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Abstract

Stochastic gradient-based optimization for
discrete latent variable models is challenging
due to the high variance of gradients. We
introduce a variance reduction technique for
score function estimators that makes use of
double control variates. These control vari-
ates act on top of a main control variate, and
try to further reduce the variance of the over-
all estimator. We develop a double control
variate for the REINFORCE leave-one-out
estimator using Taylor expansions. For train-
ing discrete latent variable models, such as
variational autoencoders with binary latent
variables, our approach adds no extra com-
putational cost compared to standard train-
ing with the REINFORCE leave-one-out es-
timator. We apply our method to challenging
high-dimensional toy examples and for train-
ing variational autoencoders with binary la-
tent variables. We show that our estimator
can have lower variance compared to other
state-of-the-art estimators.

1 INTRODUCTION

Several problems in machine learning, such as varia-
tional inference and reinforcement learning, require the
optimization of an intractable expectation of an objec-

tive function under a distribution with tunable param-
eters. Since exact gradients with respect to the param-
eters of the distribution are intractable, optimization
must rely on unbiased stochastic estimates. Pathwise
or reparametrization gradients (Glasserman, 2003)
have been shown to be e↵ective for machine learn-
ing problems (Kingma and Welling, 2014; Rezende
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et al., 2014; Titsias and Lázaro-Gredilla, 2014), but
they are only applicable to continuous distributions.
A more general class of gradient estimators based on
the score function method or REINFORCE (Glynn,
1990; Williams, 1992) is applicable to both continuous
and discrete distributions. However, score function es-
timators su↵er from high variance and reducing the
variance remains an important open problem.

Variance reduction techniques for REINFORCE es-
timators range from simple baselines (Ranganath
et al., 2014; Mnih and Gregor, 2014) and Rao-
blackwellization (Titsias and Lázaro-Gredilla, 2015;
Tokui and Sato, 2017) to more advanced gradient-
based control variates (Tucker et al., 2017; Grathwohl
et al., 2018; Gu et al., 2016) and coupled sampling (Yin
and Zhou, 2019; Dong et al., 2020; Yin et al., 2020;
Dimitriev and Zhou, 2021). Another variance reduc-
tion method that has become prominent recently is
the REINFORCE leave-one-out estimator (Salimans
and Knowles, 2014; Kool et al., 2019; Richter et al.,
2020), that assumes K � 2 samples and uses a leave-
one-out procedure to define sample-specific stochastic
control variates. Despite its simplicity, this estimator
performs very strongly for training discrete latent vari-
ables models (Dong et al., 2020; Richter et al., 2020;
Dong et al., 2021). Presumably this is because the
leave-one-out stochastic baselines can automatically
adapt to the non-stationarity of the objective function
which has trainable parameters itself, e.g., the param-
eters in the generative model.

In this work, our motivation is to take advantage of
the compositional structure of control variate tech-
niques (Owen, 2013; Ge↵ner and Domke, 2018), where
multiple control variates can be linearly combined, to
further reduce the variance of an existing estimator.
Specifically, we focus on the REINFORCE leave-one-
out (RLOO) estimator and enhance it by adding ex-
tra control variates. We refer to the added baselines
as double control variates since they co-exist with the
main RLOO baseline, and are designed to have a com-
plementary e↵ect by reducing the variance of the initial
RLOO estimator. We design the double control vari-
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ates by applying Taylor expansions and utilising gra-
dients of the objective function over the Monte Carlo
samples. For training latent variable models with dis-
crete variables, these gradients add essentially no extra
computational cost since they can be obtained by the
same backpropagation operation needed to collect the
gradients over model parameters. Therefore, training
by using our proposed estimator runs roughly at the
same speed with the previous RLOO approach.

We apply our double control variate approach to
toy learning examples (see Fig. 1) and for train-
ing variational autoencoders with binary latent vari-
ables. We show that our estimator outperforms other
methods including standard RLOO, DisARM (Dong
et al., 2020; Yin et al., 2020) and its improved version
ARMS (Dimitriev and Zhou, 2021) when using K = 2
or more samples. Although we focus on binary latent
variables in our experiments, our estimator is equally
applicable to categorical latent variables.

2 BACKRGOUND

Assume f(x) is a di↵erentiable objective function,
where x is a D-dimensional vector. We want to maxi-
mize the expectation Eq⌘(x) [f(x)] with respect to the
parameters ⌘ of some distribution q⌘(x). Since f(x)
can have a complex non-linear form, the expectation
is generally intractable. For instance, such problems
arise in variational inference (Blei et al., 2017), where
f(x) is the instantaneous ELBO and q⌘(x) the vari-
ational distribution, and in reinforcement learning,
where f(x) is a reward function and q⌘(x) is the pol-
icy (Weaver and Tao, 2001).

To apply gradient-based optimization over ⌘ we need
to compute the gradient

r⌘Eq⌘(x) [f(x)] = Eq⌘(x) [f(x)r⌘ log q⌘(x)] , (1)

where for simplicity we assume f(x) does not depend
on ⌘.1 Since this exact gradient is intractable, several
techniques apply stochastic optimization (Robbins and
Monro, 1951) based on unbiased Monte Carlo gradi-
ents by sampling from q⌘(x). A very general stochastic
gradient is the score function or REINFORCE estima-
tor (Glynn, 1990; Williams, 1992; Carbonetto et al.,
2009; Paisley et al., 2012; Ranganath et al., 2014; Mnih
and Gregor, 2014),

1

K

KX

k=1

(f(xk)� b)r⌘ log q⌘(xk), xk ⇠ q⌘(x), (2)

where b is called a baseline and is often learned to re-
duce the variance. Given K � 2 samples, a powerful

1
If there is dependence this adds a low variance gradient

to any stochastic estimator; see, e.g., Dong et al. (2020).

variant of this approach that avoids learning b is the
REINFORCE leave-one-out (RLOO) estimator (Sali-
mans and Knowles, 2014; Kool et al., 2019; Richter
et al., 2020) that takes advantage of multiple evalua-
tions of f :

1

K

KX

k=1

0

@f(xk)�
1

K � 1

X

j 6=k

f(xj)

1

Ar⌘ log q⌘(xk), (3)

where each leave-one-out average 1
K�1

P
j 6=k f(xj)

acts as a sample-specific control variate that excludes
the current sample xk, so that the whole estimator
is unbiased. This estimator can also be re-written as
an unbiased covariance estimator2, i.e. RLOO(⌘) =

1
K�1

PK
k=1

⇣
f(xk)� 1

K

PK
j=1 f(xj)

⌘
r⌘ log q⌘(xk),

which could be more convenient in implementation
(Kool et al., 2019; Richter et al., 2020).

RLOO was shown to have strong empirical perfor-
mance, especially for discrete variable problems (Dong
et al., 2020; Kool et al., 2019; Dong et al., 2021). It has
the attractive property that the sample-specific control
variates automatically adapt to the non-stationarity of
f(x). Specifically, the function f(x) := f✓(x) can of-
ten contain additional model parameters ✓ updated at
each optimization step (for ✓ is straightforward to ob-
tain low variance gradients), as for instance in vari-
ational autoencoders (VAEs) (Kingma and Welling,
2014; Rezende et al., 2014). Although ✓ is changing,
the sample-specific control variate 1

K�1

P
j 6=k f✓(xj)

always remains an unbiased estimate of Eq⌘(x)[f✓(x)].

However, RLOO is still limited in how much variance
reduction it can achieve, as stated in the following
proposition which is proved in the Appendix.

Proposition 1 Consider the estimator R
⇤(⌘) =

1
K

PK
k=1 (f(xk)� Ef)r⌘ log q⌘(xk), where Ef =

Eq⌘(x)[f(x)] is a constant baseline across all samples.

Then, V ar(RLOO) � V ar(R⇤).

Thus, the performance of RLOO is bounded by R⇤

which uses the mean Ef (intractable in practice) as a
constant baseline. However, an estimator with a con-
stant baseline, even an ideal one as R⇤, can often have
substantial variance in practice. For instance, in the
toy example shown by Fig. 1, where R⇤ is tractable, we
compare our proposed double control variates method
with both RLOO and R⇤, and show that our technique
can outperform R⇤ significantly. Our proposed estima-
tor in Section 3 tries to further reduce the variance of

2
Because of the score function property

Eq⌘(x)[r log q⌘(x)] = 0 the exact gradient

can be re-written as Cov[f(x),r⌘ log q⌘(x)] =

Eq⌘(x)

⇥�
f(x)� Eq⌘(x)[f(x)]

�
r log q⌘(x)

⇤
; see Salimans

and Knowles (2014).
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Figure 1: Variance reduction for a toy 200-dimensional maximization problem, following Tucker et al. (2017),
with binary variables and fitting probabilities �(⌘i) (where �(⌘i) = 1 is optimal); see Section 5.1. Left: Gradient
variances for four di↵erent estimators. Middle: Objective function that we want to maximize. Right: Average of
the estimated �(⌘i)s. In the latter two panels two additional estimators are shown. The proposed double control
variate estimator (Double CV) is the most e↵ective one.

RLOO and can be considered as using more general
sample-specific baselines, as outlined in Section 2.1.

2.1 More General Sample-Specific Control

Variates

Let’s denote by x1:K all K samples in the estima-
tor. We say a baseline �k(x1:K) is sample-specific if
it varies with the sample index k in the Monte Carlo
sum, i.e. �k(x1:K) 6= �j(x1:K) for k 6= j. Note that
each �k(x1:K) can depend on all samples including also
the “current” sample xk. A general estimator with
sample-specific control variates is written as

1

K

KX

k=1

{(f(xk)� �k(x1:K))r⌘ log q⌘(xk)}

+
1

K

KX

k=1

Eq⌘(xk)[�k(x1:K)r⌘ log q⌘(xk)]. (4)

The added sample-specific correction term
Eq⌘(xk)[�k(x1:K)r⌘ log q⌘(xk)] must be analyti-
cally tractable and ensures that the gradient is
unbiased. In some cases the correction term can be
dropped, since it will have overall zero expectation,
as stated next.

Proposition 2 Let x1:k�1,k+1:K denote all samples

excluding xk. If Eq⌘(x1:k�1,k+1:K)[�k(x1:K)] = const,

then Eq⌘(x1:K)[�k(x1:K)r⌘ log q⌘(xk)] = 0.

See Appendix for the proof. A special case of
this arises in REINFORCE LOO where the baseline
�k(x1:k�1,k+1:K) does not depend on the current sam-
ple xk. However, more e↵ective estimators can have a
�k depending on the current sample xk as well. For
instance, such an estimator is the second variant (see
equation (11)) of the double control variates approach
presented next.

3 DOUBLE CONTROL VARIATES

FOR REINFORCE LOO

In RLOO the sample-specific baseline 1
K�1

P
j 6=k f(xj)

is constant with respect to xk. Also it is stochastic
and as shown by Proposition 1 its variance is lower
bounded by the estimator with Ef as the baseline.
Therefore, there is scope to further reduce the variance
of this estimator, and the approach we follow is to
consider additional control variates. We refer to these
control variates as double since they act on top of the
main RLOO baseline. We construct these new control
variates along two directions:

(a) We want to add a di↵erent type of control variate
that depends on xk which may have a complemen-
tary e↵ect to the main RLOO baseline.

(b) Since the main baseline 1
K�1

P
j 6=k f(xj) is

stochastic and thus has variance, we can try to
reduce the variance by adding a separate control
variate for each stochastic random term f(xj).

In the remaining of Section 3 we simplify notation by
using s(x) := r⌘ log q⌘(x) to denote the score func-
tion. To accomplish both (a) and (b) simultaneously
we start with the unbiased estimator

1

K

KX

k=1

[f(xk) + ↵b(xk)] s(xk)�↵Eq⌘(x)[b(x)s(x)], (5)

where we introduced a control variate b(xk), that de-
pends on the current sample xk and has analytic global
correction Eq⌘(x)[b(x)s(x)]. Then, to create a double
control variate estimator we treat f(x) + ↵b(x) as the
“new e↵ective objective function” and apply the leave-
one-out procedure to it. This leads to the following



Double Control Variates for Gradient Estimation in Discrete Latent Variable Models

unbiased estimator

1

K

KX

k=1

2

4f(xk)+↵b(xk)�
1

K�1
X

j 6=k

(f(xj)+↵b(xj))

3

5s(xk)

� ↵Eq⌘(x)[b(x)s(x)]. (6)

The scalar ↵ is a regression coe�cient that can be fur-
ther optimized to reduce the variance; see Section 3.3.
In the above estimator we have highlighted with blue
the first appearance b(xk), that can be thought of as a
baseline paired with the value f(xk), and with red the
second appearances b(xj) paired with the remaining
values f(xj) of the main RLOO baseline. Intuitively,
b(xk) can be considered as targeting to reduce the vari-
ance of f(xk) and b(xj) the variance of f(xj).

In Sections 3.1 and 3.2 we describe two ways to spec-
ify b(x). For training latent variable models, such as
VAEs, the second one will be the most practical since
it adds no extra cost. The first method helps to intro-
duce the idea and it is based on a mean field argument.

3.1 Mean Field Approach

The optimal choice of b(x) is to become an exact sur-
rogate of f(x).3 This motivates to construct b(x) by
applying some tractable approximation to f(x). While
any surrogate of f(x) with a tractable global correc-
tion could work, next we focus on the case when f(x)
is di↵erentiable w.r.t. the input x. Specifically, we
assume the target function f is implemented as dif-
ferentiable function of real-valued inputs, but is re-
stricted on a discrete subset of its domain. Then,
we construct b(x) from a first order Taylor approx-
imation around the mean µ = Eq⌘(x)[x], so that
f(x) ⇡ f(µ) + rf(µ)>(x � µ) = b(x). Furthermore,
observe that any constant term in b(x) can be ignored
because it cancels out in (6). Thus, the constant f(µ)
in the Taylor approximation can be dropped, yielding
the double control variate

b(x) = rf(µ)>(x� µ). (7)

By substituting this in (6) we obtain the estimator

1

K

KX

k=1


f(xk) + ↵rf(µ)>(xk � µ)

� 1

K�1
X

j 6=k

�
f(xj) + ↵rf(µ)>(xj � µ)

��
s(xk)

� ↵Eq⌘(x)[s(x)(x� µ)>]rf(µ), (8)

where Eq⌘(x)[s(x)(x�µ)>] will typically be analytically
tractable. For instance, for binary latent variables x 2

3
In the estimator (6) this leads to zero variance when

↵ = �1.

{0, 1}d and a factorised Bernoulli distribution

q⌘(x) =
dY

i=1

µxi
i (1� µi)

1�xi , µi = �(⌘i), (9)

Eq⌘(x)[s(x)(x�µ)>] = diag(µ � (1�µ)) and the global
correction term simplifies to �↵µ � (1 � µ) � rf(µ),
where � denotes element-wise vector product.

3.2 An Estimator without Extra Gradient

Evaluations

The estimator in Eq. (8) requires a backpropaga-
tion operation to compute the gradient rf(µ), which
adds extra computational cost compared to standard
RLOO. Next, we wish to develop an alternative es-
timator that avoids this extra cost for certain prob-
lems. For many applications, such as VAEs, the func-
tion f(x) depends on model parameters ✓ (typically
di↵erent than ⌘) that we update at each optimization
iteration by computing the gradients {r✓f(xj)}Kj=1.
Then, from the same backpropagation operations it is
easy to also return the gradients with respect to the
latent vectors, i.e. to compute {rxjf(xj)}Kj=1. To
simplify notation we will write rf(x) := rxf(x). We
would like to utilize these latter gradients to define the
double control variate b(x).

Starting from (7) we first want to modify b(xk) by re-
placing rf(µ) with some new gradient computed from
{rf(xj)}Kj=1. We cannot use the full average because

this will lead to ( 1
K

PK
j=1rf(xj))>(xk�µ) which has

an intractable global correction due to the intractable
term Eq⌘(xk)[rf(xk)>(xk�µ)r⌘ log q⌘(xk)]. However,
we can use the leave-one-out gradient, i.e. by leaving
out rf(xk), which gives

bk(x1:K) =

0

@ 1

K � 1

X

j 6=k

rf(xj)

1

A
>

(xk � µ), (10)

where we used the index k in bk to emphasize that
this now becomes a sample-specific control variate that
varies with sample index; see Section 2.1. This has
a tractable correction term Eq⌘(xk)[bk(x1:K)s(xk)] and
also satisfies Eq⌘(xk)[bk(x1:K ] = 0. Having specified
the double control variate we express the unbiased es-
timator as stated below.

Proposition 3 For bk(x1:K) from (10) we obtain the

following unbiased gradient estimator

1

K

KX

k=1


f(xk)+↵bk(x1:K)� 1

K�1
X

j 6=k

(f(xj)+↵bj(x1:K))

�

⇥s(xk)�↵Eq⌘(x)[s(x)(x�µ)
>]

 
1

K

KX

k=1

rf(xk)

!
. (11)
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Algorithm 1 Optimization with double control vari-
ate gradients

input: loss f✓(x), distribution q⌘(x).
Initialise ✓, ⌘, ↵ = 0.
for t = 1, 2, 3, . . . , do

1: Draw K samples x1:K , xk ⇠ q⌘(x).
2: Compute µ = Eq⌘(x)[x].
3: [f(xk),r✓f(xk),rxkf(xk)]Kk=1  grad(f✓, q⌘, x1:k).
4: Compute double control variates bk(x1:K) from

Eq. (10).
5: Compute double control variates gradient g(⌘;↵)

from Eq. (11).
6: Adapt ⌘: ⌘  ⌘ � ⇢t ⇥ g(⌘;↵).

7: Adapt ✓: ✓  ✓ � ⇢̂t ⇥ 1
K

PK
k=1r✓f✓(xk).

8: Adapt regression scalar ↵ by applying a gradient
step to minimize ||g(⌘;↵)||2.

end for

The proof of unbiasedness is given in the Appendix.
Notably, the above estimator follows the general struc-
ture from Eq. (4) for a certain choice of the sample-
specific control variate.

3.3 Further Details and Algorithmic

Summary

To apply the estimator in (11) we need to specify
the regression coe�cient ↵ by minimizing the vari-
ance. If g(⌘;↵) denotes the stochastic gradient and
ḡ = E[g(⌘;↵)] the exact gradient where the latter does
not depend on ↵, the total variance is Tr[E(g(⌘;↵) �
ḡ)(g(⌘;↵) � ḡ)>] = E[||g(⌘;↵)||2] + const. Thus, in
practice at each optimization iteration we can perform
a gradient step towards minimizing the empirical vari-
ance ||g(⌘;↵)||2. There also exists an analytic formula
(but requiring intractable expectations) for the opti-
mal value of ↵ that can inspire di↵erent types of learn-
ing rules; see Appendix for further details. The whole
algorithm that also deals with a non-stationary f✓(x),
i.e., that includes ✓ updates at each iteration, is out-
lined in Algorithm 1. For the special case where K = 2
the estimator (11) simplifies as

�(x1, x2,↵)
r⌘ log q⌘(x1)�r⌘ log q⌘(x2)

2

� ↵Eq⌘(x)[s(x)(x� µ)>]
rf(x1) +rf(x2)

2
, (12)

where �(x1, x2,↵) = f(x1)� f(x2)+↵[rf(x2)>(x1�
µ)�rf(x1)>(x2�µ)]. In the experiments we compare
this estimator with the DisARM method (Dong et al.,
2020; Yin et al., 2020) that uses K = 2 antithetic
samples, and also with RLOO with K = 2 samples.

4 RELATED WORK

Our proposed gradient estimators follow the general
form of unbiased REINFORCE estimators (Williams,
1992; Glynn, 1990; Carbonetto et al., 2009; Paisley
et al., 2012; Ranganath et al., 2014; Mnih and Gre-
gor, 2014), which unlike reparametrization or pathwise
gradients (Kingma and Welling, 2014; Rezende et al.,
2014; Titsias and Lázaro-Gredilla, 2014), are applica-
ble also to discrete latent variables. The double control
variates we develop build on top of the RLOO estima-
tor (Kool et al., 2019; Salimans and Knowles, 2014;
Richter et al., 2020); see also the VIMCO method of
Mnih and Rezende (2016) who also used a leave-one-
out procedure. RLOO was shown to be a competi-
tive estimator for challenging problems such as train-
ing VAEs with binary or categorical latent variables
(Dong et al., 2020; Richter et al., 2020; Dong et al.,
2021). As shown by our experiments, our enhance-
ment of RLOO with double control variates leads to
further variance reduction, and without increasing the
computational cost when training VAEs.

In our current framework, the double control vari-
ates are constructed by using the gradients of the
objective function f✓(x). These gradients are also
used by other unbiased gradient techniques based on
control variates, such as the MuProp estimator (Gu
et al., 2016), the concrete relaxation methods RE-
BAR (Tucker et al., 2017) and RELAX (Grathwohl
et al., 2018). Our method di↵ers significantly since
our control variates act on top of the sample-specific
RLOO baseline 1

K�1

P
j 6=k f✓(xj), i.e., they try to

have complementary e↵ect to this existing control vari-
ate. This means that our estimators preserve RLOO’s
property of capturing the non-stationarity of f✓(x),
since the leave-one-out baseline always tracks the ex-
pected value E[f✓(x)] as ✓ evolves. In contrast, previ-
ous gradient-based estimators use stand-alone global
control variates. For instance, the baseline in MuProp
(Gu et al., 2016) is constructed using only f✓(µ) and
xk, which can be a poor tracker of the expected value
E[f✓(x)]. Unlike MuProp, REBAR (Tucker et al.,
2017) and RELAX (Grathwohl et al., 2018) are much
more e↵ective, however they are more expensive than
our method — they require di↵erentiating f✓ three
times, while our method can work with just two, and
they are less generally applicable since they assume a
continuous relaxation for x.

Other recent REINFORCE type of estimators for dis-
crete latent variables are based on coupled sampling
(Owen, 2013), such as antithetic sampling (Yin and
Zhou, 2019; Dong et al., 2020; Yin et al., 2020; Dim-
itriev and Zhou, 2021). For instance, the recent Dis-
ARM estimator independently proposed by Dong et al.
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Table 1: Training nonlinear binary latent VAEs with K = 2 (except RELAX which needs 3 evaluations of f) on
MNIST, Fashion-MNIST, and Omniglot. We report the average training ELBO over 5 independent runs.

Bernoulli Likelihoods Gaussian Likelihoods

MNIST Fashion-MNIST Omniglot MNIST Fashion-MNIST Omniglot

RLOO �103.11± 0.16 �241.53± 0.24 �116.83± 0.05 668.07± 0.40 179.52± 0.23 443.51± 0.93
Double CV �102.45± 0.13 �240.96± 0.17 �116.22± 0.08 676.87± 1.18 186.35± 0.64 446.95± 0.63
DisARM �102.56± 0.09 �241.02± 0.20 �116.36± 0.05 668.03± 0.61 182.65± 0.47 446.22± 1.38

RELAX (3 evals) �101.86± 0.11 �240.63± 0.16 �115.79± 0.06 688.58± 0.52 196.38± 0.66 462.30± 0.91

Figure 2: Training nonlinear binary latent VAEs with Bernoulli likelihoods with K = 2 (except RELAX which
needs 3 evaluations of f) on dynamically binarized MNIST, Fashion-MNIST, and Omniglot. Top: Variance of
gradient estimates. Bottom: Average ELBO on training examples.

(2020) and Yin et al. (2020) was shown to give state-of-
the-art results for binary latent-variable models with
K = 2 antithetic samples.

5 EXPERIMENTS

Code for reproducing all experiments is available at
https://github.com/thjashin/double-cv.

5.1 Toy Learning Problem

We consider a generalization of the artificial problem
considered by Tucker et al. (2017). The goal is to

maximize E(⌘) = Eq⌘(x)[D
�1
PD

i=1(xi � p0)2], where

q⌘(x) =
QD

i=1 �(⌘i)
xi(1 � �(⌘i))1�xi , p0 = 0.499 and

the optimal solution is �(⌘i) = 1 for all i = 1, . . . , D.
While Tucker et al. (2017) considered D = 1, here we
additionally consider a more di�cult high-dimensional
case with D = 200. We compare five methods: RLOO,
DisARM, MuProp, Reinforce (with no baselines) and

our proposed double control variates estimator (Dou-
ble CV) from Eq. (11). We use K = 2 samples for
all methods (note that Double CV in this case simpli-
fies as in (12)). Also we include in the comparison R⇤

which is tractable in this toy example. Fig. 1 compares
the methods in terms of variance, the objective func-
tion and the average value of the D probabilities �(⌘i).
Fig. 6 in the Appendix shows further comparison for
the D = 1 case, as in Tucker et al. (2017). We observe
that Double CV gradients have smaller variance which
results in much faster optimization convergence.

5.2 Variational Autoencoders with Binary

Latent Variables

Experimental setup We consider training vari-
ational autoencoders (Kingma and Welling, 2014;
Rezende et al., 2014) with binary latent variables. We
conduct separate experiments for binary output data
y 2 {0, 1}d and continuous data y 2 Rd. For binary
data we use the standard Bernoulli likelihood. For
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Figure 3: Training nonlinear binary latent VAEs with Gaussian likelihoods with K = 2 (except RELAX which
needs 3 evaluations of f) on non-binarized MNIST, Fashion-MNIST, and Omniglot. Top: Variance of gradient
estimates. Bottom: Average ELBO on training examples.

continuous data we centered data between [�1, 1] and
consider a Gaussian likelihood of the form p✓(y|x) =
N (y|m✓(x),⌃), where m✓(x) is a decoder mean func-
tion that depends on the latent variable x and ⌃ is a
learnable diagonal covariance matrix. We consider the
datasets MNIST, Fashion-MNIST and Omniglot. For
all three datasets we use both the dynamically bina-
rized versions and their original continuous versions.

We consider the nonlinear VAE models used in Yin
and Zhou (2019); Dong et al. (2020); results for lin-
ear VAEs are included in the Appendix. The VAE
model uses fully connected neural networks with two
hidden layers of 200 LeakyReLU activation units with
the coe�cient 0.3. All models are trained using Adam
(Kingma and Ba, 2014) with learning rate 10�3 for
the binarized data, while for the continuous data we
used smaller learning rate 10�4. In all experiments
the regression coe�cient ↵ of the double control vari-
ates was also trained (see Section 3.3) with Adam and
with learning rate 10�3. For all experiments we use a
uniform factorized Bernoulli prior over theD = 200 di-
mensional latent variable x. The model was trained by
maximizing the ELBO using an amortised factorised
variational Bernoulli distribution.

We compared the following estimators: RLOO, Dis-
ARM and the proposed Double CV method where all
three estimators use K samples. We experimented
with K = 2 and K = 4. For K = 4 we also com-
pare to the state-of-the-art ARMS estimator recently
proposed by Dimitriev and Zhou (2021). Besides,

we include in the comparison the RELAX estimator
that combines concrete relaxation (Tucker et al., 2017)
with a learned control variate (Grathwohl et al., 2018).
We point out that RLOO, DisARM, Double CV, and
ARMS (when K = 4) have roughly the same running
time on a P100 GPU while RELAX is computationally
more expensive and is roughly twice slower than the
other four estimators with K = 4 (see Table 3 in the
Appendix). Also note that RELAX is less generally
applicable since it assumes the existence of a continu-
ous relaxation for x.

Results Table 1 shows the training ELBO for bina-
rized and continuous datasets when training the VAE
by di↵erent estimators with K = 2. We can observe
that Double CV consistently outperforms RLOO in
all experiments, while having approximately the same
running time. Double CV also outperforms DisARM
in all cases for both Bernoulli and Gaussian likeli-
hoods. Furthermore, Fig. 2 plots the gradient variance
and the training ELBO for the binarized datasets as a
function of the training steps. Similarly, Fig. 3 shows
the corresponding results for the non-binarized (con-
tinuous) datasets where a Gaussian likelihood is used.
We observe that the Double CV estimator can have
lower variance than RLOO and DisARM. Also, while
RELAX performs better than the other methods it is
less generally applicable and more expensive.

For K = 4, the final training ELBO values are re-
ported in Table 2 and the variances of the di↵erent
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Table 2: Training a nonlinear binary latent VAE with K = 4 (except RELAX which needs 3 evaluations of f)
on MNIST, Fashion-MNIST, and Omniglot. We report the average training ELBO over 5 independent runs.

Bernoulli Likelihoods Gaussian Likelihoods

MNIST Fashion-MNIST Omniglot MNIST Fashion-MNIST Omniglot

RLOO �100.50± 0.22 �239.03± 0.15 �114.75± 0.07 687.83± 0.50 195.27± 0.24 460.23± 1.42
Double CV �99.89± 0.12 �238.98± 0.18 �114.56± 0.06 691.51± 0.75 199.01± 0.60 463.03± 0.94
DisARM �100.67± 0.07 �239.20± 0.15 �115.05± 0.07 683.28± 0.89 192.96± 0.29 458.38± 0.88
ARMS �100.07± 0.08 �238.50± 0.13 �114.57± 0.06 687.26± 1.21 197.25± 0.48 463.30± 0.86

RELAX (3 evals) �101.86± 0.11 �240.63± 0.16 �115.79± 0.06 688.58± 0.52 196.38± 0.66 462.30± 0.91

Figure 4: Variance of gradient estimates in training nonlinear binary latent variational autoencoders with
K = 4 (except RELAX which needs 3 evaluations of f) on MNIST, Fashion-MNIST, and Omniglot. Top: Using
Bernoulli likelihoods and dynamically binarized datasets. Bottom: Using Gaussian likelihoods and non-binarized
datasets.

estimators are plotted in Fig. 4. We can observe that
Double CV consistently has lower variance than other
estimators and it outperforms ARMS in terms of train-
ing ELBO in most cases. It also significantly outper-
forms RELAX. Note that, even with K = 4, Double
CV is still nearly twice faster than RELAX.

6 CONCLUSION

We presented a new variance reduction technique
called double control variates for gradient estimation
of discrete latent variable models. We achieved sub-
stantial variance reduction by constructing control
variates on top of existing leave-one-out baselines in
REINFORCE estimators. The proposed estimator is
unbiased and adds no extra computational cost to the
standard backpropagation cost needed for obtaining
gradients over model parameters.

Finally, the use of double control variates can be or-
thogonal to other techniques for variance reduction
such as coupled sampling (Yin and Zhou, 2019; Dong
et al., 2020, 2021; Dimitriev and Zhou, 2021) and con-
crete relaxations (Tucker et al., 2017; Grathwohl et al.,
2018). This could lead to various combinations of our
approach with these techniques. For instance, if we
start from our initial estimator in (5) where we sim-
ply replace the initial objective function f(x) with the
new e↵ective objective f(x) + ↵b(x), a combination
with coupled sampling is possible, e.g. certainly this
holds for the mean field choice b(x) = rf(µ)>(x�µ).
Also if we relax the restriction of the global correction
Eq⌘(x)[b(x)r⌘ log q⌘(x)] to be analytic but instead al-
low to be reparametrizable, then our method could
be combined with the concrete relaxation methods.
The investigation of such combinations is an interest-
ing topic for future research.
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A Proofs

A.1 Proof of Proposition 1

The RLOO estimator can be written as

1

K

KX

k=1

(f(xk)� Ef)r⌘ log q⌘(xk)

| {z }
R⇤

+
1

K

KX

k=1

0

@Ef � 1

K � 1

X

j 6=k

f(xj)

1

Ar⌘ log q⌘(xk)

| {z }
E

(13)

where R⇤ is the REINFORCE estimator with baseline Ef and E is a residual term of zero mean. To prove the
Proposition we will use V ar(RLOO) = V ar(R⇤ + E) = V ar(R⇤) + V ar(E) + 2Cov(R⇤, E). Then, it su�ces to
show that Cov(R⇤, E) = 0. We have

Cov(R⇤, E) =
1

K2

KX

k=1

KX

k0=1

E
⇥
(f(xk)� Ef)(Ef � f�k0)r⌘ log q⌘(xk)r⌘ log q⌘(xk0)>

⇤

where we used f�k0 = 1
K�1

P
j 6=k0 f(xj) for short. For all terms in the double sum such that k = k0 the

expectation
E
⇥
(f(xk)� Ef)(Ef � f�k)r⌘ log q⌘(xk)r⌘ log q⌘(xk)

>⇤ = 0

because the zero-mean random variable Ef � f�k is independent from the remaining product (since it does not
contain the sample xk). For all cross terms k 6= k0 the whole product (f(xk)�Ef)(Ef � f�k0)r⌘ log q⌘(xk) does
not contain the sample xk0 . Therefore this product is independent from r⌘ log q⌘(xk0) and thus each cross term
is zero because of the score function property E[r⌘ log q⌘(xk0)] = 0. This shows that Cov(R⇤, E) = 0 which
completes the proof.

A.2 Proof of Proposition 2

It holds

Eq⌘(x1:K)[�k(x1:K)r⌘ log q⌘(xk)]

= Eq⌘(xk)


Eq⌘(x1:k�1,xk+1:K)[�k(x1:K)]r⌘ log q⌘(xk)

�

= Eq⌘(xk)


constr⌘ log q⌘(xk)

�
= 0. (14)

where the last line is just a consequence of the score function property since const does not depend on xk.

A.3 Proof of Proposition 3

The estimator can be written as

1

K

KX

k=1

2

4f(xk)�
1

K � 1

X

j 6=k

f(xj)

3

5r⌘ log q⌘(xk)

+ ↵
1

K

KX
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� ↵Eq(x)[r⌘ log q⌘(x)⇥ (x� µ)>]

 
1

K

KX

k=1

rf(xk)

!
, (15)

where bk(x1:K) =
⇣

1
K�1

P
j 6=krf(xj)

⌘>
(xk � µ) and bj(x1:K) =

⇣
1

K�1

P
m 6=j rf(xm)

⌘>
(xj � µ). It su�ces

to show that the expectation of the second line is minus the correction term at the third line. The expectation
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of each term bj(x1:K)r⌘ log q⌘(xk) for j 6= k is zero because the zero-mean term xj � µ is always independent
from the rest of the terms in the product. Then, we need to examine only the expectation of

1

K

KX

k=1

bk(x1:K)r⌘ log q⌘(xk) =
1

K(K � 1)

KX

k=1

r⌘ log q⌘(xk)(xk � µ)>
X

j 6=k

rf(xj).

Then observe that the expectation of r⌘ log q⌘(xk) ⇥ (xk � µ)> is the same for every sample xk, so the above
reduces to

Eq⌘(x)[r⌘ log q⌘(x)⇥ (x� µ)>]
1

K(K � 1)

KX

k=1

X

j 6=k

rf(xj)

from which the result follows since
PK

k=1

P
j 6=krf(xj) = (K � 1)

PK
k=1rf(xk).

A.4 The Optimal Value of ↵ for K = 2

The gradient for K = 2 can be written as

1

2
[f(x1)� f(x2)](r⌘ log q⌘(x1)�r⌘ log q⌘(x2))

� 1

2
↵
⇣
M(rf(x1) +rf(x2))� [rf(x2)

>
(x1 � µ)�rf(x1)

>
(x2 � µ)](r⌘ log q⌘(x1)�r⌘ log q⌘(x2))

⌘
(16)

where M = Eq⌘(x)[r⌘ log q⌘(x)⇥ (x� µ)>]. If we denote

g(x1, x2) = [f(x1)� f(x2)](r⌘ log q⌘(x1)�r⌘ log q⌘(x2))

and

h(x1, x2) = M(rf(x1) +rf(x2))� [rf(x2)
>
(x1 � µ)�rf(x1)

>
(x2 � µ)](r⌘ log q⌘(x1)�r⌘ log q⌘(x2))

the gradient can be written as
1

2
(g(x1, x2)� ↵h(x1, x2)) .

Then the optimal ↵ that minimizes the variance is given by

↵ =
E[g(x1, x2)>h(x1, x2)]

E[h(x1, x2)>h(x1, x2)]

Similarly we can construct the optimal value of ↵ for any K > 2.

A.5 The “half” Double Control Variate Estimators

One question is whether we need both b(xk) and b(xj) or we could keep one of them, i.e. to use an “b(xk) only” or
“b(xj) only” estimator. It is straightforward to express these latter unbiased estimators, as follows. The “b(xk)
only” estimator is given by

1

K

KX

k=1

2

4f(xk) + ↵b(xk)�
1

K�1
X

j 6=k

f(xj)

3

5r⌘ log q⌘(xk)� ↵Eq⌘(x)[b(x)r⌘log q⌘(x)]. (17)

and the “b(xj) only” by

1
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KX

k=1

2

4f(xk)�
1

K�1
X

j 6=k

(f(xj) + ↵b(xj))

3

5r⌘ log q⌘(xk). (18)

It is easy to show that both estimators are unbiased. However, in practice these estimators can be much less
e↵ective in terms of variance reduction than their Double CV combination. In Fig. 5 we apply these two
estimators to the toy learning problem with D = 10. Both estimators are significantly outperformed by the full
Double CV estimator. Notably, the “b(xk) only” estimator could outperform R⇤ since it uses a baseline that
depends on the current sample xk, while “b(xj) only” reduces the variance of the RLOO control variate but
remains bounded by R⇤.
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Figure 5: Left: Variance of the “only b(xk)” estimator where only the half part of the double control variate
is used. Right: The corresponding plot for the “only b(xj)” estimator where the other half part of the double
control variate is used. The full double control variate estimator (Double CV), RLOO, DisARM and R⇤ are
included for comparison. The experiment corresponds to the toy problem with D = 10 and b(x) was chosen
according to Eq. (10), i.e. the full Double CV estimator is from (11).

B Additional Results

B.1 Toy Experiment with D = 1

For completeness, we include the results of a simpler version of the toy experiment described in Section 5.1,
where we set D = 1. This is the setting used in several previous works (Tucker et al., 2017; Grathwohl et al.,
2018; Yin and Zhou, 2019; Dong et al., 2020). The variances of the gradient estimators and the training curves
of �(⌘) are plotted in Fig. 6. Fig. 7 shows the evolution of the estimated regression coe�cient ↵.

Figure 6: Left: Variance of the gradient estimators for the toy problem with D = 1. Right: The estimated value
�(⌘) across iterations (optimal value is 1).

B.2 Training Binary Latent VAEs

B.2.1 Time comparison

In Fig. 3 we report the per-step running time of RLOO, Double CV, DisARM, ARMS estimators when K = 4
and compare to RELAX. RELAX is almost twice slower.

RLOO Double CV DisARM ARMS RELAX

Time (sec/step) 0.0035 0.0036 0.0031 0.0037 0.0080

Table 3: Time per step when training a Bernoulli VAE with K = 4 (except RELAX which needs 3 evaluations
of f) on dynamically binarized Fashion-MNIST.



Double Control Variates for Gradient Estimation in Discrete Latent Variable Models

D = 1 D = 10 D = 200

Figure 7: The evolution of the estimated regression coe�cient ↵ during optimization for the toy learning
problem.

RLOO Double CV DisARM RELAX (3 evals)

MNIST :

Linear �113.06± 0.05 �112.82± 0.07 �112.72± 0.07 �112.18± 0.07
Nonlinear �103.11± 0.16 �102.45± 0.13 �102.56± 0.09 �101.86± 0.11

Fashion-MNIST :

Linear �257.38± 0.17 �256.21± 0.17 �257.01± 0.06 �255.16± 0.17
Nonlinear �241.53± 0.24 �240.96± 0.17 �241.02± 0.20 �240.63± 0.16

Omniglot :

Linear �119.63± 0.05 �119.52± 0.02 �119.42± 0.03 �119.16± 0.02
Nonlinear �116.83± 0.05 �116.22± 0.08 �116.36± 0.05 �115.79± 0.06

Table 4: Training binary latent VAEs withK = 2 (except RELAX which needs 3 evaluations of f) on dynamically
binarized MNIST, Fashion-MNIST, and Omniglot. We report the average ELBO on the training set over 5
independent runs.

B.2.2 Full results of training ELBOs

Here we include the full results of final training ELBOs from the experiment in Section 5.2. Table 4 and Table 5
extend Table 1 to include the linear VAE results trained under the same setting. Table 6 and Table 7 extend
Table 2 to include the linear VAE results trained under the same setting. The linear VAE has 200 dimensional
latent variable x and use a single fully-connected layer to produce the logits (for Bernoulli likelihoods) or the
mean (for Gaussian likelihoods) of the distribution of y.

B.2.3 Additional figures for nonlinear VAEs

In Fig. 8 we plot the average training ELBOs as a function of training steps from the K = 4 experiment in
Section 5.2.

B.2.4 Additional figures for linear VAEs

We plot the gradient variance and average training ELBOs of training linear VAEs in Figures 9,10,11, and 12.
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RLOO Double CV DisARM RELAX (3 evals)

MNIST

Linear 503.01± 0.22 504.33± 0.98 504.43± 0.93 513.38± 0.52
Nonlinear 668.07± 0.40 676.87± 1.18 668.03± 0.61 688.58± 0.52

Fashion-MNIST

Linear 29.75± 0.40 31.08± 0.24 31.71± 0.20 37.54± 0.30
Nonlinear 179.52± 0.23 186.35± 0.64 182.65± 0.47 196.38± 0.66

Omniglot

Linear 245.73± 0.33 245.97± 1.02 247.70± 0.85 255.69± 0.70
Nonlinear 443.51± 0.93 446.95± 0.63 446.22± 1.38 462.30± 0.91

Table 5: Training binary latent VAEs with Gaussian likelihoods using K = 2 (except RELAX which needs 3
evaluations of f) on non-binarized MNIST, Fashion-MNIST, and Omniglot. We report the average ELBO on
the training set over 5 independent runs.

RLOO Double CV DisARM ARMS

MNIST :

Linear �111.89± 0.09 �111.79± 0.09 �112.01± 0.06 �111.87± 0.02
Nonlinear �100.50± 0.22 �99.89± 0.12 �100.67± 0.07 �100.07± 0.08

Fashion-MNIST :

Linear �254.59± 0.16 �254.52± 0.23 �255.01± 0.10 �254.67± 0.20
Nonlinear �239.03± 0.15 �238.98± 0.18 �239.20± 0.15 �238.50± 0.13

Omniglot :

Linear �118.89± 0.02 �118.95± 0.02 �118.97± 0.01 �118.87± 0.02
Nonlinear �114.75± 0.07 �114.56± 0.06 �115.05± 0.07 �114.57± 0.06

Table 6: Training binary latent VAEs with K = 4 on dynamically binarized MNIST, Fashion MNIST, and
Omniglot. We report the average ELBO on the training set over 5 independent runs.

RLOO Double CV DisARM ARMS

MNIST :

Linear 516.65± 0.54 515.79± 0.71 512.47± 0.72 514.55± 0.71
Nonlinear 687.83± 0.50 691.51± 0.75 683.28± 0.89 687.26± 1.21

Fashion-MNIST :

Linear 36.70± 0.41 36.61± 0.34 34.90± 0.52 37.56± 0.43
Nonlinear 195.27± 0.24 199.01± 0.60 192.96± 0.29 197.25± 0.48

Omniglot :

Linear 257.43± 0.16 257.88± 0.69 254.99± 0.69 258.22± 0.18
Nonlinear 460.23± 1.42 463.03± 0.94 458.38± 0.88 463.30± 0.86

Table 7: Training binary latent VAEs with Gaussian likelihoods using K = 4 on non-binarized MNIST, Fashion-
MNIST, and Omniglot. We report the average ELBO on the training set over 5 independent runs.
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Figure 8: Average training ELBOs for nonlinear binary latent VAEs trained by di↵erent estimators with
K = 4 (except RELAX which needs 3 evaluations of f) on MNIST, Fashion-MNIST, and Omniglot. Top: Using
Bernoulli likelihoods and dynamically binarized datasets. Bottom: Using Gaussian likelihoods and non-binarized
datasets.

Figure 9: Training linear binary latent VAEs with Bernoulli likelihoods with K = 2 (except RELAX which
needs 3 evaluations of f) on dynamically binarized MNIST, Fashion-MNIST, and Omniglot. Top: Variance of
gradient estimates. Bottom: Average ELBO on training examples.
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Figure 10: Training linear binary latent VAEs with Gaussian likelihoods with K = 2 (except RELAX which
needs 3 evaluations of f) on non-binarized MNIST, Fashion-MNIST, and Omniglot. Top: Variance of gradient
estimates. Bottom: Average ELBO on training examples.

Figure 11: Training linear binary latent VAEs with Bernoulli likelihoods with K = 4 (except RELAX which
needs 3 evaluations of f) on dynamically binarized MNIST, Fashion-MNIST, and Omniglot. Top: Variance of
gradient estimates. Bottom: Average ELBO on training examples.
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Figure 12: Training linear binary latent VAEs with Gaussian likelihoods with K = 4 (except RELAX which
needs 3 evaluations of f) on non-binarized MNIST, Fashion-MNIST, and Omniglot. Top: Variance of gradient
estimates. Bottom: Average ELBO on training examples.


