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Abstract

This paper is concerned with the algorithmic
aspects of sharper stationarity of a nonconvex,
nonsmooth, Clarke irregular machine learning
model. We study the SVM problem with a ρ-
margin loss function, which is the margin the-
ory generalization bound of SVM introduced
in the learning theory textbook by Mohri et al.
[2018], and has been extensively studied in
operations research, statistics, and machine
learning communities. However, due to its
nonconvex, nonsmooth, and irregular nature,
none of the existing optimization methods can
efficiently compute a d(irectional)-stationary
point, which turns out to be also a local mini-
mum, for the ρ-margin loss SVM problem. Af-
ter a detailed discussion of various nonsmooth
stationarity notions, we propose a highly effi-
cient nonconvex semi-proximal ADMM-based
scheme that provably computes d-stationary
points and enjoys a local linear convergence
rate. We report concrete examples to demon-
strate the necessity of our assumptions. Nu-
merical results verify the effectiveness of the
new algorithm and complement our theoreti-
cal results.

1 INTRODUCTION

Nonconvex nonsmooth models are ubiquitous in mod-
ern statistical and machine learning tasks. Though
holding strong expressive power, these “non”-problems
pose serious computational challenges as most of the
tools from smooth and convex analysis are inapplicable
in this “non”-scenario. To handle their algorithmic de-
sign and theoretical analysis without sacrificing rigor,
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we borrow ideas and tools from variational analysis
[Rockafellar and Wets, 2009], in which concepts that
we are familiar with branch into many and calculus
rules that we take for granted may no longer hold. Even
choosing a proper first-order stationarity concept for
these “non”-problems becomes a highly nontrivial thing
(see Definition 2.7, and [Li et al., 2020]). These ob-
stacles could be alleviated if the optimization problem
is Clarke regular (see Definition 2.4), which contains
smooth, convex, or more generally, weakly convex prob-
lems as special cases.

In this paper, we study the SVM model with a ρ-margin
loss, which is a nonconvex, nonsmooth, and irregular
problem in the sense of Clarke. Specifically, for a given
set of data points {(xi, yi) : i ∈ [n]} ⊆ Rd × {+1,−1},
we aim to solve

min
θ∈Rd,b∈R

c

2
‖θ‖2 +

n∑
i=1

φρ

(
yi · (x>i θ + b)

)
, (1.1)

where the regularization parameter c > 0, and φρ :
R→ R is the ρ-margin loss defined by

φρ(u) := min

(
1,max

(
0, 1− u

ρ

))
.

We notice that Problem (1.1) (particularly its ρ = 1
version, which is usually termed ramp loss) has been
widely recognized in operations research [Brooks, 2011,
Carrizosa et al., 2014, Wang et al., 2021], statistics
[Shen et al., 2003, Wu and Liu, 2007, Liu et al., 2005],
and machine learning [Huang et al., 2014, Keshet and
McAllester, 2011, Collobert et al., 2006b,a, Ertekin
et al., 2010, Suzumura et al., 2017, Maibing and Igel,
2015] communities as it provides better robustness
against data outliers than the vanilla SVM. The ρ-
margin loss (see Figure 1) we used in this paper can
also be seen from the learning theory textbook by Mohri
et al. [2018, Corollary 5.11], in which Problem (1.1)
serves as the ρ-margin generalization bound for linear
hypothesis set.

However, due to its “non”-properties, especially the
irregularity, Problem (1.1) poses serious computational
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challenges in the optimization aspect. Indeed, Maibing
and Igel [2015] showed that finding a global minimizer
for Problem (1.1) is NP-hard. Thus, we must be satis-
fied with computing a local minimizer instead, which
is still a highly nontrivial task even for a quadratic
function. Recently, Ahmadi and Zhang [2022] showed
that finding a local minimizer is NP-hard generally,
while the NP-hardness of detecting local optimality
was proven decades ago by Murty and Kabadi [1987].

1.1 Prior Arts

In the literature concerning Problem (1.1), DC (Dif-
ference of Convex) Algorithms are probably the most
popular strategies [Huang et al., 2014, Keshet and
McAllester, 2011, Collobert et al., 2006b, Shen et al.,
2003, Wu and Liu, 2007, Liu et al., 2005, Collobert
et al., 2006a, Ertekin et al., 2010] as the nonsmooth
part φρ admits the following DC-decomposition:

φρ(u) = max

(
1− u

ρ
, 0

)
−max

(
−u
ρ
, 0

)
.

However, as pointed out by Nouiehed et al. [2019],
these DCA-type algorithms only compute so-called
DC-critical points (see Definition 2.7), which is a fairly
weak notion of stationarity (see Definition 2.7 and re-
mark afterwards) and depend on the DC-decomposition
rather than variational properties of the problem. In-
deed, it is easy to construct an example that is DC-
critical but not stationary in any conventional sense
(see Figure 2). By considering a polyhedral reformula-
tion of Problem (1.1), Suzumura et al. [2017] proposed
a homotopy-type algorithmic framework. However, in
Section 4.3, we will show that their argument cannot
guarantee sharper stationarity convergence. Recently,
Wang et al. [2021] reported optimality conditions for
Problem (1.1) (specialized to ρ = 1) with so-called
P-stationarity and carefully computed the closed-form
solution of the ramp loss proximal mapping. However,
no known algorithm can efficiently compute points
satisfying such conditions.

On the other front, for max-structured DC programs,
Pang et al. [2017] and Cui et al. [2018] proposed en-
hanced DCA schemes for computing d-stationary points
(see Definition 2.7), which is arguably the sharpest
stationarity type for certain structured DC programs
[Nouiehed et al., 2019]. Nevertheless, as mentioned by
Pang et al. [2017, Section 7], these enhanced DCAs
require solving an exponentially large number of sub-
problems in a single iteration step, which is not even
suitable for hundreds of data points. Then, here comes
the main question that this paper aims to answer:

Can we compute d-stationary points efficiently
for SVM with ρ-margin loss?

1

1

0

ρ

Hinge Loss
Ramp Loss
ρ-Margin Loss

Figure 1: Hinge loss, ramp loss, and ρ-margin loss.

1.2 Contributions

We highlight the main contributions of this paper as
follows:

• We propose a highly efficient nonconvex semi-
proximal ADMM procedure, which provably com-
putes a d-stationary point (which is also local
minimal, see Proposition 3.5), of Problem (1.1).

• We show that the distance between the noncon-
vex ADMM generated sequence and the set of
d-stationary points enjoys a local linear conver-
gence rate to zero.

• We provide a detailed discussion on existing com-
puting strategies and report concrete examples to
demonstrate their incapability in sharp stationar-
ity computing.

Notations. Most of the notations used in this paper
are standard. Throughout this paper, scalars, vectors,
and matrices are denoted by lowercase letters, bold-
face lowercase letters, and boldface uppercase letters,
respectively; ‖x‖ is the Euclidean norm of x; ‖A‖ is
the operator norm of A; for a set S ⊆ Rn and point x,
dist(x, S) := infv∈S ‖v − x‖; A⊕B denotes the direct
sum of A and B; A�B is the Hadamard product of
A and B; we use prox : Rn → Rn for the proximal
operator, and use Prox : Rn ⇒ Rn for set-valued proxi-
mal mapping (similarly, arg and Arg); clS denotes the
closure of set S; Bε(x) := {v : ‖v−x‖ ≤ ε};CoS is the
convex hull of set S; σi(A) is the i-th largest singular
value; ei is the i-th column of identity matrix.

2 PRELIMINARIES

In this section, we will introduce the necessary back-
ground on variational analysis for our development.
As the problem we are interested in is nonconvex and
nonsmooth, conventional tools from smooth or convex
analysis will be inapplicable.
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Table 1: Algorithms for Problem (1.1), stationarity, computational complexity, and convergence rate.

Category Algorithms Stationarity Per-Iter. Compl. Rate

[Huang et al., 2014]

[Wu and Liu, 2007]DCA (incl. CCCP)

[Brooks, 2011]

DC-critical poly(n, d) —

Nonmonotone MM [Cui et al., 2018] d-stationary O(2n) —

[Davis et al., 2020]
Subgradient Method

[Majewski et al., 2018]
C-stationary poly(n, d) —

Homotopy Algorithm [Suzumura et al., 2014, 2017] —1 poly(n, d) —

Semi-proximal ADMM Algorithm 1 d-stationary poly(n, d) local linear
1 See Section 4.3.

2.1 Generalized Differentiation Theory

To tell the subtle difference between various station-
ary concepts and appreciate the benefit of computing
sharper stationary points, we recall several notions
from nonsmooth analysis in this section. We will con-
fine the discussion to locally Lipschitz and directional
differentiable functions as our Problem (3.1) is exactly
in that class. To begin, let us recall the directional
derivative and Clarke generalized subderivative of a
locally Lipschitz functon f : Rn → R, which will play
fundamental roles in the analyses and definitions of
other notions.
Definition 2.1 (directional derivative). Given a point
x and direction d, the directional derivative of f at x
in the direction d is defined by

f ′(x;d) := lim
t↘0

f(x+ td)− f(x)

t
.

Definition 2.2 (Clarke subderivative). Given a point
x and direction d, the Clarke directional derivative of
f at x in the direction d is defined by

f◦(x;d) := lim sup
x′→x
t↘0

f(x′ + td)− f(x′)

t
.

Using Rademacher’s Theorem [Rockafellar and Wets,
2009, Theorem 9.60], the Clarke subdifferential of a
locally Lipschitz function can be defined as follows
[Rockafellar and Wets, 2009, Theorem 9.61]:
Definition 2.3 (Clarke subdifferential). Given a point
x, the Clarke subdifferential of f at x is defined by

∂Cf(x) := Co
{
s : ∃x′→x,∇f(x′) exists,∇f(x′)→s

}
.

We remark that ∂Cf(x) is convex and can be equiva-
lently defined as the closed convex set whose support

function is f◦(x; ·). Now, we introduce the notion of
Clarke regularity with Clarke subderivative.
Definition 2.4 (Clarke regularity [Clarke, 1990, Defi-
nition 2.3.4]). A locally Lipschitz function f : Rn → R
is regular at x ∈ Rn if for every d ∈ Rn, the ordinary
directional derivative f ′(x;d) exists and

f◦(x;d) = f ′(x;d).

An important implication of regularity is the valid-
ity of various subdifferential calculus rules, which al-
lows sharper characterization of first-order stationarity
[Rockafellar and Wets, 2009, Theorem 10.6, Corollary
10.9]; see [Li et al., 2020] for a quick overview.

To characterize the local behavior of f from a varia-
tional perspective, we need the notion of Fréchet sub-
differential [Rockafellar and Wets, 2009, Exercise 8.4],
which has a close relation with d-stationarity (see Defi-
nition 2.7 and Proposition 3.2) and is defined as follows:

Definition 2.5 (Fréchet subdifferential). Given a point
x, the Fréchet subdifferential of a locally Lipschitz and
directional differentiable function f at x is defined by

∂̂f(x) :=
{
s : s>d ≤ f ′(x;d) for all d

}
.

Though enjoying great variational properties, Fréchet
subdifferential is not a robust notion as its graph is not
closed (or, ∂̂f is not outer semi-continuous, see Defi-
nition 2.9). Therefore, the following limiting version
generalized subdifferential [Rockafellar and Wets, 2009,
Theorem 8.3(b)] is sometimes more convenient:
Definition 2.6 (limiting subdifferential). Given a
point x, the limiting subdifferential of a locally Lip-
schitz and directional differentiable function f at x is
defined by

∂f(x) := lim sup
x′→x

∂̂f(x′),



Computing D-Stationary Points of ρ-Margin Loss SVM

where the outer limit is taken in the set-valued mapping
sense (see [Rockafellar and Wets, 2009, 5(1)]).

2.2 Stationarity Notions

Now, let us introduce various stationarity notions for
a nonconvex nonsmooth problem.
Definition 2.7. For a locally Lipschitz and direction-
ally differentiable DC function f = h− g, a point x̄ is

(a) local minimal if there exists ε > 0:

f(y) ≥ f(x̄), ∀y ∈ Bε(x̄);

(b) d(irectional)-stationary if:

f ′(x̄;d) ≥ 0, ∀d ∈ Rn;

(c) l(imiting)-stationary if:

0 ∈ ∂f(x̄);

(d) C(larke)-stationary if:

0 ∈ ∂Cf(x̄) ⇔ f◦(x̄;d) ≥ 0, ∀d ∈ Rn;

(e) DC-critical if:

∂h(x̄) ∩ ∂g(x̄) 6= ∅.
By [Rockafellar and Wets, 2009, Theorem 8.6, 8.15,
8.49], the following relation holds (see also [Li et al.,
2020]):

{(a)} ⊆ {(b)} ⊆ {(c)} ⊆ {(d)} ⊆ {(e)}.

If the problem is Clarke regular, we have the following
tighter relation:

{(a)} ⊆ {(b)} = {(c)} = {(d)} ⊆ {(e)}.

Remark 2.8. Note that the DC-criticality in Defini-
tion 2.7 is actually dependent on the DC-decomposition
f = h − g of the function. How to find the best
DC-decomposition is still an important open problem
[Migdalas and Pardalos, 2018]. An illustration of var-
ious stationarity notions is provided in Figure 2. See
its caption for more information. Besides, it is no-
table here that for Problem (1.1), we actually have the
sharper stationarity relation {(a)} = {(b)}, see Propo-
sition 3.5.

2.3 Other Useful Notions

Below we record some other notions that will be useful
for our reference and development. These definitions
are taken from [Rockafellar and Wets, 2009, Definition
5.4] and [Rockafellar and Wets, 2009, Definition 1.23].

Definition 2.9 (outer semi-continuity). A set-valued
mapping S : Rn ⇒ Rn is outer semi-continuous (osc)
at x̄ if

lim sup
x→x̄

S(x) ⊂ S(x̄).

Definition 2.10 (prox-boundedness). A function f :
Rn → R is prox-bounded if there exists λ > 0 such
that f

(
Proxλf (x)

)
> −∞ for some x ∈ Rn.

3 MAIN RESULTS

In this section, we reformulate Problem (1.1) into a com-
pact form and consider the computation of d-stationary
points (see Definition 2.3) of the following nonconvex,
nonsmooth, and irregular problem:

min
w∈Rd+1

F (w) := f(w) + g(Zw), (3.1)

where we define w =

[
θ
b

]
∈ Rd+1,

f(w) :=
c

2
‖w‖2K =

c

2
w>Kw, g(q) :=

n∑
i=1

φρ(qi),

and the i-th row of Z ∈ Rn×(d+1) as

zi=

[
yixi
yi

]
∈Rd+1,K=

[
Id×d

0

]
∈R(d+1)×(d+1).

3.1 Algorithm: Semi-proximal ADMM

To begin, we make the following surjectivity assumption
on Z, which is crucial for the dual characterization of
d-stationarity and convergence of the ADMM scheme.
We will elaborate on that assumption in Section 4.4.
Assumption 3.1 (surjective). The matrix Z ∈
Rn×(d+1) in Problem (3.1) is surjective and σ :=
σn(Z) > 0.

The following characterization of a d-stationary point
is convenient for both analysis and computation.
Proposition 3.2 (dual d-stationarity characterization).
If Assumption 3.1 holds, then a point w is d-stationary
of F if and only if

0 ∈ ∇f(w) +A>∂̂g(Aw).

Proof. By [Rockafellar and Wets, 2009, Exercise 8.4],
w is d-stationary if and only if 0 ∈ ∂̂F (w). Then, the
relation is immediate from [Rockafellar and Wets, 2009,
Corollary 8.8(c), Exercise 10.7].

The main contribution of this section is algorithmic
ideas that provably computes a point w satisfying the
dual characterization of d-stationarity (see Proposi-
tion 3.2). Before the new development, we highlight
the key difficulties below:
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f1(x)

x2

x1

x3

x

f2(x)

x4

h2(x)

h1(x)

Figure 2: Illustration of various stationarities. In the
left subfigure, {local min.} = {x2}, {d-stat.} = {x2},
{l-stat.} = {x1, x2}, and {C-stat.} = {x1, x2, x3}. In
the right subfigure, we consider a simple DC function
f2(x) := h1(x)+h2(x) = max{x, 0}−max{−x, 0} = x.
Then, x4 = 0 is DC-critical while it is obviously not
stationary in any conventional (d-, l-, or even C-) sense.

• The first difficulty is the irregularity of the term
g in the sense of Clarke. The lack of Clarke regu-
larity may lead to invalidation of subdifferential
calculus rules and thus difficulties in computing
and characterizing sharper stationarity.

• The second difficulty, which is a consequence of
the first one but specific to d-stationarity, is the
lack of outer semi-continuity of the Fréchet subd-
ifferential mapping. In other words, the graph of
the set-valued mapping ∂̂F (·) is not closed, which
implies that even if we generate a sequence satis-
fying wk → w∗,vk ∈ ∂̂F (wk),vk → 0, we cannot
say 0 ∈ ∂̂F (w∗), which invalidates the conven-
tional convergence analysis that relies on the outer
semi-continuity of a subdifferential mapping. An
illustration of that issue with Figure 2 is that con-
sidering xk ↗ x1, we have vk ∈ ∂̂f(xk), vk → 0 as
k → +∞. So 0 ∈ ∂f(x1). However, it holds that
0 /∈ ∂̂f(x1) = ∅.

To proceed, with the operator splitting technique, we
introduce the following reformulation of Problem (3.1):

min
w∈Rd+1,q∈Rn

Q(w, q) := f(w) + g(q)

s.t. Zw = q. (MSVM)

Then, we tackle the above reformulation with a non-
convex semi-proximal ADMM scheme. The augmented
Lagrangian for Problem (MSVM) can be written as:

Lβ(w, q,λ) := f(w)+g(q)+〈λ,Zw−q〉+β

2
‖Zw−q‖2,

where β ≥ 0 is the dual step size, λ ∈ Rn is the
Lagrange multiplier. To ensure convergence in such

a nonconvex scenario, we need a cautiously chosen
dual step size β. The overall iteration scheme can be
summarized into the following diagram:

Algorithm 1 Nonconvex Semi-proximal ADMM

Input: Z ∈ R(d+1)×n, choose γ > 0, c > 0 and

β > 1 + max

{
2
(

1+‖ 1
n

∑n
i=1 xi‖2

)
cσ2 , 2

nσ2 ,
4

cnσ4

}
.

for all k ∈ {0, 1, 2, . . . } do

qk+1 ∈ Argmin
q

Lβ(wk, q,λk) +
γ

2
‖q − qk‖2,

wk+1 = arg min
w

Lβ(w, qk+1,λk),

λk+1 = λk + β(Zwk+1 − qk+1).

end for

In the sequel, we will detail the practical updating
computation of each variable.

3.1.1 qk+1 Updating Step

To compute qk+1, we note that the q-subproblem can
be rewritten as the following nonconvex proximal prob-
lem:

qk+1 ∈ Prox 1
β+γ g

(
β

β + γ

(
Zwk +

1

β
λk
)

+
γ

β + γ
qk
)
,

where Prox 1
β+γ g

: Rn ⇒ Rn is a set-valued mapping
due to the nonconvexity of g. In general, evaluation
of a nonconvex proximal operator can be extremely
difficult. Note that g(v) =

∑n
i=1 φρ(vi) is separable

and

Proxλg(v) =

n⊕
i=1

Proxλφρ(vi).

We provide the following closed-form solution for the
one-dimensional separated term Proxλφρ :
Lemma 3.3 (proximal operator). For 0 < λ < 2ρ2, it
holds

Proxλφρ(v) =



{v} for v < − λ
2ρ ,{

v, v + λ
ρ

}
for v = − λ

2ρ ,{
v + λ

ρ

}
for − λ

2ρ < v ≤ ρ− λ
ρ ,

{ρ} for ρ− λ
ρ < v ≤ ρ,

{v} for v > ρ.

For 0 < 2ρ2 ≤ λ, we have

Proxλφρ(v) =


{v} for v < ρ−

√
2λ,

{v, ρ} for v = ρ−
√

2λ,

{ρ} for ρ−
√

2λ < v < ρ,
{v} for v ≥ ρ.
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3.1.2 wk+1 Updating Step

In the w-subproblem, to compute wk+1, we need to
solve the following linear system:(

cK + βZ>Z
)
wk+1 = Z>

(
βqk+1 − λk

)
.

The following proposition certifies the existence and
uniqueness of solution wk+1:
Proposition 3.4. Let p = nβ · ‖ 1

n

∑n
i=1 xi‖2. For any

c > 0, β > 0, we have(
cK + βZ>Z

)
< µ · I,

where µ > 0 and defined by

µ :=
1

2

(
c+ nβ + p−

√
(c− nβ)2 + 2p(c+ nβ) + p2)

)
,

which reduces to µ = min{c, βn} if the data points are
centered and thus p = 0.

We pre-compute (cK + βZZ>)−1Z> ∈ Rn×(d+1),
which by careful matrix partition will cost O(n2d). But
in every iteration, we only need to do matrix-vector
product computation and never re-compute the matrix
inverse again, which only costs O(nd).

3.2 Convergence Analysis

Following the idea of [Cui et al., 2020, Proposition
4.1], for our specific MSVM problem, we claim that
d-stationarity is necessary and sufficient for local opti-
mality.
Proposition 3.5. A point w is local minimal for Prob-
lem (3.1) if and only if w is d-stationary.

It is well-known that the first-order condition, e.g.,
d-stationarity, is only necessary for local optimality
(see [Rockafellar and Wets, 2009, Theorem 10.1]). The
sufficient optimality conditions usually require some
sort of convexity [Rockafellar and Wets, 2009, The-
orem 8.15] or second-order information [Rockafellar
and Wets, 2009, Theorem 13.24]. Luckily, as shown in
Proposition 3.5, for the ρ-margin loss SVM problem,
d-stationarity is sufficient for local minimality, which is
the tightest stationarity that we can hope for without
knowing more global information.

We notice that recently [Suzumura et al., 2017, The-
orem 4] report a KKT-type necessary and sufficient
condition for local minimality of Problem (3.1). How-
ever, it turns out that their argument is flawed. We
will provide a detailed discussion on that issue and
a concrete counterexample to [Suzumura et al., 2017,
Theorem 4] in Section 4.3.

In view of the above, an efficient algorithm that can
provably generate d-stationary points for Problem (3.1)

is highly desirable. We will show that the new noncon-
vex ADMM scheme in Algorithm 1 is capable of doing
so with a local linear convergence rate.

Theorem 3.6. Let γ > 0, c > 0, and

β > 1 + max

2
(

1 +
∥∥ 1
n

∑n
i=1 xi

∥∥2
)

cσ2
,

2

nσ2
,

4

cnσ4

 .

For the sequence {(wk, qk,λk)}k generated by Algo-
rithm 1, the following holds:

• When k → ∞, we have sequential convergence
(wk, qk,λk) → (w∗, q∗,λ∗) and w∗ is a d-
stationary point of Problem (3.1).

• For any 0 ≤ T <∞, we have

min
k∈[T ]

dist
(

0, ∂Lβ(wk, qk,λk)
)
≤ C1√

T
,

where C1 := τ2 ·
√

Lβ(w0,q0,λ0)−F∗
τ1

. See Section 5
for definitions of τ1, τ2.

• Let Sd be the set of d-stationary points of Prob-
lem (3.1). There exist C2 < ∞, ρ ∈ [0, 1) and
finite k̄ such that for all k ≥ k̄:

dist
(
wk,Sd

)
≤ C2ρ

k.

The constants C2 and ρ can be determined from [Han
et al., 2018, Theorem 2] and Hoffman’s error bound for
linear system [Dontchev and Rockafellar, 2009, Lemma
3C.4]. We will sketch the main idea of proof in Section 5
and defer the formal argument to Appendix C.

4 DISCUSSION

In this section, we will first construct concrete exam-
ples that lead to failure of computing sharp stationary
points by the subgradient, DCA, and homotopy meth-
ods. Then, we will explain the subtleties of the techni-
cal Assumption 3.1 and its consequences on optimality
conditions and algorithmic convergence.

4.1 Subgradient Method

We consider the subgradient method with step size
tk <

1
c and iteration scheme:

wk+1 := wk − tkvk, vk ∈ ∂F (wk).

Then, we introduce the following set:

S :=
{
w ∈ Rd+1 : ZKw < 0, wd+1 = 0

}
.
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Assuming wk ∈ S, we have ∂F (wk) = c ·Kwk, which
implies that

ZKwk+1 = Z(1− tk · c)Kwk < 0.

Thus, the sequence generated by the subgradient
method cannot escape from the set S in finite time.
Considering any accumulation point w∗ of the sequence
{wk}k, by w∗ ∈ clS, we will show that if 0 ∈ ∂F (w∗)

thenKw∗ = 0 and 0 /∈ ∂̂F (w∗). So, any accumulation
point w∗ cannot be locally minimal due to [Rockafellar
and Wets, 2009, Theorem 10.1]. To this end, note that

0 ∈ (w∗)>∂F (w∗) ⊆ c · ‖w∗‖2K + (Zw∗)
>
∂g(Zw∗).

By w∗ ∈ clS, it holds that Zw∗ ≤ 0 and thus
∂g(Zw∗) ⊆ {0,−1}n. This gives −c · ‖w∗‖2K ≥ 0 and
thus ‖w∗‖K = 0 and w∗ = 0. Hence, 0 /∈ ∂̂F (w∗) =

Z>∂̂g(0) = ∅.

4.2 DCA-type Algorithms

For DCA-type algorithms, the failure case is similar
to that for the subgradient method. Consider the DC
decomposition of φρ(z>i w) = φρ,1(z>i w)− φρ,2(z>i w),
where φρ,1(z>i w) = max

(
1− z>i w

ρ , 0
)
, φρ,2(z>i w) =

max
(
−z

>
i w
ρ , 0

)
. Then, for w = 0, we have

0 ∈ ∂φρ,1(0) ∩ φρ,2(0),

which, by summing up, implies that w = 0 is DC-
critical for Problem (3.1). However, as shown in Sec-
tion 4.1, w = 0 cannot be a d-stationary point.

4.3 Homotopy Algorithm

Recently, Suzumura et al. [2017, Theorem 4] reported
a KKT-type necessary and sufficient condition for local
minimality of Problem (3.1). However, the following
example shows that their KKT-type condition is in fact
not necessary:
Example 4.1. Let d = 1, n = 6, c = 1, ρ = 1. We
consider the following data points {(xi, yi) : i ∈ [n]} :=
{(1,+1), (1,+1), (−1,−1), (−1,−1), (0,+1), (0,−1)} ⊆

Rd × {+1,−1}. We claim that w =

[
1
0

]
is a global

minimizer for Problem (3.1) on {(xi, yi) : i ∈ [n]}.
However, w does not satisfy the condition in [Suzumura
et al., 2017, Theorem 4]. The proof of that claim is
deferred to Appendix D due to space limitation.

The reason for the invalidation of [Suzumura et al.,
2017, Theorem 4] is that, in the proof of [Suzumura
et al., 2017, Theorem 3], the failure of a primal-dual
pair (f∗P ,α) being a KKT point does not imply the
sub-optimality of primal solution f∗P .

4.4 On Assumption 3.1

The surjectivity assumption is crucial in our subdiffer-
ential d-stationary characterization (Proposition 3.2),
without which efficient computation of d-stationary
points would be quite hard if not impossible. An excep-
tion is the nonmonotone MM algorithm [Pang et al.,
2017, Cui et al., 2018], which computes d-stationary
points using the primal directional derivative charac-
terization Definition 2.7(b) without Assumption 3.1.
However, as pointed out in [Pang et al., 2017, Section
7], these DCA-type algorithms may need to solve an
exponentially large number of subproblems in a sin-
gle iteration step. We do not notice any algorithm
that can efficiently compute d-stationary points for
Problem (1.1) without the surjectivity assumption.

On the other front, the surjectivity assumption is nec-
essary for a nonconvex ADMM scheme to converge
in general. Concrete examples can be constructed [Li
and Pong, 2015, Example 7] in theory, and oscillating
behavior can be observed in numerical experiments.
Besides, we notice that in the nonconvex ADMM litera-
ture, the surjectivity assumption on mapping Z seems
pervasive and necessary [Jiang et al., 2019, Wang et al.,
2019, Li and Pong, 2015].

5 PROOF SKETCH

In this section, we lay out a sketch for the proof of
the main result Theorem 3.6. The formal argument is
deferred to Appendix C.

5.1 Limiting Stationary Convergence

The first step is to prove the sequential convergence of
{wk, qk,λk}k. To this end, we will use the augmented
Lagrangian Lβ(w, q,λ) as a Lyapunov function. We
first show that the sequence {(wk, qk,λk)}k is bounded
and Lβ(wk, qk,λk) > −∞ for any k ∈ N.

Lemma 5.1 (bounded and proper). For β > 2
cσ2 , γ >

0, c > 0, and {(wk, qk,λk)}k generated by Algorithm 1,
there exists an R > 0 such that ‖(wk, qk,λk)‖ ≤ R
and Lβ(wk, qk,λk) > −∞ for any k ∈ N.

Then, we show that the update rules in Algorithm 1
satisfy the following sufficient decrease and limiting
safeguard properties:

Lemma 5.2 (sufficient decrease). For γ > 0, c >

0, β > 1 + max

{
2
(

1+‖ 1
n

∑n
i=1 xi‖2

)
cσ2 , 2

nσ2 ,
4

cnσ4

}
, and

{(wk, qk,λk)}k generated by Algorithm 1, there exists
a constant τ1 > 0 only depending on {σ, c, n, γ, β}, such
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that

Lβ(wk+1, qk+1,λk+1)− Lβ(wk, qk,λk)

≤ − τ1‖(wk+1, qk+1,λk+1)− (wk, qk,λk)‖2.

Lemma 5.3 (limiting safeguard). There exists a τ2 > 0
such that

dist
(

0, ∂Lβ(wk+1, qk+1,λk+1)
)

≤ τ2‖(wk+1, qk+1,λk+1)− (wk, qk,λk)‖.

Finally, by showing that the Lyapunov function satisfies
the KŁ property (see Definition C.1 in Appendix C),
and with the general convergence result in [Attouch
et al., 2013, Theorem 2.9], we establish the sequential
convergence of Algorithm 1:
Lemma 5.4 (limiting stationarity convergence). Let
{(wk, qk,λk)}k be the sequence generated by Algo-
rithm 1. As k → +∞, we have (wk, qk,λk) →
(w∗, q∗,λ∗) with w∗ is limiting-stationary, that is,

0 ∈ cKw∗ +Z>∂g(Zw∗).

5.2 Stationarity Refinement

For the second step, we will refine the stationary charac-
terization of the limiting point (w∗, q∗,λ∗) by showing
that w∗ satisfies the following sharper condition:

0 ∈ cKw∗ +Z>∂̂g(Zw∗),

which by Proposition 3.2 indicates that w∗ is d-
stationary. The crux of the proof is to bypass the lack
of outer semi-continuity of the subdifferential mapping
∂̂g in the optimality condition. Our strategy is to wrap
∂̂g : Rn ⇒ Rn up with the nonconvex proximal map-
ping Proxλg : Rn ⇒ Rn, whose outer semi-continuity
can be obtained from the prox-boundedness of g (see
Definition 2.10). See Appendix C for details.

5.3 Local Linear Convergence

Third, we will establish the local linear convergence
rate of Algorithm 1 with a manifold identification argu-
ment. The key observation from the analytic solution
of Proxλφρ (see Lemma 3.3) is that for any λ > 0, ρ > 0,
q ∈ R, and q ∈ Proxλφρ(v), where v ∈ R is arbitrary,

we have |q| ≥ min
{
λ
2ρ , ρ

}
. This uniform lower bound

allows us to find a k̄ such that for any k ≥ k̄, the
iteration (wk, qk,λk) from Algorithm 1 can be viewed
as running Algorithm 1 on a special convex piecewise-
linear quadratic (PLQ) problem [Rockafellar and Wets,
2009, Definition 10.20]. Moreover, the KKT mapping
of this convex PLQ problem is polyhedral, which im-
plies that its inverse mapping satisfies the so-called

calmness condition (see [Han et al., 2018, Definition
2]). By [Han et al., 2018, Theorem 2], the sequence
(wk, qk,λk) converges linearly to the set of KKT points
of the convex problem. After showing that all these
KKT points are indeed d-stationary for Problem (3.1),
the proof is complete.

6 NUMERICAL RESULTS

In this section, we present numerical results to demon-
strate the effectiveness of the new algorithmic scheme.
All simulations are implemented2 with MATLAB
R2021a on a Windows 10 PC with Intel Core i7-11700K,
and 32 GB RAM. We will show the numerical perfor-
mance of the subgradient method, DCA, SpADMM in
Algorithm 1, and a hybrid method (Algorithm 3) that
runs DCA until convergence and then starts SpADMM
from that DC-critical point (see Appendix E).

We first consider a toy setting with multi-dimensional
Gaussian inputs and random binary labels. Let xi ∼
N(0, Id) and yi ∼ 2 · Bernoulli( 1

2 ) − 1 for any i ∈ [n],
where n = 50, d = 100. We run subGD (subgradi-
ent), DCA, SpADMM (Algorithm 1) and Hybrid Al-
gorithm 3 with the same Gaussian initial point w0 for
150 iteration steps and record the objective function
value and the augmented Lagrangian function value
of Algorithm 1. We report the difference between the
current objective function value and the best objective
value among all algorithms in Figure 3. It is notable
that the reflection-like curve for augmented Lagrangian
of Algorithm 1 is due to the fact that the augmented
Lagrangian value could be smaller than the best objec-
tive function value. From Figure 3, we highlight two
interesting observations:

• It is easy to see in Figure 3 that both Algorithm 1
and Algorithm 3 outperform subGD and DCA,
which is because the semi-proximal ADMM scheme
escapes from non-locally minimal stationary points
and will eventually converge only to a locally min-
imal one.

• When running the Hybrid Algorithm 3, we can
see it decreases the objective value even further
from the DC-critical point that DCA converges to.
In other words, SpADMM escaped from the DC-
critical point that is not locally minimal. This pro-
vides empirical evidence that computing a sharper
kind of stationarity does not only have advantages
in theory but also in numerical performance.

We also conduct simulations on real-world datasets,
which are all from the LIBSVM datasets collection.

2See https://github.com/icety3/rho-marginSVM

https://github.com/icety3/rho-marginSVM


Lai Tian, Anthony Man-Cho So

0 50 100 150

# Iteration Step

10
-4

10
-2

10
0

10
2

subGD

DCA

SpADMM-obj

SpADMM-Lag

0 50 100 150

# Iteration Step

10
-6

10
-4

10
-2

10
0

10
2

subGD

DCA

SpADMM-obj

SpADMM-Lag

Hybrid

Figure 3: Performance of subGD (subgradient), DCA, SpADMM (Algorithm 1), and Hybrid Algorithm 3 on
Gaussian Toy Data. The min in log-scaled y-axis is taken over all aforementioned algorithms.
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Figure 4: Performance of subGD (subgradient), DCA, SpADMM (Algorithm 1), and Hybrid Algorithm 3 on
Real-world Data. The min in log-scaled y-axis is taken over all aforementioned algorithms.

The results are reported in Figure 4 (see also Figure 5
in Appendix F.1). It is easy to see that our observa-
tions from toy data remain true for real-world data.
Besides, we note that the Hybrid Algorithm 3 does
not necessarily outperform SpADMM in Algorithm 1
(see the results for Leukemia in Figure 4 and Duke
breast-cancer in Appendix F.1, Figure 5).

7 LIMITATIONS & REMARKS

In this paper, we proposed a highly efficient noncon-
vex semi-proximal ADMM-based scheme that provably
computes d-stationary points for the ρ-margin loss
SVM problem, which is nonconvex, nonsmooth, and
Clarke irregular. We further show that the local con-
vergence rate of the nonconvex ADMM is linear. Our
development certainly has its limitations and might
inspire further investigation for new tools and ideas for
nonconvex nonsmooth models in machine learning.

• One limitation is of course the surjectivity Assump-
tion 3.1 in our analysis. Without this assumption,
we are not aware of any algorithm that can ef-
ficiently compute d-stationary points for Prob-

lem (1.1). One might guess that Assumption 3.1
can be relaxed with a better analysis of the ADMM
scheme. But we think a more intriguing direction is
to find a better computable d-stationary characteri-
zation (e.g., Proposition 3.2). In [Pang et al., 2017],
their enhanced DCA algorithm works on a primal
directional derivative condition, which needs less
regularity conditions to hold but causes serious
computational trouble in the updating steps. Our
dual subdifferential condition decomposes the non-
smooth parts into separable pieces and leads to
efficient computing with extra cost on more as-
sumptions.

• The other limitation is that our scheme is required
to solve a nonconvex subproblem (i.e., to compute
Proxλg) to optimality, which is crucial to do a limit-
ing argument without osc in ∂̂g. For Problem (1.1),
we do these computations by hand and the optimal
solution is carefully computed as a closed-form (see
Lemma 3.3). However, for a general nonconvex
problem, it is unrealistic to compute its proximal
mapping. Finding a computational cheaper mech-
anism to do limiting argument for ∂̂g would be
interesting.
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Supplementary Material:
Computing D-Stationary Points of ρ-Margin Loss SVM

A Optimality Condition

For preparation, the optimality conditions for every update iteration of Algorithm 1 can be written as:
0 ∈ ∂̂g(qk+1) + β

(
qk+1 −Zwk − 1

β
λk
)

+ γ(qk+1 − qk),

0 = cKwk+1 + βZ>
(
Zwk+1 − qk+1 +

1

β
λk
)
,

λk+1 = λk + β(Zwk+1 − qk+1).

(A.1a)

(A.1b)

(A.1c)

B Technical Lemmas

Lemma B.1. For any A ∈ Rn×(d+1), and any p ∈ Rn, it holds ‖A>p‖ ≥ σmin(A) · ‖p‖.

Proof. Let the thin-SVD of A be A = UΣV >. We compute

‖A>p‖2 = ‖ΣU>p‖2 =

n∑
i=1

σ2
i (A) · (u>i p)2 ≥ σ2

min(A) · ‖U>p‖2 = σ2
min(A) · ‖p‖2,

which completes the proof.

Lemma B.2. For c1, c2, c3 > 0, it holds

1

2

(
c1 + c2c

2
3 + c2 −

√
(c1 + c2c23 + c2)

2 − 4c1c2

)
= min

0≤t≤1
Q(t) := c1 · t2 + c2 ·

(
c3 · t−

√
1− t2

)2

Proof. Note that
Q(t) =

(
c1 + c2c

2
3 − c2

)
· t2 − 2c2c3 · t

√
1− t2 + c2.

As mapping t2 7→ t is bijective in [0, 1], we have

min
0≤t≤1

Q(t) = min
0≤t≤1

P (t) :=
(
c1 − c2 + c2c

3
3

)
· t− 2c2c3 ·

√
t ·
√

1− t+ c2.

It is elementary to see x 7→ −
√
x ·
√

1− x is convex on [0, 1]. Thus, P (t) is convex on [0, 1]. By the first-order
optimality condition and the fact 1

2

(
c4 −

√
1 + c24

)
< 1

2 (c4 − |c4|) = min{c4, 0}, it holds for c4 ∈ R that

min
0≤t≤1

c4 · t−
√
t ·
√

1− t =
1

2

(
c4 −

√
1 + c24

)
with t∗ =

c24 − c4
√

1 + c24 + 1

2c24 + 2
∈ (0, 1).

The proof completes with simple algebraic manipulation.

Proposition 3.4. Let p = nβ · ‖ 1
n

∑n
i=1 xi‖2. For any c > 0, β > 0, we have(

cK + βZ>Z
)
< µ · I,

where µ > 0 and defined by

µ :=
1

2

(
c+ nβ + p−

√
(c− nβ)2 + 2p(c+ nβ) + p2)

)
,

which reduces to µ = min{c, βn} if the data points are centered and thus p = 0.
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Proof. Let data points X ∈ Rn×d and labels y ∈ {+1,−1}n. We define X̃ := X � y1>d ,v1 ∈ Rd, v2 ∈ R, and

v =

[
v1

v2

]
∈ Rd+1. Thus, Z =

[
X̃ y

]
∈ Rn×(d+1). Then, for any v : ‖v‖ = 1, we compute

v>
(
cK + βZ>Z

)
v

= c · ‖v1‖2 + β · ‖Zv‖2

= c · ‖v1‖2 + β · ‖X̃v1 + v2 · y‖2

= c · ‖v1‖2 + β ·
∥∥∥∥(I − 1

n
yy>

)
X̃v1 +

1

n
yy>X̃v1 + v2 · y

∥∥∥∥2

≥ c · ‖v1‖2 + β ·
∥∥∥∥ 1

n
yy>X̃v1 + v2 · y

∥∥∥∥2

(Pythagorean)

= c · ‖v1‖2 + nβ ·
((

1

n
1>nX

)
v1 + v2

)2

. (\)

Let x̄ := 1
n1>nX, θ := x̄> v1

‖v1‖ , ‖v1‖ = t with 0 ≤ t ≤ 1. Without loss of generality, as x̄ is arbitrary, we assume
θ ≥ 0 and v2 = −

√
1− t2 ≤ 0 (otherwise, the value of Equation (\) only increases). We continue with

Equation (\) ≥ min
0≤t≤1

c · t2 + nβ ·
(
θ · t−

√
1− t2

)2
.

By Lemma B.2, we have

Equation (\) ≥ 1

2

(
c+ nβ + nβθ2 −

√
(c− nβ)2 + nβθ2(2c+ 2nβ + nβθ2)

)
.

Note that nβθ2 ≤ nβ‖x̄‖2 =: p and the right-hand side of above lower bound is monotone decreasing with respect
to θ2. We have Equation (\) ≥ µ. To see µ > 0, note the following identity

µ =
1

2

(
(c+ nβ + p)−

√
(c+ nβ + p)2 − 4cnβ

)
> 0,

which completes the proof.

Lemma 5.2 (sufficient decrease). For γ > 0, c > 0, β > 1 + max

{
2
(

1+‖ 1
n

∑n
i=1 xi‖2

)
cσ2 , 2

nσ2 ,
4

cnσ4

}
, and

{(wk, qk,λk)}k generated by Algorithm 1, there exists a constant τ1 > 0 only depending on {σ, c, n, γ, β},
such that

Lβ(wk+1, qk+1,λk+1)− Lβ(wk, qk,λk)

≤ − τ1‖(wk+1, qk+1,λk+1)− (wk, qk,λk)‖2.

Proof. Note that

Lβ(wk+1, qk+1,λk+1)− Lβ(wk, qk,λk) ≤Lβ(wk+1, qk+1,λk+1)− Lβ(wk+1, qk+1,λk)︸ ︷︷ ︸
T1

+

Lβ(wk+1, qk+1,λk)− Lβ(wk, qk+1,λk)︸ ︷︷ ︸
T2

+

Lβ(wk, qk+1,λk)− Lβ(wk, qk,λk)︸ ︷︷ ︸
T3

.

For T1, a direct computation and Equation (A.1c) gives

T1 = 〈λk+1 − λk,Zwk+1 − qk+1〉 =
1

β
‖λk+1 − λk‖2.

Using Equation (A.1b) and Equation (A.1c), we have

Z>λk+1 = Z>(λk+1 − λk) +Z>λk = βZ>(Zwk+1 − qk+1) +Z>λk = −Kwk+1.
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As Z is surjective, it holds σ := σmin(Z) > 0. Combining above computation and Lemma B.1, we have

T1 =
1

β
‖λk+1 − λk‖2 ≤ 1

σ2β
‖Z>(λk+1 − λk)‖2 =

1

σ2β
‖K(wk+1 −wk)‖2 ≤ 1

σ2β
‖wk+1 −wk‖2.

For T2, we first note the strong convexity of the w-subproblem, which is due to the positive definite Hessian
matrix cK + βZ>Z < µ · I in Proposition 3.4. Then, by [Nesterov, 2018, Theorem 2.1.8], we have

T2 ≤ −µ‖wk+1 −wk‖2 ≤ −µ
2
‖wk+1 −wk‖2 − σ2µ

2
‖λk+1 − λk‖2,

where the last inequality is due to the primal-dual control:

σ · ‖λk+1 − λk‖ ≤ ‖Z>(λk+1 − λk)‖ = ‖K(wk+1 −wk)‖ ≤ ‖wk+1 −wk‖.

For T3, by optimality condition Equation (A.1a), it holds

T3 ≤ −
γ

2
‖qk+1 − qk‖2.

In summary, we bound

T1 + T2 + T3 ≤
(

1

σ2β
− µ

2

)
‖wk+1 −wk‖2 − σ2µ

2
‖λk+1 − λk‖2 − γ

2
‖qk+1 − qk‖2.

Finally, we choose parameters as

β >
2

σ2µ
, γ > 0, and τ1 = min

{(
1

σ2β
− µ

2

)
,
σ2µ

2
,
γ

2

}
> 0.

To get an explicit lower estimation for β, we plug in µ in Proposition 3.4. After algebraic simplification on
condition β > 2

σ2µ , we have

β2
(
θ2nσ2 + nσ2

)
+ βcσ2 − 4 > βσ2

√
(c+ βθ2n+ βn)

2 − 4βcn.

Then, it suffices to ensure β2
(
θ2nσ2 + nσ2

)
+ βcσ2 − 4 > 0 and

(
β2
(
θ2nσ2 + nσ2

)
+ βcσ2 − 4

)2

−
(
βσ2

√
(c+ βθ2n+ βn)

2 − 4βcn

)2

> 0.

Solving the quadratic inequality and simplifying the cubic one, we get β > max{Rt3(]), ν}, where

ν :=
1

2

√
c2

n2 (θ2 + 1)
2 +

16

n (θ2 + 1)σ2
− c

2n (θ2 + 1)
,

and Rt3(]) is the largest positive root of the following cubic equation with respect to t:

cnσ4t3 − 2nσ2

1 +

∥∥∥∥∥ 1

n

n∑
i=1

xi

∥∥∥∥∥
2
 t2 − 2σ2ct+ 4 = 0. (])

Then, we use the Cauchy’s bound Cauchy [1828] (see also [Hertz et al., 1999, Theorem 2.1]) for real zeros of
polynomials to get

Rt3(]) ≤ 1 + max

2
(

1 +
∥∥ 1
n

∑n
i=1 xi

∥∥2
)

cσ2
,

2

nσ2
,

4

cnσ4

 .

Finally, note that ν ≤ Rt3(]) and the proof completes.
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Lemma 5.1 (bounded and proper). For β > 2
cσ2 , γ > 0, c > 0, and {(wk, qk,λk)}k generated by Algorithm 1,

there exists an R > 0 such that ‖(wk, qk,λk)‖ ≤ R and Lβ(wk, qk,λk) > −∞ for any k ∈ N.

Proof. By Lemma 5.2, we have for any k ∈ N:

Lβ(w0, q0,λ0) ≥ Lβ(wk, qk,λk)

=
c

2
‖wk‖2K + g(qk) +

β

2
‖Zwk − qk +

1

β
λk‖2 − 1

2β
‖λk‖2

≥ c

2
‖wk‖2K + g(qk) +

β

2
‖Zwk − qk +

1

β
λk‖2 − 1

2βσ2
‖Kwk‖2

≥ c

4
‖wk‖2K + g(qk) +

β

2
‖Zwk − qk +

1

β
λk‖2 ≥ 0,

where the second inequality is due to σ · ‖λk‖ ≤ ‖Z>λk‖ = ‖Kwk‖, the final inequality is by facts that K is
idempotent and

(
c
2 −

1
2βσ2

)
> c

4 . Therefore, the augmented Lagrangian is lower bounded by 0 for any k ∈ N and

the properness of Lβ(wk, qk,λk) for any k ∈ N directly follows.

Then, similar to the proof of Proposition 3.4, we can prove c
4K + β

2Z
>Z � 0. Thus the level-set of Lβ

with respect to w is bounded and we have {wk}k is bounded. Again, by Equations (A.1b) and (A.1c) and
surjective Z, we have ‖wk‖ ≥ ‖Kwk‖ = ‖Z>λk‖ ≥ σ‖λk‖, and {λk}k is bounded. By Equation (A.1c),
‖qk‖ = ‖Zwk + 1

βλ
k − 1

βλ
k+1‖ ≤ ‖Z‖‖wk‖+ 1

β ‖λ
k‖+ 1

β ‖λ
k+1‖, and {qk}k is bounded.

Lemma 5.3 (limiting safeguard). There exists a τ2 > 0 such that

dist
(

0, ∂Lβ(wk+1, qk+1,λk+1)
)

≤ τ2‖(wk+1, qk+1,λk+1)− (wk, qk,λk)‖.

Proof. To prove the safeguard property, we need to characterize the limiting subdifferential ∂Lβ . Due to the
irregularity of g(q), a rigorous argument needs to apply a series of subdifferential calculus rules in a carefully
chosen order. To this end, by grouping smooth terms in Lβ together, by [Rockafellar and Wets, 2009, Exercise
8.8(c)], calmness of Lβ from local Lipschitz, [Rockafellar and Wets, 2009, Proposition 8.32], and then with
[Rockafellar and Wets, 2009, Proposition 10.5], we have

∂Lβ(w, q,λ) =

 cKw +Z>λ+ βZ>(Zw − q)
−λ+ β(q −Zw) + ∂g(q)

Zw − q

 .
By Cauchy-Schwarz, it holds

dist
(

0, ∂Lβ(wk+1, qk+1,λk+1)
)
≤ ‖cKwk+1 +Z>λk+1 + βZ>(Zwk+1 − qk+1)‖+

dist
(

0,−λk+1 + β(qk+1 −Zwk+1) + ∂g(qk+1)
)

+ ‖Zwk+1 − qk+1‖.

By Equation (A.1b), we have

‖cKwk+1 +Z>λk+1 + βZ>(Zwk+1 − qk+1)‖ = ‖Z>(λk+1 − λk)‖ ≤ ‖Z‖‖λk+1 − λk‖.

Meanwhile, by Equation (A.1a) and triangle inequality, we compute

dist
(

0,−λk+1 + β(qk+1 −Zwk+1) + ∂g(qk+1)
)
≤ ‖λk+1 − λk‖+ γ‖qk+1 − qk‖+ β‖Z‖‖wk+1 −wk‖.

Finally, using Equation (A.1c), summing up, we get

dist
(

0, ∂Lβ(wk+1, qk+1,λk+1)
)
≤ β‖Z‖‖wk+1 −wk‖+ γ‖qk+1 − qk‖+

(
β + 1

β
+ ‖Z‖

)
‖λk+1 − λk‖,
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which combing with Cauchy-Schwarz and the choosing

τ2 :=
√

3 max

{
β‖Z‖, γ,

(
β + 1

β
+ ‖Z‖

)}
,

completes the proof.

Lemma 5.4 (limiting stationarity convergence). Let {(wk, qk,λk)}k be the sequence generated by Algorithm 1.
As k → +∞, we have (wk, qk,λk)→ (w∗, q∗,λ∗) with w∗ is limiting-stationary, that is,

0 ∈ cKw∗ +Z>∂g(Zw∗).

Proof. The proof is by verifying the conditions in [Attouch et al., 2013, Theorem 2.9]. For H1, it directly holds
from Lemma 5.2. H2 is from Lemma 5.3. H3 is due to Lemma 5.1 and continuity of Lβ . We still need to show
Lβ is a KŁ function. To see this, we simply notice that h1(w, q,λ) := c

2‖w‖
2
K + β

2 ‖Zw − q + 1
βλ‖

2 − 1
2β ‖λ‖

2

is a polynomial function and h2(w, q,λ) := g(q) has a piecewise linear graph. Hence the sum Lβ(w, q,λ) =
h1(w, q,λ) + h2(w, q,λ) is semi-algebraic and thus KŁ Kurdyka [1998]. The proof completes by using [Attouch
et al., 2013, Theorem 2.9].

Lemma 3.3 (proximal operator). For 0 < λ < 2ρ2, it holds

Proxλφρ(v) =



{v} for v < − λ
2ρ ,{

v, v + λ
ρ

}
for v = − λ

2ρ ,{
v + λ

ρ

}
for − λ

2ρ < v ≤ ρ− λ
ρ ,

{ρ} for ρ− λ
ρ < v ≤ ρ,

{v} for v > ρ.

For 0 < 2ρ2 ≤ λ, we have

Proxλφρ(v) =


{v} for v < ρ−

√
2λ,

{v, ρ} for v = ρ−
√

2λ,

{ρ} for ρ−
√

2λ < v < ρ,
{v} for v ≥ ρ.

Proof. As the computation of the proximal operator of the margin-loss Φρ is quite tedious and complicated, we
will deduce its explicit expression by calling on existing result Wang et al. [2021]. By definition, we have

Proxλφρ(v) = Argmin
x

{
1

2λ
(x− v)2 + φρ(x)

}
.

Let y = 1− x
ρ and using identity max(a,min(b, c)) = min(b,max(a, c)), we have

Proxλφρ(v) = ρ− ρ ·Argmin
y

{
ρ2

2λ

(
y +

v

ρ
− 1

)2

+ max(0,min(1, y))

}
= ρ− ρ · Prox λ

ρ2
`r

(
1− v

ρ

)
,

where `r is defined in [Wang et al., 2021, Equation (2)]. Then, the claim follows from [Wang et al., 2021,
Proposition 1], [Wang et al., 2021, Proposition 2].

Proposition B.3. g in Equation (MSVM) is prox-bounded for all λg > 0.

Proof. Trivial as g is lower-bounded by 0 globally.

Proposition 3.5. A point w is local minimal for Problem (3.1) if and only if w is d-stationary.

Proof. The “only if” part is directly from [Rockafellar and Wets, 2009, Theorem 10.1]. For the “if” part, let w∗
be a d-stationary point of F with F ′(w∗;w−w∗) ≥ 0,∀w ∈ Rd+1 (see Definition 2.7(b)). As g(Zw) is piecewise
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affine with respect to w, by the min-max representation and with [Facchinei and Pang, 2007, Equation (4.2.7)],
there exists δ > 0 such that for all ‖w −w∗‖ ≤ δ, we have

g(Zw) = g(Zw∗) + g′(Zw∗;Zw −Zw∗).

Then, we compute

F (w) =
c

2
‖w∗ + (w −w∗)‖2K +

n∑
i=1

φρ(z
>
i w)

≥ c

2
‖w∗‖2K + c(w −w∗)>Kw∗ +

n∑
i=1

φρ(z
>
i w
∗) +

n∑
i=1

φρ(z
>
i w)− φρ(z>i w∗)

=
c

2
‖w∗‖2K +

n∑
i=1

φρ(z
>
i w
∗) + c(w −w∗)>Kw∗ +

n∑
i=1

φ′ρ(z
>
i w
∗; z>i w − z>i w∗)

=
c

2
‖w∗‖2K +

n∑
i=1

φρ(z
>
i w
∗) + F ′(w∗;w −w∗) ≥ F (w∗),

which completes the proof.

C Proof of Theorem 3.6

We recall the definition of KŁ property in [Attouch et al., 2013, Definition 2.4] as follows:
Definition C.1 (KŁ property). The function f : Rd → R is said to have the Kurdyka–Łojasiewicz (KŁ) property
at x̄ ∈ dom ∂f if there exists η ∈ (0,+∞], a neighborhood U of x̄ and a continuous concave function φ : [0, η)→ R+

such that

• φ(0) = 0;

• φ is C1 on (0, η);

• for all s ∈ (0, η), φ′(s) > 0;

• for all x in U ∩ [f(x̄) < f < f(x̄) + η], the KŁ inequality holds

φ′(f(x)− f(x̄)) · dist(0, ∂f(x)) ≥ 1.

Now, we are ready to prove the Theorem 3.6.
Theorem 3.6. Let γ > 0, c > 0, and

β > 1 + max

2
(

1 +
∥∥ 1
n

∑n
i=1 xi

∥∥2
)

cσ2
,

2

nσ2
,

4

cnσ4

 .

For the sequence {(wk, qk,λk)}k generated by Algorithm 1, the following holds:

• When k →∞, we have sequential convergence (wk, qk,λk)→ (w∗, q∗,λ∗) and w∗ is a d-stationary point of
Problem (3.1).

• For any 0 ≤ T <∞, we have

min
k∈[T ]

dist
(

0, ∂Lβ(wk, qk,λk)
)
≤ C1√

T
,

where C1 := τ2 ·
√

Lβ(w0,q0,λ0)−F∗
τ1

. See Section 5 for definitions of τ1, τ2.

• Let Sd be the set of d-stationary points of Problem (3.1). There exist C2 <∞, ρ ∈ [0, 1) and finite k̄ such
that for all k ≥ k̄:

dist
(
wk,Sd

)
≤ C2ρ

k.
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Proof. The proof is divided into several steps.

Step 1 (limiting stationary convergence). We first prove the sequence {(wk, qk,λk)}k generated by Algorithm 1
will converge to a limiting stationary point (w∗, q∗,λ∗) of the augmented Lagrangian Lβ , which implies w∗ is a
limiting stationary point of Problem (3.1). The claim direct follows from Lemma 5.4.

The global rate is a direct corollary of Lemma 5.2 and Lemma 5.3. Specifically,

min
k∈[T ]

dist
(

0, ∂Lβ(wk, qk,λk)
)
≤ τ2 · min

k∈[T ]

∥∥∥(wk, qk,λk)− (wk−1, qk−1,λk−1)
∥∥∥ (Lemma 5.3)

≤ τ2 ·

√√√√ 1

T

T∑
k=1

∥∥∥(wk, qk,λk)− (wk−1, qk−1,λk−1)
∥∥∥2

≤ τ2 ·

√
Lβ(w0, q0,λ0)− Lβ(w∗, q∗,λ∗)

τ1T
=

C2√
T
. (Lemma 5.2)

Step 2 (refine stationarity characterization). Then, we will refine the characterization of (w∗, q∗,λ∗) by showing
w∗ is indeed a d-stationary point. We first rewrite the optimality condition for q-subproblem as

qk+1 ∈ Prox 1
β+γ g

(
β

β + γ

(
Zwk +

1

β
λk
)

+
γ

β + γ
qk
)
.

Note that, by Equation (A.1c), we observe the following identify:

β

β + γ

(
Zwk +

1

β
λk
)

+
γ

β + γ
qk = qk+1 +

γ

β + γ

(
qk − qk+1

)
+

β

β + γ
Z(wk −wk+1) +

1

β + γ
λk+1.

Let k → +∞. By the convergence of (wk, qk,λk)→ (w∗, q∗,λ∗) in Step 1, global prox-boundedness of g from
Proposition B.3, and outer semi-continuous of proximal mapping Prox 1

β+γ g
(see [Rockafellar and Wets, 2009,

Example 5.23]), we have

q∗ = lim
k→∞

qk ∈ lim sup
k→∞

Prox 1
β+γ g

(
qk+1 +

γ

β + γ

(
qk − qk+1

)
+

β

β + γ
Z(wk −wk+1) +

1

β + γ
λk+1

)
⊆ Prox 1

β+γ g

(
q∗ +

1

β + γ
λ∗
)
.

By Fermat’s rule [Rockafellar and Wets, 2009, Theorem 10.1] on proximal mapping Prox 1
β+γ g

, it holds λ∗ ∈ ∂̂g(q∗).
Using Equations (A.1b) and (A.1c) and limiting argument, we also have Zw∗ = q∗, 0 = Kw∗ +Z>λ∗, which
indicates 0 ∈Kw∗ +Z>∂̂g(Zw∗). As Z is surjective, by chain rule [Rockafellar and Wets, 2009, Exercise 10.7]
and sum rule [Rockafellar and Wets, 2009, Exercise 8.8(c)], we have 0 ∈ ∂̂F (w∗). As F is locally Lipschitz, by
[Rockafellar and Wets, 2009, Theorem 9.13], w∗ is a d-stationary point.

Step 3 (linear convergence). By inspecting the analytic expression of proximal operator in Lemma 3.3, it is easy
to check that, for any λ > 0, ρ > 0, q ∈ R and q ∈ Proxλφρ(v), where v ∈ R is arbitrary, we have

|q| ≥ min

{
λ

2ρ
, ρ

}
.

Then, for any k ∈ N, there exists a constant τ3 with min
{

1
2ρ(β+γ) , ρ

}
> τ3 > 0 such that

min
i∈[n]
|qki | > τ3 > 0, and min

i∈[n]
|q∗i | = min

i∈[n]
|z>i w∗| > τ3 > 0.

By the convergence of (wk, qk,λk)→ (w∗, q∗,λ∗) in Lemma 5.4, there exists k̄ such that for all k ≥ k̄, we have

max
i∈[n]
|qki − q∗i | ≤ τ3, implying min

i∈[n]
qki · q∗i >

τ2
3

2
> 0, and sgn(qki ) = sgn(q∗i ), ∀i ∈ [n].
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Let the partition [n] = Ik< t Ik= t Ik>, where k ∈ N ∪ {∗} and

Ik< := {i ∈ [n] : qki < 0}, Ik= := {i ∈ [n] : qki = 0}, Ik> := {i ∈ [n] : qki > 0}.

Then, we define the following ghost convex problem:

min
w∈Rd+1

F̂ (w) :=
c

2
‖w‖2K +

∑
i∈I∗>

φ̂ρ(z
>
i w), where φ̂ρ(u) = max

(
0, 1− u

ρ

)
. (CPLQ)

Let ĝ(q) =
∑
i∈I∗>

φ̂ρ(z
>
i w). Using the same operator splitting technique Zw = q ∈ Rn, the augmented

Lagrangian can be written as

L̂β(w, q,λ) := F̂ (w) + 〈λ,Zw − q〉+
β

2
‖Zw − q‖2.

Setting ŵ0 = wk̄, q̂0 = qk̄, λ̂0 = λk̄, (β, γ) = (β, γ) in Algorithm 1, we have the following ghost convex
semi-proximal ADMM algorithm:

Algorithm 2 Ghost Semi-proximal ADMM for Problem (CPLQ)

1: Set ŵ0 = wk̄, q̂0 = qk̄, λ̂0 = λk̄, (β, γ) = (β, γ) in Algorithm 1.
2: for t ∈ {0, 1, 2, . . . } do
3:

q̂t+1 ∈ arg min
q̂

ĝ(q̂) +
β

2
‖q̂ −Zŵt − 1

β
λ̂t‖2 +

γ

2
‖q̂ − q̂t‖2

ŵt+1 = arg min
ŵ

f̂(ŵ) +
β

2
‖Zŵ − q̂t+1 +

1

β
λ̂t‖2

λ̂t+1 = λ̂t + β(Zŵt+1 − q̂t+1).

4: end for

We denote the sequence generated by Algorithm 2 as {(ŵt, q̂t, λ̂t)}t. As ĝ is a convex piecewise linear-quadratic
function, by [Rockafellar and Wets, 2009, Theorem 12.30], the KKT mapping of F̂ is piecewise polyhedral. Then,
by the celebrated results of Robinson [1981], we have the inverse KKT mapping is calm (see also [Dontchev
and Rockafellar, 2009, Proposition 3H.1]). Besides, by the strong convexity of w-subproblem in the proof of
Lemma 5.2, we have cK + βZ>Z � 0. Using [Han et al., 2018, Theorem 2], there exists ρ ∈ (0, 1) and constant
τ4 ≥ 0 such that

dist
(

(ŵk, q̂k, λ̂k),SKKT

)
≤ τ4 · ρk,

where SKKT is the set KKT points for Equation (CPLQ).

Then, we will show for any k ∈
(
N\[k̄ − 1]

)
∪ {∗}, (wk, qk,λk) = (ŵk−k̄, q̂k−k̄, λ̂k−k̄), which directly indicates

the linear convergence. The proof is by induction on k. For k = k̄, it is by definition the claim holds. Then, we
assume for {k̄, . . . , k} the claim holds. Then we need to show (wk+1, qk+1,λk+1) = (ŵk−k̄+1, q̂k−k̄+1, λ̂k−k̄+1).
For qk+1 = q̂k−k̄+1, we consider the optimality condition Equation (A.1a) of the q-subproblem in Algorithm 1.
By mini∈[n] |qk+1

i | > τ3, [Rockafellar and Wets, 2009, Proposition 10.5], [Rockafellar and Wets, 2009, Theorem
10.49], we have

∂̂g(qk+1) =

n⊕
i=1

∂φρ(q
k+1
i ) =

n⊕
i=1

δIk+1
>

(i) · ∂φ̂ρ(qk+1
i ) = ∂ĝ(qk+1),

where δC(i) := 1 if i ∈ C otherwise δC(i) := 0, and we use Ik> = I∗> for all k ≥ k̄. Then, it is clear that
qk+1 satisfies the optimality condition of the q-subproblem of Algorithm 2, by whose strong convexity, we have
qk+1 = q̂k+1. Similarly, we can show by examining the optimality condition that wk+1 = ŵk+1 and λk+1 = λ̂k+1.
Taking limit we have (w∗, q∗,λ∗) = (ŵ∗, q̂∗, λ̂∗). The final building block is to show if (ŵ∗, q̂∗, λ̂∗) ∈ SKKT then
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ŵ∗ ∈ Sd, which indicates dist
(
ŵk,Sd

)
≤ dist

(
ŵk,Π1(SKKT)

)
≤ dist

(
(ŵk, q̂k, λ̂k),SKKT

)
. To this end, for any

KKT point (ŵ∗, q̂∗, λ̂∗), we write down the KKT system of Problem (CPLQ) as 0 = cKŵ∗ +Z>λ̂∗,

0 ∈ −λ̂∗ + ∂ĝ(q̂∗),
0 = Zŵ∗ − q̂∗.

Then we have 0 ∈ cKŵ∗ +Z>∂ĝ(Zŵ∗), where ĝ is convex. Therefore, the claim follows from mini∈[n] |q∗i | > τ3,
[Rockafellar and Wets, 2009, Proposition 10.5], [Rockafellar and Wets, 2009, Theorem 10.49], which implies
∂̂g(Zŵ∗) = ∂̂g(q̂∗) = ∂ĝ(q̂∗) = ∂ĝ(Zŵ∗). Thus we have ŵ∗ ∈ Sd, which completes the proof.

D More Example

Counterexample. Let d = 1, n = 6, c = 1, ρ = 1. We consider the following data points multiset:

S :=
{

(xi, yi) : i ∈ [n]
}

=
{

(1,+1), (1,+1), (−1,−1), (−1,−1), (0,+1), (0,−1)
}
⊆ Rd × {+1,−1}.

We claim that w =

[
1
0

]
is a global minimizer for Problem (3.1) on {(xi, yi) : i ∈ [n]}. However, w does not

satisfy the condition in [Suzumura et al., 2017, Theorem 4]. For the proof, we reorganized the data points into

X =


1
1
−1
−1
0
0

 , Z =


1 1
1 1
1 −1
1 −1
0 1
0 −1

 , with rank(Z) = d+ 1 = 2 < n.

Let φ1(t) = min{1,max{1− t, 0}}. Then, Problem (1.1) on S reads

ν := min
θ∈R,b∈R

f(θ, b) :=
θ2

2
+ 2φ1(θ + b) + 2φ1(θ − b) + φ1(b) + φ1(−b). (CE)

To get an optimizer of Problem (CE), we consider the following 5 cases:

• b = 0

◦ θ = 0: ν1 := infθ f(θ, b) = 6.

◦ θ 6= 0: ν2 := infθ f(θ, b) = 2 +
(

infθ
θ2

2 + 4φ1(θ)
)

= 5
2 when θ = 1.

• b 6= 0

◦ |θ| = |b|: by symmetry of b, we assume θ = b. Then, Problem (CE) can be rewritten as

min
b 6=0

b2

2
+ 2φ1(2b) + 2 + φ1(b) + φ1(−b).

By monotonicity of φ1, we can assume b > 0. Let the convex hinge loss be h(t) = max{1− t, 0}. Then,
we get the following convex reformulation

ν3 :=
7

2
= inf
b>0

b2

2
+ 2h(2b) + 2 + h(b) + 1.

◦ |θ| 6= |b|: by monotonicity of g and symmetry of b, we assume w ≥ 0 and b > 0.
? |θ| > |b|:

ν4 :=
5

2
= inf
θ≥0,b>0

θ2

2
+ 2h(θ + b) + 2h(θ − b) + h(b) + 1.
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? |θ| < |b|:

ν5 := 3 = inf
θ≥0,b>0

θ2

2
+ 2h(θ + b) + 2 + h(b) + 1.

In summary, we claim θ∗ = 1, b∗ = 0 is an optimal solution of Problem (CE) as f(1, 0) = 5
2 = min{νi}[5] ≤ ν. In

that case, let q := y1d� (Xθ∗ − b∗y) = [1 1 1 1 0 0]>. On the other hand, in [Suzumura et al., 2017, Theorem 4],
the KKT-type condition requires qi 6= 0 for all i ∈ [n], which is not satisfied by a global minimizer θ∗ = 1, b∗ = 0.
Thus, [Suzumura et al., 2017, Theorem 4] is not necessary. Besides, we note that above example provide an
explicit case that if Z is not surjective, then the dual characterization in Proposition 3.2 may not hold. In the
language of variational analysis, that is because 0 ∈ ∂̂

(
f(Z·)

)
(w∗) whereas ∂̂(f)(Zw∗) = ∅.

E DCA-SpADMM Hybrid Algorithm

The hybrid method (Algorithm 3) runs DCA until convergence and then starts SpADMM from that DC-critical
point. The detailed hybrid scheme can be summarized as follows:

Algorithm 3 Hybrid Semi-proximal ADMM and DCA for Problem (3.1)

Input: Z ∈ R(d+1)×n,w0, choose γ > 0, c > 0 and β > 1 + max

{
2
(

1+‖ 1
n

∑n
i=1 xi‖2

)
cσ2 , 2

nσ2 ,
4

cnσ4

}
.

1: Set r = 0.
2: for all k ∈ {0, 1, 2, . . . } do
3:4: if r = 0 then
5: Set gk = − 1

ρZ
>sgn

(
− 1
ρZ
>wk

)
.

6: Compute

wk+1 ∈ Argmin
w

c

2
‖w‖2K +

n∑
i=1

max

(
1− z

>
i w

ρ
, 0

)
−w>gk.

7: if ‖wk+1 −wk‖ ≤ 10−5 then
8: Set r = 1, qk+1 = Zwk+1,λk+1 = 0.
9: end if
10: else

qk+1 ∈ Argmin
q

Lβ(wk, q,λk) +
γ

2
‖q − qk‖2,

wk+1 = arg min
w

Lβ(w, qk+1,λk),

λk+1 = λk + β(Zwk+1 − qk+1).

11: end if
12: end for
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F More Numerical Results

F.1 Objective Value Curve

In this section, we provide extra numerical results in the setting of Section 6.
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Figure 5: Performance of subGD (subgradient), DCA, SpADMM (Algorithm 1), and Hybrid Algorithm 3 on
Real-world Data. The min in log-scaled y-axis is taken over all aforementioned algorithms.

F.2 Wall-Clock Time

To demonstrate the efficiency of various algorithms in the numerical experiments, we record the wall-clock time
of running these algorithms for 102 iterative steps in Table 2.

Table 2: Wall-Clock Time of subGD (subgradient), DCA, SpADMM (Algorithm 1), and Hybrid Algorithm 3.

102 steps Wall-Clock Time (s)

Toy Leukemia Duke Colon

subGD 0.0173 24.0051 23.9875 1.7640
DCA 19.6547 60.6936 72.4713 42.5783

SpADMM 0.0138 1.1031 1.1090 0.0828
Hybrid 0.7206 2.9015 3.9245 1.9675
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