolmogorov Complexity. A low capacity bi-modal
model is assumed. The Minimum Description Length
(MDL), L(·) is utilized as a tractable substitute of
the Kolmogorov Complexity Rissanen [1978], Grun-
wald [2004]). Subsequently, the following optimization
problem is solved.

a∗0:T = argmin
a0:T

(L(M) + L(O|M)) (7)

where each observed trajectory O = O(a0:T ) is a func-
tion of the action sequence. Thus the resulting action
sequence from the optimization in Equation (7) will
result in an action sequence that brings out the effect
of a single caual factor. Having established this, we
now introduce a causal perspective on transfer.

2.4 Causal Perspective on Transfer

Consider the set of POMDPs P = {p0,p1, . . .} pa-
rameterized by the tuple (O, S, A, ϕ, θ, r, H ′ ⊂ H)
with observation space O, state space S, action space
A, the transition function ϕ, emission function θ, and
the reward function r, with the set of causal factors
H ′ ⊂ H, i.e., subset of the global causal factors, var-
ied over a range of values and the remaining H −H ′

held constant.

Definition 2 (In-Task-Distribution Transfer)
An in-task-distribution transfer occurs when an agent
trained on P is launched into a POMDP p′ where
∀ h ∈ H − H ′ the values assumed by h remain
unchanged (assume the same values as in P).

Definition 3 (Out-of-Task-Distribution Transfer)
An Out-of-Task-distribution transfer occurs when an
agent trained on P is launched into a POMDP p′

where ∃ h ∈ H −H ′ which assumes a value different
from the value it had in P .

Consider a transfer learning agent training to lift cubes
with varying masses and sizes, i.e., H ′ = {mass, size}.
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An In-Task-Distribution Transfer scenario occurs if at
test-time it encounters an cube of an unseen mass/size
combination. An Out-of-Task-Distribution scenario
occurs if it is required to lift a cube with a broken
actuator. This is because the causal factor actuator ∈
H−H ′ which was held constant during training (agent
trained is using a healthy actuator) is required to lift
using a broken actuator at test-time. We would like
to be able to detect such faults while generalizing to
known causal factors.

3 Method

Setup We consider the scenario where a learning
agent is trained on a set of POMDPs P = {p0,p1, . . .}
parameterized by the tuple (O, S, A, ϕ, θ, r, H ′ ⊂ H)
with observation space O, state space S, action space
A, the transition function ϕ, emission function θ, and
the reward function r, with the set of causal factors
H ′ ⊂ H, i.e., subset of the global causal factors, var-
ied over a range of values and the remaining H −H ′

held constant.

We assume that the learning agent is able to learn
z = Zϕ(p), called belief function, using each of the
training environments which generates a representa-
tion for the intervened causal factors, i.e., H ′ ⊂ H.
This assumption is quite general - the RL systems that
are capable of performing well over different environ-
ments can be assumed to either explicitly model such
representations (as in [Rakelly et al., 2019, Zintgraf
et al., 2019, Perez et al., 2020]) or implicitly (as in
[Finn et al., 2017, Nagabandi et al., 2018]). At test
time, the agent is launched into a novel environment p′

which is either an In-Task-Distribution Transfer (see
Definition 2) or Out-of-Task-Distribution Transfer (see
Definition 3).

3.1 Construction of the Belief Set

The agent performs inference in the novel test envi-
ronment p′ using Zϕ(p

′). We assume that the agent
has access to {Zϕ(p) : p ∈ P}, i.e., the belief represen-
tation for the training environments. The agent then
collects all training environments that lie near p′ in
the space of the learned belief functions into the ball
B called the belief set defined as,

B := {pi : d(qϕ(z|p′)||qϕ(z|pi)) < ϵ} (8)

where d(·|·) is a distance function (e.g., Euclidean) in
the latent space and ϵ is a design hyperparameter.

Thus, for example, in a lifting task of cubes of various
masses, if the agent fails to lift a cube at test time,
it constructs the belief ball consisting of the training
environments with close representations, i.e., heavy

cubes and adds them to the belief set B. Depend-
ing on the cause for the failure of the agent in lifting
the cube, the situation goes into one of the follow-
ing branches: (1) The test environment requires an
In–Task-Distribution Transfer, i.e., the test-time
block is actually a heavy block or (2) The test environ-
ment requires Out-of-Task-Distribution Transfer,
i.e., a broken actuator makes a light block seem heavy.

3.2 Belief Verification

Subsequently, the agent optimizes causal curiosity on
B ∪ {p′}. As in Equation (7), a low capacity binary
clustering model is considered. Thus, the following
optimization procedure is implemented:

argmax
a0:T∈AT

[min{d(o0:T ,o
′
0:T ) : o0:T ∈ C1,o

′
0:T ∈ C2}−

max{d(o0:T ,o
′′
0:T ) : o

′′
0:T ,o0:T ∈ C1}−

max{d(o′
0:T ,o

′′′
0:T ) : o

′
0:T ,o

′′′
0:T ∈ C2}]

(9)

where O is the observation obtained by applying ac-
tion sequence a0:T . Clusters C1 and C2 represent the
bimodal model.

In-Task Distribution If the test environment p′

is In-Task Distribution, then the variance of values
assumed by the causal factors H ′ in the set of envi-
ronments B ∪ {p′} is small and the clusters are not
well-separated. Thus optimizing causal curiosity as in
Equation (9) will produce action sequences that result
in observations that cluster in a distributed manner as
in pane A of Figure 2.

Intuitively, if the agent has learnt to interact with
blocks of various masses and at test time is presented
with a heavy block, the outcome of its interaction with
the test block (i.e., p′) will not differ significantly in
comparison with the heavy blocks it interacted with
during training.

Out-of-Task-Distribution However, during the
optimization of Equation (9) in the OOTD case, 2
competing causal mechanisms will exist - one induced
by the set H ′ and the other from the set H − H ′.
The mechanism caused by H −H ′ will however dom-
inate as all environments in B will have the same val-
ues for H − H ′ while p′ will have a different value.
Thus, the resulting clusters for the causal mechanism
from H −H ′ will be well-separated. Subsequently, the
causal curiosity reward (Equation (9)) will be higher
for selecting the causal mechanism induced by H−H ′.

Intuitively, as in the above example of an agent inter-
acting with blocks of varying masses but constant size
ξ, if at test time, the agent is provided with a block of
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Figure 1: Out-of-Task Distribution Transfer. Pane A shows a training-time scenario where an agent learns
to interact with environments containing objects for varying values of mass. The causal graph is gated as
particular action sequences either obfuscate or underscore the effects of certain causal factors. Pane B represents
the inference-time scenario where the a causal factor, actuator health, held constant during training is varied at
inference.

Figure 2: Visualization of the Observation O.
Pane A represents the observation variables obtained
after the optimization of Equation (9) during an In-
Task-Distribution Transfer. Causal Curiosity will be
quite low in such a case as the bi-modal clustering
would be poor. Pane B represents the case when
OOTD transfer occurs - the causal curiosity reward
would be high as the bi-modal clustering would be
near-perfect.

low mass and a new size ξ′ ̸= ξ, the causal curiosity
reward for the size mechanism will be higher because
a perfect binary clustering is possible (as in pane B in
Figure 2) where one cluster contains observations from
training environments (blue cluster) corresponding to
size s while the other cluster corresponds to the test
environment with size s′ (red cluster). Thus, if the test
environment p′ lies in its own cluster after optimizing
causal curiosity on B∪{p′}, then GalilAI concludes p′

to be OOTD, i.e.,

Is OOTD(p′) =

{
1, if p′ lies in its own cluster

0, otherwise

Note, the causal curiosity for a known causal factor,
(In-Task-Distribution Transfer) will be less than the
causal curiosity for an unknown causal factor (OOTD
Transfer) as seen in Figure 2.

3.3 Probabilistic Baselines

A natural extension of Model-based learning methods
for OOTD is possible. We question whether such an
extension yields good results. We test whether OOTD
Detection is possible by simply learning a model of
the training and test environments and using using
the discrepancy of the outputs to detect whether the
learnt test-time model represents a task from OOTD.

We utilize an ensemble of probabilistic neural net-
works (PNNs) [Lakshminarayanan et al., Chua et al.,
2018], which is a generative neural network whose out-
put neurons parameterize a probability distribution
pθ(y|x); a mean value corresponds to the believed label
ŷ along with some degree of uncertainty θ.

For an environment p, we estimate the environment
transition function ϕp(st+1|st,at) using an ensemble
of PNNs fp

ϕ (st+1|st,at)). We are interested in the dis-
agreement between a novel test environment p′relative
to a training environment p which we measure us-

ing the relative entropy between fp′

ϕ and fp
ϕ given by

KL(fp′

ϕ ||fp
ϕ ):

DKL(f
p′

ϕ ||fp
ϕ ) =

1

2
[log

|Σ(fp
ϕ )|

|Σ(fp′

ϕ )|
− k+

(µ(fp′

ϕ )−µ(fp′

ϕ ))TΣ−1(fp
ϕ )(µ(f

p′

ϕ )− µ(fp
ϕ ))+

Σ−1(fp
ϕ )Σ(f

p′

ϕ )]

(10)

where k is the dimensionality of the environment’s ob-
servation space; st ∈ Rk, Σ(·) is covariance and µ(·) is
mean and (·) is trace.

We use Negative Log Loss as a scoring rule for PNNs,
and KL divergence as a measure of distribution dis-
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agreement. We utilize a thresholding technique here

to detect OOTD. We train fp′

ϕ and fp
ϕ over multiple

random seeds and use the mean KL(fp′

ϕ ||fp
ϕ ) of the

first k seeds as the threshold. Detection is then per-
formed using:

Is OOTD(p′) =

{
1, if KL(fp′

ϕ ||fp
ϕ ) > threshold

0, otherwise

4 Experiments

Our work has 2 main thrusts - the discovered ex-
perimental behaviors and the Out-of-Task-Distribution
Detection obtained from the outcome of the behav-
iors in environments. We visualize these learnt be-
haviors and verify that they are indeed semantically
meaningful and interpretable. We quantify the utility
of the learnt behaviors to perform OOTD detection.
Causal World. We use the Causal World Simulation
[Ahmed et al., 2020] based on the Pybullet Physics en-
gine to test our approach. The simulator consists of a
3-fingered robot, with 3 joints on each finger. We con-
strain each environment to consist of a single object
that the agent can interact with. The causal factors
that we manipulate for each of the objects are size and
mass of the blocks and the damping factor and control
frequency of the robotic motors. The simulator allows
us to capture and track the positions and velocities of
each of the movable objects in an environment.
Mujoco Control Suite. We also perform OOTD
Detection on 3 articulated agents that try to learn lo-
comotion - Half-Cheetah, Hopper, and Walker. For
each agent type, the causal factors that we intervene
on include the mass of the robot, and wind and gravity
in the environment, and the friction between the robot
actuators and the ground.

4.1 Generalized Experimental Setup

To test our approach, we train a transfer RL algorithm
- in our case, Causal Curiosity [Sontakke et al., 2021]
on multiple environments with causal factor A assum-
ing values A = a ∈ A where A is a set of values causal
factor A can assume. For example, we train an agent
to interact with blocks of varying masses (here mass is
causal factor A). At test time, we generate a range of
values of a causal factor B previously held fixed. Thus,
in the above example, having been trained on varying
values of mass, we now generate a range of values for
the control frequency (causal factor B) of the robot
actuators (previously held constant at some η). For
each pair of values of (B,A) causal factors, we report
the accuracy of detection over 10 random seed exper-
iments. Thus, in the above example, all environments
with (control = η,mass = m) are considered In-Task-

Distribution Transfer while all others are Out-of-Task
Distribution.
Interpreting Results For each pair of test-time and
training-time causal factors, we vary both over a range
of values. Consider for example Figure 3, where we
vary the mass of the blocks the robot interacts with
during training and at test-time, it receives environ-
ments with a different perception frequency. During
training in Figure 3 Pane C, the perception frequency
was at 1 (corresponding to the column at Perception
Frequency = 1). For each pair of (Control Frequency,
Mass), we run our method over 10 random seeds. The
value at each (x, y) position corresponds to the num-
ber of times during the 10 runs, GalilAI concluded
that the test environment was OOTD. Figure 3 Pane
C is an example of perfect detection - no false posi-
tives (column above x = 1 is zero) and 100% detection
when Perception Frequency is varied. Other experi-
ments depict varying degrees of detection success.

4.2 Causal World Experiments

During training, we vary either the mass or size of the
block in an environment. At test time, the agent inter-
acts with an environment with 3 possible errors - (1)
Distributional Shift of the Environment: Change
in the physical features of the block (2) Perception
Defect: Frequency of perception changes (i.e., fram-
erate of sensors) which affects the perception-to-action
loop and (3) Actuator Defect: the damping coeffi-
cient of the arm actuators is varied, which affects the
dynamics of the robotic arm.

Figure 3 depicts experiments with mass and size of
blocks as training-time causal factors and Perception
Frequency, Damping Factor and Mass as test-time
causal factors. Each of these experiments yield no false
positives as the columns above in the fixed value of the
test-time causal factor have zero detections. Figure 3
Pane C shows the agent has a perfect detection per-
formance in detecting the perception defect. Figure 3
panes A and B show that detection is successful when
the test-time value of the unseen causal factor is some
distance away from its constant value during training.
The agent is more likely to detect an unknown causal
factor when we make a larger change to it (larger val-
ues near the left and right border).

4.3 Mujoco Experiments

We perform experiments with the Mujoco control suite
[Todorov et al., 2012b] as well. During training, we
manipulate the mass of the friction and the friction
coefficients between the agent actuators and ground.
At test time, we manipulate the wind and gravity in
the environment and the mass of the agent. The in-
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Figure 3: Causal World experiments. Subfigures A – C refer to GalilAI, and subfigures D – F refer to the
probabilistic baseline. Each (x, y) pair on the plot corresponds to an (unseen, seen) pair of causal factors. The
value at each (x, y) pair depicts the performance of each method across measure performance as the number of
correctly classified environments on 10 different random seeds. In-distribution value of mass is 0.5; Damping
Coefficient is 0.5; Perception frequency is 1.0. Ideally, the column above the training value of the OOTD causal
factor should be 0, while all other columns should be 10 as is the case in Pane C.

distribution value of wind is 0.0, gravity is −9.8 and
mass is 1.0. Discerning wind while being invariant
to agent mass (Panes A and D in each sub-figure of
Figure 4) is a relatively easy endeavour with the half-
cheetah resulting in the highest accuracy across each of
the random seeds. The task of discerning mass while
being invariant to friction also yields high accuracy
of detection when the test mass varies significantly in
comparison with training time mass (red columns on
right and left edges of Panes C and F in Figure 4).
However, it suffers from poor detection at 0.8× and
1.2× the default mass for cheetah and hopper. The
hardest task is that of discerning gravity while being
invariant to mass - a task that requires discovering the
Galilean Equivalence Principle, i.e., that the ac-
celeration due to gravity is independent of mass. While
the success of GalilAI is limited when gravity is in the
vicinity of 9.8, it begins to successfully learn to detect
changes in gravity as it deviates from 9.8.

4.4 Interpretation of Learned Behaviours

For visualizations of our method, see here. We an-
alyze whether the discovered experimental behaviors
are actually semantically meaningful. We find that
the agent is able to discover many semantically mean-
ingful behaviors that underscore the effect of a new
causal factor previously held constant during train-
ing. Chiefly, we find that the 17th century philoso-
pher Galileo Galilei and his namesake GalilAI agree

that mass and gravitational acceleration are decoupled
- GalilAI learns a free-falling behavior that mimics
Galileo’s experiments of dropping objects to discern
the gravity of an environment whilst being invariant
to the agent mass.

In Mujoco Experiments, for mass as training time
causal factor and wind as test-time factor, the agent
learnt to use its body as a sail and allow the wind to
carry it along. It also learnt to do front-flips and rolls
in the direction of the wind, using the wind to help it
along. For friction as training causal factor and mass
as the test time causal factor, the agent also learnt to
perform headstands to test out its mass while avoiding
any horizontal locomotion allowing it to be invariant
to the friction coefficients.

In Causal World Experiments, for size as training time
causal factor and mass as test-time factor, the agent
learnt a relay-kick action when one of the finger push
the object to the other finger, who makes a further
push on it. This relay can only be finished on small
mass blocks, thus distinguishing the causal factor.

5 Conclusion

In this work, we propose a novel task - that of Out-
of-Task Distribution (OOTD) Detection and offer a
causally inspired solution for the same. We find that
simplistic extensions of existing model-based meth-
ods result in suboptimal performance with either low-

https://galil-ai.github.io/
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detection accuracy and high false positive rate. We
show the efficacy of our method in both a variety of
embodied robotic environments spanning 2 simulation
engines. We find GalilAI has the ability learn complex
causal mechanisms and is a first step towards safer
transfer/meta-RL.
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Figure 4: Mujoco experiments. Plots I, II and III correspond to Hopper, Walker and Cheetah environments
respectively. Within each, subfigures A – C refer to GalilAI, and subfigures D – F refer to the probabilistic
baseline. Each (x, y) pair on the plot corresponds to an (unseen, seen) pair of causal factors. The value at
each (x, y) pair depicts the performance of each method across measure performance as the number of correctly
classified environments on 10 different random seeds. In-distribution value of wind is 0.0; gravity is −9.8; mass
is 1.0.
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A Implementation details

A.1 Planner

The Experiment Planner consists of a uniform
distribution control planner with Cross En-
tropy Method Model Predictive Control. Each
planner is initialized to a uniform distribution
U(controlLow, controlHigh). For Mujoco experi-
ments, each planner consists of 20 sampled plans per
iteration. Each sampled plan consists of 6 control
signals applied for a duration of 10 frames, for a
total of 60 frames per episode. For Causal World
experiments, each planner similarly consists of 20
sampled plans per iteration, with each action applied
for a longer duration, for a total of 198 frames per
episode. In both cases, each sampled plan is applied
to each of the considered environments. At the end of
each training iteration, the top 10% of plans are used
to update the agent’s action distribution. In total,
training required 20 full iterations.

In general, during training, the agent learns a sequence
of actions to maximize the Causal Curiosity reward
across 9 different environments, e.g. block mass of
0.1 to 0.9 with step 0.1. The learned action sequence
will group the training environments into 2 clusters,
such as a large mass cluster and a small mass clus-
ter. Then, using the action sequence which maximizes
the desired optimization problem, the agent is tested
in an OOTD environment and classifies said environ-
ment to one of its prior two belief clusters according to
some distance function. Following the creation of the
agent’s belief cluster (cluster containing test environ-
ment), we then conduct the same training procedure
again on this new environment with its belief cluster
environments. If the new clustering result will sep-
arate the test environment in its own cluster, while
others remain in the other one, we say the agent made
a detection of the unknown causal factor. We run such
experiments 10 times over different random seeds on
different training-test environment pairs covering vari-
ous unknown causal factors. To prevent over-fitting on
In-Distribution tasks, training is performed on slightly
different values of causal factors than what is seen
during testing, e.g. train on mass = 0.24m, test on
mass = 0.20m.

A.2 Modifying Environments

Mujoco. For mass experiments, we vary the normal
mass of the robot (m)from 0.2m to 2m. Similarly
when modifying friction values in the environment, we
change the friction coefficient η between the robot’s
actuators and the ground from 0.2η to 2η. For grav-
ity experiments, we modify the absolute value. The

ground truth (gz = −9.81) from low gravity gz = −2.0
to high gravity gz = −19.6 for a total of 10 values. In
wind experiments, we deviate from the typical value
of 0.0 (no wind) for 10 values between 2.0 to 19.6.
In Causal World, we are able to modify the abso-
lute mass and shape of the block the agent interacts
with. Changing the perception value of the robot is
equivalent to modifying the skip-frame value of the
robot’s controller. Larger values of skip-frame leads to
a slower refresh rate of the robot’s sensors, and leads
to less controllable actions.

B Probabilistic Baseline

To evaluate our prediction model, we design a baseline
solely based on the first round of training. If the pos-
terior distribution ϕ(st + 1|st, at) learned in the test
environment is more than a reasonable large thresh-
old distance away than the distribution learned in the
training environments, as measured by KL divergence,
we denote it as a detection.

We assume for a Causal POMDP p, the agent’s ob-
servations at timestep t is a random variable gener-
ated from a Gaussian distribution, such that st+1 ∼
N (µs+t,Σ). For each (unseen, seen) pair of causal
factors, we train an ensemble of probabilistic neural
networks, each which output a mean vector µp and
a diagonal covariance matrix Σp. Each ensemble is
a uniformly-weighted mixture model, and we combine
the predictions as p(y|x) = M−1

∑M
m=1 pθm(y|x, θm).

The prediction is then a mixture of Gaussian distri-
butions. We assume the covariance matrix Σp is a
diagonal matrix. For ease of computation, we fur-
ther approximate the ensemble prediction as a Gaus-
sian whose mean and variance are respectively that
of the mixture; µ∗ = M−1

∑M
m=1 µm and σ∗ =

M−1
∑

m(σ2
m + µ2

m)− µ∗2.

As training data for each network, we use the set of all
(state, action) pairs gathered during the first round of
training our algorithm; D = {(st,at), st+1}Tt=0.

In practice, each network was trained for 40 epochs
across 10 random weight initializations, with a learn-
ing rate of 0.001 and Adam as the optimizer. We used
an ensemble size of M = 10 for each experiment. To
set the threshold, we gathered training data from 5
seeds unseen by our method, for every (unseen, seen)
pair of causal factors, and took the average value of the
KL divergence of the test environment with respect to
the training environments.

The ensemble model was inspired in part due to the
observation that different random weight initialization
produced different distribution predictions from one
another. However, ultimately we remark that the over-
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all performance of the baseline did not differ signifi-
cantly if an ensemble was not used.

C Error Analysis

As is evident our result figures, agents are more likely
to detect an unknown causal factor when a larger
change is made to its value (larger values further away
from the in-distribution value column). Agents are
less likely to detect a change to their environment
when the percentage change of the training causal
factor in its belief cluster is large while the percent-
age change of the unknown causal factor is small. In
Causal World, we found different factors to have dif-
ferent significance levels. In general, Framerate >>
Size > Damping > Mass >> Friction. In an envi-
ronment setting, the agent is able to detect a causal
factor if the training factor has a lower significance
value than the causal factor. For example, after ex-
amining the visualizations, we find that when the test
environment is clustered together with heavy masses,
the heavy mass dominates the effect of the damping,
and the agent learns to further separate heavy blocks
from light blocks in this new setting.

In another word, maximizing Causal Curiosity will
separate the most significant factor (the significance
is determined by the nature of the factor and the vari-
ance of it across all training environments) into 2 clus-
ters. Each cluster will have a smaller variance of the
training factor, thus lower significance. When we con-
tinue this process until the significance of the training
factor is low enough in a cluster, the next significant
factor (causal factor in our case) will be taken into
consideration in the next training.

In Mujoco, after examining the visualizations, we pos-
tulate that agents with high action and observation
spaces, such as Walker, are more prone to confusing
actions such as front-flips and rolls with being pushed
by the wind. This could be due to frequent relative
change in position from one of the robot’s sensors to
another. Agents with small action and observation
spaces, such as the Hopper, suffer less from this sen-
sor confusion because their observations rely more on
their absolute position in the environment. In Mu-
joco, a robot’s absolute position in their environment
was one of the most important factors in determining
whether an environment OOTD or not for many of the
considered causal factors.

Finally, compared to the probabilistic baseline, we
would like to point out our method shows a more
anthropomorphic response to varying values of causal
factors. Consider the following example of how a hu-
man might see if its windy outside before leaving the
house. A human may still need to check the weather

report, or look at the leaves blowing in the wind, to
determine if there is slight or no breeze outside. How-
ever, if there is a significant gust, one would simply
be able to tell by sticking her arm out the window.
Similarly, our method shows a similar (lack-of) sensi-
tivity to certain varying causal factors. On the other
hand, the baselines do not show such sensitivity. The
tendency to predict the same value across multiple
(unseen, seen) pairs is likely due to the data gener-
ative process used to gather the training data. Not all
action sequences may bring forth the causal factor’s in-
fluence in the environment, but we consider all action
sequences generated by the planner during the initial
training process. Our method on the other hand, only
considers the best action sequence; the action sequence
which maximizes the optimization problem discussed
in the main text.


