
Resampling Base Distributions of Normalizing Flows

Vincent Stimper1,2 Bernhard Schölkopf1 José Miguel Hernández-Lobato2

1Max Planck Institute for
Intelligent Systems, Germany

2University of Cambridge,
United Kingdom

Abstract

Normalizing flows are a popular class of mod-
els for approximating probability distribu-
tions. However, their invertible nature lim-
its their ability to model target distributions
whose support have a complex topological
structure, such as Boltzmann distributions.
Several procedures have been proposed to
solve this problem but many of them sac-
rifice invertibility and, thereby, tractability
of the log-likelihood as well as other desir-
able properties. To address these limitations,
we introduce a base distribution for normal-
izing flows based on learned rejection sam-
pling, allowing the resulting normalizing flow
to model complicated distributions without
giving up bijectivity. Furthermore, we de-
velop suitable learning algorithms using both
maximizing the log-likelihood and the opti-
mization of the Kullback-Leibler divergence,
and apply them to various sample problems,
i.e. approximating 2D densities, density es-
timation of tabular data, image generation,
and modeling Boltzmann distributions. In
these experiments our method is competitive
with or outperforms the baselines.

1 INTRODUCTION

Inferring and approximating probability distributions
is a central problem of unsupervised machine learning.
A popular class of models for this task are normalizing
flows (Tabak and Vanden-Eijnden, 2010; Tabak and
Turner, 2013; Rezende and Mohamed, 2015), which
are given by an invertible map transforming a sim-
ple base distribution such as a Gaussian to obtain a

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

complex distribution matching our target. Normaliz-
ing flows have been applied successfully to a variety
of problems, such as image generation (Dinh et al.,
2015, 2017; Kingma and Dhariwal, 2018; Ho et al.,
2019; Grcić et al., 2021), audio synthesis (van den
Oord et al., 2018), variational inference (Rezende and
Mohamed, 2015), semi-supervised learning (Izmailov
et al., 2020) and approximating Boltzmann distribu-
tions (Noé et al., 2019; Wu et al., 2020; Wirnsberger
et al., 2020) among others (Papamakarios et al., 2021).
However, with respect to some performance measures
they are still outperformed by autoregressive models
(Chen et al., 2018; Parmar et al., 2018; Child et al.,
2019), generative adversarial networks (GANs) (Gul-
rajani et al., 2017; Karras et al., 2019, 2020a,b), and
diffusion based models (Sohl-Dickstein et al., 2015;
Kingma et al., 2021). One reason for this is an ar-
chitectural limitation. Due to their bijective nature
the normalizing flow transformation leaves the topo-
logical structure of the support of the base distribu-
tion unchanged and, since it is usually simple, there is
a topological mismatch with the often complex target
distribution (Cornish et al., 2020), thereby diminish-
ing the modeling performance and even causing ex-
ploding inverses (Behrmann et al., 2021). Several so-
lutions have been proposed, e.g. augmenting the space
the model operates on (Huang et al., 2020), continu-
ously indexing the flow layers (Cornish et al., 2020),
and adding stochastic (Wu et al., 2020) or surjec-
tive layers (Nielsen et al., 2020). However, these ap-
proaches sacrifice the bijectivity of the flow transfor-
mation, which means in most cases that the model
is no longer tractable, memory savings during train-
ing are no longer possible (Gomez et al., 2017), and
the model is no longer a perfect encoder-decoder pair.
Some work has been done on using multimodal base
distributions (Izmailov et al., 2020; Ardizzone et al.,
2020; Hagemann and Neumayer, 2021), but the inten-
tion was to do classification or solve inverse problems
with flow-based models and not to capture the inher-
ent multimodal nature of the target distribution. Pa-
pamakarios et al. (2017) took a mixture of Gaussians
as base distribution and showed that this can improve

Resampling Base Distributions of Normalizing Flows

the performance.

In this work, we develop a method to obtain a
more expressive base distribution through learned ac-
cept/reject sampling (LARS) (Bauer and Mnih, 2019).
It can be estimated jointly with the flow map by either
maximum likelihood (ML) learning or minimizing the
Kullback-Leibler (KL) divergence, matching the topo-
logical structure of the target’s support. Moreover, we
propose how the method can be scaled up to high di-
mensional datasets and demonstrate the effectiveness
of our procedure on the tasks of learning 2D densities,
estimating the density of tabular data, generating im-
ages, and the approximation of a 22 atom molecule’s
Boltzmann distribution.

2 BACKGROUND

2.1 Normalizing Flows

Let z be a random variable taking values in Rd, having
the density pϕ(z) parameterized by ϕ. Furthermore,
let Fθ : Rd → Rd be a bijective map parameterized
by θ. We can compute the tractable density of the
new random variable x := Fθ(z) with the change of
variables formula

p(x) = pϕ(z) |det(JFθ
(z))|−1

, (1)

where JFθ
is the Jacobian matrix of Fθ. This way of

constructing a complex probability distribution p(x)
from a simple base distribution p(z) is called a normal-
izing flow. We can use them to approximate a target
density p∗(x), which is done by optimizing a training
objective. If the target density is unknown but sam-
ples from the corresponding distribution are available,
we maximize the expected log-likelihood (LL) of the
model

LL(θ, ϕ) = Ep∗(x) [log (p(x))] . (2)

Conversely, if the target density is given, we minimize
the (reverse) KL divergence1 (Papamakarios et al.,
2021)

KLD(θ, ϕ) := Ep(x) [log p(x)]− Ep(x) [log p
∗(x)] , (3)

or another difference measure for probability distri-
butions such as the α-divergence (Hernández-Lobato
et al., 2016).

To deal with high dimensional data, such as images,
the multiscale architecture was introduced by Dinh
et al. (2017). As sketched in Figure 5, at the first level,
the entire input x is transformed by several flow layers

F1. The result is split up into two parts, h
(1)
1 and h

(2)
1 .

1For simplicity, we will call it just KL divergence from
now on.

(a) (b) (c)

Figure 1: Illustration of the architectural limitation of
normalizing flows. (a) depicts the multimodal target
distribution, (b) the Gaussian base distribution used,
and (c) the learned real NVP model. The model’s
support has one connected component with a density
filament between the modes.

For images, this is typically done by first squeezing the
image, i.e. reducing its height and width by a factor 2
and adding the surplus pixels as additional channels,
and then splitting the resulting tensor along the chan-

nel dimension. h
(1)
1 is immediately factored out in the

density, while h
(2)
2 is further transformed by the next

set of flow layers F2. The process is then repeated un-
til a desired depth is reached. The full density for a
multiscale architecture with n levels is given by

p(x) =

n∏
i=1

|det (JFi
(hi−1))| p(zi), (4)

where we set h0 = x.

Normalizing flows can compete with other machine
learning models on many benchmarks (Papamakarios
et al., 2021). However, their performance is still im-
paired by an architectural weakness. The transfor-
mations defining a normalizing flow are invertible and
such maps leave the topology of the sets they map
unchanged (Runde, 2005). Consequently, the topolog-
ical structure of the support of p(z) is the same as
that of p(x). Usually, the base distribution is a Gaus-
sian, which has only one mode, so its support consists
of one connected component but the target distribu-
tion might be multimodal with the density between
the modes being close to zero or even numerically zero
due to finite precision so that the support consists of
multiple disconnected components. As an exemplifi-
cation we fit a real-valued non-volume preserving (real
NVP) flow model with 8 coupling layers to a multi-
modal target distribution, see Figure 1. The density
of the trained model consists of one connected compo-
nent covering the modes of the target, but connecting
them via a density filament. Certain flow-based mod-
els, such as the residual flow (Behrmann et al., 2019;
Chen et al., 2019), can only converge to the target if
they become non-invertible due to the topological mis-
match (Cornish et al., 2020), thereby causing unstable

Vincent Stimper, Bernhard Schölkopf, José Miguel Hernández-Lobato

training behaviour (Behrmann et al., 2021). Proposed
solutions include increasing the model size significantly
(Chen et al., 2019), but this increases the computa-
tional cost and memory demand while the stability
issues persist. Training can be stabilized via a suit-
able regularization, but this reduces the performance
(Behrmann et al., 2021). Other approaches are dis-
cussed in Section 5.

2.2 Learned accept/reject sampling

Learned accept/reject sampling (LARS) is a method
to approximate a d-dimensional distribution q(z) by
reweighting a proposal distribution π(z) through a
learned acceptance function aϕ : Rd → [0, 1], where
ϕ are the learned parameters (Bauer and Mnih, 2019).
Given a sample zi from π, we will accept it with a prob-
ability aϕ(zi), otherwise we reject it and draw a new
sample until we accept one of the proposed samples.
The resulting distribution is given by

p∞(z) =
π(z)aϕ(z)

Z
; Z :=

∫
π(z)aϕ(z)dz. (5)

In order to limit the computational cost caused by high
rejection rates, Bauer and Mnih (2019) introduced a
truncation parameter T ∈ N. If the first T − 1 sam-
ples from the proposal get rejected, we accept the T th

sample no matter the value of the learned acceptance
probability. Through this intervention, we alter the
final sampling distribution to become

pT (z) = (1− αT)
aϕ(z)π(z)

Z
+ αTπ(z), (6)

where αT := (1 − Z)T−1, which reduces to (5) for
T → ∞. The integral (5) defining Z is not tractable, so
we cannot compute it directly. Instead, it is estimated
via Monte Carlo sampling, i.e.

Z ≈ 1

S

S∑
s=1

aϕ(zs), (7)

where zs ∼ π(z), which needs to be recomputed in
every training iteration, as parameter changes in aϕ
cause a change in Z.

LARS was first used to create a more expressive
prior for variational autoencoders (VAEs) (Kingma
and Welling, 2014), making it closer to the aggregate
posterior distribution, thereby bringing the approxi-
mate posterior distribution closer to the ground truth.
The resampled priors are trained jointly with the likeli-
hood and the approximate posterior via maximization
of the evidence lower bound. Since this only requires
to evaluate the density of the prior at the data points,
it is not even required to perform rejection sampling
during training; therefore, the computational cost of
training the whole model is only increased slightly.

3 METHOD

3.1 Resampled base distributions

In Section 2.1, we argued that the topological structure
of the support of the base distribution equals that of
the overall flow distribution. To avoid artefacts result-
ing from mismatches between them, we aim to make
the latter closer to the former. Therefore, we resample
the base distribution with LARS, i.e. use it as our pro-
posal so that its density becomes (6). Since there are
no restrictions on the acceptance function aϕ, we can
use an arbitrarily complex neural network to model
any desired topological structure. The resulting log-
probability of the model is given by

log p(x) = log π(z) + log

(
αT + (1− αT)

aϕ(z)

Z

)
− log |det JFθ

(z)| ,
(8)

where Fθ is the flow transformation, i.e. the composi-
tion of all flow layers, and z = F−1

θ (x). In our case,
the proposal is a Gaussian but it could be any other
distribution or a more complicated model, such as a
mixture of Gaussians or an autoregressive model. De-
pending on the application, aϕ will be a fully con-
nected or a convolutional neural network, and details
about how the architecture can be chosen are given
in Appendix C.1. Since the evaluation of aϕ can be
parallelized over the number of dimensions of the data
d, we only add a constant computational overhead to
our model. In contrast, autoregressive models scale
linearly with d. We can sample from the model by
performing LARS and propagating the accepted val-
ues through the flow map. The rejection rate, and
hence the sampling speed, can be controlled via the
truncation parameter T , which we set to 100 in our
experiments unless otherwise stated, but also through
adding Z to our loss function, which is discussed in
Appendix C.2.

Usually, the base distribution of normalizing flows has
mean and variance parameters being trained with the
flow layer parameters. Our proposal is simply a stan-
dard normal distribution, i.e. a diagonal Gaussian with
mean zero and variance one. Thereby, we ensure that
the samples from the proposal, which are the input
for the neural network representing the learned accep-
tance probability aϕ, come from a distribution which
does not change during training. Instead, the mean
and variance of the distribution can be altered after
the resampling process by applying an affine flow layer
with scale and shift being learnable parameters.

Note that while we retain the invertiblility of the flow,
the probability distribution (8) cannot be evaluated
exactly since Z needs to be estimated via (7). How-
ever, for large T the base distribution reduces to (5)

Resampling Base Distributions of Normalizing Flows

and, hence, we are only off by a constant meaning there
would not be a bias when doing importance sampling,
which is crucial for applications such as Boltzmann
generators, see Section 4.4.

3.2 Learning algorithms

The resampled base distribution can be trained jointly
with the flow layers of our model. Both, the expected
LL and the KL divergence, can be used as objectives.
The former corresponds to maximizing (2), which is
done via stochastic gradient decent. As done by Bauer
and Mnih (2019), we sample from the proposal in each
iteration to estimate the gradient of Z with respect
to the parameters, see (7). To stabilize training, we
estimate the value of the normalization constant by
an exponential moving average, see Appendix A.1 for
more details.

When the unnormalized target density p̂∗(x) is known,
we can use the KL divergence (3) as our objective.
However, because sampling from the base distribution
includes an acceptance/rejection step, we cannot ap-
ply the reparameterization trick (Kingma and Welling,
2014) to obtain the gradients with respect to the model
parameters. Instead, we derive an expression of the
gradients of the KL divergence similar to that intro-
duced by Grover et al. (2018).

Theorem 1. Let pϕ(z) be the base distribution of a
normalizing flow, having parameters ϕ, and Fθ be the
respective invertible mapping, depending on its param-
eters θ, such that the density of the model is

log (p(x)) = log (pϕ(z))− log |det JFθ
(z)| , (9)

with x = Fθ(z). Then, the gradients of the KL diver-
gence with respect to the parameters are given by

∇ϕKLD(θ, ϕ) = Covpϕ(z)

{
∇ϕ log pϕ(z),

log (pϕ(z))− log |det JFθ
(z)| − log p̂∗(Fθ(z))

} (10)

∇θKLD(θ, ϕ) = −Epϕ(z)

[
∇θ

(
log p̂∗(Fθ(z))

+ log |det JFθ
(z)|

)] (11)

The proof is given in Appendix A.2. We will use (10)
and (11) to compute the gradients of the KL diver-
gence in our experiments and, thereby, demonstrate
its effectiveness.

3.3 Application to multiscale architecture

LARS cannot be applied to very high dimensional dis-
tributions because we have to estimate Z and its gra-
dients via Monte Carlo sampling and the number of
samples needed grows exponentially with the number
of dimensions (Bauer and Mnih, 2019). Although the

C
h
an

n
el
s

H
ei
gh
t

Width

Figure 2: Visualization of a feature map when process-
ing an image in a machine learning model. The unit
which is used for factorization in our resampled base
distribution is shown in red.

base distribution of a normalizing flow must have the
same number of dimensions as the target, we can re-
duce the number of dimensions significantly by factor-
ization. Therefore, we extend the multiscale architec-
ture, see Section 2.1 and (Dinh et al., 2017), by further
subdividing the base distribution at each level into fac-
tors with less than 100 dimensions. First, we squeeze
the feature map until the product of height and width
is smaller than 100. Then, each channel is treated as a
separate factor, see Figure 2. To reduce the complexity
of the model, we use parameter sharing to express the
distribution of factors, i.e. there is one neural network
per level with multiple outputs, each representing the
acceptance probability aϕ for one channel. This also
has the advantage that we can estimate the normal-
ization constant and its gradient of all factors of one
level in parallel by sampling from a Gaussian, passing
the samples through the neural network and comput-
ing the average for each output dimension separately.
As mentioned in Section 3.1, the mean and variance
is added via a constant coupling layer. Furthermore,
the base distribution can be made class-conditional by
making the mean and variance and/or aϕ dependent
on the class. The latter can be efficiently achieved by
adding more outputs to the neural network to have
one value for aϕ per class and distribution if needed.

4 EXPERIMENTS

4.1 2D distributions

In this section, we aim to demonstrate that our
method is indeed capable of modeling complicated
distributions. Our code for all experiments is pub-
licly available on GitHub at https://github.com/

VincentStimper/resampled-base-flows.

We start with simple 2D distributions having supports
with various topological structures, i.e. a distribution

https://github.com/VincentStimper/resampled-base-flows
https://github.com/VincentStimper/resampled-base-flows

Vincent Stimper, Bernhard Schölkopf, José Miguel Hernández-Lobato

Target
Real NVP,

Gaussian base
Real NVP,

resampled base
Resampled base

Real NVP,
Gaussian mixture base

D
ua

l m
oo

n
C

ir
cl

e
of

 G
au

ss
ia

ns
Tw

o
ri

ng
s

Figure 3: Visualization of the real NVP densities as well as the learned resampled base distribution when
approximating three 2D distributions with complex topological structure. The models are trained via ML
learning.

Table 1: KL divergences of the target distribution and the flow models which are trained to approximate the
three 2D distributions, shown in Figure 3, with ML learning. For each target distribution and flow architecture,
the model with the lowest KL divergence is marked in bold.

Flow architecture Real NVP Real NVP Real NVP Residual Residual Residual
Base distribution Gaussian Mixture Resampled Gaussian Mixture Resampled
Dual moon 1.83 1.80 1.77 1.82 1.80 1.76
Circle of Gaussians 0.090 0.060 0.043 0.045 0.042 0.039
Two rings 10.7 10.6 10.4 11.7 10.8 10.4

with two modes, one with eight modes, and one with
two rings, see Figure 3 and Table 8. We use both
learning algorithms discussed in Section 3.2. To train
our flows via ML, we draw samples from our distri-
butions via rejection sampling. As flow architectures,
we choose real NVP (Dinh et al., 2017) and residual
flow (Behrmann et al., 2019; Chen et al., 2019) with
16 layers each. For each flow architecture, we train
models with a Gaussian, a mixture of 10 Gaussians,
and a resampled base distribution, having a Gaussian
proposal and a neural network with 2 hidden layers
with 256 hidden units each as well as a sigmoid out-
put function as acceptance probability.

The densities of the trained real NVP and residual
flow models are show in the Figures 3 and 9, respec-
tively. With a Gaussian base distribution, the flows
struggle to model the complex topological structure.
For the trained real NVP models it is especially visi-
ble in Figure 3 that the density essentially consists of
one connected component since there are density fil-
aments between the modes and rings are not closed.
The multimodal distributions can be fitted much bet-
ter when using a mixture of Gaussians as base dis-
tribution, but especially the ring distribution can still
not be represented properly. With a resampled base
distribution the flow models the target distributions
accurately without any artefacts. The base distribu-

Resampling Base Distributions of Normalizing Flows

Table 2: LL on the test sets of the respective datasets of NSF, its CIF variant, and a NSF with a resampled
base distribution (RBD). The values are averaged over 3 runs each and the standard error is given as a measure
of uncertainty. The highest values within the confidence interval are marked in bold.

Method Power Gas Hepmass Miniboone
NSF 0.69± 0.00 13.01± 0.02 −14.30± 0.05 −10.68± 0.06
CIF-NSF 0.68± 0.01 13.08± 0.00 −13.83± 0.10 −9.93± 0.06
RBD-NSF (ours) 0.69± 0.01 13.29± 0.05 −14.02± 0.12 −9.45± 0.03

tions assume the respective topological structure of the
target while the flow transformation does the fine ad-
justment of the density. We also estimate the KL di-
vergences of the target and the model distributions
which are listed in Table 1. In all cases the flow model
with the resampled base distribution outperforms the
respective baselines.

Moreover, we train real NVP models with Gaussian
and resampled base distributions with the KL diver-
gence using the gradient estimators derived in Theo-
rem 1. The same architecture as the models trained
with ML learning are used and their resulting densities
are shown in Figure 7. In addition, we also computed
the KL divergences listed in Table 3. As for the pre-
vious experiments, the flow with the resampled base
distribution clearly outperforms its baseline visually
and quantitatively for all the three targets.

Table 3: KL divergences of the target distribution and
the models which were trained using the KL diver-
gence, shown in Figure 7. For each target distribution,
the real NVP model with the lower KL divergences is
marked in bold.

Base distribution Gaussian Resampled
Dual moon 1.844 1.839
Circle of Gaussians 0.167 0.122
Two rings 11.5 10.3

4.2 Tabular data

Next, we estimate the density of four tabular datasets
from the UCI Machine Learning Repository (Dheeru
and Taniskidou, 2022). We use the same preprocess-
ing and training, validation, and test splits as Papa-
makarios et al. (2017), which have been adopted by
others in the field (Durkan et al., 2019; Cornish et al.,
2020). For each dataset, we train a Neural Spline Flow
(NSF) (Durkan et al., 2019), its continuously indexed
(CIF) variant (Cornish et al., 2020), and one with a
resampled base distribution. The LL of the models are
shown in Table 2. More details about the setup and
the architecture as well as results for real NVP flows
on the same datasets are given in Appendix E.

There is no significant performance difference of the
three methods on the power dataset. On Hepmass,
the resampled base distributions achieves similar per-
formance to CIF, while both are better than the vanilla
NSF. For the Gas and Miniboone dataset, the flow
with the resampled base distribution clearly outper-
forms its baselines. When using real NVP, the differ-
ence is even larger on all datasets but Miniboone, as
can be seen in Table 9.

4.3 Image generation

To model images with our method, we train Glow
(Kingma and Dhariwal, 2018) on the CIFAR-10
dataset (Krizhevsky, 2009). We use the multiscale ar-
chitecture introduced in Section 3.3, where we compare
a Gaussian with a respective resampled base distribu-
tion. As done by Kingma and Dhariwal (2018), we
use 3 levels, but train models with 8, 16, and 32 layers
per level with each base distribution, with more details
provided in Appendix F. For each model architecture,
we do three seeded training runs and report bits per
dimension on the test set in Table 4.

Table 4: Bits per dimension on the test set of the
Glow models with Gaussian and resampled base dis-
tribution trained on CIFAR-10. For each architecture,
three seeded training runs were done, the reported bits
per dimension values are averages over these runs and
the standard error is given as an uncertainty estimate.
For each number of layers, the lowest values within the
confidence interval is marked in bold.

Base distribution Gaussian Resampled
8 layers per level 3.403± 0.002 3.399± 0.001
16 layers per level 3.339± 0.001 3.332± 0.001
32 layers per level 3.283± 0.002 3.282± 0.001

The flow with the resampled base distribution outper-
forms the baseline when using 8 or 16 layers per level,
while performing about equal with 32 layers. The dif-
ference is larger for smaller models, i.e. those where
fewer layers are used, since models with many layers
are already rather expressive. Using a more expressive
base distribution also increases the model size and the

Vincent Stimper, Bernhard Schölkopf, José Miguel Hernández-Lobato

Figure 4: Marginal distribution of three dihedral angles of Alanine dipeptide. The ground truth was determined
with a MD simulation. The flow models are based on real NVP and were trained via ML.

Table 5: Quantitative comparison of the real NVP models approximating the Boltzmann distribution of Alanine
dipeptide trained via ML learning. The LL is evaluated on a test set obtained with a MD simulation. The KL
divergences of the 60 marginals were computed and the mean and median of them are reported. All results are
averages over 10 runs, the standard error is given, and highers LL as well as lowest KL divergences are marked
in bold.

Base distribution Gaussian Mixture Gaussian Resampled
Number of layers 16 16 19 16
LL (×102) 1.8096± 0.0002 1.8106± 0.0002 1.8109± 0.0001 1.8118± 0.0001
Mean KLD (×10−3) 1.76± 0.08 8.23± 0.82 1.35± 0.03 1.12± 0.02
Median KLD (×10−4) 5.20± 0.10 43.5± 6.0 4.63± 0.08 4.36± 0.05

training time, but this amounts only to 0.4-1.5% and
5-15%, respectively, versus a roughly linear increase
with the number of layers. Hence, this can be a desir-
able trade-off, depending on the use case.

4.4 Boltzmann generators

An important application of normalizing flows is the
approximation of Boltzmann distributions. Given the
atom coordinates x of a molecule, the likelihood of
finding it in this state, i.e. the Boltzmann distribution,
is proportional to e−u(x), where u denotes the energy
of the system, which can be obtained through physical
modeling. Usually, samples are drawn from this distri-
bution through molecular dynamics (MD) simulations
(Leimkuhler and Matthews, 2015). However, the sam-
pling process can be greatly accelerated by approxi-
mating the Boltzmann distribution with a normalizing
flow, called a Boltzmann generator, and then sampling
from the flow model (Noé et al., 2019).

Here, we approximate the Boltzmann distribution of
the 22 atom Alanine dipeptide, which has been used
as a benchmark system in the machine learning liter-
ature (Wu et al., 2020; Campbell et al., 2021; Köhler
et al., 2021). We use the coordinate transformation
introduced by Noé et al. (2019), see also Appendix

G.1, which incorporates the translational and rota-
tional symmetry and reduces the number of dimen-
sions from 66 to 60. Both ML learning and training
using the KL divergence are used. For the former we
generate a training dataset through a MD simulation
over 107 steps each and keep every 10th sample, re-
sulting in datasets with 106 samples. With the same
procedure we generate a test set to evaluate all trained
models.

With ML learning we train real NVP models having
16 layers with a Gaussian, a mixture of 10 Gaussians,
and a resampled base distribution. Furthermore, we
train another real NVP model with a Gaussian base,
but having 19 layers, which has roughly the same num-
ber of parameters as the real NVP model with the re-
sampled base. More details of the architecture and
the training procedure are listed in Appendix G.2.
The marginal distribution of three dihedral angles are
shown in Figure 4.

Although we tried various methods of initializing the
mixture of Gaussians, training it jointly with the flow
turns out to be unstable leading to a poor fit of the
marginals, which is especially visible for γ3. More-
over, for two of the three angles, the 16-layered model
with the Gaussian base distribution cannot represent
the multimodal nature of the distribution accurately.

Resampling Base Distributions of Normalizing Flows

Increasing the number of layers to 19 improves the re-
sult, but even this model is clearly outperformed by
the real NVP with a resampled base distribution. To
compare the performance quantitatively, we computed
the LL on the test set and estimated the KL diver-
gence between the MD samples and the models of the
marginals through histograms for all 60 dimensions
and report the mean and median. All performance
measures where averaged over 10 seeded runs and are
shown in Table 5. The real NVP model with the re-
sampled base distribution outperforms all the base-
lines. The improved performance comes at the cost of
increased training time, i.e. 49% and 26%, and sam-
pling time, i.e. by a factor of 4 and 1.8, for the real
NVP and the residual flow models with the resampled
base distribution, when compared to their Gaussian
counterparts. A further analysis of the Ramachan-
dran plots of the models is done in Appendix G.3.
There, we also do a comparison to stochastic normal-
izing flows (Wu et al., 2020) and show the results of
training residual flows with ML whereby the model
with the resampled base distribution outperforms the
baselines as well.

Moreover, we used the KL divergence to train real
NVP models with Gaussian, mixture of Gaussians,
and resampled base distributions as well, having the
same architecture as the real NVP models with 16
layers in the experiments above. This is a challeng-
ing task since if samples from the model are too far
away from the modes of the Boltzmann distribution,
their gradients can be very high making training un-
stable. However, it is important for the application
of Boltzmann generators since the necessity of creat-
ing a dataset through other expensive sampling pro-
cedures diminishes their ability to reduce the overall
computational time needed for sampling. Details of
the model architectures and the training procedure are
given in Appendix G.2. Although it involves rejection
sampling, training the flow models with the resampled
base distribution only took 15% longer than the base-
line models. As can be seen in Table 15, the real NVP
model with a resampled base outperforms those with
a Gaussian and a mixture of Gaussians; however, they
are still inferior to flows trained via ML.

5 DISCUSSION AND RELATED
WORK

The main challenge we tackle in this work, i.e. that
normalizing flows struggle to model distributions with
supports having a complicated topological structure
due to their invertible nature, has been addressed in
several articles. Cornish et al. (2020) introduced a
new set of variables for each flow layer, called contin-

uous indices, which they used as additional input to
the flow maps. Thereby, they relaxed the bijectivity
of the transformation leading to a better model per-
formance. Huang et al. (2020) augmented the dataset
by auxiliary dimensions before applying their normal-
izing flow model. Although the topological constraints
are still present in the augmented space, the marginal
distribution of interest can be arbitrary complex. Wu
et al. (2020); Nielsen et al. (2020) suggested adding
sampling layers to the model. Hence, the topology
of the support can be changed through the sampling
process. Nielsen et al. (2020) also introduced surjec-
tive layers, which do not suffer from topological con-
straints and essentially combine VAEs with flow-based
models. These approaches sacrifice the invertibility of
the flow map, which has several disadvantages. First
of all, the model is no longer a perfect autoencoder,
i.e. the original datapoint cannot be fully recovered
from its latent representation. Second, if the layers
of the flow-based model are bijective, significant mem-
ory savings are possible (Gomez et al., 2017). Usu-
ally, when training layered models such as neural net-
works the activations of each layer need to be stored
in the forward pass because they are needed for gra-
dient computation in the backward pass. However,
if the layers are invertible, the activations of the for-
ward pass can be recomputed in the backward pass
by applying the inverse of the layer to the activations
of the previous layers. Thereby, models can be made
basically infinitely deep with a fixed memory budget.
Thirdly, exact evaluation of the likelihood is no longer
possible. To train the models, a bound needs to be
derived which is optimized instead of the actual like-
lihood. Our model does not make this sacrifice since
only the base distribution is altered, but the transfor-
mation of the normalizing flow model is still invertible.
On the other side, the base distribution itself cannot be
evaluated exactly because its normalization constant is
unknown. It can be estimated via Monte Carlo sam-
pling, but its logarithm, appearing in the LL of the
model, is biased. However, as discussed in Section 3.1
for large truncation parameter T we are only off by a
constant so e.g. importance sampling could be done
without a bias. Moreover, drawing samples from our
model is less efficient as many samples from the pro-
posal might get rejected before finally one is accepted
and propagated through the flow.

An autoregressive base distribution was introduced by
Bhattacharyya et al. (2020). While they only consid-
ered image generation, their entire model, i.e. includ-
ing the base distribution, is tractable in contrast to
ours. However, the computational cost of their mod-
els scales with the square root of the number of pixels,
while ours is constant. Izmailov et al. (2020); Ardiz-
zone et al. (2020); Hagemann and Neumayer (2021)

Vincent Stimper, Bernhard Schölkopf, José Miguel Hernández-Lobato

explored normalizing flows with a multimodal base dis-
tribution, in their case a mixture of Gaussians. How-
ever, their intention was to model data with multiple
classes, thereby performing classification and solving
inverse problems. Our model allows to describe data
with multiple classes as well through a conditional dis-
tribution, similar to the work of Dinh et al. (2017);
Kingma and Dhariwal (2018), but is also able to de-
scribe the complicated topological structure of the dis-
tribution of each class.

Bauer and Mnih (2019) used LARS successfully to cre-
ate more expressive priors for VAEs, thereby boosting
their performance. They demonstrated that the re-
sampled prior can be learned jointly with the encoder
and decoder by maximizing the evidence lower bound.
In contrast, we showed that a resampled base distri-
bution can be jointly trained with a normalizing flow
transformation using both the LL and the KL diver-
gence as an objective. For the latter we derived an
expression of the gradient with reduced variance in-
spired by the work of Grover et al. (2018). Further-
more, Bauer and Mnih (2019) reported that they tried
to fully factorize their resampled prior, which would al-
low them to scale to higher dimensional problems, but
they were not able not beat the baseline of a VAE with
a factorized Gaussian prior. We were successful by
not fully factorizing our resampled base distribution,
but defining factors for groups of variables. Moreover,
combining LARS with the multiscale architecture of
Dinh et al. (2017) and using a factorization similar to
(Ma et al., 2019) allowed us to scale up our base distri-
bution even further. The largest base distribution in
our work, used in Glow to model the CIFAR10 dataset,
has 3072 dimensions, while the largest prior of Bauer
and Mnih (2019) only had 100.

6 CONCLUSION

In this work, we introduced a base distribution for nor-
malizing flows based on learned rejection sampling.
We derived how it can be trained jointly with the
flow layers maximizing the expected LL or minimizing
the KL divergence. This base distribution can assimi-
late the complex topological structure of a target and,
thereby, overcome a structural weakness of normaliz-
ing flows. By applying our procedure to 2D distribu-
tions, tabular data, images, and Boltzmann distribu-
tions we demonstrated that resampling the base dis-
tribution can improve their performance qualitatively
and quantitatively.

Acknowledgements

We thank Matthias Bauer, Richard Turner, Andrew
Campbell, Austin Tripp, and David Liu for the help-

ful discussions. José Miguel Hernández-Lobato ac-
knowledges support from a Turing AI Fellowship under
grant EP/V023756/1. This work was supported by the
German Federal Ministry of Education and Research
(BMBF): Tübingen AI Center, FKZ: 01IS18039B; and
by the Machine Learning Cluster of Excellence, EXC
number 2064/1 - Project number 390727645.

References

Ardizzone, L., Mackowiak, R., Rother, C., and Köthe,
U. (2020). Training Normalizing Flows with the
Information Bottleneck for Competitive Generative
Classification. In Advances in Neural Information
Processing Systems 33.

Bauer, M. and Mnih, A. (2019). Resampled Priors for
Variational Autoencoders. The 22nd International
Conference on Artificial Intelligence and Statistics,
pages 66–75.

Behrmann, J., Grathwohl, W., Chen, R. T. Q., Du-
venaud, D., and Jacobsen, J.-H. (2019). Invertible
Residual Networks. In Proceedings of the 36th In-
ternational Conference on Machine Learning, pages
573–582.

Behrmann, J., Vicol, P., Wang, K.-C., Grosse, R., and
Jacobsen, J.-H. (2021). Understanding and Miti-
gating Exploding Inverses in Invertible Neural Net-
works. In Proceedings of The 24th International
Conference on Artificial Intelligence and Statistics,
pages 1792–1800. PMLR.

Bhattacharyya, A., Mahajan, S., Fritz, M., Schiele,
B., and Roth, S. (2020). Normalizing Flows With
Multi-Scale Autoregressive Priors. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8415–8424.

Campbell, A., Chen, W., Stimper, V., Hernandez-
Lobato, J. M., and Zhang, Y. (2021). A Gradient
Based Strategy for Hamiltonian Monte Carlo Hy-
perparameter Optimization. In Proceedings of the
38th International Conference on Machine Learn-
ing, pages 1238–1248. PMLR.

Chen, R. T. Q., Behrmann, J., Duvenaud, D., and Ja-
cobsen, J.-H. (2019). Residual Flows for Invertible
Generative Modeling. In Advances in Neural Infor-
mation Processing Systems, volume 32.

Chen, X., Mishra, N., Rohaninejad, M., and Abbeel,
P. (2018). PixelSNAIL: An Improved Autoregres-
sive Generative Model. In Proceedings of the 35th
International Conference on Machine Learning.

Child, R., Gray, S., Radford, A., and Sutskever, I.
(2019). Generating Long Sequences with Sparse
Transformers. arXiv:1904.10509 [cs, stat].

Cornish, R., Caterini, A. L., Deligiannidis, G., and
Doucet, A. (2020). Relaxing Bijectivity Constraints

Resampling Base Distributions of Normalizing Flows

with Continuously Indexed Normalising Flows. In
Proceedings of the 37th International Conference on
Machine Learning.

Dheeru, D. and Taniskidou, E. K. (2022). UCI ma-
chine learning repository. http://archive.ics.

uci.edu/ml.

Dinh, L., Krueger, D., and Bengio, Y. (2015). NICE:
Non-linear Independent Components Estimation. In
3rd International Conference on Learning Represen-
tations, Workshop Track Proceedings.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017).
Density estimation using Real NVP. International
Conference on Learning Representations.

Durkan, C., Bekasov, A., Murray, I., and Papamakar-
ios, G. (2019). Neural Spline Flows. In Advances in
Neural Information Processing Systems, volume 32.

Gomez, A. N., Ren, M., Urtasun, R., and Grosse, R. B.
(2017). The Reversible Residual Network: Back-
propagation Without Storing Activations. In Ad-
vances in Neural Information Processing Systems,
volume 32.

Grcić, M., Grubǐsić, I., and Šegvić, S. (2021). Densely
connected normalizing flows. In Advances in Neural
Information Processing Systems 34.

Grover, A., Gummadi, R., Lazaro-Gredilla, M., Schu-
urmans, D., and Ermon, S. (2018). Variational
Rejection Sampling. In International Conference
on Artificial Intelligence and Statistics, volume 84,
pages 823–832.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin,
V., and Courville, A. (2017). Improved Training
of Wasserstein GANs. In Advances in Neural Infor-
mation Processing Systems, volume 30, pages 5767–
5777.

Hagemann, P. and Neumayer, S. (2021). Stabilizing
invertible neural networks using mixture models. In-
verse Problems, 37(8):085002.

Hernández-Lobato, J. M., Li, Y., Rowland, M.,
Hernández-Lobato, D., Bui, T., and Turner, R. E.
(2016). Black-box alpha-divergence Minimization.
In Proceedings of the 33nd International Conference
on Machine Learning, pages 1511–1520.

Ho, J., Chen, X., Srinivas, A., Duan, Y., and Abbeel,
P. (2019). Flow++: Improving Flow-Based Gener-
ative Models with Variational Dequantization and
Architecture Design. In Proceedings of the 36th In-
ternational Conference on Machine Learning, pages
2722–2730.

Huang, C.-W., Dinh, L., and Courville, A. (2020).
Augmented Normalizing Flows: Bridging the Gap
Between Generative Flows and Latent Variable
Models. arXiv:2002.07101 [cs, stat].

Izmailov, P., Kirichenko, P., Finzi, M., and Wilson,
A. G. (2020). Semi-Supervised Learning with Nor-
malizing Flows. In Proceedings of the 37th Inter-
national Conference on Machine Learning, pages
4615–4630.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D.,
and Wilson, A. G. (2018). Averaging Weights Leads
to Wider Optima and Better Generalization. In Pro-
ceedings of the Thirty-Fourth Conference on Uncer-
tainty in Artificial Intelligence, pages 876–885.

Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehti-
nen, J., and Aila, T. (2020a). Training Genera-
tive Adversarial Networks with Limited Data. Ad-
vances in Neural Information Processing Systems,
33:12104–12114.

Karras, T., Laine, S., and Aila, T. (2019). A Style-
Based Generator Architecture for Generative Adver-
sarial Networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 4401–4410.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehti-
nen, J., and Aila, T. (2020b). Analyzing and Im-
proving the Image Quality of StyleGAN. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8110–8119.

Kingma, D. P. and Ba, J. (2015). Adam: A Method
for Stochastic Optimization. In 3rd International
Conference on Learning Representations.

Kingma, D. P. and Dhariwal, P. (2018). Glow: Gen-
erative Flow with Invertible 1x1 Convolutions. Ad-
vances in Neural Information Processing Systems.

Kingma, D. P., Salimans, T., Poole, B., and
Ho, J. (2021). Variational Diffusion Models.
arXiv:2107.00630 [cs, stat].

Kingma, D. P. and Welling, M. (2014). Auto-Encoding
Variational Bayes. In 2nd International Conference
on Learning Representations.

Köhler, J., Krämer, A., and Noé, F. (2021). Smooth
Normalizing Flows. In Advances in Neural Informa-
tion Processing Systems 34.

Krizhevsky, A. (2009). Learning Multiple Layers of
Features from Tiny Images. page 60.

Leimkuhler, B. and Matthews, C. (2015). Molecular
Dynamics With Deterministic and Stochastic Nu-
merical Methods. Number 39 in Interdisciplinary
Applied Methematics. Springer.

Ma, X., Kong, X., Zhang, S., and Hovy, E. (2019). Ma-
cow: Masked convolutional generative flow. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-
Buc, F., Fox, E., and Garnett, R., editors, Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Vincent Stimper, Bernhard Schölkopf, José Miguel Hernández-Lobato

Nielsen, D., Jaini, P., Hoogeboom, E., Winther, O.,
and Welling, M. (2020). SurVAE Flows: Surjections
to Bridge the Gap between VAEs and Flows. In Ad-
vances in Neural Information Processing Systems,
volume 33.

Noé, F., Olsson, S., Köhler, J., and Wu, H. (2019).
Boltzmann generators: Sampling equilibrium states
of many-body systems with deep learning. Science,
365(6457).

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mo-
hamed, S., and Lakshminarayanan, B. (2021). Nor-
malizing Flows for Probabilistic Modeling and In-
ference. Journal of Machine Learning Research,
22(57):1–64.

Papamakarios, G., Pavlakou, T., and Murray, I.
(2017). Masked Autoregressive Flow for Density Es-
timation. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 2338–2347.

Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L.,
Shazeer, N., Ku, A., and Tran, D. (2018). Image
Transformer. In International Conference on Ma-
chine Learning, pages 4055–4064. PMLR.

Polyak, B. (1990). New stochastic approximation type
procedures. Avtomatica i Telemekhanika, 7:98–107.

Rezende, D. J. and Mohamed, S. (2015). Variational
Inference with Normalizing Flows. In Proceedings
of the 32nd International Conference on Machine
Learning.

Runde, V. (2005). A Taste of Topology. Universitext.
Springer-Verlag, New York.

Ruppert, D. (1988). Efficient estimators from a slowly
converging robbins-monro process.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N.,
and Ganguli, S. (2015). Deep Unsupervised Learn-
ing using Nonequilibrium Thermodynamics. In Pro-
ceedings of the 32nd International Conference on
Machine Learning, pages 2256–2265. PMLR.

Tabak, E. G. and Turner, C. V. (2013). A Family
of Nonparametric Density Estimation Algorithms.
Communications on Pure and Applied Mathematics,
66(2):145–164.

Tabak, E. G. and Vanden-Eijnden, E. (2010).
Density estimation by dual ascent of the log-
likelihood. Communications in Mathematical Sci-
ences, 8(1):217–233.

van den Oord, A., Li, Y., Babuschkin, I., Simonyan,
K., Vinyals, O., Kavukcuoglu, K., van den Driess-
che, G., Lockhart, E., Cobo, L. C., Stimberg, F.,
Casagrande, N., Grewe, D., Noury, S., Dieleman,
S., Elsen, E., Kalchbrenner, N., Zen, H., Graves,
A., King, H., Walters, T., Belov, D., and Hassabis,
D. (2018). Parallel WaveNet: Fast High-Fidelity

Speech Synthesis. In Proceedings of the 35th Inter-
national Conference on Machine Learning.

Wirnsberger, P., Ballard, A. J., Papamakarios,
G., Abercrombie, S., Racanière, S., Pritzel, A.,
Jimenez Rezende, D., and Blundell, C. (2020). Tar-
geted free energy estimation via learned mappings.
The Journal of Chemical Physics, 153(14):144112.

Wu, H., Köhler, J., and Noe, F. (2020). Stochas-
tic normalizing flows. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M. F., and Lin, H., ed-
itors, Advances in Neural Information Processing
Systems, volume 33, pages 5933–5944. Curran As-
sociates, Inc.

Supplementary Material:
Resampling Base Distributions of Normalizing Flows

A LEARNING ALGORITHMS

A.1 Estimating the normalization constant

To stabilize training, we use the exponential moving average to estimate the value of the normalization con-
stant (Bauer and Mnih, 2019). In practice, this means that if Zi is the current Monte Carlo estimate of the
normalization constant, the exponential moving average ⟨Z⟩i is computed by

⟨Z⟩1 = Z1, (12)

⟨Z⟩i = (1− ϵ)⟨Z⟩i−1 + ϵZi for i > 1, (13)

where ϵ is the decay parameter which we set to 0.05 throughout this article. However, the gradients are estimated
only with the current Monte Carlo estimate Zi, because otherwise backpropagation through the entire history
of ⟨Z⟩i would be necessary, which would be computationally expensive and memory demanding.

A.2 Gradient estimators of the Kullback-Leibler divergence

We repeat Theorem 1 as stated in the main text and supplement its proof.

Theorem 1. Let pϕ(z) be the base distribution of a normalizing flow, having parameters ϕ, and Fθ be the
respective invertible mapping, depending on its parameters θ, such that the density of the model is

log (p(x)) = log (pϕ(z))− log |det JFθ
(z)| , (14)

with x = Fθ(z). Then, the gradients of the KL divergence with respect to the parameters are given by

∇ϕKLD(θ, ϕ) = Covpϕ(z)

{
log (pϕ(z))− log |det JFθ

(z)| − log p̂∗(Fθ(z)),∇ϕ log pϕ(z)
}

(15)

∇θKLD(θ, ϕ) = −Epϕ(z)

[
∇θ

(
log |det JFθ

(z)|+ log p̂∗(Fθ(z))
)]

(16)

Proof. The KL divergence is defined as

KLD(θ, ϕ) := Ep(x) [log p(x)]− Ep(x) [log p
∗(x)] . (17)

By plugging in (14) into (17) we obtain

KLD(θ, ϕ) = Epϕ(z) [log pϕ(z)− log |det JFθ
(z)| − log p̂∗(Fθ(z))] . (18)

Computing the gradient of (18) with respect to θ is straight forward.

∇θKLD(θ, ϕ) = ∇θEpϕ(z) [log pϕ(z)− log |det JFθ
(z)| − log p̂∗(Fθ(z))]

= Epϕ(z)

[
∇θ

(
log pϕ(z)− log |det JFθ

(z)| − log p̂∗(Fθ(z))
)]

= −Epϕ(z)

[
∇θ

(
log |det JFθ

(z)|+ log p̂∗(Fθ(z))
)] (19)

To get the gradient with respect to ϕ, we decompose (18) into two parts and consider their gradients separately.

Vincent Stimper, Bernhard Schölkopf, José Miguel Hernández-Lobato

∇ϕEpϕ(z) [log pϕ(z)] = ∇ϕ

∫
pϕ(z) log pϕ(z)dz

=

∫
∇ϕ

(
pϕ(z) log pϕ(z)

)
dz

=

∫
∇ϕpϕ(z) + log pϕ(z)∇ϕpϕ(z)dz

= ∇ϕ

∫
pϕ(z)dz︸ ︷︷ ︸
=1

+

∫
pϕ(z) log pϕ(z)∇ϕ log pϕ(z)dz

= Epϕ(z) [log pϕ(z)∇ϕ log pϕ(z)]

(20)

ld : = log |det JFθ
(z)|+ log p̂∗(Fθ(z))

∇ϕEpϕ(z) [ld] = ∇ϕ

∫
ld pϕ(z)dz

=

∫
ld∇ϕpϕ(z)dz

=

∫
ld pϕ(z)∇ϕ log pϕ(z)dz

= Epϕ(z) [ld∇ϕ log pϕ(z)]

(21)

Using these two expressions, we obtain

∇ϕKLD(θ, ϕ) = Epϕ(z)

[(
log pϕ(z)− log |det JFθ

(z)| − log p̂∗(Fθ(z))
)
∇ϕ log pϕ(z)

]
(22)

= Covpϕ(z)

{
pϕ(z)− log |det JFθ

(z)| − log p̂∗(Fθ(z)),∇ϕ log pϕ(z)
}
. (23)

When concluding (23) from (22) we used the well known identity

Epϕ(z) [∇ϕ log pϕ(z)] =

∫
pϕ(z)∇ϕ log pϕ(z)dz

=

∫
pϕ(z)

pϕ(z)
∇ϕpϕ(z)dz = ∇ϕ

∫
pϕ(z)dz︸ ︷︷ ︸
=1

= 0.
(24)

B MULTISCALE ARCHITECTURE

As already mentioned in the main paper, Dinh et al. (2017) introduced the multiscale architecture for normalizing
flows to deal with high dimensional data such as images. As sketched in Figure 5, initially, the entire input x is

transformed by several flow layers. The result is split up into two parts, h
(1)
1 and h

(2)
1 . Dinh et al. (2017) did

this by first squeezing the image, i.e. reducing the height and width of the image by a factor 2 and adding the

surplus pixels as additional channels, and then splitting the resulting tensor along the channel dimension. h
(1)
1

is immediately factored out in the density, while h
(2)
2 is further transformed by F2. The process is the repeated

until a desired depth is reached. The output of the last map, in Figure 5 it is F4, is not split, but directly passed
to its base distribution. The full density for a multiscale architecture with n levels is given by

p(x) =

n∏
i=1

|det (JFi
(hi−1))| p(zi),

where we set h0 = x.

Resampling Base Distributions of Normalizing Flows

x

h
(2)
1

h
(1)
1

h
(2)
2

h
(1)
2

h
(2)
3

h
(1)
3

z1

z2

z3

z4

F1

F2

F3

F4

Figure 5: Multiscale architecture with four levels as introduced in (Dinh et al., 2017). First, the entire input x is
transformed by F1. The result is then split up into two parts of which one of them is factored out immediately
and the other one is further processed by F2. This process is repeated a few times until the desired depth is
reached. The input is drawn in blue, intermediate results are red, and the components of the final variable z are
yellow.

C LEARNED ACCEPTANCE PROBABILITY

C.1 Choosing the architecture

In order to get an impression of what the architecture of the neural network defining the acceptence probability
a for LARS, we did an ablation experiment on the Power UCI dataset. We left the flow architecture of a real
NVP model constant but changed the number of hidden layers and units of the neural network representing a.
The baseline model with a Gaussian base distribution achieved 0.330±0.003 on the test set. When changing the
number of hidden layers we used 512 hidden units and 3 hidden layers when changing the number hidden units.

Table 6: LL of the test set for different number of hidden layers for a while leaving the number of hidden units
constant at 512.

Hidden layers 1 3 5 7 9
LL 0.37 0.53 0.58 0.62 0.63

Table 7: LL of the test set for different number of hidden layers for a while leaving the number of hidden layers
constant at 3.

Hidden units 32 128 512 2048 8192
LL 0.39 0.45 0.53 0.61 0.61

We see that both the number of hidden layers and units is important. The LL increases as we are adding more
with diminishing returns. However, note that especially inceasing the number of hidden units increases the
parameter count as well as the computational cost; hence, an application specific trade-off needs to be found.

C.2 Tuning the rejection rate

As discussed in the main text, the rejection rate of LARS can be controlled through the truncation parameter
T . It sets a limit on how often subsequent proposals can be rejection in order to generate one sample. However,

Vincent Stimper, Bernhard Schölkopf, José Miguel Hernández-Lobato

Figure 6: LL on the test set and Z with respect to the hyperparameter λZ introduced in (26).

it does not tell us something about the actual rejection rate determining the sampling speed, which might be
lower. The number of expected samples per sample from the proposal π is given by

Eπ(z)[a(z)] =

∫
a(z)π(z)dz = Z, (25)

which is equivalent to the normalization constant Z. Hence, if we increase Z we can decrease the rejection rate.
We can simply do so by including it in our optimization, e.g. when doing ML we can instead minimize the loss

L = −Ep∗(x)[log p(x)]− λZZ, (26)

where λZ ∈ R+ is a positive hyperparameter.

In order to test this procedure, we trained 30 real NVP models with a resampled base distribution with different
values of λZ on the UCI Power dataset. The neural network representing the acceptance probability a had 3
hidden layers with 512 hidden units and we set T = 20. In Figure 6 we show the LL of the models on the test set
as well as Z depending on the hyperparameter λZ . We see that by increasing λZ we can trade off performance
in terms of LL with the expected number of LARS samples per sample from the proposal. When Z approaches
one, i.e. nearly all samples from the proposal get accepted, the LL drops to the value achieved by the flow with
a Gaussian base distribution being 0.330± 0.003, see Table 9.

D 2D DISTRIBUTIONS

The densities of the distributions used as sample targets in Section 4.1 are given in Table 8.

Table 8: Logarithm of the unnormalized densities of the target distributions used in Section 4.1.

Unnormalized log density

Dual Moon − (∥z∥ − 1)
2

0.08
− (|z1| − 2)

2

0.18
+ log

(
1 + e−

4z1
0.09

)

Circle of Gaussians log

 8∑
i=1

 9

2π
(
2−

√
2
)e− 9

(
(z1−2 sin(2π

8i))
2
+(z1−2 cos(2π

8i))
2
)

4−2
√

2


Two Rings log

[
2∑

i=1

(
32

π
e−32(∥z∥−i−1)2

)]

All models approximating a 2D distribution uses for each layer a fully connected network having 2 hidden layers
with 32 hidden units each as parameter map or residual learning block, respectively. The mixture of Gaussian

Resampling Base Distributions of Normalizing Flows

Target
Real NVP,

 Gaussian base
Real NVP,

resampled base
Resampled baseGaussian base

D
ua

l m
oo

n
C

ir
cl

e
of

 G
au

ss
ia

ns
Tw

o
ri

ng
s

Figure 7: Visualization of the densities when approximating three 2D distributions with complex topological
structure. Real NVP models with Gaussian and a resampled base distributions where trained using the KL
divergence.

Gaussian base
Gaussian mixture

base
Resampled base,

acceptance probability
Resampled base

D
ua

l m
oo

n
C

ir
cl

e
of

 G
au

ss
ia

ns
Tw

o
ri

ng
s

Figure 8: Visualization of the learned base distributions of the real NVP flow models shown in Figure 3.

Vincent Stimper, Bernhard Schölkopf, José Miguel Hernández-Lobato

Target
Residual flow,
Gaussian base

Residual flow,
resampled base

Residual flow,
Gaussian mixture base

D
ua

l m
oo

n
C

ir
cl

e
of

 G
au

ss
ia

ns
Tw

o
ri

ng
s

Figure 9: Visualization of the residual flow densities when approximating three 2D distributions with complex
topological structure. The models were trained using ML learning and the corresponding base distributions are
shown in Figure 10.

Gaussian base
Gaussian mixture

base
Resampled base,

acceptance probability
Resampled base

D
ua

l m
oo

n
C

ir
cl

e
of

 G
au

ss
ia

ns
Tw

o
ri

ng
s

Figure 10: Visualization of the learned base distributions of the residual flow models shown in Figure 9.

Resampling Base Distributions of Normalizing Flows

base distributions are initialized by uniformly sampling the mean in the hypercube [−2.5, 2.5]D and setting the
variances to 0.5 · 1D, where 1D is the D-dimensional identity matrix.

The models are trained on a computer with 6 Intel i5-9400F CPUs and a Nvidia GeForce RTX 2070 graphics
card. The Adam optimizer with a learning rate of 10−3 is used. Training is done for 2 · 104 iterations with a
batch size of 1024.

E TABULAR DATA

In addition to the NSF models, we also trained real NVP models with a Gaussian, a mixture of Gaussians, and
a resampled base distribution to the four UCI datasets. The results are shown in Table 9.

Table 9: LL of real NVP models with different base distributions on the test sets of the respective datasets. The
values are averaged over 3 runs each and the standard error is given as a measure of uncertainty. The highest
values within the confidence interval are marked in bold.

Base distribution Power Gas Hepmass Miniboone
Gaussian 0.330± 0.003 10.1± 0.1 −19.5± 0.1 −11.65± 0.05
Mixture 0.341± 0.001 9.9± 0.2 −19.5± 0.1 −11.49± 0.04
Resampled 0.560± 0.006 12.8± 0.1 −18.4± 0.1 −11.48± 0.01

Table 10: Details about datasets from the UCI machine learning repository, the architecture of the NSF models
as well as the resampled base distribution, and the training procedure.

Power Gas Hepmass Miniboone
Dimension 6 8 21 43
Train data points 1.6 · 106 8.5 · 105 3.2 · 105 3.0 · 104
Flow layers 10 10 10 10
Hidden layers flow maps 2 2 2 1
Hidden units flow maps 256 128 256 64
Hidden layers a 7 9 4 2
Hidden units a 512 512 512 128
Truncation parameter T 100 50 40 40
Dropout rate 0 0.1 0.3 0.3
Batch size 512 512 256 64
Learning rate 3 · 10−4 4 · 10−4 4 · 10−4 3 · 10−4

Table 11: Details about the architecture of the real NVP models used as well as the resampled base distribution,
and the training procedure.

Power Gas Hepmass Miniboone
Flow layers 16 16 16 16
Hidden layers flow maps 2 2 2 2
Hidden units flow maps 128 128 64 32
Hidden layers a 3 3 3 3
Hidden units a 512 512 512 256
Truncation parameter T 100 100 100 100
Dropout rate 0 0.1 0.2 0.2
Batch size 512 512 256 128
Learning rate 5 · 10−4 5 · 10−4 3 · 10−4 3 · 10−4

In all experiments regarding the UCI datasets, we use dropout both in the neural networks defining the flow map
and the acceptance probability function a of the resampled base distribution during training. Adamax is used as

Vincent Stimper, Bernhard Schölkopf, José Miguel Hernández-Lobato

an optimizer (Kingma and Ba, 2015). The experiments are run on machines with 36 Intel Xeon Platinum 9242
CPUs and 128 GB RAM. Further details on the datasets, the flow architecture, and the training procdure are
given in Table 10 and Table 11.

F IMAGE GENERATION

The parameter maps of the Glow models are convolutional neural networks (CNNs) with 3 layers, the first and
the last having a kernel size of 3× 3 and the middle layer of 1× 1. The number of channels of the middle layer is
512 and those of the other layers is determined by the respective input and output. This is the same architecture
as used in (Kingma and Dhariwal, 2018).

To ensure that each factor of the base distribution has not more than 100 dimensions, we apply a squeeze
operation to the feature map of the first level before passing it to the base distribution. Therefore, each channel
has a maximum size of 8 × 8 = 64. A CNN with 4 layers, having 32 channels and a kernel size of 3 × 3 each
and a fully connected output layer, is used as acceptance function at each level. The convolutions of this CNN
are strided with a stride of 2 until the image size is 4 × 4. The normalization constants are updated with 2048
samples per iteration and before evaluating our models we estimated them with 1010 samples.

Each model is trained for 106 iterations with the Adam optimizer having a learning rate of 10−3. The learning
rate is warmed up linearly over 103 iterations and the batch size is 512. The models with 8, 16, and 32 layers
per level are trained in a distributed fashion on 1, 2, and 4 Nvidia Quadro RTX 5000 graphics cards. We
apply Polyak-Ruppert weight averaging (Polyak, 1990; Ruppert, 1988) with an update rate of 10−3, where the
exponential moving average of the model weights is computed in order to improve the generalization performance
on the test set (Izmailov et al., 2018).

Table 12: Percentage increase in training time and model size when using a resampled instead of a Gaussian
base distribution for the models trained in Section 4.3.

Layers per level Training time Model size
8 4.7% 1.5%
16 15% 0.75%
32 9.1% 0.38%

G BOLTZMANN GENERATORS

G.1 Coordinate transformation

A

B

C

Db

ψ

φ

x

z y

Figure 11: Illustration of molecular coordinates. The state of the molecule can be described through the Cartesian
coordinates, i.e. x, y, and z, of each of the four atoms A, B, C, and D. Alternatively, internal coordinates, i.e.
bond lengths, bond angles, and dihedral angles, can be used. Here, the bond length b is the distance between
atom A and B, the bond angle φ being the angle between the bonds between B and C as well as C and D, and
the dihedral angle ψ is the angle between the plans spanned by A, B, and C as well as B, C, and D. We use a
combination of Cartesian and internal coordinates.

To simplify the approximation Boltzmann distributions of complex molecules, a coordinate transformation was
introduced (Noé et al., 2019). Some of the Cartesian coordinates are mapped to their respective internal co-
ordinates, i.e. bond lengths, bond angles, and dihedral angles, which are illustrated in Figure 11. The internal

Resampling Base Distributions of Normalizing Flows

coordinates are normalized, with mean and standard deviation calculated on the training dataset generated
through MD, but a suitable experimental dataset could be used as well. To the remaining Cartesian coordinates
principal component analysis is applied. Subsequently, the weights of all but the last six principal components
are used as coordinates. Thereby, six degrees of freedom are eliminated, corresponding to the three translational
and free rotational coordinates which leave the Boltzmann distribution invariant.

G.2 Setup of the experiments

All real NVP models trained via ML have a neural network with 2 hidden layers and 64 hidden units as a
parameter map at each coupling layer. Between the coupling layers, we apply a invertible linear transformation
which is learned with the other parameters of the flow, similar to the invertible 1x1 convolutions introduced in
(Kingma and Dhariwal, 2018). The acceptance function of the resampled base distribution is a fully connected
neural network with 2 hidden layers having 256 hidden units each. At each iteration, the normalization constant
Z is updated with 512 samples from the Gaussian proposal during training. Before evaluating our models, we
estimated Z with 1010 samples. The residual flow models have 8 layers each with each layer having 2 layer fully
connected neural network with 64 hidden units and the resampled base distribution has 3 hidden layers with 512
hidden units. All models are trained for 5 · 105 iterations with the Adam optimizer (Kingma and Ba, 2015) and
a batch size of 512. The learning rate is set to 10−3 and decreased to 10−4 after 2.5 · 105 iterations. We also
do Polyak-Ruppert weight averaging (Polyak, 1990; Ruppert, 1988) with an update rate of 10−2. Each model is
trained and evaluated on a server with 16 Intel Xeon E5-2698 CPUs and a Nvidia GTX980 GPU.

The real NVP models trained by minimizing the KL divergence have the same architecture as those in the
previous experiment. However, to improve the stability of the training process, the models are trained with
double precision numbers on 32 Intel Xeon E5-2698 CPUs each. 105 iterations are done with the Adam optimizer
with a learning rate of 10−4, which is exponentially decayed every 2.5 · 104 iterations by a factor of 0.5.

The KL divergences were computed by drawing 106 samples from the model and estimating the respective
integrals with histograms.

G.3 Further results

As additional performance metric to compare the models, we compute the Ramachandran plots, i.e. a 2D
histogram of two dihedral angles. These plots are frequently used to analyse how proteins fold locally and are
hence of high importance for many applications. Some Ramachandran plots are show in Figure 13. We also
estimate the KL divergences of the ground truth Ramachandran plot obtained from the MD test set and the
plots of the models by performing numerical integration with the histograms. The results are given in Table 13,
Table 14, and Table 15.

We also evaluated the stochastic normalizing flow model trained by Wu et al. (2020) through ML on our metrics.
The median KL divergences of the marginals is 2.3 · 10−3 while the mean is 2.6 · 10−2, which is almost an order
of magnitude higher that the results of the models with a resampled base distribution. However, the stochastic
normalizing flow models the Ramachandran plot very well, where the KL divergence is only 2.4 ·10−1. Note that
these results have to be taken with a grain of salt, since Wu et al. (2020) used an augmented normalizing flow
with less layers than we did. We tried to include their stochastic layers into our models but found training to be
very unstable in this setting.

Table 13: KL divergence of the Ramachandran plots of the MD simulation, serving as a ground truth, and real
NVP models trained via ML learning. It was estimated based on a histogram computed from 106 samples.

Base distribution Gaussian Mixture Gaussian Resampled
Number of layers 16 16 19 16
KL divergence 4.79± 0.73 10.8± 7.3 2.26± 0.27 3.00± 0.36

Vincent Stimper, Bernhard Schölkopf, José Miguel Hernández-Lobato

Figure 12: Marginal distribution of three dihedral angles of Alanine dipeptide. The ground truth was determined
with a MD simulation. The flow models are based on the residual flow architecture and were trained via ML
learning.

Table 14: Quantitative comparison of the residual flow models approximating the Boltzmann distribution of
Alanine dipeptide trained via ML learning. The LL is evaluated on a test set obtained with a MD simulation.
The KL divergences of the 60 marginals were computed and the mean and median of them are reported. Moreover,
the KL divergences of the Ramachandran plots are listed. All results are averages over 10 runs, the standard
error is given, and highers LL as well as lowest KL divergences are marked in bold.

Base distribution Gaussian Mixture Resampled
LL (×102) 1.8048± 0.0002 1.8061± 0.0002 1.8144± 0.0002
Mean KLD marginals (×10−3) 6.16± 0.17 31.5± 1.8 3.49± 0.15
Median KLD marginals (×10−4) 5.21± 0.12 14.2± 5.2 4.67± 0.05
KLD Ramachandran plot 8.1± 2.2 25.4± 10.2 4.4± 0.9

Table 15: Quantitative comparison of the real NVP models approximating the Boltzmann distribution of Alanine
dipeptide trained via the KL divergence. The LL is evaluated on a test set obtained with a MD simulation. The
KL divergences of the 60 marginals were computed and the mean and median of them are reported. Moreover,
the KL divergences of the Ramachandran plots are listed. All results are averages over 10 runs, the standard
error is given, and highers LL as well as lowest KL divergences are marked in bold.

Base distribution Gaussian Mixture Resampled
LL (×102) −2.78± 0.07 −2.70± 0.04 −1.84± 0.13
Mean KLD marginals (×10−1) 2.91± 0.05 2.98± 0.02 2.84± 0.07
Median KLD marginals (×10−3) 4.75± 0.04 4.77± 0.03 4.66± 0.05
KLD Ramachandran plot 7.63± 0.18 16.6± 8.4 6.92± 0.37

Resampling Base Distributions of Normalizing Flows

(a) Real NVP, Gaussian base, 16 layers (b) Real NVP, Gaussian mixture base, 16 layers

(c) Real NVP, Gaussian base, 19 layers (d) Real NVP, Resampled base, 16 layers

(e) Ground truth (MD simulation)

Figure 13: Ramachandran plots of Alanine dipeptide. The flow models were trained via ML learning

	INTRODUCTION
	BACKGROUND
	Normalizing Flows
	Learned accept/reject sampling

	METHOD
	Resampled base distributions
	Learning algorithms
	Application to multiscale architecture

	EXPERIMENTS
	2D distributions
	Tabular data
	Image generation
	Boltzmann generators

	DISCUSSION AND RELATED WORK
	CONCLUSION
	LEARNING ALGORITHMS
	Estimating the normalization constant
	Gradient estimators of the Kullback-Leibler divergence

	MULTISCALE ARCHITECTURE
	LEARNED ACCEPTANCE PROBABILITY
	Choosing the architecture
	Tuning the rejection rate

	2D DISTRIBUTIONS
	TABULAR DATA
	IMAGE GENERATION
	BOLTZMANN GENERATORS
	Coordinate transformation
	Setup of the experiments
	Further results

