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Abstract

Graph Neural Networks (GNNs) are the cur-
rent state-of-the-art models in learning node
representations for many predictive tasks on
graphs. Typically, GNNs reuses the same set
of model parameters across all nodes in the
graph to improve the training efficiency and
exploit the translationally-invariant proper-
ties in many datasets. However, the parame-
ter sharing scheme prevents GNNs from dis-
tinguishing two nodes having the same lo-
cal structure and that the translation invari-
ance property may not exhibit in real-world
graphs. In this paper, we present Graph
Adaptive Mixtures (GraphAdaMix), a novel
approach for learning node representations
in a graph by introducing multiple indepen-
dent GNN models and a trainable mixture
distribution for each node. GraphAdaMix
can adapt to tasks with different settings.
Specifically, for semi-supervised tasks, we op-
timize GraphAdaMix using the Expectation-
Maximization (EM) algorithm, while in un-
supervised settings, GraphAdaMix is trained
following the paradigm of contrastive learn-
ing. We evaluate GraphAdaMix on ten
benchmark datasets with extensive experi-
ments. GraphAdaMix is demonstrated to
consistently boost state-of-the-art GNN vari-
ants in semi-supervised and unsupervised
node classification tasks. The code of
GraphAdaMix is available online 1.

1https://github.com/handasontam/GraphAdaMix
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1 INTRODUCTION

Recently, there has been a surge of academic interest
in machine learning on graphs as graphs are ubiquitous
in various real-world scenarios including social recom-
mendations (Fan et al., 2019), traffic forecasting (Yu
et al., 2017), COVID-19 pandemic forecasting (Kapoor
et al., 2020), etc. In this paper, we focus on the task
of transductive graph representation learning. It re-
quires a model to learn discriminative embeddings for
nodes in the graph, which can be applied to other
downstream tasks such as node classifications (Kipf
and Welling, 2016a) and link predictions (Kipf and
Welling, 2016b).

Among all, Graph Neural Networks (GNNs) are a
family of models that achieve state-of-the-art perfor-
mance on graph representation learning. A key design
ingredient of GNNs is that it uses parameter shar-
ing (Chiang et al., 2019; Hamilton et al., 2017; Kipf
and Welling, 2016a; Veličković et al., 2017) to improve
the training efficiency. Such a scheme could be helpful
and can be served as a good inductive bias, especially
in computer vision, because it implicitly exploits the
translationally-invariant properties of an image. How-
ever, this assumption may not hold in graphs. On
one hand, as mentioned in You et al. (2019), the pa-
rameter sharing scheme used in typical GNNs limits
its expressive power as they fail to distinguish be-
tween two nodes that have isomorphic neighborhoods,
as shown in Figure 1. On the other hand, graphs
equipped with different feature extractors may work
better when nodes are with different contexts (e.g., lo-
cations, neighborhood information, etc.) (Hallac et al.,
2015). One practical example is when the input is
a social network where nodes represent persons and
edges represent their social relationships. We might
expect that different culture-specific features should
be learned in different spatial locations due to cultural
diversity. In this case, it is reasonable to relax the pa-
rameter sharing scheme. Network lasso (Hallac et al.,
2015) alleviates this problem by using a different pre-
diction model with a regularization term for each node

https://github.com/handasontam/GraphAdaMix
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Figure 1: An example graph, where a GNN with pa-
rameter sharing is not able to distinguish nodes v1 and
v2 that are isomorphic, although they belong to differ-
ent classes. In this example, nodes belong to either
class A or class B, and we assume node features to be
the same across all nodes. Since v1 and v2 are sym-
metric, message-passing GNNs with parameter sharing
will always generate the same predictions regardless of
the depth of the model. In contrast, GraphAdaMix
assigns nodes to multiple possibly overlapping clus-
ters, and each node has its own embedding generator,
which allows v1 and v2 to be distinguished. This figure
is adapted from You et al. (2019).

in the graph. However, it is impractical for real-world
graphs due to its huge time and space complexity.

Here we propose Graph Adaptive Mixtures
(GraphAdaMix), a technique that can be integrated
with any graph representation learning models by
relaxing the parameter-sharing restriction. Specifi-
cally, GraphAdaMix consists of K independent GNN
models and a set of mixture parameters so that each
node can select its most suitable model adaptively.
As a result, nodes can be assigned to clusters with
different patterns and node embeddings can be opti-
mized simultaneously. For graph with semi-supervised
settings, we develop an EM algorithm with mini-batch
gradient descent to solve this problem in a scalable
manner. The E-step approximates the posterior prob-
ability distribution of the latent cluster memberships,
while the M-step updates the mixture parameters for
downstream tasks. A proximity-driven regularization
is additionally introduced into GraphAdaMix to
learn mixtures for unlabeled nodes. In unsupervised
tasks, GraphAdaMix is combined with the contrastive
learning paradigm for model training. This enables
the representations to be generalized to more dif-
ferent tasks. By jointly optimizing all GNN models
and mixture parameters, GraphAdaMix effectively
learns a discriminative embedding for each node. In
addition, since GNN models used in the optimization
process are agnostic to GraphAdaMix, the proposed
framework can be well adapted to other graph-based
models for performance enhancement.

This paper’s main contributions can be summarized as
follows:

• We propose a general and powerful framework,
GraphAdaMix, to enhance the model capacities of
representation learning on graphs. GraphAdaMix
incorporates multiple independent GNNs with a
mixture model for modeling different graph pat-
terns. In general, GraphAdaMix can be com-
bined with any graph representation learning al-
gorithms.

• An EM algorithm and a contrastive learning
paradigm is proposed to train the model in
an end-to-end and scalable manner for semi-
supervised and unsupervised tasks, respectively.
By jointly updating the parameters of both GNNs
and mixture models, GraphAdaMix is encouraged
to learn more discriminative node embeddings.

• We demonstrate the effectiveness of
GraphAdaMix through comprehensive ex-
periments on ten real-world graph datasets.
Experimental results show that GraphAdaMix
consistently boosts various GNN variants in both
semi-supervised and unsupervised settings.

2 RELATED WORKS

In general, GNN models learn embeddings by stack-
ing multiple layers to aggregate information within a
node’s neighborhood. In many previous works, neigh-
bors of the target node are equally treated in the
aggregation process (Hamilton et al., 2017; Kipf and
Welling, 2016a; Xu et al., 2019), while recent stud-
ies find it helpful to learn more powerful node em-
beddings by discriminating different nodes or special
structures in the graph. For example, GAT (Veličković
et al., 2017) proposes to learn attentive weights for
different neighbors in the aggregation process, which
helps to identify the important nodes from the irrele-
vant for the target. However, all these models apply
the sharing scheme to every node in the graph. Thus,
for any two isomorphic nodes (same local connectivity
with the same neighborhoods’ features), these mod-
els will always generate the same embeddings and
therefore fail to distinguish the two nodes. In con-
trast, GraphAdaMix trains K independent GNN mod-
els with different parameters, and each node has its
own mixture parameters, which increases the discrim-
inative power of the model.

One way to further increase the model complexity
of GNNs is to employ a multi-head attention mecha-
nism (Veličković et al., 2017) by creating multiple inde-
pendent GNN models. The node embedding can then
be generated by averaging those representations (gen-
erated by each head). This allows the model to jointly
aggregates different information or patterns from dif-
ferent GNN models. GraphAdaMix is similar to a
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multi-head GAT in the sense that they both train
K GNN models end-to-end with different parameters.
However, in GraphAdaMix, instead of averaging across
heads, we aggregate those K predictions from different
GNN models by a weighted average, where the weights
are different for different nodes. This allows the model
to distinguish isomorphic nodes.

ClusterGCN (Chiang et al., 2019) separates the graph
into multiple disjoint components by applying a graph
clustering algorithm. A shared GCN can therefore
be applied to each component, which scales typical
GCNs to large graphs. On the contrary, GraphAdaMix
clusters the nodes and trains the GNN models in an
end-to-end fashion instead of precomputing the clus-
ters deterministically. As a result, the clusters of
nodes are adaptively chosen to minimize the loss func-
tion (e.g. the negative log-likelihood function). Also,
GraphAdaMix relaxes the parameter sharing assump-
tion and each node uses different GNN parameters ac-
cording to its mixture distribution.

Instead of using the sharing scheme, Network Lasso
(Hallac et al., 2015) assigns independent learnable
weights for each node in a graph. The cost function of
the model is specifically designed to be convex, which
can be optimized through the Alternating Direction
Method of Multipliers (ADMM) algorithm. Differ-
ent from Network Lasso, GraphAdaMix allows the loss
function to be non-convex, and it performs soft clus-
tering instead of hard clustering so that each vertex
can incorporate patterns from more than one cluster.
Most importantly, since GraphAdaMix only requires
updating the K set of GNN parameters while Network
Lasso needs to update sets of model parameters with
size equals to the number of nodes, GraphAdaMix can
scale to large graphs with millions of nodes while Net-
work LASSO can only handle graphs with thousands of
nodes. Detailed comparisons between Network Lasso
and GraphAdaMix can be found in the supplementary
material.

3 PROBLEM DEFINITION

Let G be an undirected graph with vertex set V =
{vi}Ni=1 and edge set E , i.e. G = (V, E). Each undi-
rected edge (i, j) ∈ E is associated with a positive edge
weight wij ∈ R>0 representing the degree of similarity
between node i and node j. N (v) denotes the neigh-
borhood of node v, i.e. N (v) = {u ∈ V | (v, u) ∈ E}.
We denote with A ∈ RN×N the adjacency matrix and
X ∈ RN×DN the node feature matrix. GraphAdaMix
is model-agnostic. Therefore it can be applied to other
types of graphs such as heterogeneous graphs, graphs
with edge attributes, bipartite graphs, etc. For sim-
plicity, we only consider homogenous graphs in this

paper.

This paper focuses on the task of semi-supervised
node classification and unsupervised node classifica-
tion. Given the labels YL ∈ {0, 1}|VL|×C for a subset
of nodes VL ⊂ V where C is the number of classes,
the task is to infer the classes YU ∈ {0, 1}|Vu|×C for
the unlabeled nodes VU = V \ VL based on X and
A. For n ∈ VL, yn ∈ {0, 1}C and [yn]c = 1 if node
n belongs to class c. Node classifications on graphs
are performed by first embedding nodes into a low-
dimensional space followed by feeding them into a clas-
sifier.

4 GraphAdaMix

In this section, we introduce the GraphAdaMix
architecture for transductive node classification.
GraphAdaMix introducesK independent GNNmodels
and a set of mixture parameters so that each node can
adaptively select the most suitable model. It leverages
the EM algorithm to achieve model clustering and op-
timization on graphs and consequently improves model
capacity. Specifically, E-step approximates the poste-
rior probability distribution of the latent cluster mem-
bership based on the K independent GNN models in
the last iteration, and M-step updates the K GNN
models and the mixture parameters based on the re-
fined latent cluster membership for downstream tasks
of node classification. The EM algorithm effectively
maximizes the lower bound of the log-likelihood func-
tion.

4.1 Semi-supervised Node Classification with
GraphAdaMix

In Graph Representation Learning with Adaptive Mix-
tures (GraphAdaMix), we consider K GNN mod-
els, each governed by its own parameter θk. Let
θ = {θ1,θ2, . . . ,θK} be the set of parameters of a
GraphAdaMix model. We are interested in maximiz-
ing the likelihood (1) or the log-likelihood function (2)
of the training data of the following form:

p(YL | X,θ) =
∏
n∈VL

K∑
k=1

πnk

C∏
i=1

[ŷ(k)
n ]i

[yn]i (1)

ln p(YL | X,θ) =
∑
n∈VL

ln

(
K∑
k=1

πnk

C∏
i=1

[ŷ(k)
n ]i

[yn]i

)
(2)

where πnk, n = 1, . . . , N, k = 1, . . . ,K are the mixture
parameters, and they must satisfy 0 ≤ πnk ≤ 1 and∑K
k=1 πnk = 1 for all n ∈ V. [ŷ

(k)
n ]j is the prediction

probability generated by the k-th GNN model on class
j for node n. If K = 1, then πnk = 1 for all n ∈ V
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Figure 2: The semi-supervised training architecture of GraphAdaMix in an iterative training epoch. Nodes of
the graph are assigned to different clusters based on the mixture distribution, where each cluster is associated
with an independent GNN model. In each training epoch, the mixture assignments and GNN model parameters
can be jointly updated by an EM algorithm. By iteratively optimizing the whole framework, GraphAdaMix
learns cluster-specific GNN models for capturing different patterns of the graph.

and (1) and (2) become the likelihood and the log-
likelihood of a vanilla GNN model.

It is difficult to optimize (2) due to the summation that
occurs inside the logarithm. In order to maximize the
log-likelihood function (2), we introduce a set of binary
latent variables Z = {zn, n ∈ VL} where zn ∈ {0, 1}K
is one-hot encoded, i.e. for each data point n ∈ VL,

znk =

{
1 if the k-th GCN models node n
0 otherwise

The complete-data likelihood and the complete-data
log-likelihood can be written as:

p(YL,Z | X,θ) =
∏
n∈VL

K∏
k=1

(
πnk

C∏
c=1

[ŷ(k)
n ]c

[yn]c

)znk

(3)

ln p(YL,Z | X,θ) (4)

=
∑
n∈VL

K∑
k=1

znk

(
lnπnk +

C∑
c=1

[yn]c ln [ŷ
(k)
n ]c

)

Let q(Z) be some distribution over the latent variables
Z satisfying

∑
Z q(Z) = 1, a lower bound of (2) can be

derived as follows:

Proposition 1. The log-likelihood ln p(YL | X,θ) ad-
mits the following lower-bound

L(q,θ,π) =
∑
Z

q(Z) ln p(YL,Z | X,θ)−
∑
Z

q(Z) ln q(Z)

(5)

where q(Z) is some distribution over the latent vari-
ables Z and the equality holds if and only if q(Z) =
p(Z | YL,X,θ)

The proof of Proposition 1 can be found in the sup-
plementary material.

4.1.1 EM Algorithm

The EM algorithm seeks to optimize the objective (1)
by iteratively applying the E-step and the M-step.
Suppose that the current parameters are θold,πold. In
the E-step, we maximize the lower bound (5) with re-
spect to q(Z) while holding θold,πold fixed. In the M-
step, we maximize the lower bound (5) with respect to
π,θ while holding q(Z) fixed.

E-step : According to Prop. 1, the equality of (1)
holds if and only if q(Z) = p(Z | YL,X,θ). Therefore,
when holding p(YL,Z | X,θold) fixed, maximizing the
lower bound (5) with respect to q(Z) amounts to find-
ing:

γnk = p(znk = 1 | YL,X,θ) =
πnk

∏C
c=1[ŷ

(k)
n ]

[yn]c
c∑K

i=1 πni
∏C
c=1[ŷ

(i)
n ]

[yn]c
c

(6)

for all n ∈ VL and k ∈ {1, 2, . . . ,K}.

M-step :

In M-step, we maximize the lower bound (5) with re-
spect to π,θ by keeping γ fixed. The second term
−
∑

Z q(Z) ln q(Z) can be treated as a constant since
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it does not depend on π,θ. Thus, we focus on mini-
mizing −

∑
Z q(Z) ln p(YL,Z | X,θ). By substituting

Eq. 4 and 6, our optimization problem for M-step is
given by

min
π,θ
−
∑
n∈VL

K∑
k=1

γnk

(
lnπnk +

C∑
c=1

[yn]c ln [ŷ
(k)
n ]c

)
(7)

We introduce the variables {φnk ∈ R, n = 1, . . . N, k =
1, . . .K} and reparameterize πnk using the softmax
function as πnk = expφnk∑K

j=1 expφnj
. We optimize M-step

objective function (Eq. 7) with respect to π and φ by
either batch gradient descent (for small graphs) or by
mini-batch gradient descent (for large graphs).

To update θ in the M-step, we perform one epoch
training with gradient descent (for small graphs) or
mini-batch gradient descent (for large graphs).

Please refer to the supplementary material for the en-
tire algorithm.

4.1.2 Mixture Propagation

One drawback of using the objective function (7) is
that for each non-training node j, the value of πjk will
not be updated. Therefore, we include an edge objec-
tive that penalizes the difference between the mixture
distributions at adjacent nodes. The edge objective
is implemented with ρ

|E|
∑

(i,j)∈E JSD(πi ‖ πj) where
ρ ≥ 0 is the trade-off hyperparameter and JSD is the
Jensen–Shannon divergence.

Therefore, the optimization problem is given by

min
π,θ

−
∑
n∈VL

K∑
k=1

γnk

(
lnπnk +

C∑
c=1

[yn]c ln [ŷ
(k)
n ]c

)
+

ρ

|E|
∑

(i,j)∈E

JSD(πi ‖ πj) (8)

Note that in a connected graph, when ρ → +∞, all
nodes will share the same mixture distribution.

4.2 Unsupervised node representation
learning with GraphAdaMix

Mixture propagation (Sec. 4.1.2) assumes ho-
mophily (McPherson et al., 2001). In other words,
we assume nodes that are closed to each other in
the graph should apply a similar model mixture.
However, this assumption may not hold in other
datasets (Donnat et al., 2018; Henderson et al., 2012).
More importantly, the learning of π (or φ) relies
on the labeled data (Eq. 7). One may argue that
when the training labels are limited, GraphAdaMix
can easily overfit the training data as it has more

degree of freedom (K times more parameters). To
address both problems, we extend GraphAdaMix
to unsupervised node representation learning, and
in particular graph contrastive learning. Survey on
graph contrastive learning can be found in Liu et al.
(2021a,b). In graph contrastive learning, we generate
multiple views for each node through stochastic graph
augmentations. The views that are generated from
the same nodes are called positive pairs, otherwise
it is called negative pairs. The primary goal of
contrastive learning is to maximize the agreement
between positive pairs and minimize the agreement
between negative pairs. Since the graph contrastive
loss includes all nodes in the graph (unlike objective
function 7 where it involves only the training nodes),
applying graph contrastive learning to GraphAdaMix
allows the mixture parameters πjk to be updated for
all nodes j.

In this paper, we focus our GraphAdaMix exten-
sion to the BGRL method (Thakoor et al., 2021)
(due to its simplicity and its state-of-the-art perfor-
mance). We adapt GraphAdaMix to BGRL by re-
placing its graph encoders with GraphAdaMix. For-
mally, in each epoch, BGRL-GraphAdaMix first gen-
erates two alternate views of the original graph: G1
and G2 by applying random node feature masking
and random edge masking. Their node feature ma-
trix and adjacency matrix are (X̃1, Ã1) and (X̃2, Ã2)
respsectively. BGRL-GraphAdaMix maintains two
graph encoders: the online encoder with parameter
θ = {θ1,θ2, . . . ,θK ,θM} and the target encoder with
parameter ψ = {ψ1,ψ2, . . . ,ψK}. Let Dh be the em-
bedding size and let H̃1 ∈ RN×Dh and H̃2 ∈ RN×Dh

be the online representation and the target represen-
tation respectively where:

H̃1 :=

K∑
k=1

π(1,k)GNNθk(X̃1, Ã1) (9)

H̃2 :=

K∑
k=1

π(2,k)GNNψk
(X̃2, Ã2) (10)

The target representation is fed into a multilayer per-
ceptron (MLP) to generate a prediction of the tar-
get representation: Q̃1 := MLPθM(H̃1), where Q̃1 ∈
RN×Dh .

Updating θ and π1 We update θ (and not ψ) and
the mixture parameters π1 by minimizing the cosine
similarity between q1,i and h2,i for every node i, where
q1,i and h2,i are the ith row of Q̃1 and H̃2 respectively.
Formally, we minimize the following loss function with
respect to θ and π1 using gradient descent:

`(θ,π1) = −
2

N

N−1∑
i=0

q1,ih
ᵀ
2,i

‖ q1,i ‖‖ h2,i ‖
(11)
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Updating ψ and π2 Similar to BGRL, the param-
eters of the target encoder ψ = {ψ1,ψ2, . . . ,ψK} and
its mixture parameters π2 are updated as an exponen-
tial moving average of the online parameters θ and π1,
respectively, i.e.,

ψ ← τθ + (1− τ)θ (12)
π2 ← τπ1 + (1− τ)π1 (13)

where τ is the smoothing factor where higher τ dis-
counts older θ and π1 faster. Note that similar
to BGRL and BYOL (Grill et al., 2020), BGRL-
GraphAdaMix does not collapse to trivial solutions.
Other training details can be found in the supplemen-
tary material.

4.3 Assumptions and Limitations

As mentioned in Sec. 4.2, the learning of π using
mixture propagation assumes homophily (McPherson
et al., 2001). Many methods (Klicpera et al., 2019;
Perozzi et al., 2014) share this assumption and most
common datasets adhere to this principle. However,
for other datasets, structural role-based similarity may
be more suitable for determining the mixture distribu-
tion, namely that nodes with similar local structural
patterns should apply similar models (Donnat et al.,
2018; Henderson et al., 2012; Ribeiro et al., 2017).

Also, the time and space complexity of GraphAdaMix
are at least K times larger than its original model as
it requires K forward and backward pass during train-
ing and the additional training of the mixture param-
eters φ. Empirically, we found that a large value of
K usually leads to overfitting in real-world datasets.
A straightforward way to improve the computational
efficiency of GraphAdaMix is to use hard clustering
instead of soft clustering, which means π become one-
hot encoded. This makes the M-step K times faster
as it requires only one forward and backward pass for
each node.

5 DETAILED COMPARISONS
WITH NETWORK LASSO

GraphAdaMix shares some similarities with the Net-
work Lasso model (Hallac et al., 2015). Network Lasso
considers the following general convex optimization
problem:

minimize
θ1,...,θN

∑
i∈V

fi(θi) + λ
∑

(j,k)∈E

wjk ||θj − θk||2 (14)

where the optimization variables are θ1, θ2, . . . , θN ∈
Rd. Here fi : Rd 7→ R ∪ {∞} is the lost function for
node i, and the second term encourages adjacent nodes

to have the same model parameters (i.e. it encour-
ages θi = θj for edge (i, j) ∈ E). Hallac et al. (2015,
2017) proposed to optimize (14) using the ADMM al-
gorithm. It is important to note that for some small
enough λ, the optimal solution of (14) breaks into
clusters of nodes, with θi the same across all nodes
in the cluster. From the modeling perspective, Net-
work Lasso is similar to GraphAdaMix since they both
cluster the vertices and fit a model to each cluster si-
multaneously. However, in GraphAdaMix, we allow
fi to be non-convex in θi for i ∈ V, and therefore
more sophisticated models such as GNNs can be ap-
plied. Besides, GraphAdaMix performs soft clustering
instead of hard clustering so that each vertex can be-
long to more than one cluster. Also, GraphAdaMix
uses an efficient EM-algorithm to cluster the vertices
and update the GNN parameters to maximize the like-
lihood function while Network Lasso solves (14) using
ADMM. Finally, GraphAdaMix only requires updat-
ing the K set of GNN parameters while Network Lasso
needs to update the N sets of model parameters. In
practice, we found that Network Lasso is impractical
for real-world graphs due to its huge time and space
complexity.

6 EXPERIMENTS

6.1 Datasets

For semi-supervised node classification, we evaluate
our model on five graph benchmarks, including four ci-
tation networks: Cora, Citeseer, Pubmed, ogbn-arxiv)
and a product co-purchase network ogbn-products.
For unsupervised node representation learning, we use
the WikiCS (Mernyei and Cangea, 2020), Amazon-
Computers, Amazon-Photos, Coauthor-CS, Coauthor-
Physics (Shchur et al., 2018). Details of the datasets
can be found in the supplementary material.

6.2 Baselines

For semi-supervised node classification, we use 4
state-of-the-art semi-supervised graph representation
learning models for comparison: GCN (Kipf and
Welling, 2016a), GraphSAGE (Hamilton et al., 2017),
GAT (Veličković et al., 2017), GraphSAINT (Zeng
et al., 2019) and SIGN (Rossi et al., 2020). We also in-
cluded a multi-layer perceptron (MLP) baseline which
does not use any structural information.

For unsupervised node representation learning, we
compare BGRL-GraphAdaMix against 6 state-of-the-
art baselines including DeepWalk (Perozzi et al.,
2014), DGI (Velickovic et al., 2019), GMI (Peng et al.,
2020), MVGRL (Hassani and Khasahmadi, 2020),
GRACE (Zhu et al., 2020), and BGRL (Thakoor et al.,
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2021).

Detailed descriptions of these baseline models can be
found in the supplementary material.

6.3 Experiment Configuration

We tune the penalty parameter ρ and the number
of independent GNN models K in GraphAdaMix
using the validation set where ρ is selected from
{0, 10, 30, 50, 70, 90, 100, 150, 200, 250, 300, 400, 500, 600
, 700, 800, 900, 1000, 1500, 2000, 4000, 10000} and K
is selected form {2, 3, 4, 6, 8}. For Cora, Citeseer,
and Pubmed, we follow the same experimental
setup of (Kipf and Welling, 2016a) with the same
train/validation/test split and the same hyperparam-
eters. For ogbn-arxiv and ogbn-products, we use the
same training, validation, and test set provided by Hu
et al. (2020).

To evaluate the quality of the unsupervisely-learned
embeddings, we follow the linear evaluation paradigm
introduced by prior works (Thakoor et al., 2021;
Velickovic et al., 2019). We first train each model in
a fully unsupervised manner and generate the frozen
embeddings for each node. These frozen embeddings
are then fed into a simple logistic regression model,
and it is trained without updating the graph neural
networks. We follow the exact same configuration as
in Thakoor et al. (2021) with the same hyperparame-
ters (learning rate, embedding size, node feature mask-
ing, edge masking probabilities, etc.), and we select K
from {2, 4, 8, 16}. Additional experimental details can
be found in the supplementary material and Thakoor
et al. (2021).

6.4 Results

For semi-supervised node classification, the results are
summarized in Table 1, where we see that the use of
adaptive mixtures consistently and significantly boosts
the accuracy of a wide variety of state-of-the-art mod-
els across all of these baselines. The only excep-
tions are the Pubmed dataset and the Citeseer dataset
where GraphAdaMix fails to improve the GCN model
and the GAT model, resulting in a slight decrease in
accuracy. It is also interesting to note that although
the number of parameters is K times more than the
baselines, overfitting does not occur.

For unsupervised node representation learning, we
report all baselines’ performances from published
results. The results are summarized in Table 7
in the supplementary material. As we can see,
BGRL-GraphAdaMix performs competitively and all
datasets, and it outperforms all the baselines (includ-
ing the supervised GCN baseline!) in all considered

datasets.

7 ABLATION STUDIES

In this section, we seek to investigate the influence
of the trade-off hyperparameters ρ and the number of
independent GNN models K on the node classification
accuracy.

7.1 Influence of ρ

We train the GCN-GraphAdaMix model on the Cora,
Citeseer, Pubmed, ogbn-arxiv, and ogbn-products
datasets. We select ρ from the range of [0, 10000].
As we can see in Fig. 3, for the Cora, Citeseer, and
Pubmed datasets, we found that when ρ is small,
the model overfits the dataset and performs badly
on the testing set. We also observe similar results
in ogbn-arxiv and ogbn-products. This validates the
effectiveness of the mixture propagation mechanism
(Sec. 4.1.2). For unsupervised node representation
learning, we found that ρ does not influence much
on the classification accuracy. The plots for BGRL-
GraphAdaMix can be found in the supplementary ma-
terial.

7.2 Influence of K

For semi-supervised node classification, we found that
setting k = 2 is the optimal choice for the Cora, Cite-
seer, Pubmed datasets, ogbn-arxiv and ogbn-products
datasets. Fig. 3 shows the results for the Cora, Cite-
seer and Pubmed datasets. In practice, one can tune
the value of K by evaluating the performance on the
validation set. In our experiments, we found that as
we increase K, the mixture coefficient πnk for some k
will be close to zero for all n ∈ V. Inspired by this,
a heuristic is to start with a relatively large K, say
10, and then decide the values of K by observing the
number of columns in the π matrix that are not all
close to zero.

For unsupervised node representation learning, as in-
dicated in Table 7 in the supplementary material, we
found that there are positive correlation between K
and the number of nodes in the graph. However, we
argue that K depends more on the number of factors
(or amount of information) hidden from the dataset
rather than on the size of the dataset. Consider the
following: One way to predict housing prices on a
graph (neighboring houses (nodes) are connected by
edges) is to employ GNN to perform regression (Hal-
lac et al., 2015). However, spatial factors are usu-
ally unknown and difficult to quantify (e.g. distance
to public transport, distance to schools, etc.), there-
fore similar houses (e.g. similar number of bathrooms,
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Table 1: Average test accuracy comparisons for semi-supervised node classification.
OOM: Out-of-memory error.
*: We report the accuracy in the original paper where the standard error is not available

Cora Citeseer Pubmed ogbn-arxiv ogbn-products

MLP 55.1∗ 46.5∗ 71.4∗ 55.50± 0.0023 61.06± 0.0008
MLP-GraphAdaMix 57.17± 0.88 54.70± 1.30 71.82± 1.16 57.19± 0.52 61.92± 0.0021

GCN 81.5∗ 70.3∗ 79.0∗ 71.74± 0.0029 OOM
GCN-GraphAdaMix 81.13± 0.73 71.78± 0.55 81.00± 0.61 71.75± 0.0033 OOM

GraphSAGE 80.02± 0.83 69.91± 0.99 77.13± 0.64 71.49± 0.0027 78.29± 0.0016
GraphSAGE-GraphAdaMix 80.25± 0.55 70.67± 0.64 77.89± 0.32 71.80± 0.026 79.38± 0.0028

GAT 83.00± 0.51 72.50± 0.7 79.00± 0.3 OOM OOM
GAT-GraphAdaMix 83.02± 0.44 71.46± 0.37 79.73± 0.66 OOM OOM

GraphSAINT 78.23± 2.08 63.51± 4.99 75.03± 0.46 58.34± 0.16 79.08± 0.0024
GraphSAINT-GraphAdaMix 80.54± 0.60 67.58± 1.7 75.34± 0.36 67.24± 1.70 79.12± 0.010

SIGN 74.21± 2.15 64.19± 1.82 75.53± 1.13 70.83± 0.10 74.42± 0.021
SIGN-GraphAdaMix 77.94± 1.17 67.17± 1.55 75.68± 0.78 70.98± 0.14 75.33± 0.33
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Figure 3: Influence of K and ρ on node classification accuracy using GCN-GraphAdaMix. Mark-
ers denote mean testing classification accuracy over 10 runs. Shaded areas denote standard error. K
is selected from {1, 2, 3, 4} and ρ is selected from {0, 10, 30, 50, 70, 90, 100, 150, 200, 250, 300, 400, 500, 600
, 700, 800, 900, 1000, 1500, 2000, 4000, 10000}. Best viewed in color.

square footage, etc.) can have drastically different
prices. GraphAdaMix allows different house groups
to share different GNN models, without having to use
the potentially misleading pricing model from other
locations. The plots for BGRL-GraphAdaMix can be
found in the supplementary material.

8 QUALITATIVE ANALYSIS

We performed qualitative analysis on the node repre-
sentations learned by the GraphAdaMix model to bet-
ter understand the properties of GraphAdaMix. We
visualize the embeddings learned by the K GNN mod-
els using t-SNE projection (Van der Maaten and Hin-
ton, 2008). The plots are given in Figure 4. As we
can see, the clusters of the learned embeddings are
clearly defined, which implies same GNN models pro-
duce similar embeddings and different GNN models
produce different embeddings. In other words, those

K independent GNN captures different patterns in the
graph by adaptively choosing the mixture models.

We also perform further analyses and uses t-SNE to
project the concatenation of the online representations
and the target representation (i.e. [H̃1 ‖ H̃2]) into
the 2D space. The scatter plots are given in Fig-
ure 5. As we can see, the learned embeddings’ t-
SNE 2D projection generates a distinguishable clus-
tering in the 2D space comparing to the raw features
and the Randomly-initialized BGRL-GraphAdaMix
model, obtaining a Silhouette score (Rousseeuw, 1987)
of 0.265, meaning that BGRL-GraphAdaMix can cap-
ture class-specific information even when it is trained
without using node labels.

9 CONCLUSION

In this paper, we propose Graph Representation
Learning with Adaptive Mixtures (GraphAdaMix). It
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Table 2: Average test accuracy comparisons for unsupervised node representation learning.

WikiCS Am. Computers Am.Photos CoauthorCS CoauthorPhy

Raw features 71.98 ± 0.00 73.81 ± 0.00 78.53 ± 0.00 90.37 ± 0.00 93.58 ± 0.00
DeepWalk 74.35 ± 0.06 85.68 ± 0.06 89.44 ± 0.11 84.61 ± 0.22 91.77 ± 0.15
DeepWalk+Features 77.21 ± 0.03 86.28 ± 0.07 90.05 ± 0.08 87.70 ± 0.04 94.90 ± 0.09

DGI 75.35 ± 0.14 83.95 ± 0.47 91.61 ± 0.22 92.15 ± 0.63 94.51 ± 0.52
GMI 74.85 ± 0.08 82.21 ± 0.31 90.68 ± 0.17 OOM OOM
MVGRL 77.52 ± 0.08 87.52 ± 0.11 91.74 ± 0.07 92.11 ± 0.12 95.33 ± 0.03
GRACE 78.19 ± 0.01 87.46 ± 0.22 92.15 ± 0.24 92.93 ± 0.01 95.26 ± 0.02
Random-Init 78.95 ± 0.58 86.46 ± 0.38 92.08 ± 0.48 91.64 ± 0.29 93.71 ± 0.29
GRACE 80.14 ± 0.48 89.53 ± 0.35 92.78 ± 0.45 91.12 ± 0.20 OOM
BGRL 79.36 ± 0.53 89.68 ± 0.31 92.87 ± 0.27 93.21 ± 0.18 95.56 ± 0.41
BGRL-GraphAdaMix (K = 2) 81.72 ± 0.01 89.73 ± 1.15 94.71 ± 0.60 93.31 ± 0.29 95.95 ± 0.32
BGRL-GraphAdaMix (K = 4) 81.57 ± 0.01 88.83 ± 0.47 93.99 ± 0.64 93.33 ± 0.96 95.81 ± 0.23
BGRL-GraphAdaMix (K = 8) 77.80 ± 0.57 87.67 ± 0.55 94.10 ± 0.56 93.88 ± 0.48 96.03 ± 0.29
BGRL-GraphAdaMix (K = 16) 77.64 ± 1.09 85.48 ± 0.68 93.20 ± 1.15 93.63 ±0.25 96.61 ± 0.30

Supervised GCN 77.19 ± 0.12 86.51 ± 0.54 92.42 ± 0.22 93.03 ± 0.31 95.65 ± 0.16

Figure 4: t-SNE projections of the node embeddings in the Coauthor-Physics dataset from the features extracted
from a learned BGRL-GraphAdaMix model with K equals to 2, 4, 8, 16 from left to right. Each scatter plot has
N ∗K dots as GraphAdaMix generates K different embeddings for each node before the mixing. A dot in the
scatter plot corresponds to a node embedding generated by one of the K independent GNN. The color indicates
which GNN generates the embedding. The embeddings generated by the same GNN tends to form a cluster and
these clusters are clearly separated. Best viewed in color.

Figure 5: t-SNE projections of the nodes in the
Coauthor-Physics dataset from the raw features
(left), features from a randomly initialized BGRL-
GraphAdaMix model (middle), and a learned BGRL-
GraphAdaMix model (right). The colors indicate the
node classes. The Silhouette score from left to right is
0.153, 0.219, 0.265. The clusters of the learned BGRL-
GraphAdaMix model’s embeddings are clearly identi-
fied. Best viewed in color.

can be readily adapted to many graph-based repre-
sentation learning models for performance enhance-
ment. Extensive experiments on semi-supervised node
classification and unsupervised node representation
learning across different GNN backbones show that

GraphAdaMix consistently improves the performance
of a wide range of models. There are many applica-
tions and extensions of GraphAdaMix that remain to
be explored.
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Supplementary Material:
GraphAdaMix: Enhancing Node Representations with Graph

Adaptive Mixtures

A PROOF OF PROPOSITION 1

In this section, we present the detailed proof of Proposition 1

We will show that the log-likelihood admits the following lower-bound∑
Z

q(Z) ln p(YL,Z | X,θ)−
∑
Z

q(Z) ln q(Z)

and equality holds if and only if q(Z) = p(Z | YL,X,θ)

Proof.

ln p(YL | X,θ) =
∑
Z

q(Z) ln p(YL | X,θ) (15)

=
∑
Z

q(Z) ln
p(YL,Z | X,θ)
p(Z | YL,X,θ)

(16)

=
∑
Z

q(Z)

[
ln
p(YL,Z | X,θ)

q(Z)
+ ln

q(Z)

p(Z | YL,X,θ)

]
(17)

=
∑
Z

q(Z) ln
p(YL,Z | X,θ)

q(Z)
+KL(q ‖ p) (18)

≥
∑
Z

q(Z) ln
p(YL,Z | X,θ)

q(Z)
(19)

=
∑
Z

q(Z) ln p(YL,Z | X,θ)

−
∑
Z

q(Z) ln q(Z)
(20)

= L(q,θ,π) (21)

where (19) uses the fact that KL(q ‖ p) ≥ 0. Also, the equality hold if and only if q(Z) = p(Z | YL,X,θ). In
the remaining sections, we will focus on maximizing the lower-bound L(q,θ,π).

B SEMI-SUPERVISED NODE CLASSIFICATION WITH GraphAdaMix

The training procedure of GraphAdaMix for semi-supervised node classification

C DETAILS OF THE DATASETS

C.1 Semi-supervised node classification with GraphAdaMix

For semi-supervised node classification, we evaluate our model on five graph benchmarks, including four citation
networks: Cora, Citeseer, Pubmed, ogbn-arxiv, and a product co-purchase network ogbn-products.
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Algorithm 1 GraphAdaMix
Input: K untrained GNN model with parameter θ = {θ1, . . .θK}, an observed graph G with node features

X, and training labels YL

Output: Predicted labels for the unlabeled nodes VU
1: Randomly initialize θ
2: Initialize φ as a zero matrix
3: for iteration t = 1, . . . , T do
. E-Step

4: for n ∈ VL do
5: for k = 1 . . .K do
6: Set γnk = p(znk = 1 | YL,X,θ) according to Equation 6.
. M-Step

7: Update θ and π to optimize the objective function (8) with SGD by setting γ fixed.
8: Predict categorical distribution for the unlabeled vertex n ∈ VU by p([yn]j = 1 | X,θ) =

∑K
k=1 πnk[ŷ

(k)
n ]j

9: return Predicted labels: {argmaxj p([yn]j = 1 | X,θ)}n∈VU

Each dataset forms an undirected and unweighted graph. Detailed descriptions are listed as follows:

Cora: This dataset contains 2708 papers from 7 classes: Case-Based, Genetic Algorithm, Neural Networks,
Probabilistic Models, Reinforcement Learning, Rule Learning, Theory. Each paper indicates a node in the graph
and an undirected edge is assigned to a pair pair nodes if one is cited by the other. Each node is represented by a
1433-d one-hot vector, where each element indicates the presence/ absence of a specific word in the corresponding
paper.

Citeseer: Similar to the Cora dataset, Citeseer includes a set of papers, each of which is collected from one of the
following classes: Agents, ArtificialIntelligence, Database, Human-Computer Interaction, Information Retrieval,
and Machine Learning. The definitions of the graph and raw attributes of each node are the same as Cora.

Pubmed: The setting of this dataset is similar to Cora, except that all papers are collected from three classes
on medical science (i.e., Diabetes Mellitus Experimental, Diabetes Mellitus Type 1, and Diabetes Mellitus Type
2) and each paper/ node is represented by a TF/ITF weighted word vector.

ogbn-arxiv (Hu et al., 2020): This dataset contains 169, 343 arXiv papers collected from 40 classes. Each
paper/ node is represented by a 128-d feature vector, which is obtained by averaging the word embedding of its
titles and abstract.

ogbn-products (Hu et al., 2020): This dataset is an undirected graph representing a product co-purchase
network of Amazon. Each node is a product and an edge between two nodes indicates that the two products are
purchased together. Node attribute vectors are generated from bag-of-words features followed by a 100-d PCA
operation.

C.2 Unsupervised node representation learning with BGRL-GraphAdaMix

For unsupervised node representation learning, we use the WikiCS (Mernyei and Cangea, 2020), Amazon-
Computers, Amazon-Photos, Coauthor-CS, Coauthor-Physics (Shchur et al., 2018).

WikiCS (Mernyei and Cangea, 2020): This dataset contains 11, 701 articles collected from Wikipedia. Each
article/ node is represented by a 300-d feature vector, which is obtained by averaging the GloVE embeddings (Pen-
nington et al., 2014) of all words in the article. Each article belongs to one of the 10 classes based on its subfield.

Amazon-Computers, Amazon-Photos: Similar to ogbn-products, these two graphs are undirected graphs
representing a product co-purchase network of Amazon where each node is a product and an edge indicates
that the two products are frequently purchased together. Each product belongs to one of the 10 (for Amazon-
Computers) and 8 (for Amazon-Photos) classes based on the product category. Node attribute vectors are
generated from bag-of-words features of a product’s reviews

Coauthor-CS, Coauthor-Physics These two graphs are undirected co-authorship graphs. These graphs are
collected from the Microsoft Academic Graph Sinha et al. (2015). Each author/ node is represented by a 6, 805
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(for Coauthor-CS) and a 8, 415 (for Coauthor-Physics) dimensional feature vector, which is generated from bag-
of-words features of the keywords of the author’s papers. Each author belongs to one of the 15 (for Coauthor-CS)
and 5 (for Coauthor-Physics) classes based on the author’s research field.

D EXPERIMENTAL DETAILS

Table 3: Dataset statistics and hyperparameters for semi-supervised node classification with GraphAdaMix

Cora Citeseer Pubmed ogbn-arxiv ogbn-products

# Nodes 2,708 3,327 19,717 169,343 2,449,029
# Edges 5,429 4,732 44,338 1,166,243 61,859,140
# Features 1,433 3,703 500 128 100
# Classes 7 6 3 40 47
# Training 140 120 60 90941 196,615
# Valid 500 500 500 29,799 39,323
# Test 1,000 1,000 1,000 48,603 2,213,091
# Epochs 200 200 200 200 300
Learning rate 0.05 0.05 0.05 0.01 0.01
# Layers 2 2 2 3 3
Hidden sizes 16 16 16 256 256
Embedding sizes 16 16 16 256 256
Dropout rate 0.5 0.5 0.5 0.5 0.5

Table 4: Dataset statistics and hyperparameters for unsupervised node representation learning with BGRL-
GraphAdaMix

WikiCS Amazon Computers Amazon Photos Coauthor CS Coauthor Physics

# Nodes 11,701 13,752 7,650 18,333 34,493
# Edges 216,123 245,861 119,081 81,894 247,962
# Features 300 767 745 6,805 8,415
# Classes 10 10 8 15 5
# Training 10% 10% 10% 10% 10%
# Valid 10% 10% 10% 10% 10%
# Test 80% 80% 80% 80% 80%
pf,1 0.2 0.2 0.1 0.3 0.1
pf,2 0.1 0.1 0.2 0.4 0.4
pe,1 0.2 0.5 0.4 0.3 0.4
pe,2 0.3 0.4 0.1 0.2 0.1
η base 5 · 10−4 5 · 10−4 10−4 10−5 10−5

embedding size 256 128 256 256 128
E hidden sizes 512 256 512 512 256
MLPθM hidden sizes 512 512 512 512 512
# layers 2 2 2 2 2

D.1 Baselines

D.1.1 Semi-supervised node classification with GraphAdaMix

MLP: We implement a multi-layer perceptron (MLP) to be one of the baselines, which shows the performance
of learning without incorporating structural information.

GCN: GCN learns node embeddings by stacking multiple graph convolutional layers where techniques such as
mini-batch training and neighborhood sampling are not used.
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GraphSAGE: This method applies spatial aggregation for each GNN layer. Different from GCN, GraphSAGE
can be trained with mini-batch gradient descent, where node-level neighbor-sampling can be applied in the
aggregation process to improve the scalability of the model.

GraphSAINT: GraphSAINT is a general framework proposed for training in large-scale graphs with a mini-
batch setting. Different from GraphSAGE, GraphSAINT applies a graph-level sampling strategy with variance
reduction techniques in the training process.

SIGN: This method pre-computes all the diffused features of a node within multi-hop neighbors. The model
can therefore learn from the pre-computed diffused features without message-passing during the training process,
which makes it feasible to be trained in large-scale graphs.

D.1.2 Unsupervised node representation learning with BGRL-GraphAdaMix

For unsupervised node representation learning, we compare BGRL-GraphAdaMix with the following baselines:
DeepWalk (Perozzi et al., 2014), DGI (Velickovic et al., 2019), GMI (Peng et al., 2020), MVGRL (Hassani and
Khasahmadi, 2020), GRACE (Zhu et al., 2020), BGRL (Thakoor et al., 2021), and a supervised-learning baseline.

Notice that most of them are graph contrastive learning methods (expect the supervised-learning baseline). In
general, Graph Contrastive Learning (GCL) trains two models, a node encoder and a discriminator simultane-
ously. The node encoder generates node representations and the discriminator distinguishes semantically similar
representation pairs from the dissimilar pairs. The main difference among previous works lies in how they define
the notion of positive and negative pairs.

The descriptions of the baselines for unsupervised representation learning are listed as follows:

Raw features: We simply treat the raw node features as the frozen embeddings and fed it into a logistic
regression model.

DeepWalk: DeepWalk (Perozzi et al., 2014) is an unsupervised node representation method which follows the
contrastive training paradigm. Specifically, it samples node sequences by random walk. Node-pairs that are
co-occured in a random walk are treated as positive pairs and otherwise are treated as negative pairs. This
exploits the homophily properties in many real world graphs.

DGI: Deep Graph Infomax (DGI) (Velickovic et al., 2019) is an unsupervised node representation learning
method. It relies on maximizing mutual information between the node (local) representations and graph (global)
representations. Unlike DeepWalk, it does not rely on random walk objectives and thus does not focus on
preserving homophily information in the original graph. It also follows the contrastive training paradigm where
node and graph representations computed from the original graph are considered as positive pairs. Random node
shuffling is applied to the original graph to generate a corrupted graph. The node representations computed from
the corrupted graph and the graph representations computed from the original graph are considered as negative
pairs.

GMI: Graphical Mutual Information (Peng et al., 2020) is a generalization of the conventional mutual informa-
tion computations from vector space to graph domain. Similar to DGI, GMI also relies on mutual information
maximization. However, unlike DGI, GMI accounts for both the mutual information between features and the
mutual information between edges, which is more fine-grained.

MVGRL: MVGRL (Hassani and Khasahmadi, 2020) is also a contrastive-learning based model. It maximizes
the mutual information between representations encoded from different structural views of graphs. MVGRL
uses graph diffusion and random node sampling to generate augmented graphs. Node representations and graph
representations computed from augmented graphs are considered as positive examples. Similar to DGI, MVGRL
also relies on negative samples. Towards this end, MVGRL generates corrupted graphs by applying random node
shuffling. Node representations computed from the corrupted graph and the graph representations computed
from the original or augmented graph are considered as negative pairs.

GRACE: GRACE (Zhu et al., 2020) also follows the contrastive learning paradigm. Similar to BGRL, they also
use node features masking and random edges removal to generate augmented views of a graph. The embeddings
of the same node in two augmented graphs are considered as positive pairs and otherwise (the inter-view negative
pairs and the intra-view negative pairs) are considered as negative pairs. They use the InfoNCE (Gutmann and
Hyvärinen, 2010) objective to maximize the mutual information between node representations in augmented
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views.

Random-Init*: We also report the performance of Random-Init from DGI (Velickovic et al., 2019), where a
randomly initialized encoder (with the same architecture as DGI) is used to generate the node embeddings.

BGRL: BGRL (Thakoor et al., 2021) is also a self-supervised learning that is based on contrastive learning.
Inspired by BYOL (Grill et al., 2020), BGRL eliminates the need of negative samples by bootstrapping the
output of a delayed version of its encoder. For positive examples, BGRL uses node features masking and random
edges removal to generate augmented views of a graph. The embeddings of the same node in the two augmented
graphs are considered as positive examples.

D.2 Training Details

All experiments are conducted on a single Linux machine with an AMD EPYC 7713 64-Core Processor, 630 GB
RAM, and three A100-SXM4-40GB Graphics Card.

D.2.1 Semi-supervised node classification with GraphAdaMix

For semi-supervised node classification, we implement our method in PyTorch (Paszke et al., 2019) with the
PyTorch Geometric Library (Fey and Lenssen, 2019). For all baselines, we use the PyTorch Geometric (Fey
and Lenssen, 2019) implementations, and we closely follow the same procedure as Kipf and Welling (2016a);
Veličković et al. (2017) to split the vertex set into the training set, validation set, and test set. For a fair
comparison, we evaluate all methods under the same GNN backbone and the same hyperparameters.

For a fair comparison, we evaluate all methods under the same GNN backbone and the same hyperparameters.
To tune the penalty parameter ρ and the number of independent GNN models K in GraphAdaMix, we run the
multiple experiments, each with different ρ and K and the value that achieves the best accuracy on the validation
set will be selected. In all datasets, ρ is selected from {0, 10, 20, 30, 40, 50, 80, 100, 300} and K is selected form
{2, 4, 6, 8}. In each experiment, we run for 200 epochs For Cora, Citeseer, Pubmed, we follow the same
experimental setup of Kipf and Welling (2016a). Specifically, we use two-layers GNNs of 16 hidden features with
a 0.5 dropout rate in all GNN layers. Finally, the optimal solution that achieves the best on the validation set
are applied to the test set and the test performance are reported in the paper.

For ogbn-arxiv and ogbn-products, we use the same training, validation, and test set provided by Hu et al.
(2020). For all baselines, we use a 3 layers model with 256 hidden features with a learning rate of 0.01.

Table 3 describes hyperparameters for most of our setups with GraphAdaMix.

D.2.2 Unsupervised node representation learning with BGRL-GraphAdaMix

For unsupervised node representation learning, we implement BGRL-GraphAdaMix using the GCL Library (Zhu
et al., 2021). For unsupervised node representation learning, we follow the same training procedure and hyper-
parameter settings as BGRL (Thakoor et al., 2021).

Specifically, in all our experiments, we run BGRL-GraphAdaMix, for 10,000 epochs on all datasets. The BGRL-
GraphAdaMix predictor MLPθM is implemented with one hidden layer. For all dataset, in each layer including
the final layer, we apply first the batch normalization (Ioffe and Szegedy, 2015) with decay rate 0.99, and then
the PReLU (He et al., 2015) activation in all datasets. The random node feature masking probability (pf1 for
the first view and pf2 for the second view) and the random edge masking probability (pe1 for the first view
and pe2 for the second view) are shown in Table 4. Finally, in all datasets, we also follow BGRL to use Glorot
initialization (Glorot and Bengio, 2010) to initialize all model parameters. AdamW optimizer (Loshchilov and
Hutter, 2017) with 10−5 weight decay is used to optimize the model parameters (including the mixture parameters
π). The settings of the base learning rate ηbase can be found in Table. 4. We also adjust the learning rate using
a cosine schedule in the training phase where the details can be found in Thakoor et al. (2021).

D.3 Training Complexity

Figure 5 shows the training time for GCN and BGRL model with different values of K. Since the optimal value
of K usually falls within a narrow range of K ∈ {1, 2, 3, 4}, the incrase in training time is limited, and this
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Table 5: Further comparison of training time (in seconds)

Number of epochs Cora Citeseer Pubmed

GCN 1,000 9 9 18
GCN-GraphAdaMix (K=2) 1,000 14 14 24
GCN-GraphAdaMix (K=3) 1,000 20 20 29
GCN-GraphAdaMix (K=4) 1,000 27 24 34

BGRL 10,000 172 227 743
BGRL-GraphAdaMix (K=2) 10,000 258 290 860
BGRL-GraphAdaMix (K=3) 10,000 373 368 1,005
BGRL-GraphAdaMix (K=4) 10,000 483 487 1,092

approach stands from a practical perspective. Assuming the number of features is fixed for all layers, the time
complexity of GCN and GCN-GraphAdam are O(L‖A‖0F +LNF 2) and O(L‖A‖0FK +LNF 2K) respectively,
where L is the number of layers, ‖A‖0 is the number of nonzeros in the adjacency matrix, and F is the number of
features. The memory complexity of GCN and GCN-GraphAdam are O(LNF +LF 2) and O(LNFK +LF 2K)
respectively.

D.4 Parameter-efficiency

Table 6: Average test accuracy comparisons for GCN with increase number of parameters.

Cora (number of parameters) Citeseer (number of parameters) Pubmed (number of parameters)

GCN (hidden size = 32) 81.31± 0.47 (46,119) 70.78± 0.55 (118, 726) 79.29± 0.41 (16, 131)
GCN-GraphAdaMix (K = 2) 81.13± 0.73 (46, 126) 71.50± 1.04 (118,732) 81.00± 0.61 (16,134)

GCN (hidden size = 48) 81.46± 0.75 (69,175) 70.60± 0.26 (178,086) 79.07± 0.64 (24,195)
GCN-GraphAdaMix (K = 3) 81.21± 0.81 (69, 189) 70.48± 0.88 (178, 098) 78.81± 0.49 (24, 201)

GCN (hidden size = 64) 81.13± 0.72 (92,231) 70.35± 0.76 (237,446) 79.18± 0.43 (32,259)
GCN-GraphAdaMix (K = 4) 80.53± 1.18 (92, 252) 70.08± 1.59 (237, 464) 78.42± 1.14 (32, 268)

Here we examine whether increasing the number of parameters to be comparable to GraphAdaMix would achieve
the same performance. Not suprisingly, this could degrade the performance due to overfitting as we can see in
Table 6. However, similar observation can also be applied to GCN-GraphAdaMix. When setting K = 3 and
K = 4, the performance of GCN-GraphAdaMix decline more substantially. We suspect that this is due to the
fact that the mixture parameters π overfit the training data. Hence, regularizing the mixture parameters will be
one of the important future work for GraphAdaMix.

D.5 The performance and the effect of ρ and K in unsupervised learning settings

Table 7: Additional average test accuracy results for unsupervised node representation learning.

Cora Citeseer Pubmed

BGRL 80.6 60.4 83.5
BGRL-GraphAdaMix (K = 2) 82.1 63.3 85.0
BGRL-GraphAdaMix (K = 3) 81.7 62.0 85.3
BGRL-GraphAdaMix (K = 4) 80.1 58.8 84.2

The BGRL-GraphAdaMix model depends on the regularization parameter ρ and the number of GNNs K. Fig-
ure 6 illustrates the effect of these parameters on the performance of the BGRL-GraphAdaMix model.
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Figure 6: Influence of K and ρ on node classification accuracy using BGRL-GraphAdaMix. Mark-
ers denote mean testing classification accuracy over 10 runs. Shaded areas denote standard error. K
is selected from {1, 2, 3, 4} and ρ is selected from {0, 10, 30, 50, 70, 90, 100, 150, 200, 250, 300, 400, 500, 600
, 700, 800, 900, 1000, 1500, 2000, 4000, 10000}. Best viewed in color.

Influence of ρ We train the BGRL-GraphAdaMix model on the Cora, Citeseer, Pubmed, WikiCS,
and Amazon Computer datasets. We select ρ from {0, 10, 30, 50, 70, 90, 100, 150, 200, 250, 300, 400, 500
, 600, 700, 800, 900, 1000, 1500, 2000, 4000, 10000}. In this unsupervised learning setting, we can see from Fig. 6
that ρ does not influence much on the classification accuracy. We suspect that this is due to the randomness of
the dataset split.

Influence of K We select K from {1, 2, 3, 4}, where the BGRL-GraphAdaMix with K = 1 is equivalent to
the vanilla BGRL model. Unlike GCN-GraphAdaMix, we found that K does not have much influence on the
performance of the BGRL-GraphAdaMix model in most datasets. Again, we suspect that this is due to the
randomness of the dataset split. The only exception here is the Citeseer dataset, where we found that setting
K = 2 gives better overall performance than other values of K. For Citeseer, WikiCS and Amazon Computer,
we found that BGRL-GraphAdaMix consistently outperforms the vanilla BGRL model (K = 1), which implies
that there could be hidden factors reside in these datasets.


