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Abstract

We develop novel learning rates for condi-
tional mean embeddings by applying the
theory of interpolation for reproducing ker-
nel Hilbert spaces (RKHS). We derive ex-
plicit, adaptive convergence rates for the
sample estimator under the misspecifed
setting, where the target operator is not
Hilbert-Schmidt or bounded with respect
to the input/output RKHSs. We demon-
strate that in certain parameter regimes,
we can achieve uniform convergence rates
in the output RKHS. We hope our analy-
ses will allow the much broader application
of conditional mean embeddings to more
complex ML/RL settings involving infinite
dimensional RKHSs and continuous state
spaces.

1 INTRODUCTION

In the past decade, several studies have explored a
new framework for embedding conditional distribu-
tions in reproducing kernel Hilbert spaces (RKHS).
This approach seeks to represent a conditional dis-
tribution as an RKHS element, and thereby reduce
the computation of conditional expectations to the
evaluation of kernel inner products. Unlike other dis-
tribution learning approaches, which often involve
density estimation and expensive numerical analy-
sis, the conditional mean embedding (CME) frame-
work exploits the popular kernel trick to allow dis-
tributions to be learned directly and efficiently from
sample information, and do not require the target
distribution to possess a density function. The broad
generalizability and computational levity of condi-
tional embeddings have led them to find many appli-
cations in reinforcement learning, hypothesis testing,
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and nonparametric inference (Fukumizu et al., 2007,
2009; Grünewälder et al., 2012b; Song et al., 2010),
where conditional relationships are often of pertinent
interest.

A central issue involved in the conditional embed-
ding framework is the performance of the sample
estimator. Despite their successful application, there
has been a limited study of optimal learning rates
for conditional mean embeddings. Several founda-
tional works (Song et al., 2010, 2009) established the
consistency of the sample embedding estimator, ex-
ploring its convergence rate to a “true” embedding
in the RKHS norm. These works framed the act of
conditioning as a linear operator between two Hilbert
spaces, which mapped features of the independent
variable in the input space to the mean embeddings
of their respective conditional distributions in the
output feature space. Under certain smoothness con-
ditions on the underlying distribution, Song et al.
(2010) demonstrated convergence of the sample es-
timator in the Hilbert-Schmidt norm. Although
these works introduced a regularization parameter
to tackle the ill-conditioning of the sample covari-
ance operator, the learning task was not explicitly
framed as a regularized regression problem, with the
consistency of the sample estimator only implicitly
depending on the polynomial decay of the regular-
izer. Later, Grünewälder et al. (2012a) explicitly
formulated conditional embeddings as the solution
of a vector-valued Tikhonov-regularized regression
problem. Here, the learning target was framed as a
Hilbert space-valued function acting directly on the
independent variable. Drawing from the rich theory
of regularized regression (Caponnetto and De Vito,
2007), they derived near-optimal learning rates for
kernels whose spectrum exhibits polynomial decay.
However, their analysis required the compactness
of the input set and the target Hilbert space to be
finite-dimensional, an assumption which is violated
by several common kernels.

In recent years, there have been several attempts
to further relax the hypotheses of the previous
two approaches — namely the requirement of a
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finite-dimensional output RKHS and the compact-
ness of the true conditional mean operator (well-
specification). These approaches have sought a
measure-theoretic interpretation of conditional mean
embeddings as Hilbert-valued Bochner-measurable
random variables in either an operator or vector-
valued RKHS. Klebanov et al. (2020) demonstrates
almost sure consistency for centered operators under
relatively weak assumptions, but only L2 consistency
in the more popular uncentered framework, provid-
ing no insight into learning rates in either case. Park
and Muandet (2020) abandons the operator frame-
work, and seeks to directly extend the vector-valued
regression approach from Grünewälder et al. (2012a)
to infinite-dimensional RKHS, but similarly only
demonstrates consistency in the general setting, and
must further assume the well-specified setting to pro-
vide an concrete learning rate for the surrogate risk.
Moreover, the latter approach sacrifices the operator
interpretation of the conditional embedding, which
has recently found an elegant connection to trans-
fer operators in dynamical systems theory, and their
associated data-driven spectral techniques (Mollen-
hauer et al., 2020; Klus et al., 2018).

In this paper, we aim to address these gaps by de-
riving novel adaptive learning rates for conditional
mean embeddings in the misspecified setting, that
elucidate the relationship between the properties of
the kernel class and target measure. In particular, we
seek to capture the interplay between kernel complex-
ity (as measured by eigenvalue decay/summability)
and the continuity of the hypothesis class in estab-
lishing uniform convergence rates. We apply the
theory of interpolation spaces for RKHS (Fischer and
Steinwart, 2020; Steinwart and Scovel, 2012) to sig-
nificantly relax the aforementioned source conditions,
and simply require that the target “conditioning func-
tion” lie in some intermediate fractional space be-
tween the input RKHS and L2. To the best of our
knowledge, this is the first work to establish uniform
convergence rates in the misspecified setting. Our
approach is also distinct from existing operator-based
methods in that we do not require the the target con-
ditional mean operator to be Hilbert-Schmidt, but
simply bounded on the aforementioned interpola-
tion space. Our generalized notion of boundedness
also significantly attenuates the need to explicitly
verify this continuity condition, which can often be
difficult and unintuitive, and was a key motivator of
the regression approach adapted by Grünewälder
et al. (2012a); Park and Muandet (2020). More-
over, our analysis does not make any assumptions
on the dimensionality of the input/output RKHS or
the compactness of the latent spaces. These relax-
ations do introduce a slight tradeoff of requiring the

polynomial eigendecay of the covariance operator,
a standard assumption in regularized least-squares
problems (Lin et al., 2020; Lin and Cevher, 2020;
Caponnetto and De Vito, 2007). In a sense, our ap-
proach hybridizes the two aforementioned frame-
works — namely, like Song et al. (2010) we construct
conditional embeddings as operators, and character-
ize the convergence of the sample estimator via the
spectral structure of the target embedding opera-
tor. However, we seek inspiration from the regression
formulation of Grünewälder et al. (2012a) and like-
wise try to extrapolate approaches from scalar-valued
kernel regression to our operator learning problem.

2 MODEL AND PRELIMINARIES

2.1 Problem Statement

Let D = {(xi, yi)}ni=1 ⊂ X × Y be a dataset of n inde-
pendent, identically distributed observations sampled
from a distribution P . Our goal is to learn the condi-
tional distribution P (Y |X), where (X,Y ) ∼ P . Here,
we study a learning strategy based on conditional
mean embeddings (Song et al., 2010), which seek
to represent conditional distributions as operators
between an input and output RKHS. Formally, let
HK be a separable RKHS on X with bounded mea-
surable kernel k(·, ·) and HL be a separable RKHS
on Y with measurable kernel l(·, ·). Then, according
to Song et al. (2009), we define a conditional mean
embedding CY |X : HK → HL as follows:
Definition 2.1. The conditional mean embedding
operator CY |X : HK → HL is defined such that:

• µY |x ≡ EY |x[l(Y, ·)] = CY |Xk(x, ·)

• EY |x[g(·)] = ⟨g, µY |x⟩L for all g ∈ HL and x ∈ X

Essentially, the operator CY |X performs the action
of conditioning on some x ∈ X , which is represented
by its feature mapping k(x, ·) ∈ HK . The output
µY |x ∈ HL then represents the conditional distribu-
tion P (·|x) in the output feature space HL— evalu-
ating the conditional expectation of some function
g ∈ HL simply reduces to taking its inner prod-
uct with µY |x. Thus, in a sense, µY |x can be inter-
preted as a generalization of the “density” of P (·|x),
although it is important to note that distributions do
not need to possess Lebesgue densities to be repre-
sented via a CME.

It is important to note that, implicit in Definition
2.1 is the assumption that the function gf (·) =
E[f(Y )|X = ·] is contained in HK for every f ∈ HL.
This is a strong assumption, and forms the so-called
“well-specified” scenario treated exhaustively in the
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literature (see e.g Song et al. (2009, 2010)). It is vio-
lated in several common cases, such as when X and
Y are independent and HK is a Gaussian RKHS,
which does not contain the constant functions gf (·)
for any f ∈ HL (see Corollary 4.44 in Steinwart and
Christmann (2008); our Lemma D.6 demonstrates
that constants are included in every interpolation
space, however). A key feature of our analysis will
involve relaxing this assumption by replacing HK in
Definition 2.1 with a larger interpolation space Hβ

K

that lies “between” HK and L2(PX) (defined rigor-
ously in the following section). Hence, our framework
proves robust as long there exists some such frac-
tional space that contains gf (·) for every f ∈ HL —
in section 3, we demonstrate how our learning rates
depend on the smoothness of this space.

We also define the uncentered kernel covariance
CXX = EX [k(X, ·) ⊗ k(X, ·)] and cross-covariance
CY X = EY X [l(Y, ·) ⊗ k(X, ·)] operators. Note here
that ⊗ may be interpreted as a tensor product, i.e.
CXX , for example, may be alternatively expressed
as: CXX = EX [k(X, ·)⟨k(X, ·), ·⟩K ], if we wish to
make the action of CXX on HK more explicit. It
can be easily shown (Klebanov et al., 2020) that
CY |X = (C†

XXCXY )
∗, when CY |X exists (where †

denotes the pseudo-inverse and ∗ the adjoint).

In practice, we do not have access to the true covari-
ance operators CXX and CY X , and hence use the
regularized sample CME Ĉλ

Y |X = ĈY X(ĈXX + λ)−1,
where λ > 0 and the empirical operators ĈY X and
ĈY X are defined precisely like their population coun-
terparts (with EY X [·] replaced by the empirical ex-
pectation ED[·]). Grünewälder et al. (2012a) demon-
strated that Ĉλ

Y |X solves the following regularized
least-squares problem:

arg min
T :HK→HL

1

n

n∑
i=1

||l(yi, ·)− T [k(xi, ·)]||2L + λ||T ||2HS (1)

Traditionally, the sample complexity of solutions
to (1) has been analyzed through the lens of vector-
valued regression (e.g. Park and Muandet (2020);
Grünewälder et al. (2012a)). In earlier works, the
consistency of the sample CME was demonstrated
via a spectral characterization (Song et al., 2010)
that imposed strong compactness conditions on
CY |X . Here, we develop an integral operator ap-
proach towards the analysis of (1) that seeks to sig-
nificantly weaken the spectral conditions on CY |X
through the use of interpolation spaces — our ap-
proach is strongly motivated by Fischer and Stein-
wart (2020) where integral operator techniques were
successfully applied towards the analysis of scalar-
valued kernel regression problems. In section 3,
we notably demonstrate that we can achieve the

same learning rates derived in Fischer and Steinwart
(2020) for our operator regression problem, under
weaker smoothness conditions.

Remark (Proofs). All proofs can be found in the
supplementary appendices.

Remark (Notation). In the remainder of this pa-
per, we define ĈY |X ≡ ĈY X(ĈXX + λI)−1, Cλ

Y |X ≡
CY X(CXX + λI)−1, and µY |x = EY |X=x[l(Y, ·)],
µ̂Y |x = ĈY |X(k(x, ·)), and µλ

Y |x = Cλ
Y |X(k(x, ·)).

Note that when denoting the sample conditional
embedding ĈY |X we suppress the dependence on λ
and the number of samples n, as these are typically
understood from context. Moreover, for any two
Banach spaces A and B, we denote by L(A,B) the
set of all continuous linear operators between A and
B. For any T ∈ L(A,B), ||T || denotes the operator
norm given by ||T || = sup||x||A≤1 ||Tx||B and ||T ||HS
denotes a Hilbert-Schmidt norm. Occasionally, we de-
note this operator norm as || · ||A→B in order to make
the domain and codomain more explicit. Finally, we
use the symbol ≼ to denote the Loewner (semidefi-
nite) order between positive semidefinite operators
(i.e. A ≼ B iff B −A is positive semidefinite).

2.2 Mathematical Preliminaries

We first summarize the theory of interpolation spaces
between HK and L2(ν) (where ν = PX is the
marginal distribution on X ). Consider the injective
imbedding Iν : HK → L2(ν) of HK into L2(ν). Let
Sν = I∗ν be its adjoint. Then, it can be shown that
Sν is an integral operator given by:

Sν(f) =

∫
X
k(x, ·)f(y)dν(y)

Using Sν and Iν , we construct the following positive
self-adjoint operators on HK and L2(ν), respectively:

Cν = SνIν = I∗ν Iν

Tν = IνSν = IνI
∗
ν

We observe that Cν and Tν are nuclear (see Lemma
2.2/2.3 in Steinwart and Scovel (2012)), and that
Cν coincides with our uncentered cross-covariance
operator CXX . In our discussion/analyses below we
typically only use the notation CXX when consider-
ing expansions of the operators ĈY |X , CY |X , or Cλ

Y |X
in order to remain consistent with literature (when
the latter operators are abbreviated as in this sen-
tence, we instead use Cν). Since, Tν is nuclear and
self-adjoint, it admits a spectral representation:

Tν =

∞∑
j=1

µjej⟨ej , ·⟩L2(ν)
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where {µj}∞j=1 ∈ (0,∞) are nonzero eigenvalues of
Tν (ordered nonincreasingly) and {ej}∞j=1 ⊂ L2(ν)
form an orthonormal system of corresponding eigen-
functions. Note that formally, the elements ej of
L2(ν) are equivalence classes [ej ]ν whose members
only differ on a set of ν-measure zero— notationally,
we consider this formalism to be understood here
and simply write ej to refer to elements in both HK ,
L2(ν), and their interpolation spaces (with the resi-
dence of ej understood from context). We define the
interpolation spaces Hα

K as:
Definition 2.2. For α > 0, we define the space Hα

K :

Hα
K =

{
f =

∑
i

ai(µ
α
2
i ei) : {ai}∞i=1 ∈ ℓ2

}
with inner product:〈∑

i

ai(µ
α
2
i ei),

∑
i

bi(µ
α
2
i ei)

〉
Hα

K

=
∑
i

aibi

We observe that, if α > β, Hα
K ⊂ Hβ

K ⊂ L2(ν), with
H1

K = HK . Note it is easy to see that {µ
α
2
i ei}∞i=1 is

an orthonormal basis for Hα
K . We also observe that

if:
∞∑
i=1

µα
i e

2
i (x) < ∞ ∀ x ∈ X (2)

then Hα
K can be viewed as an RKHS whose repro-

ducing kernel is equivalent to that of the integral
operator Tα

ν on L2(ν) (Proposition 4.2 in Steinwart
and Scovel (2012)). Even, when (2) is not satisfied,
we denote this kernel as kα(x, y) =

∑
i µ

α
i ei(x)ei(y),

and write ||kα||∞ = supx∈X
∑∞

i=1 µ
α
i e

2
i (x), if the

latter quantity is finite. Hence, we may identify
Hα

K
∼= ran T

α
2
ν . A detailed development of RKHS

interpolation spaces can be found in Steinwart and
Scovel (2012).

2.3 Conditional Embeddings on
Interpolation Spaces

We develop the notion of conditional embeddings on
interpolation spaces. We begin with the following
definition:
Definition 2.3. Let T : Hβ

K → HL be a (possibly un-
bounded) operator for some β > 0 and let γ ∈ (0, β).
Let Iβ,γ,ν : Hβ → Hγ be the canonical embedding.
We define the operator norm || · ||γ :

||T ||β,γ = ||T ◦ I∗β,γ,ν ||Hγ
K→HL

where both norms may possibly be infinite. When
β = 1, we simply write || · ||γ

Our definition of the interpolation norm is motivated
by the following observation:

Lemma 1. Suppose CY |X : HK → HL is well-defined
according to Definition 2.1. Then, for any β ∈ (0, 1),
CY |X ◦ I∗1,β,ν is the conditional mean embedding from
Hβ

K to HL (by Definition 2.1 with HK replaced by
Hβ

K).

When the conditional mean embedding from Hβ
K to

HL is well-defined, we denote it as Cβ
Y |X . Note, im-

plicit in this definition of Cβ
Y |X is the assumption

that Hβ
K is indeed an RKHS, i.e. it satisfies condi-

tion (2). Thus, from Lemma 1, we observe that if
CY |X and Cβ

Y |X are well-defined, then ||CY |X ||β =

||Cβ
Y |X ||. The following result further elaborates the

relationship between the operator norms || · || and
|| · ||γ :

Lemma 2. Let T : Hβ
K → HL be an operator. Then,

for any γ ∈ (0, β), we have that:

||T ||β,γ = ||T ◦ C
1
2

β,γ,ν ||Hβ
K→HL

where Cβ,γ,ν = I∗β,γ,νIβ,γ,ν

Our motivation behind introducing the Sobolev
norms in Definition 2.3 stems from our desire to
study operator convergence over the interpolation
spaces Hβ

K . A distinguishing feature of our analysis
is that we do not assume the existence of the CME
CY |X over HK , but merely over some interpolant
Cβ

Y |X (β ∈ (0, 2)), which maps kβ(x, ·) ∈ Hβ
K to

µY |x (we are primarily interested in the misspeci-
fied setting 0 < β < 1). Since, we cannot approxi-
mate Cβ

Y |X directly (as the exponent β is typically
unknown), we construct the regularized approxi-
mation Cλ

Y |X ∈ L(HK ,HL) (which is always well-
defined and bounded) and “pushback” to Hβ

K via
the composition Cλ

Y |X ◦ I∗1,β,ν . We observe that
(Cλ

Y |X ◦ I∗1,β,ν)k
β(x, ·) = Cλ

Y |Xk(x, ·) = µλ
Y |x, i.e.

Cλ
Y |X ◦ I∗1,β,ν maps the canonical “feature” kβ(x, ·) in

Hβ
K to the regularized mean embedding µλ

Y |x ∈ HL.

Thus, the use of Sobolev norms here is primarily
a mathematical construction employed to compare
operators defined over different domains — in ap-
plications, we are mainly interested in estimating
||µY |x − µ̂Y |x||L, i.e. the distance between the sample
and true embeddings of the conditional distribution
P (·|x) in the output RKHS HL. Bounding the lat-
ter distance provides insight into the sample error
involved in computing the conditional expectation of
a function g ∈ HL, as

|⟨g, µ̂Y |x⟩L − E[g(Y )|x]| = |⟨g, µ̂Y |x⟩L − ⟨g, µY |x⟩L|
≤ ||µY |x − µ̂Y |x||L||g||L
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(note that ⟨g, µ̂Y |x⟩L is typically not an expectation
of g with respect to some distribution, but simply
an approximation of the true expectation E[g(Y )|x];
see Grünewälder et al. (2012b) for more details). If
Hβ

K is continuously embedded in L∞(X ) (i.e. kβ is
bounded), then we can obtain uniform bounds on
||µY |x − µ̂Y |x||L over all x ∈ X , by estimating the
operator distance ||Cλ

Y |X ◦ I∗1,β,ν − Cβ
Y |x||. Indeed, we

have:

||µY |x − µ̂Y |x||L = ||(ĈY |X ◦ I∗1,β,ν)kβ(x, ·)− (Cβ
Y |X)kβ(x, ·)||L

≤ ||ĈY |X ◦ I∗1,β,ν − Cβ
Y |X ||||kβ(x, ·)||β

≤ ||kβ ||∞||ĈY |X ◦ I∗1,β,ν − Cβ
Y |X || (3)

In the following section, we discuss the various pa-
rameter regimes in which such bounds are attainable.

Remark (Abuse of Notation). In light of Lemma 1,
for the remainder of the paper, when Cβ

Y |X is well-
defined, we abuse notation and simply write ||ĈY |X −
CY |X ||β to express ||ĈY |X ◦ I∗1,β,ν −Cβ

Y |X ||, even when
CY |X is not well-defined/bounded, in order to make
explicit the distance between a sample estimator and
its “true” value. Similarly, for any γ < β, we define
||ĈY |X − CY |X ||γ as ||ĈY |X ◦ I∗1,γ,ν − Cβ

Y |X ◦ I∗β,γ,ν ||

2.4 Assumptions

We state some assumptions similar to those in Fis-
cher and Steinwart (2020) — namely, we impose
conditions on the decay of the eigenvalues of Tν , the
boundedness of a kernel interpolant, the conditional
kernel moments of our target distribution, and the
boundedness of Cβ

Y |X . Below, we discuss how the
latter assumption is weaker than the direct gener-
alization of its analogous hypothesis in Fischer and
Steinwart (2020) for scalar-valued regression.

Assumption 1. There exists a 0 < p < 1 such that
ci−

1
p ≤ µi ≤ Ci−

1
p , for some c, C > 0

Assumption 2. There exists a 0 < p < α ≤ 1
such that the inclusion map i : Hα

K ↪→ L∞(ν) is
continuous, with ||i|| = ||kα|| ≤ A for some A > 0
(we define α as the smallest value satisfying these
conditions)

Assumption 3. There exists a 0 < p < β < 2 such
that ||Cβ

Y |X || ≤ B < ∞

Assumption 4. There exists a trace-class operator
V : HL → HL and scalar R > 0, such that for every
x ∈ X and p ≥ 1:

EY |x

[(
(L(Y, ·)−µY |x)⊗(L(Y, ·)−µY |x)

)p]
≼

(2p)!R2p−2

2
V

(4)

2.4.1 Discussion/Comparison of
Assumptions

Although they are listed separately here, assump-
tions 1 and 2 are indeed highly related as they both
(implicitly) impose conditions on the summability
of powers of eigenvalues of Tν . Indeed, under an ad-
ditional assumption of uniform boundedness of the
eigenfunctions ei, assumptions 1 and 2 can be shown
to be equivalent for certain domains of α and p. A
comprehensive discussion of the relationship between
these two assumptions can be found in Fischer and
Steinwart (2020); Steinwart and Scovel (2012).

Assumption 3 characterizes the continuity of the
“true” conditional embedding operator. Note, a dis-
tinctive feature of our approach is that we not only
allow the CME to exist over any fractional RKHS
Hβ

K , but additionally only require that the CME
is bounded over this space. This contrasts strongly
with existing operator-theoretic literature (Song
et al., 2009, 2010) where the CME is required to
be Hilbert-Schmidt (or equivalently belong to a prod-
uct RKHS in the regression formulation of Park and
Muandet (2020)) in order to achieve explicit learn-
ing rates. The significance of this relaxation can
be seen in the trivial example when Y = X and
1 − β ≤ p

2 : indeed here, it can be easily seen that
Cβ

Y |X = I∗1,β,ν , and hence ||Cβ
Y |X || = µ1−β

1 < ∞ while

||Cβ
Y |X ||2HS =

∑∞
i=1 µ

2(1−β)
i ≥

∑∞
i=1 i

−1 = ∞. More,

generally, it can be shown that if Cβ
Y |X exists, then

it is automatically bounded when EY [l(Y, Y )] < ∞,
i.e. when l is bounded (see Lemma 3 below). Note,
however, compared to the scalar regression case in
Fischer and Steinwart (2020), this introduces the
condition that p < β, which is trivially satisfied
when Hβ

K is an RKHS (Proposition 4.4 in Steinwart
and Scovel (2012)). We are able to remove the latter
condition if we require Cβ

Y |X to be Hilbert-Schmidt,
which would be a direct generalization of the source
condition in Fischer and Steinwart (2020) (this trade-
off is directly indicated in the remark following the
proof of Lemma 6 in Appendix B).

We are primarily interested in the misspecified/“hard
learning” scenario when 0 < β < 1, the regime
where the conditional embedding is not bounded
over the RKHS HK , as this is where our framework
improves on the related literature. Note that since
the interpolation spaces are descending, the regime
with 1 ≤ β ≤ 2 simply collapses to β = 1, which
has already been analyzed in Song et al. (2010). We
only include this regime here, to demonstrate that
we can generalize the learning rates from Fischer and
Steinwart (2020) almost exactly. We now demon-
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strate the relationship between Assumption 3 and
the hard-learning scenario:
Lemma 3. Assumption 3 is equivalent to
sup||f ||L≤1 ||E[f(Y )|X = ·]||Hβ

K
= B < ∞ for some β

with 0 < p < β < 2. If EY [l(Y, Y )] < ∞ and Cβ
Y |X

exists, then Assumption 3 is automatic.

Lemma 3 captures the generality of our approach —
notice that unlike the classical framework of CME,
we do not require E[f(Y )|X = ·] ∈ HK for f ∈ HL.
Indeed, by Lemma 3, E[f(Y )|X = ·] ∈ Hβ

K must only
lie in a || · ||Hβ

K
ball of radius B for all unit vectors

f ∈ HL. Intuitively, the act of conditioning on X
must map HL continuously into Hβ

K , which is strictly
larger than HK for β ∈ (0, 1) — the misspecified
setting.

Recall that in the previous section, we demonstrate
that uniform convergence rates are attainable when
α < β (note that Assumption 2 automatically quali-
fies Hα

K as a bounded RKHS). This setting is attain-
able in many common settings — for example, when
k is a Matérn kernel of order γ > 0 on a bounded
open subset X ⊂ Rd with strong Lipschitz bound-
ary, kα is bounded for all α ∈

(
2γ+d

d , 1
)

(see e.g.
Example 4.8 in Steinwart (2019)). Moreover, in this
scenario, the condition p < β translates to requiring
Hβ

K
∼= W s(X ) for s > d

2 .

Assumption 4 may be viewed as an “operator subex-
ponential” condition that controls the norm of the
conditional operator MGF. Like Assumption 3,
Assumption 4 can be weakened to EY |x[||l(Y, ·) −
EY |x[l(Y, ·)]||2p] ≤ (2p)!R2p−2

2 σ2 (for σ ∈ R) if Assump-
tion 3 is replaced with a stronger Hilbert-Schmidt
criterion (which would be the natural generalization
of the corresponding assumptions from Fischer and
Steinwart (2020) to operator-valued RKHS). How-
ever, Lemma 4 demonstrates that Assumption 4 is
satisfied when the output RKHS also satisfies a vari-
ant of Assumptions 1/2, suggesting that the tradeoff
we choose here indeed achieves more generality.
Lemma 4. Let π be a measure on Y. Suppose HL

is compactly and injectively embedded in L2(π), l
is bounded (supy∈Y

√
l(y, y) = ℓ < ∞), and Tπ has

spectrum {(ηi, fi)}∞i=1 (where Tπ is defined on L2(π)

analogously to Tν above). Then, if ηi = O
(
i−q−1

)
for 0 < q < 1, and K ≡ supy∈Y

∑∞
i=1 η

γ
i f

2
i (y) < ∞

for some γ ∈ (0, 1− q), we have that Assumption 4 is
satisfied for R = 2ℓ and V = KC1−γ

π .

Thus, Lemma 4 demonstrates that we can reduce As-
sumption 4 to a condition on the RKHS HL, instead
of a constraint on the conditional distribution Y |x.
Moreover, although Assumptions 1 and 2 are more

restrictive than the measure-theoretic frameworks
of Mollenhauer et al. (2020) and Park and Muandet
(2020), these hypotheses do not impose conditions
on the conditional distribution P (Y |X) or the CME,
but instead prescribe the relationship between the
kernel and the measure ν = PX . A crucial feature
of our analysis involves establishing explicit learning
rates that are adaptive to this relationship between
kernel complexity (Assumptions 1 and 2) and the
CME continuity (Assumption 3).

As mentioned previously, Assumptions 1 and 2 are
borrowed directly from Fischer and Steinwart (2020).
However, our assumption 3 requiring only bounded-
ness of Cβ

Y |X is significantly weaker than the Hilbert-
Schmidt condition that would result from a direct
generalization of the source condition in Fischer and
Steinwart (2020) to operator-valued RKHSs. Indeed,
the use of a more general source condition in As-
sumption 3 and operator subexponentiality in As-
sumption 4 distinguishes our analysis from that of
Fischer and Steinwart (2020) and requires the devel-
opment of additional approximation machinery to
obtain operator norm learning rates (see Appendix C
and section 3.1)

2.4.2 Example: Markov Operators

To further demonstrate the generality of Assump-
tion 3, we consider an example involving Markov
transition operators, which have recently found an el-
egant connection to CMEs (see e.g. Mollenhauer and
Koltai (2020); Mollenhauer et al. (2020)). Although
this example is presented to provide a concrete com-
parison with existing applications of conditional em-
beddings (Grünewälder et al., 2012b; Lever et al.,
2016), it should be noted that the argument applies
to any setting where the input and output variables
range over the same measure space (i.e. X = Y).

Let {Xt}t≥0 be a Markov process on a state space
S ⊂ Rd. Fix τ > 0, and let pτ (y|x) = P (Xt+τ =
y|Xt = x) be the conditional transition density.
Then, we may define the Koopman operator Pτ act-
ing on an observable ϕ ∈ F in some suitable function
space F by:

(Pτϕ)(x) =

∫
S

pτ (y|x)ϕ(y)dy

In applications, we are often interested in building
empirical approximations to Pτ which typically re-
quire restricting the domain of Pτ to an amenable
space. Recently, kernel methods have been proposed
for this purpose (Klus et al., 2020; Mollenhauer
et al., 2020; Klus et al., 2018), where F is set to
some RKHS HK typically over L2(ν) (here ν is the
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stationary measure invariant under Pτ ). Indeed, Klus
et al. (2020) demonstrate that when F is an RKHS,
the Koopman operator Pτ is simply the dual of the
conditional mean embedding mapping P (Xt = ·) to
P (Xt+τ = ·), thereby enabling the straightforward
application of CME machinery towards the empir-
ical estimation of Pτ . However, their construction
notably requires Pτ to be invariant over HK , which
as mentioned in Mollenhauer et al. (2020) and Das
and Giannakis (2020) is quite restrictive, and equiv-
alent to the assumption that the CME of pτ exists
from HK to HK . Notably, this assumption often in-
troduces a model error by requiring the (possibly
weak) approximation of Pτ in L(HK ,HK). We ob-
serve that this assumption is significantly relaxed in
our framework — indeed by Lemma 3, we require
that Pτ merely be a bounded operator on HK with
range in Hβ

K for some β ∈ (0, 1] (the latter space
being strictly larger than HK when β < 1). Hence,
we may apply the new misspecified learning rates
developed here towards the data-driven estimation of
the Koopman operator Pτ in much broader settings.

3 TECHNICAL CONTRIBUTIONS

We first present our main result in Theorem 5. As
expected, we achieve a faster learning rate as γ → 0,
i.e. as the norm || · ||γ weakens.
Theorem 5. Suppose Assumptions 1-4 are satisfied,
and that supx∈X ||µY |x||L ≤ C̃ < ∞. Then, let

λn ≍
(

logr n
n

) 1
max{α,β+p}

for some r > 1. Then there
exists a constant K > 0 (independent of n and δ),
such that for 0 < γ < β:

||ĈY |X − CY |X ||γ ≤ K log(δ−1)
( n

logr n

)− β−γ
2max{α,β+p}

with probability 1− 2δ.

The exponent β−γ
2max{α,β+p} illustrates that the learn-

ing rate hinges quite naturally on the comparison
between α and β. Intuitively, the exponent α charac-
terizes the boundedness of our kernel, while β charac-
terizes the boundedness of the conditional mean op-
erator. The sizes of α and β are related inversely to
specification, with our problem being more strongly
specified as α → 0 and β → 1. We therefore expect
to achieve faster learning rates for low α and high
β. Indeed, when α > 2β (i.e. the kernel is relatively
poorly bounded), then α = max{α, β + p}, which
will limit the magnitude of the exponent and lead
to a slow learning rate. Conversely, if β > α, then
we can bring our learning rate arbitrarily close to

β
2(β+p) ≥ 1

4 (by Assumption 3). Note, in this regime,
the Sobolev norm learning rate || · ||γ is only useful for

establishing uniform convergence rates when γ ≥ α.
Indeed, by (3), here we can obtain a uniform error
bound in ||µ̂Y |x − µY |x||L for the sample conditional
mean embedding µ̂Y |x over all x ∈ X . Moreover, as
we will see later in Lemma 6, the exponent α − β
characterizes our ability to control the worst-case
bias of our estimator supx∈X ||µλ

Y |x − µY |x|| as λ → 0,
which likewise relates directly to the convergence of
the sample embedding operator.
Remark. We note that the additional assumption
supx∈X ||µY |x||L ≤ C̃ is not very restrictive, as this
is easily satisfied when the kernel ℓ is bounded (re-
call we do not place an a priori assumption on the
boundedness of the output kernel ℓ).
Corollary 5.1. Suppose the hypotheses of Theorem
5. Then, if β > α, we obtain, with probability 1− 2δ
and constant K > 0:

sup
x∈X

||µ̂Y |x − µY |x||L ≤ K log(δ−1)
( n

logr n

)− β−α
2(β+p)

We emphasize that we are able to achieve learning
rates roughly matching those in Fischer and Stein-
wart (2020) for scalar-valued regression, despite only
requiring the continuity/boundedness of our target
Cβ

Y |X rather than the stronger smoothness source
condition imposed on the regression function in Fis-
cher and Steinwart (2020). Moreover, we note that
we obtain a roughly similar logn

n base observed in
Grünewälder et al. (2012a) for finite-dimensional
RKHSs, which is unsurprising as the latter is based
off the regularized learning rates of Caponnetto and
De Vito (2007), which is foundational in the scalar-
valued kernel regression literature.

3.1 Proof of Theorem 5

To estimate the error ||ĈY |X − CY |X ||γ =

||ĈY X(ĈXX+λI)−1−CY |X ||γ , we follow the standard
procedure by separating into bias and variance terms,
and bounding each term independently. Namely, we
write:

||ĈY |X − CY |X ||γ ≤ ||ĈY |X − Cλ
Y |X ||γ + ||Cλ

Y |X − CY |X ||γ
(5)

Our main tool will be Theorem 7, where we estimate
the variance by notably applying the subexponen-
tial condition in Assumption 4 and a new operator
Bernstein inequality derived in Lemma C.3 in the
Appendix, which may be of independent interest.
Lemma C.3 is crucial in our analysis, as it enables
us to quantify the variance in (5) directly in opera-
tor norm, rather than embedding the operators in
a product RKHS, which implicitly requires them to
be Hilbert-Schmidt (see discussion in e.g. Park and
Muandet (2020); Mollenhauer and Koltai (2020)).
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Like in Fischer and Steinwart (2020), our variance
bound in Theorem 7 is expressed implicitly in terms
of the worst-case bias. Hence, we first discuss the
estimation of this bias term ||Cλ

Y |X − CY |X ||γ .

3.1.1 Bounding the Bias

In the following result, we seek to estimate sev-
eral different measures of the bias between µλ

Y |X
and µY |X , that relate to the various spectral prop-
erties of the covariance operators arising in The-
orem 7. We will see that while the “average” bias
EX [||µλ

Y |X − µY |X ||2L] can always be shown to decay
polynomially at order β − p as λ → 0, estimating the
worst-case bias is less straightforward. Notably, we
can only demonstrate the polynomial decay of the
latter quantity when β > α, i.e. the “nice” regime
when the conditional embedding can be expressed
as a continuous operator acting on bounded RKHS,
leading to uniform convergence rates in the output
space HL. When β ≤ α, we can merely bound this
worst-case bias in a way sufficient to achieve the
learning rates in Theorem 5.

We argue that imposing a continuity constraint on
Cβ

Y |X in Assumption 3 is more natural for study-
ing uniform convergence of µ̂Y |x, rather than the
stronger Hilbert-Schmidt criteria often imposed in
vector-valued regression. Indeed, estimating the bias
||µλ

Y |x − µY |x||L and sample error ||µ̂Y |x − µY |x||L in-
volve quantifying distances in the output RKHS HL,
the codomain of the true (Cβ

Y |X), sample (ĈY |X),
and regularized (Cλ

Y |X) conditional embedding op-
erators. Since µY |x, µ̂Y |x, and µλ

Y |x lie more specif-
ically in the range of their respective operators
(Cβ

Y |X , ĈY |X , and Cλ
Y |X), intuitively, it is sufficient

to constrain the operator norms of the latter to ob-
tain uniform upper bounds in HL. However, we must
note that additionally requiring Cβ

Y |X to be Hilbert-
Schmidt would allow us to achieve the polynomial
decay of the expected bias in (6) for any β ∈ (0, 2),
without requiring β > p as in Assumption 3 (elab-
orated in the remark following the proof of Lemma
6 in Appendix B). We view this tradeoff to be quite
minor with respect to elimination of the Hilbert-
Schmidt requirement on Cβ

Y |X (as discussed in sec-
tion 2.4.1).
Lemma 6. Suppose Assumptions 1-4 and
supx∈X ||µY |x||L ≤ C̃. Then, there exists a constant
D > 0, such that for all 0 < γ < β < 2:

EX [||µλ
Y |X − µY |X ||2L] ≤ DBλβ−p (6)

M2(λ) ≡ sup
x∈X

||µY |x − µλ
Y |x||2L ≤ (C̃2 + ||kα||2∞B2)λ−(α−β)+

(7)

Mλ ≡ ||E[(µY |x − µλ
Y |x)⊗ (µY |x − µλ

Y |x)]|| ≤ B2λβ (8)

||Cλ
Y |X − CY |X ||γ ≤ Bλ

β−γ
2 (9)

3.1.2 Bounding the Variance

We now present our primary estimate, where we
demonstrate that for sufficiently large n, the “vari-
ance” of the sample CME (in || · ||γ) can be estimated
implicitly via the bias. Specifically, we use a new op-
erator Bernstein inequality (detailed in Appendix
C) and the framework of Theorem 16 in Fischer and
Steinwart (2020), to demonstrate the concentration
of ĈY |X around CY |X for a fixed λ.
Theorem 7. Suppose Assumptions 1-4 hold. Let σ2 =
tr(V ) (where V is defined in Assumption 4). Define:

N (λ) = tr(Cν(Cν + λ)−1)

Q = max{M(λ), R}

gλ = log
(
2eN (λ)

||Cν ||+ λ

||Cν ||

)
ρλ = E

[
(µλ

Y |X − µY |X)⊗ (µλ
Y |X − µY |X)

]
η = max

{ (σ2 +M2(λ))||Cν ||
||Cν ||+ λ

, ||N (λ)V +
||kα||2∞
λα

ρλ||
}

β(δ) = log
(4((2σ2 +M2(λ))N (λ) +

||kα||2∞
λα tr(ρλ))

ηδ

)
Then, for n ≥ 8||kα||2∞ log(δ−1)gλλ

−α:

||ĈY |X − Cλ
Y |X ||γ ≤ 3λ− γ

2

(16Q||kα||∞β(δ)

λ
α
2 n

+ 8

√
ηβ(δ)

n

)
(10)

with probability 1− 2δ

The proof of Theorem 5 then follows by substitut-
ing the bias estimates in Lemma 6 into (10), com-
bining with the operator bias bound in (9), and
considering the behavior of the resulting bound as

λn ≍
(

logr n
n

) 1
max{α,β+p}

as n → ∞. A full proof of
these three results can be found in Appendix B.

4 DISCUSSION

In this paper, we derive novel learning rates for con-
ditional mean embeddings under a new misspecified
framework that significantly relaxes the Hilbert-
Schmidt criteria currently required to guarantee
uniform convergence on infinite-dimensional RKHS.
This relaxation reduces the need to explicitly ver-
ify the smoothness of the learning target, which can
often be difficult or counterintuitive. Our results
hopefully enable the much broader application of
existing ML/RL algorithms for conditional mean
embeddings to more complex, misspecified settings
involving infinite dimensional RKHS and continuous
state spaces.

There are several remaining questions. Firstly, com-
plementary lower bounds would be required for The-
orem 5 to ensure the results presented here are in-
deed optimal. Given the ease in matching the upper
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bounds from the scalar-valued setting in Fischer and
Steinwart (2020), we suspect that our learning rates
are likewise optimal in this setting, however verifying
this would require further analysis. A further inter-
esting question involves exploring how the framework
developed here may generalize to other regulariza-
tion approaches, such as spectral regularization, or
quantile/expectile regression.
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Supplementary Material:
Sobolev Norm Learning Rates for Conditional Mean Embeddings

A Proofs for Sections 2.3 and 2.4

Proof of Lemma 1. We must demonstrate that CY |X◦I∗1,β,ν : Hβ
K → HL satisfies the definition of the conditional

mean embedding in Definition 2.1 where the input space is taken as Hβ
K (instead of HK). Thus, we must show

that CY |X ◦ I∗1,β,νkβ(x, ·) = µY |x. We first observe that, for any f ∈ HK and x ∈ X , we have:

⟨I1,β,νf, kβ(x, ·)⟩Hβ
K
= ⟨f, kβ(x, ·)⟩Hβ

K

= f(x)

= ⟨f, k(x, ·)⟩K

Hence, we have that I∗1,β,νk
β(x, ·) = k(x, ·). Therefore, by the definition of CY |X in Definition 2.1, we have:

(CY |X ◦ I∗1,β,ν)kβ(x, ·) = CY |Xk(x, ·)
= µY |x

and we obtain our result.

Proof of Lemma 2. Since {µ
β
2
i ei}∞i=1 is an orthonormal basis for Hβ

K , we may express any f ∈ Hβ
K as f =∑∞

i=1⟨f, µ
β
2
i ei⟩Hβ

K
µ

β
2
i ei. Hence, we have:

⟨f, Cβ,γ,ν(µ
β
2
i ei)⟩Hβ

K
= ⟨f, I∗β,γ,νIβ,γ,ν(µ

β
2
i ei)⟩Hβ

K

= ⟨Iβ,γ,νf, Iβ,γ,ν(µ
β
2
i ei)⟩Hγ

K

= ⟨f, µ
β
2
i ei⟩Hγ

K

=
〈 ∞∑

i=1

⟨f, µ
β
2
i ei⟩Hβ

K
µ

β
2
i ei, µ

β
2
i ei

〉
Hγ

K

= µβ−γ
i ⟨f, µ

β
2
i ei⟩Hβ

K

where the final step follows from the fact that {µ
γ
2
i ei}∞i=1 is an orthonormal basis in Hγ

K . Hence Cβ,γ,ν is a
positive self-adjoint operator on Hβ

K with eigenvalues {µβ−γ
i }∞i=1 and an orthonormal basis of eigenfunctions

{µ
β
2
i ei}∞i=1. Moreover, since Cβ,γ,ν = I∗β,γ,νIβ,γ,ν by definition and Iβ,γ,ν is the canonical embedding of Hβ

K into
Hγ

K , it follows that the action of I∗β,γ,ν : Hγ
K → Hβ

K can be characterized as:

I∗β,γ,νei = µβ−γ
i ei ν − almost surely (11)

for all i ∈ N. Now, let Bℓ2 denote the unit ball in ℓ2. Then, we have that for any linear operator T : Hβ
K →
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HL:

||T ||β,γ = ||T ◦ I∗β,γ,ν ||

= sup
a∈Bℓ2

∥∥∥∑
i

aiµ
γ
2
i (T ◦ I∗β,γ,ν)ei

∥∥∥
= sup

a∈Bℓ2

∥∥∥∑
i

µ
β− γ

2
i ai(Tei)

∥∥∥ by (11)

= sup
a∈Bℓ2

∥∥∥∑
i

aiµ
β−γ

2
i T (µ

β
2
i ei)

∥∥∥
= sup

a∈Bℓ2

∥∥∥∑
i

ai(T ◦ C
1
2

β,γ,ν)µ
β
2
i ei

∥∥∥
= ||T ◦ C

1
2

β,γ,ν ||

where again the last and second equalities follow from the fact that {µ
β
2
i ei}i∈N and {µ

γ
2
i ei}i∈N are orthonormal

bases in Hβ
K and Hγ

K , respectively.

The following result demonstrates that if EY [ℓ(Y, Y )] < ∞, then Cβ
Y |X is always bounded when it exists.

Lemma A.1. Suppose that Cβ
Y |X exists and EY [ℓ(Y, Y )] < ∞. Then, Cβ

Y |X is bounded.

Proof. Define Cβ,XY ≡ EXY [k
β(X, ·)⊗ l(Y, ·)]. Note, that this operator is analogous to the cross-covariance op-

erator CXY defined in section 2.2, except that the feature vectors k(x, ·) have been replaced by kβ(x, ·), since
Cβ,XY maps between the RKHS HL and Hβ

K . Similarly, it is easy to see that the embedded covariance opera-
tor of X over Hβ

K is simply EX [kβ(X, ·)⊗ kβ(X, ·)] and equivalent to Cβ,0,ν = I∗β,0,νIβ,0,ν (as defined in Lemma
2 and Definition 2.3; note here Iβ,0,ν is simply the embedding of Hβ

K in L2(ν)). Thus, by the discussion in sec-
tion 2.2 and Klebanov et al. (2020), it follows that when Cβ

Y |X exists it is given by (C†
β,0,νCβ,XY )

∗. Hence, in

order to demonstrate that Cβ
Y |X is bounded, we must only demonstrate that Cβ,0,ν and Cβ,XY are bounded

and then apply Theorem A.1 in Klebanov et al. (2020). It is clear that Cβ,0,ν shares the same eigenvalues as
T β
ν (just as Tν and Cν), and hence ||Cβ,0,ν || = µβ

1 < ∞. To see that Cβ,XY : HL → Hβ
K is bounded, we note

that, for f ∈ HL with ||f ||L ≤ 1, we have:

||Cβ,XY f ||Hβ
K
=

∥∥∥EXY [k
β(X, ·)⟨l(Y, ·), f⟩L]

∥∥∥
Hβ

K

≤ ||f ||L
∥∥∥EXY [k

β(X, ·)
√
l(Y, Y )]

∥∥∥
Hβ

K

(12)

≤ EXY [∥kβ(X, ·)∥
√

l(Y, Y )] (13)

= EXY [
√

kβ(X,X)l(Y, Y )]

≤
√

EX [kβ(X,X)]EY [l(Y, Y )] (14)

< ∞ (15)

where (12) follows from Cauchy-Schwarz, (13) follows from Jensen’s inequality and the fact that ||f ||L ≤ 1,
(14) follows from Cauchy-Schwarz, and finally (15) follows from the assumption EY [ℓ(Y, Y )] < ∞ and the
fact that EX [kβ(X,X)] = EX [

∑∞
i=1 µ

β
i e

2
i (X)] < ∞, since Hβ

K is implicitly an RKHS (since the CME Cβ
Y |X

is well-defined) and hence satisfies (2). Hence Cβ,XY is bounded, and our result follows from Theorem A.1
in Klebanov et al. (2020). Moreover, if Assumption 1 is satisfied for some p > 1, it follows that since ∞ >

EX [kβ(X,X)] = EX [
∑∞

i=1 µ
β
i e

2
i (X)] =

∑∞
i=1 µ

β
i ≥ c

∑∞
i=1 i

−p−1β , that β > p.
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Proof of Lemma 3. Let gf (·) = E[f(Y )|X = ·]. We observe that for every x ∈ X :

gf (x) = EY |x[f(Y )] (16)
= ⟨f, µY |x⟩L (17)

= ⟨f, Cβ
Y |Xkβ(x, ·)⟩L (18)

= ⟨(Cβ
Y |X)∗f, kβ(x, ·)⟩Hβ

K
(19)

Since gf ∈ Hβ
K by assumption (recall this is implicit in the existence of Cβ

Y |X : Hβ
K → HL), we have that

gf = (Cβ
Y |X)∗f . The result then follows from:

||Cβ
Y |X ||2 = sup

||f ||L≤1

∞∑
i=1

⟨f, Cβ
Y |Xµ

β
2
i ei⟩

2
L

= sup
||f ||L≤1

∞∑
i=1

⟨(Cβ
Y |X)∗f, µ

β
2
i ei⟩

2
Hβ

K

= sup
||f ||L≤1

∞∑
i=1

⟨gf , µ
β
2
i ei⟩

2
Hβ

K

= sup
||f ||L≤1

||gf ||2Hβ
K

The second part of the lemma follows directly from Lemma A.1.

Proof of Lemma 4. We first note that, here π may be any measure, and we only require that the compact
imbedding HL ↪→ L2(π) be injective (which ensures that {η

1
2
i fi}∞i=1 is indeed an orthonormal basis for HL by

Theorem 3.3 in Steinwart and Scovel (2012)) Let gf (x) = EY |x[f(Y )], for f ∈ HL. Then, we have that:

EY |x

[(
(l(Y, ·)− µY |x)⊗ (l(Y, ·)− µY |x)

)p]
= EY |x[||l(Y, ·)− µY |x||2p−2(l(Y, ·)− µY |x)⊗ (l(Y, ·)− µY |x)]

≼ (2ℓ)2p−2EY |x[(l(Y, ·)− µY |x)⊗ (l(Y, ·)− µY |x)] (20)

≼ (2ℓ)2p−2EY |x[l(Y, ·)⊗ l(Y, ·)] (21)

where (20) follows from the fact that µY |x = EY |x[l(Y, ·)] by definition and ||l(y, ·)|| =
√
l(y, y) ≤ l by assump-

tion. Now, since:

l(y, ·) =
∞∑
i=1

ηifi(y)fi

converges pointwise (Theorem 3.3 in Steinwart and Scovel (2012)), we have that for any h ∈ HL,

⟨h, l(y, ·)⟩2L =
〈
h,

∞∑
i=1

ηifi(y)fi

〉2

L

≤
( ∞∑

i=1

ηγi f
2
i (y)

)( ∞∑
i=1

η1−γ
i ⟨h, η

1
2
i fi⟩

2
L

)
≤ K⟨h,C1−γ

π h⟩L (22)

where (22) follows from the fact that K ≡
∑∞

i=1 η
γ
i f

2
i (y) < ∞ by assumption, and in (22), Cπ is defined

analogously to Cν in section 2.2. Hence, for all y ∈ Y, l(y, ·)⊗ l(y, ·) ≼ KC1−γ
π and:

EY |x

[(
(l(Y, ·)− µY |x)⊗ (l(Y, ·)− µY |x)

)p]
≼ (2ℓ)2p−2EY |x[l(Y, ·)⊗ l(Y, ·)] ≼ K(2ℓ)2p−2C1−γ

π

Finally, tr
(
C1−γ

π

)
=

∑
i η

1−γ
i ≍

∑
i i

−q−1(1−γ) < ∞ since γ < 1 − q. Hence, we obtain our result with
V = KC1−γ

π and R = 2ℓ.
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Remark (Assumptions in Lemma 4). A particularly illustrative case of the assumption ηi = O
(
i−q−1

)
occurs when the ηi decay exponentially (such as when l is the Gaussian kernel and π is the Lebesgue mea-
sure), in which case it is easy to see that the decay condition holds for any q ∈ (0, 1). Moreover, we note
that our boundedness condition

∥∥∥∑i∈N ηγi f
2
i

∥∥∥
L∞(Y)

< ∞ is significantly weaker than requiring the uniform

boundedness of the eigenfunctions (supi∈N ||fi||L∞(Y) < ∞), the latter of which is often violated even for C∞

kernels (see discussion in Steinwart and Scovel (2012) and Zhou (2002)). In fact, for the kernel in Example 1
of Zhou (2002), it can be shown that the requirement

∥∥∥∑i∈N ηγi f
2
i

∥∥∥
L∞(Y)

< ∞, is satisfied for any choice of

γ ∈
(

ln 8
ln 16 , 1

)
, despite ||fi||L∞(Y) growing exponentially. Most importantly, Lemma 4 demonstrates that we

can replace the requirement on the conditional distribution Y |X in Assumption 4 with a condition on HL and
thereby eliminate any constraints on P (Y |X) in our hypotheses.

B Proof of Theorem 5

Proof of Lemma 6. We first note that:

µλ
Y |X = CY X(CXX + λ)−1k(x, ·)

= EY X [l(y, ·)⊗ k(x, ·)](CXX + λ)−1k(x, ·)

= Cβ
Y |XEX [kβ(x, ·)⊗ k(x, ·)](CXX + λ)−1k(x, ·) (23)

where (23) follows from the fact that µY |x = EY |X=x[l(Y, ·)] = Cβ
Y |Xkβ(x, ·) by the definition of the conditional

embedding Cβ
Y |X on Hβ

K . We then observe that:

EX [kβ(x, ·)⊗ k(x, ·)](CXX + λ)−1k(x, ·) = EX

[( ∞∑
i=1

µβ
i ei(X)ei

)
⊗

( ∞∑
i=1

µiei(X)ei

)]
(CXX + λ)−1k(x, ·)

=
( ∞∑

i=1

µ1+β
i ei ⊗ ei

)
(CXX + λ)−1k(x, ·)

=
( ∞∑

i=1

µ1+β
i

µi + λ
ei ⊗ ei

)
k(x, ·)

=

∞∑
i=1

µ1+β
i

µi + λ
ei(x)ei

We thus have that:

µλ
Y |X − µY |X = Cβ

Y |X

(
EX [kβ(x, ·)⊗ k(x, ·)](CXX + λ)−1k(x, ·)

)
− Cβ

Y |Xkβ(x, ·)

= Cβ
Y |X

( ∞∑
i=1

µ1+β
i

µi + λ
ei(x)ei −

∞∑
i=0

µβ
i ei(x)ei

)
=

∞∑
i=1

λ

µi + λ
· Cβ

Y |Xµβ
i ei(x)ei



Prem Talwai, Ali Shameli, David Simchi-Levi

Thus, we can write:

EX [||µY |X − µλ
Y |X ||2L] = EX

[∣∣∣∣∣∣ ∞∑
i=1

λ

λ+ µi
Cβ

Y |Xµβ
i ei(X)ei

∣∣∣∣∣∣2
L

]

= EX

[∣∣∣∣∣∣ ∞∑
i=1

λ · µ
β
2
i

λ+ µi
Cβ

Y |Xµ
β
2
i ei(X)ei

∣∣∣∣∣∣2
L

]

≤ λ2||Cβ
Y |X ||2EX

[ ∞∑
i=1

( µ
β
2
i

λ+ µi

)2

e2i (X)
]

= λ2||Cβ
Y |X ||2

∞∑
i=1

( µ
β
2
i

λ+ µi

)2

≤ Dλβ−p||Cβ
Y |X ||2

where the last line follows from Lemma D.2. Moreover, we have, for any x ∈ X:

||µY |x − µλ
Y |x||

2
L =

∣∣∣∣∣∣ ∞∑
i=1

λ

λ+ µi
Cβ

Y |Xµβ
i ei(x)ei

∣∣∣∣∣∣2
L

=
∣∣∣∣∣∣ ∞∑

i=1

λ · µ
β−α

2
i

λ+ µi
· µα

2 ei(x) · Cβ
Y |Xµ

β
2
i ei

∣∣∣∣∣∣2
L

≤
(∑

i

(λ · µ
β−α

2
i

λ+ µi

)2

µαe2i (x)
)
||Cβ

Y |X ||2 (24)

≤
(
sup
i

(λ · µ
β−α

2
i

λ+ µi

)2)
·
∑
i

µαe2i (x) · ||C
β
Y |X ||2

≤ λβ−α||kα||2∞||Cβ
Y |X ||2

when β > α (here (24) follows from the fact that {µ
β
2
i ei}∞i=1 is an orthonormal basis for Hβ

K and the last line
follows from Lemma 25 in Fischer and Steinwart (2020)). When β < α, we have that:

||µλ
Y |x||

2
L =

∣∣∣∣∣∣ ∞∑
i=1

µi

µi + λ
· Cβ

Y |Xµβ
i ei(x)ei

∣∣∣∣∣∣2
L

=
∣∣∣∣∣∣ ∞∑

i=1

µ
1+ β−α

2
i

λ+ µi
· µ

α
2
i ei(x) · Cβ

Y |Xµ
β
2
i ei

∣∣∣∣∣∣2
L

=
(∑

i

(µ1+ β−α
2

i

λ+ µi

)2

µα
i e

2
i (x)

)
||Cβ

Y |X ||2

≤ λβ−α||kα||2∞||Cβ
Y |X ||2

where again the last line follows from Lemma 25 in Fischer and Steinwart (2020). Thus, we have for all cases:

||µY |x − µλ
Y |x||L ≤ ||µY |x||L + ||µλ

Y |x||L

≤ C̃ + λ
β−α

2 ||kα||∞||Cβ
Y |X ||

≤ (C̃ + ||kα||∞||Cβ
Y |X ||)λ− (α−β)+

2
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where we have used the fact that we may assume the fixed λ ≤ 1 (as the λn → 0 in Theorem 5). Moreover, we
have:

||E[(µY |x − µλ
Y |x)⊗ (µY |x − µλ

Y |x)]||
2 = sup

||f ||L≤1

E[⟨f, µY |x − µλ
Y |x⟩

2
L]

= sup
||f ||L≤1

E
[( ∞∑

i=1

λ · µ
β
2
i ei(X)

λ+ µi
⟨f, Cβ

Y |Xµ
β
2
i ei⟩L

)2]

≤ sup
||f ||L≤1

∞∑
i=1

( λ · µ
β
2
i

λ+ µi

)2

⟨f, Cβ
Y |Xµ

β
2
i ei⟩

2
L (25)

≤
(
sup
i

( λ · µ
β
2
i

λ+ µi

)2)
sup

||f ||L≤1

∞∑
i=1

⟨f, Cβ
Y |Xµ

β
2
i ei⟩

2
L (26)

≤ λβ ||Cβ
Y |X ||2 (27)

where (25) follows from the fact that EX [ei(X)ej(X)] = δij (as {ei}∞i=1 is an orthonormal basis for L2(ν)), and

the last step follows from {µ
β
2
i ei}∞i=1 being an orthonormal basis in Hβ

K . For the final part of Lemma 6, we
observe that like before:

Cλ
Y |X = CY X(CXX + λ)−1

= Cβ
Y |XEX [kβ(x, ·)⊗ k(x, ·)](CXX + λ)−1

=

∞∑
i=1

µ1+β
i

µi + λ
Cβ

Y |Xei ⊗ ei (28)

Recall that:

||Cλ
Y |X − CY |X ||γ = ||Cλ

Y |X ◦ I∗1,γ,ν − Cβ
Y |X ◦ I∗β,γ,ν ||

by definition (see remark after section 2.3). Now, observe that for any element f =
∑

i aiµ
γ
2
i ei ∈ Hγ

K with
{ai}∞i=1 ∈ ℓ2, we have that:

(Cλ
Y |X ◦ I∗1,γ,ν)f = (Cλ

Y |X ◦ I∗1,γ,ν)
(∑

i

aiµ
γ
2
i ei

)
= Cλ

Y |X

(∑
i

aiµ
1− γ

2
i ei

)
(29)

=
( ∞∑

i=1

µ1+β
i

µi + λ
Cβ

Y |Xei ⊗ ei

)(∑
i

aiµ
1− γ

2
i ei

)
(30)

=

∞∑
i=1

aiµ
1+β− γ

2
i

µi + λ
Cβ

Y |Xei (31)

where (29) follows from (11), (30) follows from (28) and noting that
∑

i aiµ
1− γ

2
i ei ∈ HK , since µi → 0 (as

Cν is compact) and 1−γ
2 > 0 (as γ < 1 by assumption); and (31) follows from noting that {µ

1
2
i ei}∞i=1 is an

orthonormal basis in HK . Similarly, we have that:

(Cβ
Y |X ◦ I∗β,γ,ν)f = (Cβ

Y |X ◦ I∗β,γ,ν)
(∑

i

aiµ
γ
2
i ei

)
=

∑
i

aiµ
β− γ

2
i Cβ

Y |Xei
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Thus, we have that:

||Cλ
Y |X − CY |X ||γ = ||Cλ

Y |X ◦ I∗1,γ,ν − Cβ
Y |X ◦ I∗β,γ,ν ||

= sup
||(ai)∞i=1||ℓ2=1

||(Cλ
Y |X ◦ I∗1,γ,ν − Cβ

Y |X ◦ I∗β,γ,ν)
(∑

i

aiµ
β
2
i ei

)
||L

= sup
||(ai)∞i=1||ℓ2=1

∣∣∣∣∣∣ ∞∑
i=1

aiλ · µ
β−γ

2
i

µi + λ
· Cβ

Y |Xµ
β
2
i ei

∣∣∣∣∣∣
≤

(
sup
i

λ · µ
β−γ

2
i

µi + λ

)
||Cβ

Y |X ||

≤ λ
β−γ

2 ||Cβ
Y |X ||

Remark (Expected Bias for Hilbert-Schmidt Cβ
Y |X). Observe that when Cβ

Y |X is Hilbert-Schmidt, we have, by
the above proof:

EX [||µY |X − µλ
Y |X ||2L] = EX

[∣∣∣∣∣∣ ∞∑
i=1

λ

λ+ µi
Cβ

Y |Xµβ
i ei(X)ei

∣∣∣∣∣∣2
L

]

= EX

[∣∣∣∣∣∣ ∞∑
i=1

λ · µ
β
2
i

λ+ µi
Cβ

Y |Xµ
β
2
i ei(X)ei

∣∣∣∣∣∣2
L

]

=

∞∑
i=1

( λ · µ
β
2
i

λ+ µi

)2

||Cβ
Y |Xµ

β
2
i ei||

2
L

≤ λβ ||Cβ
Y |X ||HS

where the last line follows from Lemma 25 in Fischer and Steinwart (2020) and the fact that {µ
β
2
i ei}∞i=1 is

an orthonormal basis of Hβ
K . Thus, when Cβ

Y |X is Hilbert-Schmidt, we can achieve polynomial decay of the
expected bias for all β ∈ (0, 2).

Proof of Theorem 7. We begin like in the proof of Theorem 16 in Fischer and Steinwart (2020). Namely, ap-
plying Lemma 2 we write:

||ĈY |X − Cλ
Y |X ||γ = ||(ĈY |X − Cλ

Y |X) ◦ C
1
2
1,γ,ν || (32)

= ||(ĈY |X − Cλ
Y |X) ◦ C

1−γ
2

XX || (33)

= ||(ĈY X(ĈXX + λ)−1 − CY X(CXX + λ)−1)C
1−γ
2

XX ||

≤ ||(ĈY X − CY X(CXX + λ)−1(ĈXX + λ))(CXX + λ)−
1
2 ||·

||(CXX + λ)
1
2 (ĈXX + λ)−1(CXX + λ)

1
2 ||||C

1−γ
2

XX (CXX + λ)−
1
2 || (34)

where (32) follows from Lemma 2 and (33) follows from the fact that C1,γ,ν = C1−γ
ν = C1−γ

XX , since C1,γ,ν has
eigenfunctions {µ

1
2
i ei}∞i=1 and eigenvalues {µ1−γ

i }∞i=1 (see proof of Lemma 2 in Appendix A). Note here, we
have used the notation CXX instead of Cν to remain consistent with the expansions of ĈY |X and Cλ

Y |X in the
literature. We primarily focus on bounding the first factor on the RHS of (34), as the remaining factors can
be estimated simply as discussed previously in Fischer and Steinwart (2020). To start, we again imitate the
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approach from the proof of Theorem 16 in Fischer and Steinwart (2020). Namely, we have:

ĈY X − CY X(CXX + λ)−1(ĈXX + λ) = ĈY X − CY X(CXX + λ)−1(CXX + λ+ ĈXX − CXX)

= ĈY X − CY X + CY X(CXX + λ)−1(CXX − ĈXX)

= ĈY X − CY X(CXX + λ)−1ĈXX − (CY X − CY X(CXX + λ)−1CXX)

= ĈY X − CY X(CXX + λ)−1Ê[k(X, ·)⊗ k(X, ·)]− CY X

+ CY X(CXX + λ)−1E[k(X, ·)⊗ k(X, ·)]

= Ê[(L(Y, ·)− µλ
Y |X)⊗ k(X, ·)]− E[(L(Y, ·)− µλ

Y |X)⊗ k(X, ·)]

We now wish to apply Lemma C.3 to bound this deviation. Let h(X, ·) = (CXX + λ)−
1
2 k(X, ·). We first write:

(L(Y, ·)− µλ
Y |X)⊗ h(X, ·) = (L(Y, ·)− µY |X)⊗ h(X, ·) + (µY |X − µλ

Y |X)⊗ h(X, ·)

Then, applying Corollary D.1.1, we can write:[(
(L(Y, ·)− µλ

Y |X)⊗ h(X, ·)
)∗(

(L(Y, ·)− µλ
Y |X)⊗ h(X, ·)

)]p
≼ 22p−1

[
||L(Y, ·)− µY |X ||2pL

(
h(X, ·)⊗ h(X, ·)

)p

(35)

+ ||µλ
Y |X − µY |X ||2pL

(
h(X, ·)⊗ h(X, ·)

)p]
(36)[(

(L(Y, ·)− µλ
Y |X)⊗ h(X, ·)

)(
(L(Y, ·)− µλ

Y |X)⊗ h(X, ·)
)∗]p

≼ 22p−1||h(X, ·)||2pK
[(

(L(Y, ·)− µY |X)⊗ (L(Y, ·)− µY |X)
)p

(37)

+
(
(µλ

Y |X − µY |X)⊗ (µλ
Y |X − µY |X)

)p]
(38)

Hence, we have four terms to consider. We begin first with the RHS of (35):

E[||L(Y, ·)− µY |X ||2pL
(
h(X, ·)⊗ h(X, ·)

)p

] ≼ E[||L(Y, ·)− µY |X ||2pL ||h(X, ·)||2(p−1)
K

(
h(X, ·)⊗ h(X, ·)

)
]

= EX

[
EY |X

[
||L(Y, ·)− µY |X ||2pL

]
· ||h(X, ·)||2(p−1)

K

(
h(X, ·)⊗ h(X, ·)

)]
≼

R2p−2(2p)!σ2

2
EX

[
||h(X, ·)||2(p−1)

K

(
h(X, ·)⊗ h(X, ·)

)]
(39)

≼
||kα||2(p−1)

∞ R2p−2(2p)!σ2

2λα(p−1)
EX

[
h(X, ·)⊗ h(X, ·)

]
(40)

=
||kα||2(p−1)

∞ R2p−2(2p)!σ2

2λα(p−1)
CXX(CXX + λ)−1 (41)

where we have taken the trace of both sides in Assumption 4 to obtain (39) and have applied Lemma D.3 to
obtain (40). By a similar reasoning, we have:

E
[
||h(X, ·)||2pL

(
(L(Y, ·)− µY |X)⊗ (L(Y, ·)− µY |X)

)p]
≼

||kα||2p−2
∞ R2p−2(2p)!N (λ)V

2λ(p−1)α
(42)

for the RHS of (37) after again applying Assumption 4. Note the only difference between the adjoint moment
in (42) and (41) is that we have taken the trace of CXX(CXX + λ)−1 (N (λ)) in the former instead of tr(V ) =
σ2). Now, for (36), we have:

E
[(

||µY |X − µλ
Y |X ||2Lh(X, ·)⊗ h(X, ·)

)p]
= E

[
||µY |X − µλ

Y |X ||2p||h(X, ·)||2p−2
K

(
h(X, ·)⊗ h(X, ·)

)]
≼

M(λ)2p||kα||2p−2
∞

λ(p−1)α
CXX(CXX + λ)−1

≼
(2p)!(M(λ))2p||kα||2p−2

∞
2λ(p−1)α

CXX(CXX + λ)−1
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where we recall the definition of M(λ) from Lemma 6. Finally for (38)

E
[
||µλ

Y |X − µY |X ||2(p−1)
L ||h(X, ·)||2pK

(
(µλ

Y |X − µY |X)⊗ (µλ
Y |X − µY |X)

)]
≼

(2p)!M(λ)2(p−1)||kα||2p∞
2λpα

·

E
[
(µλ

Y |X − µY |X)⊗ (µλ
Y |X − µY |X)

]
Let Q = M(λ) ∨ R and ρλ = E

[
(µY |X − µλ

Y |X) ⊗ (µY |X − µλ
Y |X)

]
. Then, we can apply Lemma C.3 with

Ṽ = 2(σ2 +M2(λ))CXX(CXX + λ)−1, W̃ = 2N (λ)V +
2||kα||2∞

λα pλ. Then, we have that, with probability 1− δ:

||(ĈY X − CY X(CXX + λ)−1(ĈXX + λ))(CXX + λ)−
1
2 || ≤ 16Q||kα||∞β(δ)

λ
α
2 n

+ 8

√
ηβ(δ)

n

where:

ρλ = E
[
(µλ

Y |X − µY |X)⊗ (µλ
Y |X − µY |X)

]
η = max{(σ2 +M2(λ))||Cν ||(||Cν ||+ λ)−1, ||N (λ)V +

||kα||2∞
λα

ρλ||}

β(δ) = log
(4((σ2 +M2(λ))N (λ) + (σ2N (λ) +

||kα||2∞
λα EX [||µλ

Y |X − µY |X ||2L]))
ηδ

)
The last term in (34) is bounded as follows:

||C
1−γ
2

XX (CXX + λ)−
1
2 || ≤

√
sup
i

µ1−γ
i

µi + λ
≤ λ− γ

2

Finally, for the middle term, we may follow the proof of Theorem 16 in Fischer and Steinwart (2020) exactly
to obtain:

||(CXX + λ)
1
2 (ĈXX + λ)−1(CXX + λ)

1
2 || ≤ 3

for n ≥ 8||kα||2∞ log(δ−1)gλλ
−α with probability 1 − δ (for brevity, we do not repeat this argument here) .

Putting these together, we obtain our result.

Proof of Theorem 5. We must first demonstrate there exists a n0 ∈ N, such that for all n ≥ n0, n ≥
8||kα||2∞ log(δ−1)gλn

λ−α
n in order apply the result in Theorem 7. Since λn → 0, we can let λn ≤ min{1, ||Cν ||},

from which we obtain:

8||kα||2∞ log(δ−1)gλnλ
−α
n

n
=

8||kα||2∞ log(δ−1)λ−α
n

n
· log

(
2eN (λn)

||Cν ||+ λn

||Cν ||

)
≤ 8||kα||2∞ log(δ−1)λ−α

n

n
· log 4M1eλ

−p
n (43)

=
8||kα||2∞ log 4M1e · log(δ−1)λ−α

n

n
+

8p||kα||2∞ log(δ−1)λ−α
n log λ−1

n

n

where (43) follows from Lemma D.4. Thus, in order to demonstrate 8||kα||2∞ log(δ−1)gλnλ−α
n

n → 0, it is sufficient

to show λ−α
n log λ−1

n

n → 0. This follows from the fact that:

λ−α
n log λ−1

n

n
≍ (log n)1−

rα
max{α,β+p}

n1− α
max{α,β+p}

after substituting for λn, and observing that (logn)
1− rα

max{α,β+p}

n
1− α

max{α,β+p}
→ 0 as n → ∞ since r > 1. We now estimate
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each term in (10). We first have that:

β(δ) = log
(4((σ2 +M2(λn))N (λn) + σ2N (λn) +

||kα||2∞
λα EX [||µλ

Y |X − µY |X ||2L])
ηδ

)
≤ log

( 4(σ2 +M2(λn))N (λn)

(σ2 +M2(λ))||Cν ||(||Cν ||+ λ)−1
+

4σ2N (λn) +
4||kα||2∞

λα EX [||µλ
Y |X − µY |X ||2L]

||N (λn)V +
||kα||2∞

λα
n

ρλn ||

)
− log δ (44)

≤ log
( 4σ2N (λn)

N (λn)||V ||
+

4N (λn)

||Cν ||(||Cν ||+ λ)−1
+

4||kα||2∞
λα EX [||µλ

Y |X − µY |X ||2L]
N (λn)||V ||

)
− log δ (45)

≤ log
(
N1λ

−p
n +N2λ

β−α
n

)
− log δ (46)

for N1 = 4M1||Cν+λ||
||Cν || + 4σ2

||V || and N2 =
4||kα||2∞DB2

M2||V || . Note, (44) follows from the definition of η and the fact that
tr(A+B)

max{||A||,||B||} ≤ tr(A)
||A|| + tr(B)

||B|| for any self-adjoint operators A and B; (45) follows from the sublinearity of the
operator norm and the fact that ρλn

≽ 0; and (46) follows from applying Lemmas D.4, D.5, (6), and noting
that we can restrict λn ≤ 1 (which allows the absorption of the constant term 4σ2

||V || into N1). Thus, it follows

that β(δ) ≤ N3 log(δ
−1 · λ−max{α−β,p}

n ) for some N3 > 0. Moreover, we have that:

Q = M(λ) ∨R

≤ (C̃ + ||kα||∞B)λ
− (α−β)+

2
n ∨R

≤ N4λ
− (α−β)+

2
n (47)

for N4 = max{C̃ + ||kα||∞B,R} (where the penultimate step follows from applying (7) and the final step follows
since we can again assume λn ≤ 1). We also have:

η = max{(σ2 +M2(λ))||Cν ||(||Cν ||+ λ)−1, ||N (λ)V +
||kα||2∞
λα

ρλ||}

≤ max{(σ2 +N2
4λ

−(α−β)+
n )||Cν ||(||Cν ||+ λ)−1,M1λ

−p
n ||V ||+B2||kα||2∞λ−α

n λβ
n} (48)

≤ N5λ
−max{p,α−β}
n (49)

for some N5 > 0. Note, in (48), we have applied (7), (8), and Lemma D.4. Thus, we have that:

||ĈY |X − Cλ
Y |X ||γ ≤ 3λ

− γ
2

n

(16Q||kα||∞β(δ)

λ
α
2
n n

+ 8

√
ηβ(δ)

n

)
≤ 24λ

− γ
2

n

(2N4||kα||∞β(δ)

nλ
α+(α−β)+

2
n

+

√
N5β(δ)

nλ
max{p,α−β}
n

)
(50)

≤ 24λ
− γ

2
n

√
β(δ)

nλ
max{p,α−β}
n

(
2N4||kα||∞

√
β(δ)

nλ
α+(α−β)+−max{p,α−β}
n

+
√
N5

)
where (50) follows from (49) and (47). Then, like in the proof of Theorem 1 in Fischer and Steinwart (2020),

we consider the inner factor for our two parameter regimes. When p < α − β, we have that λn ≍
(

n
logr n

)− 1
α

,
and thus:

β(δ)

nλ
α+(α−β)+−max{p,α−β}
n

≤ N3 log(δ
−1 · λβ−α

n )

nλα
n

= log(δ−1) · O
( log n

logr n

)
Thus, since r > 1, it follows that β(δ)

nλ
α+(α−β)+−max{p,α−β}
n

→ 0 when p < α− β. Similarly, when p > α− β, we have

that λn ≍
(

n
logr n

)− 1
β+p

, and:

β(δ)

nλ
α+(α−β)+−max{p,α−β}
n

≤ N3 log(δ
−1 · λ−p

n )

nλ
α+(α−β)+−p
n

= log(δ−1) · O
(
(log n)1−

rα+r(α−β)+−rp

β+p n
−
(
1−α+(α−β)+−p

β+p

))
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Thus, since 1 − α+(α−β)+−p
β+p > 0 by the assumption that p > α − β, we again have β(δ)

nλ
α+(α−β)+−max{p,α−β}
n

→ 0

when p > α − β. Hence, we can bound,
√

β(δ)

nλ
α+(α−β)+−max{p,α−β}
n

by N2
6

√
log(δ−1) for some constant N6 > 0.

Thus, putting this all together and combining with the bias bound ||Cλ
Y |X − CY |X ||γ ≤ Bλ

β−γ
2 in (9), we obtain

by (5):

||ĈY |X − CY |X ||γ ≤ ||ĈY |X − Cλ
Y |X ||γ + ||Cλ

Y |X − CY |X ||γ

≤ 24λ
− γ

2
n

√
β(δ)

nλ
max{p,α−β}
n

(
2N4||kα||∞

√
β(δ)

nλ
α+(α−β)+−max{p,α−β}
n

+N5

)
+Bλ

β−γ
2

≤ 24λ
− γ

2
n

√
log(δ−1) · β(δ)
nλ

max{p,α−β}
n

(
2N4N6||kα||∞ +N5

)
+Bλ

β−γ
2

= λ
β−γ

2
n

(
N7

√
log(δ−1)β(δ)

nλ
max{β+p,α}
n

+B
)

where we have set N7 = 24(2N4N6||kα||∞ +N5). Now, noting that λn ≍
(

n
logr n

)− 1
max{α,β+p}

by definition, we
observe that:

β(δ)

nλ
max{β+p,α}
n

≤ log(δ−1 · λ−max{α−β,p}
n )

nλ
max{β+p,α}
n

≤ log(δ−1) + log(λ
−max{α−β,p}
n )

nλ
max{β+p,α}
n

≤ log(δ−1) + log(λ
−max{α,β+p}
n )

nλ
max{β+p,α}
n

(51)

≤ log(δ−1) + log n− log logr n

n · logr n
n

≤ log(δ−1) + log n

logr n

where (51) follows from the fact that λ−β
n ≥ 1 as λn → 0. Hence, since δ < 1 and r > 1, we have that

β(δ)

nλ
max{β+p,α}
n

= O(log(δ−1)) as n → ∞. Thus, we have, that there exists a K > 0 not depending on n or δ, such
that:

||ĈY |X − CY |X ||γ ≤ K log(δ−1)λ
β−γ

2
n

with probability 1− 2δ.

C Concentration Bounds

Lemma C.1. Let X1, X2, . . . XN be i.i.d self-adjoint operators on a Hilbert space V, with:

E[Xi] = 0

E[X2p
i ] ≼

R2p−2(2p)!

2
V ∀p ∈ N

||V || = σ2

where V is a trace-class operator. Let δ > 0 and β(δ) = log
(

4tr(V )
δσ2

)
. Then, for t ≥ 2R

N + 2
3
4 σ√
N

we have that:

∣∣∣∣∣∣ 1
N

N∑
i=1

Xi

∣∣∣∣∣∣ ≤ 4Rβ(δ)

N
+ 2σ

√
2β(δ)

N

with probability 1− δ.
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Proof. We first note that for odd p ≥ 1 and y ∈ V, we have E[⟨y,Xp
i y⟩V ] = E[⟨Xiy,X

p−1
i y⟩V ] ≤√

E[⟨y,X2
i y⟩V ]E[⟨y,X

2p−2
i y⟩V ] ≤

√
R2p−4(2p−2)!

2 ⟨y, V y⟩ ≤ (2R)p−2(p−1)!
2 ⟨y,

√
8V y⟩. Thus, letting S = 2R,

we have, by the usual construction:

E[eθX ] = I +

∞∑
j=2

E[(θX)j ]

j!

≼ I +

∞∑
j=2

√
8(θS)jV

2S2

= I +

√
8θ2V

2

∞∑
j=0

(θS)j

= I +

√
8θ2V

2(1− θS)

≼ exp
( √

8θ2V

2(1− θS)

)
(52)

where the first equality follows by assumption. Let g(θ) = θ2

2(1−θS) . Equipped with this result, we then have:

P
(∣∣∣∣∣∣ 1

N

N∑
i=1

Xi

∣∣∣∣∣∣ > t
)
≤

E
[∣∣∣∣∣∣e θ

N

∑N
i=1 Xi − θ

N

∑N
i=1 Xi − I

∣∣∣∣∣∣]
eθt − θt− 1

≤ E[tr(e θ
N

∑N
i=1 Xi − I)]

eθt − θt− 1

≤
tr(exp

(∑N
i=1 logE[e

θ
N Xi ]

)
− I)

eθt − θt− 1
(53)

≤ tr(e
√
8Ng(N−1θ)V − I)

eθt − θt− 1
(54)

≤ tr(V )

||V ||
· e

√
8Ng(N−1θ)||V || − 1

eθt − θt− 1
(55)

≤ tr(V )

||V ||
· e

θte
√
8Ng(N−1θ)||V ||−θt

eθt − θt− 1

where (53) follows from the iterative application of the operator concavity of tr(exp(A+ logX)) in X (see e.g.
Tropp (2015)), (54) follows from applying (52), and (55) follows from Lemma 7.5.1 in Tropp (2015) and the
observation that f(t) = eθt − 1 is convex with f(0) = 0. Applying the bound ea

ea−a−1 ≤ 1 + 3
a2 for a ≥ 0 (see e.g.

the proof of Theorem 7.7.1 in Tropp (2015)), we obtain:

P
(∣∣∣∣∣∣ 1

N

N∑
i=1

Xi

∣∣∣∣∣∣ > t
)
≤ tr(V )

σ2

(
1 +

3

θ2t2

)
e
√
8Ng(N−1θ)σ2−θt

≤ tr(V )

σ2

(
1 +

3(
√
8σ2 + 2Rt)2

N2t4

)
exp

(
− Nt2

2(
√
8σ2 + 2Rt)

)
after setting θ = Nt√

8σ2+2Rt
, noting S = 2R, and observing that

√
8Nσ2g(N−1θ)−θt = Nt2

2(
√
8σ2+2Rt)

− Nt2√
8σ2+2Rt

≤

− Nt2

2(
√
8σ2+2Rt)

. We consider only the case where Nt2 ≥
√
8σ2+2Rt, noting like in Theorem 7.7.1 in Tropp (2015)

that the Chernoff bound above is typically vacuous when this restriction is violated. Solving this quadratic

inequality, we obtain the more amenable expression: t ≥ R
N +

√
R2

N2 +
√
8σ2

N . Thus, applying the fact that
√
a+ b ≤

√
a+

√
b, we have that for t ≥ 2R

N + 80.25σ√
N

:

P
(∣∣∣∣∣∣ 1

N

N∑
i=1

Xi

∣∣∣∣∣∣ > t
)
≤ 4tr(V )

σ2
exp

(
− Nt2

2(
√
8σ2 + 2Rt)

)
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The result follows from setting the RHS equal to δ, solving for t using the quadratic formula, applying the
triangle inequality to this solution, and noting that

√
2 ≤ 2, we obtain our result.

Remark. We emphasize the qualification t ≥ 2R
N + 2

3
4 σ√
N

in Lemma C.1 is not very restrictive as the derived
Chernoff bound is typically vacuous when this restriction is violated (and therefore is avoided by choosing
sufficiently small δ. For brevity, we therefore omit this restriction in the below generalizations).

Lemma C.2. Let X1, X2, . . . XN be i.i.d operators from V to W, with:

E[Xi] = 0

E[(X∗
i Xi)

p] ≼
R2p−2(2p)!

2
V ∀p ∈ N

E[(XiX
∗
i )

p] ≼
R2p−2(2p)!

2
W ∀p ∈ N

max{||V ||, ||W ||} = σ2

where V and W are trace-class operators on V and W, respectively. Let δ > 0 and β(δ) = log
(

4tr(V+W )
δσ2

)
.

Then, we have that: ∣∣∣∣∣∣ 1
N

N∑
i=1

Xi

∣∣∣∣∣∣ ≤ 4Rβ(δ)

N
+ 2σ

√
2β(δ)

N

with probability 1− δ

Proof. We generalize the approach from Tropp (2015) — namely we define the “dilation” operator Ti on
W × V that maps Ti : (w, v) 7→ (X∗

i v,Xiw), where X∗
i denotes the adjoint of Xi. Then, it is easy to see

that Ti is self-adjoint. Moreover, we have that
∣∣∣∣∣∣∑i Ti

∣∣∣∣∣∣ =
∣∣∣∣∣∣∑i Xi

∣∣∣∣∣∣. Thus, we can apply Lemma C.1 to

the Ti. Indeed, observe that T 2
i : (w, v) 7→ (XiX

∗
i w,X

∗
i Xiv), and hence we have that E[T 2p

i ] : (w, v) 7→
(E[(XX∗)p]w,E[(X∗X)p]v). From this, we obtain that E[T 2p

i ] ≼ R2p−2(2p)!
2 U , where U : (w, v) 7→ (Wv, V v).

Our result then follows from Lemma C.1.

Lemma C.3. Let HK and HL be RKHSs on X and Y, respectively. Let X1, X2, . . . XN be i.i.d rank-1 opera-
tors from HK to HL, with:

E[(X∗
i Xi)

p] ≼
R2p−2(2p)!

2
V ∀p ∈ N

E[(XiX
∗
i )

p] ≼
R2p−2(2p)!

2
W ∀p ∈ N

max{||V ||, ||W ||} = σ2

where V and W are trace-class operators on X and Y, respectively. Let δ > 0 and β(δ) = log
(

4tr(V+W )
δσ2

)
.

Then, we have that: ∣∣∣∣∣∣ 1
N

N∑
i=1

Xi − E[X]
∣∣∣∣∣∣ ≤ 8Rβ(δ)

N
+ 4σ

√
2β(δ)

N

with probability 1− δ

Proof. We observe that:

E[((Xi − E[Xi])
∗(Xi − E[Xi]))

p] ≼ E[||Xi − E[Xi]||2(p−1)
HS (Xi − E[Xi])

∗(Xi − E[Xi])]

≼ 22p−1
(
E[||Xi||2(p−1)

HS X∗
i Xi] + ||E[Xi]||2(p−1)

HS E[Xi]
∗E[Xi]

)
(56)

≼ 4pE[||Xi||2(p−1)
HS X∗

i Xi] (57)
= 4pE[(X∗

i Xi)
p]
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where (56) and (57) follow from the convexity of ||X||2(p−1)
HS ||Xf ||2Y for any f ∈ HK by Lemma D.1 and

the definition of the semidefinite order, and the last step follows from the fact that Xi is rank-1 and hence
||Xi||2p−2

HS X∗
i Xi = (X∗

i Xi)
p. We can show a similar conclusion for E[((Xi − E[Xi])(Xi − E[Xi])

∗)p] from which
the result follows by Lemma C.2.

D Auxiliary Results

Lemma D.1. Let H1,H2 be Hilbert spaces, and let LHS(H1,H2) denote the space of Hilbert-Schmidt operators
from H1 to H2. Then, for any y ∈ H1, the functions f : H1 → R+ and g : LHS(H1,H2) → R+ given by
f(x) = ||x||2pH1

⟨y, x⟩2H1
and g(A) = ||A||2pHS||Ay||2H2

are convex for all p ≥ 1 in the semidefinite order.

Proof. We must show that for any x, z ∈ H1 and X,Z ∈ LHS(H1,H2), the functions f̃(t) = f(x + tz) and
g̃(t) = g(X + tZ) are convex in t ∈ R. Observing that f̃ and g̃ can be expressed as: f̃(t) = (||z||2H1

t2 +
2t⟨x, z⟩H1

+ ||x||2H1
)p(⟨y, z⟩H1

t + ⟨y, x⟩H1
)2 and g̃(t) = (||Z||2HSt

2 + 2tr(X∗ ◦ Z)t + ||X||2HS)
p(||Zy||2H2

t2 +
2t⟨Xy,Zy⟩H2

+ ||Xy||2H2
), the claim can be readily verified by taking second derivatives.

Corollary D.1.1. Let H be a Hilbert space, and let L1(H) be the space of rank-1 linear operators on H. Then,
the operator-valued function g : H → L1(H) given by g(u) = (u⊗ u)p is convex for any p ≥ 1.

Proof. By the definition of the semidefinite order, we have g is convex iff the real-valued function fy(u) =
||u||2p−2⟨y, u⟩2 is convex for all y ∈ H. The latter follows from Lemma D.1.

Lemma D.2. Suppose Assumption 1 holds. Then, if β > p, there exists a constant D > 0 that depends only
on β and p, such that:

∞∑
i=1

( µ
β
2
i

µi + λ

)2

≤ Dλβ−p−2

Proof. We have that:

∞∑
i=1

( µ
β
2
i

µi + λ

)2

=

∞∑
i=1

( µ
β
2 −1
i

1 + λµ−1
i

)2

≤
∫ ∞

0

( (c−px)−
p−1β

2 +p−1

1 + λ(C−px)p−1

)2

dx (58)

= λβ−p−2

∫ ∞

0

( (c−py)−
p−1β

2 +p−1

1 + (C−py)p−1

)2

dy (59)

where (58) follows from Assumption 1, and (59) follows after making the substitution λpx = y. Now, observe
that: ∫ ∞

0

( (c−py)−
p−1β

2 +p−1

1 + (C−py)p−1

)2

dy =

∫ ∞

0

( (c−py)−
p−1β

2

(c/C) + (c−py)−p−1

)2

dy

=

∫ 1

0

( (c−py)−
p−1β

2

(c/C) + (c−py)−p−1

)2

dy +

∫ ∞

1

( (c−py)−
p−1β

2

(c/C) + (c−py)−p−1

)2

dy

≤
∫ 1

0

( c

C

) β
2 −1

dy +
C2

c2−β

∫ ∞

1

y−p−1βdy (60)

= D

< ∞ (61)

where (60) follows from the fact that β
2 < 1 and Lemma 25 in Fischer and Steinwart (2020), and the last line

follows from β > p.
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The following two results, which are from Fischer and Steinwart (2020) (and were originally discussed in Stein-
wart and Scovel (2012)), characterizes the boundedness of the kernel and the “effective dimension”. We include
them here for completeness .
Lemma D.3. Suppose ||kα||∞ < ∞. Then, we have that:

||(CXX + λ)−
1
2 k(X, ·)||K ≤ λ−α

2 ||kα||∞

Proof. From definition, we have that:

(CXX + λ)−
1
2 k(X, ·) =

∑
i

√
µi

µi + λ
· ei(x)(µ

1
2
i ei)

=
∑
i

√
µ1−α
i

µi + λ
· µα

2 ei(x)(µ
1
2
i ei)

Thus:

||(CXX + λ)−
1
2 k(X, ·)||2K ≤

(
max

i

µ1−α
i

µi + λ

)∑
i

µα
i e

2
i (x) ≤ λ−α||kα||2∞

by Lemma 25 in Fischer and Steinwart (2020).

Lemma D.4. Suppose Assumption 1 holds. Then, there exists a M1 > 0 such that:

N (λ) = tr
(
Cν(Cν + λ)−1

)
≤ M1λ

−p

Proof. See Lemma 11 in Fischer and Steinwart (2020)

Lemma D.5. Suppose Assumption 1 holds. Then, there exists a M2 > 0 such that:

N (λ) ≥ M2λ
−p

Proof. We have that:

N (λ) =

∞∑
i=1

µi

µi + λ

≥
∞∑
i=1

ci−p−1

Ci−p−1 + λ

≥
∫ ∞

1

cx−p−1

Cx−p−1 + λ
dx

=

∫ ∞

1

c

C + λxp−1 dx

= λ−p

∫ ∞

1

c

C + yp−1 dy

where the last line follows from making the substitution y = λpx. Then, our result follows from observing∫∞
1

c

C+yp−1 = M2 < ∞ since p < 1 by assumption.

Lemma D.6. Let HK be a Gaussian RKHS over Rd with kernel K(x, y) = exp
(
− ||x−t||2

σ2

)
for some σ > 0.

Then, for every β ∈ (0, 1), Hβ
K contains constant functions.

Proof. We only treat the one-dimensional case d = 1 and note that the more general case follows easily from
the argument of Steinwart and Christmann (2008). By Minh (2010), we have that:

HK =
{
f = e−

x2

σ2

∞∑
k=0

wkx
k : ||f ||2K ≡

∞∑
k=0

w2
kσ

2kk!

2k
< ∞

}
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Thus, we have by definition:

Hβ
K =

{
f = e−

x2

σ2

∞∑
k=0

wkx
k : ||f ||2Hβ ≡

∞∑
k=0

w2
kσ

2βk(k!)β

2βk
< ∞

}
For any c ∈ R, we have that:

c = e−
x2

σ2 · e
x2

σ2 c = e−
x2

σ2 ·
∞∑
k=0

cx2k

k!σ2k

Thus, we may define w2k = c
k!σ2k and w2k+1 = 0 for k ∈ N. Therefore, we have:

||gf ||2Hβ = c2
∞∑
k=0

σ4βk((2k)!)β

4βk(k!)2σ4k

= c2
∞∑
k=0

σ4(β−1)k((2k)!)β

4βk(k!)2

Let ak = σ4(β−1)k((2k)!)β

4βk(k!)2
. Now applying Stirling’s formula n! ∼

√
2πn

(
n
e

)n

, we have (for sufficiently large k):

ak ∼ e2(1−β)k(πk)
β−2
2 σ4(β−1)kk2(β−1)k

Noting that since β < 1, for k ≥ 2
1

2(1−β) e
σ2 , we have e2(1−β)k(πk)

β−2
2 σ4(β−1)kk2(β−1)k ≤

(
1
2

)k

. Thus, we have
||gf ||2Hβ = c2

∑∞
k=0 ak < ∞, and we obtain our result.
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