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Abstract

The Wasserstein barycenter has been widely
studied in various fields, including natural lan-
guage processing, and computer vision. How-
ever, it requires a high computational cost
to solve the Wasserstein barycenter problem
because the computation of the Wasserstein
distance requires a quadratic time with re-
spect to the number of supports. By contrast,
the Wasserstein distance on a tree, called
the tree-Wasserstein distance, can be com-
puted in linear time and allows for the fast
comparison of a large number of distribu-
tions. In this study, we propose a barycenter
under the tree-Wasserstein distance, called
the fixed support tree-Wasserstein barycen-
ter (FS-TWB) and its extension, called the
fixed support tree-sliced Wasserstein barycen-
ter (FS-TSWB). More specifically, we first
show that the FS-TWB and FS-TSWB prob-
lems are convex optimization problems and
can be solved by using the projected sub-
gradient descent. Moreover, we propose a
more efficient algorithm to compute the sub-
gradient and objective function value by using
the properties of tree-Wasserstein barycenter
problems. Through real-world experiments,
we show that, by using the proposed algo-
rithm, the FS-TWB and FS-TSWB can be
solved two orders of magnitude faster than
the original Wasserstein barycenter.

1 Introduction

To measure the dissimilarity between distributions, the
Wasserstein distance is widely used. The Wasserstein
distance can be solved by using linear programming.
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However, its time complexity is cubic with respect to
the number of supports. Cuturi (2013) proposed the
entropic regularized Wasserstein distance, which can
be computed using the matrix scaling algorithm in
quadratic time with respect to the number of supports.
Following this work, the Wasserstein distance has been
applied in many fields such as document classification
(Kusner et al., 2015; Huang et al., 2016) and generative
models (Arjovsky et al., 2017), among other areas.

One of the fundamental topics related to the Wasser-
stein distance is the Wasserstein barycenter problem,
which has been applied to many applications such as
natural language processing (Xu et al., 2018), image
processing (Simon and Aberdam, 2020; Rabin et al.,
2011), and so on (Dognin et al., 2019; Solomon et al.,
2015). Based on the entropic regularized Wasserstein
distance, Benamou et al. (2015) showed that the en-
tropic regularized Wasserstein barycenter problem can
be solved using the iterative Bregman projection. Many
researchers have recently tried to further reduce the
computational cost of the Wasserstein barycenter prob-
lem (Claici et al., 2018; Ge et al., 2019; Lin et al., 2020;
Guminov et al., 2021; Dvinskikh and Tiapkin, 2021).

However, the Wasserstein barycenter still suffers from
a high computational cost because the computation of
the Wasserstein distance itself is expensive. To acceler-
ate the computation of the Wasserstein distance, vari-
ous techniques have been proposed, such as the sliced
Wasserstein distance (Rabin et al., 2011; Kolouri et al.,
2018, 2019; Deshpande et al., 2019), its generalization,
the tree-Wasserstein distance (Indyk and Thaper, 2003;
Le et al., 2019; Backurs et al., 2020; Sato et al., 2020;
Le and Nguyen, 2021; Takezawa et al., 2021), and other
versions (Tong et al., 2021). The key advantage of the
tree-Wasserstein distance is that it has a closed-form
solution, which can be computed in linear time with
respect to the number of nodes. Recently, utilizing this
advantage, Le et al. (2020) studied a barycenter prob-
lem under the tree-Wasserstein distance, and showed
that the tree-Wasserstein barycenter problem can be
solved faster than the Wasserstein barycenter prob-
lem. They showed that their proposed tree-Wasserstein
barycenter works well experimentally. However, their
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Figure 1: Illustration of the original space (left) and
tree (right). A black node has a corresponding ele-
ment in the original space, but a white node has no
corresponding element.

barycenter problem is not a proper barycenter problem
on a tree. Fig. 1 shows an illustration of a tree used for
the tree-Wasserstein distance. In general, for the tree-
Wasserstein distance, we assign the probability only to
the black nodes of a tree. Howerver, Le et al. (2020)
assumes to have probability on all nodes. This violates
the assumption of the tree-Wasserstein distance.

In this study, we properly formulate the barycenter
problem under the tree-Wasserstein distance and pro-
pose an efficient optimization algorithm. More specifi-
cally, we constrain a barycenter to have the probability
on only black nodes in Fig. 1, and then employ a
matrix-form formulation of the tree-Wasserstein dis-
tance (Takezawa et al., 2021). This formulation results
in a convex optimization problem. We refer to this
single-tree version of the tree-Wasserstein barycenter
problem as the fixed support tree-Wasserstein barycen-
ter (FS-TWB) problem. Moreover, we propose the
fixed support tree-sliced Wasserstein barycenter (FS-
TSWB) problem, which is the barycenter under the
tree-sliced Wasserstein distance (i.e., multiple trees)
(Le et al., 2019). We then propose a more efficient
algorithm to compute the subgradient and objective
function value by using the properties of the FS-TWB
and FS-TSWB problems. Through experiments on
real large-scale data, we show that the FS-TWB and
FS-TSWB problems can be solved two orders of mag-
nitude faster than the original Wasserstein barycenter
problem. Moreover, by sampling multiple trees, we
show that the original Wasserstein barycenter can be
efficiently approximated using the FS-TSWB.

Notation: We denote [[n]] = {1, 2, . . . , n} for any n ∈
N. [a]i denotes an i-th element of the vector a. I is the
identity matrix. 1n is an n-dimensional vector with all
ones, and 0n is an n-dimensional vector with all zeros.

2 Related Work

2.1 Wasserstein Distance

Let P (Ω) be the set of Borel probability measures on Ω.
Let d : Ω×Ω→ R+ be a metric. Given two probability

measures µi, µj ∈ P (Ω), the Wasserstein distance is
defined as follows:

Wd(µi, µj) = inf
γ∈Π(µi,µj)

∫
Ω×Ω

d(x, y)γ(dx, dy),

where Π(µi, µj) is the set of couplings between µi and
µj . The Wasserstein distance can be computed by
linear programming. However, linear programming
requires cubic time with respect to the number of
supports. To reduce this time complexity, Cuturi
(2013) proposed adding entropic regularization to the
Wasserstein distance, which can be computed using the
Sinkhorn algorithm in quadratic time. In some special
cases, the Wasserstein distance has a closed-form solu-
tion. For example, if Ω is a one-dimensional space, the
Wasserstein distance can be computed using the sorting
algorithm. Using this property, the sliced Wasserstein
distance has been proposed (Rabin et al., 2011; Kolouri
et al., 2018, 2019; Deshpande et al., 2019). In the next
section, we introduce the case in which the metric d is
a tree metric.

2.2 Tree-Wasserstein Distance

When d is a tree metric, the Wasserstein distance is
called the tree-Wasserstein distance. Let T = (V ,E)
be a tree with v1 as the root. For any node v ∈ V \{v1},
let wv be the length of the edge between v and its
parent node. For the simplicity, we define wv1 = 0.
Let dT : V × V → R+ be the total length of the path
between two nodes. Given two probability measures
µi, µj ∈ P (V ), the tree-Wasserstein distance can be
computed as follows:

WdT (µi, µj) =
∑
v∈V

wv|µi(Γ(v))− µj(Γ(v))|, (1)

where Γ(v) denotes the set of nodes contained in the
subtree rooted at v (Le et al., 2019). Note that, be-
cause a chain is a tree, the tree-Wasserstein distance
is considered as a generalization of the Wasserstein
distance on a one-dimensional space. The key of the
tree-Wasserstein distance is that it has the closed-form
solution, which can be computed in linear time with
respect to the number of nodes.

To compute the tree-Wasserstein distance, we need to
build the tree metric. For embedding the coordinates
in the original space Ω into a tree, Quadtree (Indyk
and Thaper, 2003) and a clustering-based method (Le
et al., 2019) have been proposed. Fig. 1 shows an
illustration of the original space and the tree. In a
tree constructed using these methods, nodes are clas-
sified into two groups: leaf nodes and internal nodes
(Takezawa et al., 2021). A leaf node corresponds to an
element in Ω, and an internal node does not correspond
to any element in Ω. In Fig. 1, black nodes are leaf
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nodes, and white nodes are internal nodes. We denote
Vleaf as the set of leaf nodes and Vin = V \ Vleaf as
the set of internal nodes. (i.e., Vleaf = Ω). In general,
the given probability measures to be compared by the
tree-Wasserstein distance satisfies µ(Vin) = 0.

Recently, Takezawa et al. (2021) showed the matrix-
form formulation of the tree-Wasserstein distance. Let
T ′ = (V ,E′) be the directed tree with v1 as the root,
which has directed edges from v ∈ V \{v1} to its parent
node in T . We denote Vin = {v1, v2, . . . , v|Vin|} and
Vleaf = {v|Vin|+1, v|Vin|+2, . . . , v|V |}. Without a lack of
generality, we assume i > j for all edges (vi, vj) ∈ E′.
Let Dpar be an adjacency matrix of T ′ and wv =
(wv1 , . . . , wv|V |)

>. The tree-Wasserstein distance be-
tween two probability measures µi, µj ∈ P (Vleaf) can
be computed as follows:

WdT (µi, µj)=

∥∥∥∥wv ◦ (I−Dpar)
−1

(
0|Vin|
ai−aj

)∥∥∥∥
1

, (2)

where ◦ denotes the element-wise Hadamard product,
ai and aj are |Vleaf|-dimensional vectors whose k-th
elements are µi(v|Vin|+k) and µj(v|Vin|+k) respectively,
and 0|Vin| means that µi(Vin) = 0 and µj(Vin) = 0.
Considering that leaf nodes have no child nodes, Dpar

is partitioned into four blocks as follows:

Dpar =

(
D1 D2

0 0

)
,

where D1 is a |Vin|×|Vin|matrix, which is the adjacency
matrix of the tree consisting of the internal nodes, and
D2 is a |Vin|×|Vleaf| matrix. The inverse matrix is then
computed as follows:

(I−Dpar)
−1 =

(
(I−D1)−1 (I−D1)−1D2

0 I

)
.

In other words, if vj ∈ Γ(vi), [(I −Dpar)
−1]ij is one,

and is zero otherwise. Let D be the depth of the tree
T . Because wv1 = 0 and |{u|v ∈ Γ(u)} \ {v1}|≤ D for
all v ∈ V , wv ◦ (I−Dpar)

−1 is a sparse matrix whose
each column has at most D non-zero elements.

2.3 Wasserstein Barycenter

Given a set of probability measures {µi|µi ∈ P (Ω)}Ni=1,
the Wasserstein barycenter is defined as follows:

µ ∈ argmin
µ∈P (Ω)

1

N

(
N∑
i=1

Wd(µ, µi)

)
. (3)

When the set of supports is fixed, the Wasserstein
barycenter is called the fixed support Wasserstein
barycenter (FS-WB); otherwise, it is called the free sup-
port Wasserstein barycenter. In this study, we consider
the case in which the set of supports is fixed. However,

even if the set of supports is fixed, it is intractable to
solve the FS-WB problem exactly. Following the pre-
vious work (Cuturi, 2013), Cuturi and Doucet (2014)
showed that the barycenter under the entropic regu-
larized Wasserstein distance can be efficiently solved.
Benamou et al. (2015) showed that the barycenter un-
der the entropic regularized Wasserstein distance can
be solved using the iterative Bregman projection (IBP).
However, the time complexity of the IBP is O(N |Ω|2)
(Kroshnin et al., 2019), and it still requires a high
computational cost to solve the FS-WB problem.

Utilizing the property in which the sliced Wasserstein
distance has a closed form solution, Rabin et al. (2011)
and Bonneel et al. (2015) studied the sliced Wasserstein
barycenter. Recently, Le et al. (2020) proposed the
tree-Wasserstein barycenter on V , and showed that the
tree-Wasserstein barycenter can be computed faster
than the FS-WB. Given a set of probability measures
{µi|µi ∈ P (Vleaf)}Ni=1, the tree-Wasserstein barycenter
on V is defined as follows:

µ ∈ argmin
µ∈P (V )

1

N

(
N∑
i=1

WdT (µ, µi)

)
. (4)

However, our goal is to compute a barycenter on Ω
fast by approximating the Wasserstein distance with
the tree-Wasserstein distance. The probability on a
leaf node is considered as the probability on the cor-
responding element in Ω; however, the probability on
an internal node is meaningless because the internal
node has no corresponding elements in Ω. Therefore,
in contrast to this previous work, we formulate the tree-
Wasserstein barycenter on Vleaf, called the FS-TWB,
and propose an algorithm to solve it.

3 Proposed Method

In this section, we first formulate the FS-TWB problem
and propose an efficient algorithm to solve the FS-TWB
problem. We then propose an extension of the FS-TWB
problem, called the FS-TSWB problem, and propose
an algorithm to solve the FS-TSWB problem.

3.1 Fixed Support Tree-Wasserstein
Barycenter

Given a set of probability measures {µi|µi ∈ P (Ω)}Ni=1,
our goal is to compute the barycenter on Ω fast using
the tree-Wasserstein distance. Let T = (V ,E) be a
tree that is constructed by the Quadtree (Indyk and
Thaper, 2003) or the clustering-based method (Le et al.,
2019). Vleaf denotes the set of leaf nodes, Vin denotes
the set of internal nodes, and D denotes the depth
of the tree T . The probability measures on Ω can
be considered as the probability measures on Vleaf.
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Then, given a set of probability measures {µi|µi ∈
P (Vleaf)}Ni=1, the tree-Wasserstein barycenter on Vleaf

is defined as follows:

µdT ∈ argmin
µ∈P (Vleaf)

1

N

(
N∑
i=1

WdT (µ, µi)

)
, (5)

which we refer to as the fixed support tree-Wasserstein
barycenter (FS-TWB). In the FS-TWB problem, we
only need to consider the probability measures on Vleaf.
Combining Eq. (5) with Eq. (2), the objective function
is rewritten as follows:

B = wv ◦
(

(I−D1)−1D2

I

)
, (6)

f(a) =
1

N

N∑
i=1

‖Ba−Bai‖1, (7)

where [ai]k = µi(v|Vin|+k) and [a]k = µ(v|Vin|+k). We

define A = {a ∈ R|Vleaf|
+ | ‖a‖1= 1}. The FS-TWB

problem can then be formulated as follows:

a ∈ argmin
a∈A

f(a). (8)

3.2 Optimization Method

The objective function f is a nondifferentiable convex
function and Lipschitz continuous, and the feasible
region A is convex. Therefore, the FS-TWB problem is
a convex optimization problem, which can be solved by
using the projected subgradient descent (PSD) (Boyd
et al., 2003). In other words, the PSD converges to an
arbitrarily close approximation to the global minimum
value of the FS-TWB problem. Algorithm 1 shows the
PSD for the FS-TWB problem. In the following, we
describe each modules of this algorithm in detail.

Projection onto a simplex. The function projA in
Algorithm 1 is the projection of a given vector x ∈
R|Vleaf| onto the simplex A, which is defined as follows:

projA(x) = argmin
a∈A

‖x− a‖22. (9)

This can be solved using the algorithm proposed by
Duchi et al. (2008) in O(|Vleaf|log(|Vleaf|)).

Subgradient of f . One of the subgradients of f at
a(k) is calculated as follows:

g(k) =
1

N
B>

(
N∑
i=1

sign(Ba(k) −Bai)

)
,

where sign is the element-wise signum function. Here-
after, we describe the time complexity required to com-
pute g(k). For all i, Bai needs to be computed only
once before starting the iterations. In addition, Ba(k)

Algorithm 1: PSD for the FS-TWB.

1: Input: Probability measures a1,a2, . . . ,aN , and
step size 0 < γ1 and 0 < γ2 ≤ 1.

2: Output: The FS-TWB.
3: Let a(0) ∈ A.
4: abest ← a(0)

5: fbest ← f(a(0))
6: for k = 0, 1, . . . ,K do
7: Let g(k) be an any subgradient of f at a(k).
8: γ(k) ← γ1

(k+1)γ2‖g(k)‖2
9: a(k+1) ← projA(a(k) − γ(k)g(k))

10: f (k+1) ← f(a(k+1))
11: if fbest > f (k+1) then
12: abest ← a(k+1)

13: fbest ← f (k+1)

14: end if
15: end for
16: return abest

needs to be computed only once per iteration. Because
B is a sparse matrix that has at most D|Vleaf| non-zero
elements, Ba(k) is computed in O(D|Vleaf|). Therefore,
g(k) is computed in O(N |V |+D|Vleaf|). Because the
internal nodes that have only one child node can be
abbreviated, we can assume |V |< 2|Vleaf| without a
lack of generality. Then, the time complexity required
to compute g(k) is O((N +D)|Vleaf|).

Objective function value. Next, we describe the
time complexity required to compute f(a(k)). Consid-
ering that Ba(k) −Bai is computed when computing
the subgradient, the time complexity required to com-
pute the objective function value is O(N |Vleaf|). In
summary, the time complexity for each iteration of the
PSD is O(|Vleaf|(log(|Vleaf|) +N +D)), which is faster
than the IBP in terms of the number of supports |Vleaf|.

3.3 Fast Projected Subgradient Descent

The bottlenecks of the PSD are two parts: the part to
compute the subgradient g(k) and the part to compute
the objective function value f(a(k)). In this section, we
propose the algorithm to reduce these time complexity.

Subgradient of f . First, we show the algorithm to
reduce the time complexity for computing the subgra-
dient g(k). We define b(k) = Ba(k), bi = Bai and
z(k) =

∑N
i=1 sign(b(k) − bi). (i.e., g(k) = 1

NB>z(k)).

Then, the j-th element of z(k) is computed as follows:

[z(k)]j =

N∑
i=1

sign
(

[b(k)]j − [bi]j

)
. (10)

From Eq. (10), [z(k)]j depends only on the number
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of elements in the array {[b1]j , [b2]j , . . . , [bN ]j} being
less than [b(k)]j and the number of elements being
greater than [b(k)]j . Hence, [z(k)]j can be computed
using a sorting algorithm. Let σj be the permutation
sorting the array {[b1]j , [b2]j , . . . , [bN ]j} in ascending
order. Let lj be the index at which [b(k)]j is inserted
into this sorted array while maintaining the ascending
order. We then obtain the following:

[z(k)]j = −N + 2lj − 2. (11)

Appendix B details this derivation. Note that when
there exists an index i such that [b(k)]j = [bi]j , lj is
not uniquely determined, but it corresponds to a case
in which sign(0) ∈ {−1, 1}, and g(k) calculated from
lj is also the subgradient of f at a(k). Considering
that the permutation σj does not depend on [b(k)]j , σj
can be computed before starting the iterations. Then,
the index lj is obtained by the binary search, whose
time complexity is O(log(N)), and z(k) is computed in
O(|V |log(N)). Combining |V |< 2|Vleaf| and the prop-
erty in which B> is a sparse matrix, the subgradient
g(k) can be computed in O(|Vleaf|(log(N) +D)).

Objective function value. Next, to reduce the time
complexity for computing f(a(k)), we show that a sim-
ilar way as the above algorithm can be used. The
objective function is rewritten as follows:

f(a(k)) =
1

N

|V |∑
j=1

N∑
i=1

∣∣∣[b(k)]j − [bi]j

∣∣∣ . (12)

As in the algorithm to compute g(k), let σj be a per-
mutation that sorts the array {[b1]j , [b2]j , . . . , [bN ]j}
in ascending order. Let lj be the index at which [b(k)]j
is inserted into this sorted array while maintaining the
ascending order. We obtain the following:

N∑
i=1

∣∣∣[b(k)]j − [bi]j

∣∣∣ = (13)

(
N∑
i=1

[bi]j

)
−2

lj−1∑
i=1

[bσj(i)]j

−(N − 2lj + 2)[b(k)]j .

Note that the second term on the right-hand side is
0 when lj = 1. The detailed derivation is shown in
Appendix C. The first term on the right-hand side
can be computed before starting the iterations. The
index lj has already been obtained when computing
the subgradient. Moreover, the second term on the
right-hand side can be obtained in O(1) by computing
and storing it for all lj ∈ [[N + 1]] before starting
the iterations. Therefore, f(a(k)) can be computed in
O(|V |). In summary, using Eqs. (11) - (13), the time
complexity of the PSD for each iteration can be reduced
to O(|Vleaf|(log(|Vleaf|) + log(N) +D)), which is faster

Algorithm 2: FastPSD for the FS-TWB.

1: Input: Probability measures a1,a2, . . . ,aN , and
step size 0 < γ1 and 0 < γ2 ≤ 1.

2: Output: The FS-TWB.
3: for i = 1, 2, . . . , N do
4: bi ← Bai
5: end for
6: for j = 1, 2, . . . , |V | do
7: Compute and store the permutation σj that

sorts the array {[bi]j}Ni=1.
8: for l = 1, 2, . . . , N + 1 do
9: Compute and store

∑l−1
i=1[bσj(i)]j .

10: end for
11: Compute and store

∑N
i=1[bi]j .

12: end for
13: Let a(0) ∈ A.
14: abest ← a(0)

15: b(0) ← Ba(0)

16: Compute f (0) by Eqs. (12) and (13).
17: fbest ← f (0)

18: for k = 0, 1, . . . ,K do
19: for j = 1, 2, . . . , |V | do
20: lj ← SEARCH([b(k)]j , {[bσj(i)]j}Ni=1)
21: end for
22: Compute z(k) by Eq. (11).
23: g(k) ← 1

NB>z(k)

24: γ(k) ← γ1
(k+1)γ2‖g(k)‖2

25: a(k+1) ← projA(a(k) − γ(k)g(k))
26: b(k+1) ← Ba(k+1)

27: Compute f (k+1) by Eqs. (12) and (13).
28: if fbest > f (k+1) then
29: abest ← a(k+1)

30: fbest ← f (k+1)

31: end if
32: end for
33: return abest

than the PSD in terms of the number of samples N .
We refer to this algorithm as the FastPSD. Algorithm
2 shows the FastPSD, where SEARCH is the function
that, given an element and a sorted array, returns the
index at which the element is inserted into the sorted
array while maintaining the ascending order.

3.4 Fixed Support Tree-Sliced Wasserstein
Barycenter

In this section, we propose an extension of the FS-
TWB, the barycenter under the tree-sliced Wasserstein
distance (Le et al., 2019), and show that the PSD and
the FastPSD can be naturally applied to solve it.

Let T be the number of sampled tree metrics, and
let {dT (t)}Tt=1 be a set of sampled tree metrics. The
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tree-sliced Wasserstein distance is defined as follows:

WdT
(µi, µj) =

1

T

T∑
t=1

WdT (t)
(µi, µj). (14)

Le et al. (2019) showed that the tree-sliced Wasser-
stein distance can better approximate the Wasserstein
distance when the number of trees increases. In the
previous sections, we discuss the case in which T = 1.
Then, the barycenter under the tree-sliced Wasserstein
distance is defined as follows:

µdT ∈ argmin
µ∈P (Vleaf)

1

N

(
N∑
i=1

WdT
(µ, µi)

)
, (15)

which we refer to as the fixed support tree-sliced Wasser-
stein barycenter (FS-TSWB). Because this objective
function is the average of the objective functions of
the FS-TWB problem, it is a nondifferential convex
function and Lipschitz continuous. Therefore, the FS-
TSWB problem is also a convex nondifferentiable op-
timization, which can be solved using the PSD and
the FastPSD. More specifically, the subgradient of the
objective function of the FS-TSWB problem can be
obtained as the average of the subgradients of the ob-
jective function of the FS-TWB problem. Then, the
subgradient and the objective function value of the
FS-TSWB problem can be computed fast as in Algo-
rithm 2, whose time complexity for each iteration is
O(T |Vleaf|(log(|Vleaf|) + log(N) + D)). Moreover, be-
cause a chain is a tree, the PSD and the FastPSD can
solve the fixed support sliced Wasserstein barycenter
(FS-SWB) problem. Rabin et al. (2011) and Bon-
neel et al. (2015) have studied the sliced Wasserstein
barycenter only in the free support setting. To the best
of our knowledge, our study is the first to propose an
algorithm for solving the FS-SWB problem. Appendix
D details the method for applying the FastPSD to the
FS-SWB problem.

4 Experiment

In this section, we evaluate the FS-TSWB and the
FastPSD on MNIST, AMAZON, and AGNews.

4.1 Datasets

MNIST contains 60000 handwritten digit images, which
are categorized into ten groups. Similar to the previous
work (Cuturi and Doucet, 2014), images are considered
as the distributions on 28× 28 pixels. We use the two-
dimensional Euclidean distances between each pixel
location as the ground metric. AMAZON consists of
approximately 8000 documents pre-processed by the
previous works (Kusner et al., 2015). The documents
are categorized into four groups, and each category

contains approximately 13000 unique words on average.
AGNews consists of approximately 120000 documents,
which are categorized into four groups. We remove
the stop words and stem the words. Each category
then contains approximately 13000 unique words on
average. On AMAZON and AGNews, we use GloVe
(Pennington et al., 2014), which is 50 dimensions and
pre-trained on Wikipedia, as the ground metric.

4.2 Comparison Methods

Fixed Support Wasserstein Barycenter (FS-
WB): To solve the FS-WB problem in Eq. (3), we use
the IBP (Benamou et al., 2015) as the baseline method
1. We set the entropic regularization parameter to 0.01,
the maximum iteration to 1000, and the threshold for
the stopping criteria to 0.0001. We use the public
implementation2, which is written with Python.

Fixed Support Tree-Sliced Wasserstein
Barycenter (FS-TSWB): To sample the trees, we
use the farthest point clustering method (Le et al.,
2019), and for all v ∈ V \{v1}, we set edge length wv to
one. The depth of the tree is set to 6, and the number
of child nodes is set to 5. For the fast convergence, we
set the initial value to a(0) = 1

N

∑N
i=1 ai. We set the

step size γ1 = 0.05 and γ2 = 0.25, and the iteration
number to 1500. The number of sampled trees T is set
to 1, 5, 10, 15, 20, and 25. We implement the PSD and
the FastPSD using Python.

Fixed Support Sliced Wasserstein Barycenter
(FS-SWB): We use the FastPSD to solve the FS-SWB
problem and set the parameters of the FastPSD to the
same values as those of the FS-TSWB.

When evaluating the time consumption to compute the
barycenters, we run all methods on Intel Xeon Gold
6226R CPU @ 2.90GHz where the maximum number
of threads is limited to eight.

4.3 Numerical Results

In this section, we evaluate the FS-TSWB using the
objective function value of the FS-WB. In the following,
we refer to loss as the objective function value of the
FS-WB problem. For example, the loss at the FS-
TSWB denotes 1

N

∑
iWd(µi, µdT ). Fig. 2 shows the

loss at the FS-WB, the FS-SWB, and the FS-TSWB.
Comparing the FS-SWB and the FS-TSWB, the loss
at the FS-TSWB is smaller than the loss at the FS-

1We evaluated (Dvinskikh and Tiapkin, 2021) as an
additional baseline to solve the FS-WB by using the im-
plementation contained in their supplementary material.
However, in practice, the IBP is faster. Therefore, we only
show the results of the IBP.

2https://pythonot.github.io/
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(a) MNIST (b) AMAZON (c) AGNews

Figure 2: Objective function value for Eq. (3) with the entropic regularization. The results are averages for all
categories. To compute the loss at each barycenter, we use the Sinkhorn algorithm with the same parameters
as the IBP. The FS-WB (IBP + 1e-3) denotes the barycenter normalized such that the sum is one after all
probabilities in the FS-WB (IBP) less than 0.001 are set to zero.

SWB on all datasets. The reason is that, because a
tree has more degrees of freedom than a chain, a tree
can approximate the original space better than a chain.
Next, we compare the FS-WB and the FS-TSWB. On
all datasets, the loss at the FS-TSWB decreases as
the number of sampled trees increases. In particular,
on MNIST, as the number of sampled trees increases,
the loss at the FS-TSWB becomes smaller than the
loss at the FS-WB obtained by the IBP. Because there
are many pixels on which the probability is zero in all
images, the probability on many pixels is zero in the
optimal FS-WB. However, in practice, the probability
on these pixels are not zero in the FS-WB obtained by
the IBP. Indeed, the result shows that, in the FS-WB
obtained by the IBP, the loss decreases by setting the
probability below the threshold to zero. On the other
hand, in the FS-TSWB obtained by the FastPSD, the
probability on these pixels is zero by the projection
onto the simplex per iteration. As a result, the loss
at the FS-TSWB obtained by the FastPSD is smaller
than the loss at the FS-WB obtained by the IBP.

4.4 Visualization of Barycenters

In this section, we show a visualization of the barycen-
ters. Fig. 3 shows the FS-WB, the FS-SWB, and the
FS-TSWB on MNIST. Comparing the FS-SWB and
the FS-TSWB, the FS-TSWB is closer to the FS-WB
than the FS-SWB. In the FS-SWB, some pixels have an
unnaturally high probability. In particular, the pixels
in the area indicated by the blue stars in Fig. 3 have a
high probability even if the number of chains increases.
By contrast, in the FS-TSWB, the probability on the
pixels in the area indicated by the blue stars is properly
zero even if the number of trees is one. Moreover, the
results show that increasing the number of the trees can
make the FS-TSWB smoother. Appendix F includes
the remaining visualization of the barycenters.

Figure 3: Visualization of the FS-WB, the FS-SWB,
and the FS-TSWB on MNIST.

4.5 Time Consumption

In this section, we evaluate the time consumption of
the FS-TSWB. Table 1 shows the time required to
solve the FS-WB and FS-TSWB problems by using
the IBP and the FastPSD respectively. When the
number of sampled trees is one, the FS-TSWB can
be solved faster than the FS-WB on all datasets. In
particular, on AGNews, using the FastPSD, the FS-
TSWB can be solved approximately 125 times faster
than the FS-WB. Comparing the time consumption
of the FS-TSWB when the number of trees increases,
the time consumption of the FS-TSWB increases in
proportion to the number of sampled trees. Then, there
is the trade off between the performance and the time
consumption.

In addition, we evaluate the time consumption in more
details on MNIST. Fig. 4 shows the time consumption
when varying the number of images and when varying
the number of supports by resizing the image. The
results show that the time consumption of the IBP and
the PSD increases linearly with respect to the num-
ber of samples. By contrast, the time consumption of
the FastPSD increases with O(log(N)). As a result,
the time consumption of the FastPSD is almost the
same even if the number of samples increases. Next,
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Table 1: Time consumption [seconds].

MNIST AMAZON AGNews
FS-WB 64.4 2129.6 10811.7

FS-TSWB (T = 1) 5.2 62.4 86.1
FS-TSWB (T = 5) 25.1 330.7 449.4
FS-TSWB (T = 10) 51.1 653.9 899.9
FS-TSWB (T = 15) 78.9 969.5 1346.6
FS-TSWB (T = 20) 111.9 1287.3 1788.4
FS-TSWB (T = 25) 142.6 1610.3 2236.4

Figure 4: Time consumption when varying the number
of samples and the number of supports on MNIST.
The number of tree is set to one. When the number
of supports is varied, the number of samples is set to
1000. The results are averages for all categories.

we compare the results when varying the number of
supports. The results show that the time consump-
tion of the IBP increases quadratically with respect to
the number of supports. By contrast, the time con-
sumption of the PSD and the FastPSD increases with
O(|Vleaf|log(|Vleaf|)). In summary, using the FastPSD,
the FS-TSWB problem can be solved faster than the
FS-WB problem in terms of both the number of sam-
ples and the number of supports.

4.6 Memory Consumption

In this section, following the previous work (Le et al.,
2020), we evaluate the memory consumption of the
FastPSD. Table 2 shows the peak memory consumption
required to solve the FS-WB and FS-TSWB problems
by using the IBP and the FastPSD respectively. The
results show that, on all datasets, when the number of
sampled trees is one, the FS-TSWB problem can be
solved with less memory consumption than the FS-WB
problem. However, the memory consumption of the
FS-TSWB problem increases linearly when the number
of sampled trees increases. The reason is that, for a
fast computation, we compute and store Bai for all
sampled trees before starting the iterations.

In addition, we evaluate the memory consumption in
more details on MNIST. Fig. 5 shows the memory
consumption when varying the number of samples and
when varying the number of supports. When the num-
ber of samples increases, the memory consumption of
all methods increases linearly. When the number of

Table 2: Peak memory consumption [GB].

MNIST AMAZON AGNews
FS-WB 0.41 4.30 16.22

FS-TSWB (T = 1) 0.39 0.99 12.25
FS-TSWB (T = 5) 0.71 2.28 30.57
FS-TSWB (T = 10) 1.10 3.91 53.50
FS-TSWB (T = 15) 1.50 5.53 76.30
FS-TSWB (T = 20) 1.87 7.15 99.14
FS-TSWB (T = 25) 2.25 8.75 121.91

Figure 5: Peak memory consumption when varying
the number of samples and the number of supports on
MNIST. The number of tree is set to one. When the
number of supports is varied, the number of samples is
set to 1000. The results are averages for all categories.

supports increases, althouth the memory consumption
of the IBP increases quadratically, the memory con-
sumption of the PSD and the FastPSD increase linearly.
The reason is that the IBP uses the |Vleaf|×|Vleaf| cost
matrix, while the PSD and the FastPSD use the sparse
matrix B instead of this cost matrix. As a result, when
the number of supports is large, the FS-TSWB problem
can be solved with less memory consumption than the
FS-WB problem.

5 Conclusion

In this paper, we properly formulate the barycenter un-
der the tree-Wasserstein distance, called the FS-TWB,
and its extension, called the FS-TSWB. We then pro-
pose an efficient optimization algorithm to solve these
problems. Specifically, we show that the FS-TWB and
FS-TSWB problems are convex optimizations, which
can be solved using the PSD. Moreover, by using the
properties of these problems, we propose a more effi-
cient algorithm to compute the subgradient and the
objective function value, called the FastPSD. Experi-
mental results show that, by using the FastPSD, the
FS-TWB and FS-TSWB problems can be solved ex-
tremely faster than the FS-WB problem with less mem-
ory consumption. In addition, comparing the FS-SWB
and the FS-TSWB, we show that the FS-TSWB can
approximate the FS-WB better than the FS-SWB. Fur-
thermore, the results show that by sampling multiple
trees, the FS-TSWB becomes closer to the FS-WB.



Yuki Takezawa1,2, Ryoma Sato1,2, Zornitsa Kozareva3, Sujith Ravi4, Makoto Yamada1,2

Acknowledgments

M.Y. was supported by MEXT KAKENHI Grant Num-
ber 20H04243. R.S. was supported by JSPS KAKENHI
Grant Number 21J22490.

References

Arjovsky, M., Chintala, S., and Bottou, L. (2017).
Wasserstein generative adversarial networks. In In-
ternational Conference on Machine Learning.

Backurs, A., Dong, Y., Indyk, P., Razenshteyn, I., and
Wagner, T. (2020). Scalable nearest neighbor search
for optimal transport. In International Conference
on Machine Learning.

Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L.,
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Butscher, A., Nguyen, A., Du, T., and Guibas, L.
(2015). Convolutional wasserstein distances: Efficient
optimal transportation on geometric domains. In
ACM Transactions on Graphics.

Takezawa, Y., Sato, R., and Yamada, M. (2021). Su-
pervised tree-wasserstein distance. In International
Conference on Machine Learning.

Tong, A. Y., Huguet, G., Natik, A., Macdonald, K.,
Kuchroo, M., Coifman, R., Wolf, G., and Krish-
naswamy, S. (2021). Diffusion earth mover’s distance
and distribution embeddings. In International Con-
ference on Machine Learning.

Xu, H., Wang, W., Liu, W., and Carin, L. (2018). Dis-
tilled wasserstein learning for word embedding and
topic modeling. In Advances in Neural Information
Processing Systems.



Supplementary Material:
Fixed Support Tree-Sliced Wasserstein Barycenter

A Summary of Time Complexity

Table 3: Time complexity per iteration.

Time Complexity

FS-WB (IBP) O(N |Vleaf|2)
FS-TSWB (PSD) O(T |Vleaf|(log(|Vleaf|) +N +D))
FS-TSWB (FastPSD) O(T |Vleaf|(log(|Vleaf|) + log(N) +D))

B Derivation of Eq. (11)

We obtain the following:

[z(k)]j =

N∑
i=1

sign
(

[b(k)]j − [bi]j

)
=

N∑
i=1

sign
(

[b(k)]j − [bσj(i)]j

)
.

Then, if lj = 1, we obtain the following:

N∑
i=1

sign
(

[b(k)]j − [bσj(i)]j

)
=

N∑
i=1

−1 = −N.

If lj = N + 1, we obtain the following:

N∑
i=1

sign
(

[b(k)]j − [bσj(i)]j

)
=

N∑
i=1

1 = N.

If 2 ≤ lj ≤ N , we obtain the following:

N∑
i=1

sign
(

[b(k)]j − [bσj(i)]j

)
=

lj−1∑
i=1

1−
N∑
i=lj

1

= lj − 1− (N − lj + 1)

= −N + 2lj − 2.

Therefore, for any lj ∈ [[N + 1]], we obtain the following:

[z(k)]j = −N + 2lj − 2.

C Derivation of Eq. (13)

We obtain the following:

N∑
i=1

∣∣∣[b(k)]j − [bi]j

∣∣∣ =

N∑
i=1

∣∣∣[b(k)]j − [bσj(i)]j

∣∣∣ .
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Then, if lj = 1, we obtain

N∑
i=1

∣∣∣[b(k)]j − [bσj(i)]j

∣∣∣ =

N∑
i=1

−[b(k)]j + [bσj(i)]j

= −

(
N∑
i=1

[b(k)]j

)
+

(
N∑
i=1

[bσj(i)]j

)

= −N [b(k)]j +

(
N∑
i=1

[bi]j

)
.

If lj = N + 1, we obtain the following:

N∑
i=1

∣∣∣[b(k)]j − [bσj(i)]j

∣∣∣ =

N∑
i=1

[b(k)]j − [bσj(i)]j

=

(
N∑
i=1

[b(k)]j

)
−

(
N∑
i=1

[bσj(i)]j

)

= N [b(k)]j −

(
N∑
i=1

[bi]j

)
.

If 2 ≤ lj ≤ N , we obtain

N∑
i=1

∣∣∣[b(k)]j − [bσj(i)]j

∣∣∣ =

lj−1∑
i=1

(
[b(k)]j − [bσj(i)]j

)
−

N∑
i=lj

(
[b(k)]j − [bσj(i)]j

)

= (lj − 1) [b(k)]j −

lj−1∑
i=1

[bσj(i)]j

− (N − lj + 1) [b(k)]j +

 N∑
i=lj

[bσj(i)]j


=

 N∑
i=lj

[bσj(i)]j

−
lj−1∑
i=1

[bσj(i)]j

− (N − 2lj + 2) [b(k)]j

=

(
N∑
i=1

[bσj(i)]j

)
− 2

lj−1∑
i=1

[bσj(i)]j

− (N − 2lj + 2) [b(k)]j

=

(
N∑
i=1

[bi]j

)
− 2

lj−1∑
i=1

[bσj(i)]j

− (N − 2lj + 2) [b(k)]j .

Therefore, for any lj ∈ [[N + 1]], we obtain the following:

N∑
i=1

∣∣∣[b(k)]j − [bi]j

∣∣∣ =

(
N∑
i=1

[bi]j

)
− 2

lj−1∑
i=1

[bσj(i)]j

− (N − 2lj + 2) [b(k)]j .

D Fixed Support Sliced Wasserstein Barycenter

Because a chain is a tree, the FastPSD can solve the fixed support sliced Wasserstein barycenter (FS-SWB)
problem. However, since the depth of the chain D is O(|Vleaf|), the time consumption of the FastPSD increases
with O(|Vleaf|2). In this section, we propose a method for reducing the time complexity to O(T |Vleaf|(log(|Vleaf|) +
log(N))).
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D.1 Problem Setting

Figure 6: Illustration of the original space (left) and the chain (right).

In this section, we show the FS-TWB problem when the tree T is a chain. In the chain, because nodes that have
no corresponding elements in the original space Ω can be abbreviated, all nodes have corresponding elements in
Ω. (i.e., V = Vleaf = Ω and Vin = ∅.) Fig. 6 shows an illustration of the chain. Therefore, when the tree T is a
chain, the FS-TWB problem is equivalent to the following:

µ ∈ argmin
µ∈P (V )

1

N

(
N∑
i=1

WdT (µ, µi)

)
. (16)

Then, similar to the FS-TWB problem, the objective function can be rewritten as follows:

B = wv ◦ (I−Dpar)
−1, (17)

f(a) =
1

N

N∑
i=1

‖Ba−Bai‖1. (18)

The formulation of Eq. (16) is same as the tree-Wasserstein barycenter on V (Le et al., 2020), and their algorithm
can solve the FS-TWB problem when T is a chain. However, note that their algorithm can not be applied to the
FS-TSWB problem when the set of trees {T (t)}Tt=1 is a set of chains.

D.2 FastPSD for Fixed Support Sliced Wasserstein Barycenter

Because the depth of the chain is O(|Vleaf|), the number of non-zero elements in B is O(|Vleaf|2). Therefore, we
require O(|Vleaf|2) to compute B>z(k) and Ba(k) in Algorithm 2. In this section, we show that, by utilizing the
chain structure, Ba(k) and B>z(k) can be computed in O(|Vleaf|).

Without a lack of generality, we can arrange the index of nodes such that (vi+1, vi) ∈ E for all i ∈ [[|V |−1]]. We
then obtain the following:

Dpar =



0 1 0 . . . 0
. . .

. . .
. . .

...
...

. . .
. . . 0
. . . 1

0 . . . 0


, (19)

(I−Dpar)
−1 =


1 . . . 1

. . .
...

0 1

 , (20)

B = wv ◦ (I−Dpar)
−1 = diag(wv)(I−Dpar)

−1, (21)
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Algorithm 3: Fast computation for Ba(k)

1: Input: wv,a
(k)

2: Output: Ba(k)

3: b′
(k) ← 0|Vleaf|

4: [b′
(k)

]|Vleaf| ← [a(k)]|Vleaf|
5: for i = |Vleaf|−1, |Vleaf|−2, . . . , 1 do

6: [b′
(k)

]i ← [b′
(k)

]i+1 + [a(k)]i
7: end for
8: return diag(wv)b

′(k)

Algorithm 4: Fast computation for B>z(k)

1: Input: wv,a
(k)

2: Output: B>z(k)

3: z′
(k) ← diag(wv)z

(k)

4: g′
(k) ← 0|Vleaf|

5: [g′
(k)

]1 ← [z′(k)]1
6: for i = 2, 3, . . . , |Vleaf| do
7: [g′

(k)
]i ← [b(k)]i−1 + [z′

(k)
]i

8: end for
9: return g′

(k)

where diag(wv) denotes the diagonal matrix whose element in the i-th row and i-th column is [wv]i. Then, Ba(k)

can be computed as follows:

Ba(k) = diag(wv)
(

(I−Dpar)
−1a(k)

)
. (22)

Considering the property of (I−Dpar)
−1, we can compute Ba(k) using Algorithm 3, whose time complexity is

O(|Vleaf|).

Next, similar to Algorithm 3, we show that B>z(k) can be computed in O(|Vleaf|). Here, B>z(k) is computed as
follows:

B>z(k) = (I−Dpar)
−1>

(
diag(wv)z

(k)
)
. (23)

Considering the property of (I−Dpar)
−1, we can compute B>z(k) using Algorithm 4, whose time complexity is

O(|Vleaf|). In summary, when T is a chain, the time complexity per iteration of the FastPSD can be reduced to
O(|Vleaf|(log(|Vleaf|) + log(N))) by using Algorithm 3 and 4.

Similar to the discussion in Sec. 3.4, the FastPSD can be naturally extended to solve the FS-TSWB problem
when the set of trees {T (t)}Tt=1 is the set of chains. (i.e., the fixed support sliced Wasserstein barycenter).
Then, using Algorithms 3 and 4, the time complexity for each iteration of the FastPSD can be reduced to
O(T |Vleaf|(log(|Vleaf|) + log(N))).

E Additional Analyses of Time Consumption

Fig. 7 shows the time consumption varying the number of samples on AMAZON and AGNews. Figs. 8 and 9
show the time consumption and the memory consumption on FashionMNIST.
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(a) AMAZON (b) AGNews

Figure 7: Time consumption when varying the number of samples.

Figure 8: Time consumption when varying the number of samples and the number of supports on FashionMNIST.
The number of tree is set to one. When the number of supports is varied, the number of samples is set to 1000.
The results are averages for all categories.

Figure 9: Memory consumption when varying the number of samples and the number of supports on FashionMNIST.
The number of tree is set to one. When the number of supports is varied, the number of samples is set to 1000.
The results are averages for all categories.

F Visualization of Barycenters



Fixed Support Tree-Sliced Wasserstein Barycenter

Figure 10: Visualization of the FS-WB, the FS-SWB, and the FS-TSWB on MNIST.
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(a) FS-WB

(b) FS-TSWB (T = 1)

(c) FS-TSWB (T = 25)

(d) FS-SWB (T = 1)

(e) FS-SWB (T = 25)

Figure 11: Visualization of the FS-WB, the FS-SWB, and the FS-TSWB on AMAZON.



Fixed Support Tree-Sliced Wasserstein Barycenter

(a) FS-WB

(b) FS-TSWB (T = 1)

(c) FS-TSWB (T = 25)

(d) FS-SWB (T = 1)

(e) FS-SWB (T = 25)

Figure 12: Visualization of the FS-WB, the FS-SWB, and the FS-TSWB on AGNews.


