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Abstract

One of the relevant aspects of Artificial Gen-
eral Intelligence is the ability of machines
to demonstrate abstract reasoning skills, for
instance, through solving (human) IQ tests.
This work presents a new approach to ma-
chine IQ tests solving formulated as Raven’s
Progressive Matrices (RPMs), called Duel-
IQ. The proposed solution incorporates the
concept of a tournament in which the best an-
swer is chosen based on a set of duels between
candidate RPM answers. The three relevant
aspects are: (1) low computational and design
complexity, (2) proposition of two schemes of
pairing up candidate answers for the duels
and (3) evaluation of the system on a dataset
of shapes other than those used for training.
Depending on a particular variant, the sys-
tem reaches up to 82.8% accuracy on average
in RPM tasks with 5 candidate answers and
is on par with human performance and supe-
rior to other literature approaches of compa-
rable complexity when training and test sets
are from the same distribution.

1 INTRODUCTION

The motivation behind the launch of Artificial Intel-
ligence (AI) was the ability to transfer human intel-
lectual capabilities to machines, thus accomplishing
the Artificial General Intelligence (AGI) level. While
this goal is still ahead of us (nowadays we experience
Narrow AI) [Adams et al., 2012], some steps on this
path have already been made. The well-known Tur-
ing test [Turing, 1950] serves for verification whether
it is possible to differentiate between a human being
and an AI system based on a conversation.
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More than half of a century later, the so-called vi-
sual Turing test was introduced [Geman et al., 2015].
The term refers to Visual Question Answering (VQA)
tasks [Antol et al., 2015] where the system is given
a question and an image that it should base its an-
swer on. Another approach to testing the intelligence
of AI systems is to use the same method as is applied
to people, i.e. the IQ tests, which verify the ability of
abstract visual reasoning.

1.1 Contribution

In this work, we propose a novel approach to solving
visual IQ tests based on Raven’s Progressive Matrices
(RPMs), called Duel-IQ. The solution is inspired by a
round-robin tournament where one candidate answer’s
fitness is assessed in comparison to another candidate
answer.

The motivation behind the idea of a tournament is
the relativism of candidate-answer fitness in IQ tests
[Raven and Court, 1998]. To clarify this further, let
us provide an intuitive example. It may happen that
the two candidate answers fit the relations within
the RPMs. However, the correct answer is considered
the one with a simpler explanation.

For this reason, using a binary model that given a can-
didate answer is asked to decide whether or not it is
correct, may not be an optimal setting. Another possi-
bility would be a classification approach with as many
inputs as the number of candidate answers (K ) where
the model is supposed to point the correct one.

Following our intuition that it could be easier for
the model to choose a correct answer out of two choices
instead of K possibilities, we propose an approach
located between the two above-mentioned extremes,
namely with two inputs (candidate answers) compared
directly in a duel. A series of such duels within a round-
robin tournament may, what we believe and verify in
the paper, lead to finding the proper answer.

Furthermore, in a tournament scenario, the risk of an
incorrect system decision is alleviated within the scor-
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ing module. Similarly to ensembles [Dietterich, 2000],
some predictions can be wrong, but as the final de-
cision is a result of the aggregation of many predic-
tions (averaging or max voting), it is often closer to
the correct one. This feature offers another advantage
over using just one model with the number of inputs
(filled-in RPMs) equal to the number of candidate an-
swers. An additional asset of the proposed system is
its relatively low complexity.

The focus of the paper is on the input design
and on the postprocessing of the network output (scor-
ing module). Regarding the latter, we propose two
schemes of pairing up candidate answers for the duels,
which is also reflected in the number of classifier out-
puts. Moreover, we evaluate the system performance
in the out-of-distribution scenario with a different set
of objects (panels) in the training and testing sets, re-
spectively. Further analysis refers to the effects of using
auxiliary training.

A performance comparison of the proposed system
with three other methods of similar complexity (num-
ber of trainable parameters) from the literature is con-
ducted. The results indicate that using a duel-based
approach is a meaningful idea that leads to superior
accuracy.

The code of the proposed solution and the code
for dataset generation are released at
https://github.com/ptomaszewska/Duel-IQ.

2 PROBLEM DESCRIPTION

The most popular visual IQ tests are based
on Raven’s Progressive Matrices (RPMs)
[Raven and Court, 1998], initially introduced in
[Raven, 1936]. Typically, an RPM consists of 9
panels arranged as a 3x3 matrix. The bottom right
panel is empty. The test-taker is supposed to choose
the correct answer from the set of candidate answers
(please refer to Figure 1 for an example) to fill in
the empty panel. The correct answer is the one
that fits the relations underlying the RPM’s design.
The relations can occur row-wise, column-wise or/and
diagonally.

Figure 1: Example of an RPM task (left) with the set
of candidate answers (right). The correct answer is
the second from the left.

Visual IQ tests are widely used as their results can
be compared worldwide. They are independent of lan-
guage or culture, and require little prior knowledge
[Raven, 2000].

3 RELATED WORK

The idea of solving intelligent tasks (i.e. tasks whose
solving requires intelligence) by machines is quite old.
Examples of such tasks include: detection of the reg-
ularities in figures in the geometric-analogy prob-
lems [Evans, 1964] (which was the first notable at-
tempt), Bennett’s Mechanical Comprehension Tests
[Klenk et al., 2011], completion of sequences of num-
bers [Stranneg̊ard et al., 2013] or words-related tests
[Ohlsson et al., 2013].

In recent years various Machine Learning (ML) ap-
proaches, specifically Deep Learning (DL) methods
were proposed to solve RPMs and the related tasks
- see [Małkiński and Mańdziuk, 2022a] for a compre-
hensive overview of this area.

For example, [Hoshen and Werman, 2017] employs
convolutional neural networks to recognize the rela-
tion between two images and apply this rule to the
next image (in one variant by choosing it from a given
set of candidates, in another one by generating an an-
swer from a scratch). For the sake of brevity, we will
refer to the first variant as “IQ of NN”.

DeepIQ [Mańdziuk and Żychowski, 2019] introduces
a system with 3 components: a deep autoencoder
which is trained to learn a feature-based representation
of various figure images, an ensemble of shallow mul-
tilayer perceptrons applied to the detection of feature
differences, and a scoring module inspired by the hu-
man approach used for the final assessment of candi-
date answers.

The most common approach to solving an RPM
relies on identification of the relationships among
objects (panels) and using them to identify the
correct answer. This idea can be realized by
various DL techniques, e.g. Relation Network
[Barrett et al., 2018, Zheng et al., 2019], Multiplex
Graph Networks [Wang et al., 2020], Scattering
Compositional Learner (compositions of a sequence
of neural modules) [Wu et al., 2020], or Hierarchical
Rule Induction Network [Hu et al., 2021] imitating
human induction strategies.

The Wild Relation Network (WReN) introduced in
[Barrett et al., 2018], solves an RPM in a few steps.
First, 8 RPM panels are concatenated depthwise with
all candidate answers (one at a time), resulting in K
input packages (K is the number of candidate answer
panels). In each package, the panels are embedded us-
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ing a convolutional neural network. Then, pairs of such
embeddings are input to the relation network whose
scores are later aggregated to yield the final output.
The above WReN training is extended with an aux-
iliary training where the network learns to explicitly
point the relations, objects and their attributes pro-
vided in the input.

Yet another approach [Małkiński and Mańdziuk, 2020]
casts the problem of solving RPMs into a multi-label
classification framework with labels determined by
the set of abstract rules underlying the RPM.

There is no publicly available dataset with the real IQ
test questions as they are strictly confidential. Con-
sequently, the authors of the above-mentioned works
used artificially generated datasets which vary in com-
plexity, e.g. the number of candidate answers or the
selection of geometric transformations applied to the
RPM panels. This makes the performance compari-
son of the solutions proposed in the literature not
a straightforward task. In [Chollet, 2019], the bench-
mark dataset for the assessment of abstract reason-
ing skills is proposed which, however, does not reflect
the structure of IQ tests taken by humans.

A broader look at the field of Abstract Visual Reason-
ing (of which RPMs are part) is presented in the recent
survey paper [Małkiński and Mańdziuk, 2022b].

4 PROPOSED SOLUTION

We propose a duel-based system (see Figure 2) for solv-
ing visual IQ tests involving RPMs, called Duel-IQ.
The system does not require any expert knowledge and
its operation is divided into four steps: preprocessing,
feature extraction, classification and scoring.

Figure 2: Proposed duel-based system (winner in vari-
ant) in which the results of duels are aggregated in
the scoring module. FE stands for feature extractor
(encoder part of autoencoder), whereas FC for fully
connected layers.

During the preprocessing step, RPMs are filled with
candidate answers. Therefore, one IQ test task is af-
terwards represented by as many filled-in RPMs as
the number of candidate answers. These RPMs are in-
puts to subsequent modules. First, the convolutional
autoencoder is used for feature extraction (see Fig-
ure 2). Then, in the classification network, there are
fully connected layers on top of the encoder to judge
the winner of the duels (in some scenarios a draw is
also possible). The process of pairing up the RPMs
filled in with candidate answers and the classifier net-
work are described in more detail in Section 4.2. Pre-
dictions of the classifier are later aggregated in the
scoring module in order to generate the final decision
which of the candidate answers best fits a given RPM
(see Section 4.3).

4.1 Autoencoder

The filled-in RPMs are input (one at a time) to
the convolutional autoencoder whose task is to recre-
ate the given image. The output of the encoder part
provides a compressed representation of the input.

4.2 Classification network

The next step is the dataset preparation for the round-
robin duels. Two scenarios are considered at this stage:
winner in and any in. In the first one, in the train-
ing pairs, there is always a correct candidate answer
present. Therefore, the classifier’s goal is to choose
the correct answer from the two (two-class classifica-
tion).

In the any in scenario, there is no obligation that there
must be a correct answer within the input pair, there-
fore there may be pairs where none of the candidate
answers is correct. In such a case, the model is allowed
to choose a third class, meaning a draw - both answers
are wrong.

Please observe that at test time (the time of solving an
unknown IQ test), the system will experience scenarios
where there is no correct answer within the input pair
as the pairing up is done in such a way that all combi-
nations are analyzed (irrespective of the order of can-
didate answers in the pair). Hence, the system trained
in the winner in scenario will, at test time, experience
the situations it was not trained on. The goal of such
a setup was to verify whether the model, in cases where
there are two incorrect candidate answers in the in-
put pair, outputs probabilities of the two classes (after
the softmax function) of around 0.5 meaning that it is
largely uncertain as such a scenario was not previously
observed.

The formulated duel pairs are input to the classifi-
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cation network. Each RPM is compressed using the
encoder and then the two representations are concate-
nated and passed to dense layers to point a winner.
Please recall that the encoder is a part of the trained
autoencoder (cf. Section 4.1).

4.3 Scoring module

The results of the duels are aggregated in the scoring
module. Two approaches are tested: probability sum
and winning frequency.

4.3.1 Probability sum scoring

Let us denote the output of the classifier with soft-
max in the last layer as f(xi, xj) where (xi, xj) is
the input pair of RPMs filled with candidate-answers
(i 6= j). Thus, f(xi, xj) is a vector of probabilities
where the first element signifies that xi is the correct
answer, and analogically the second element refers to
xj being the correct outcome. In case of the any in sce-
nario, there is the third element in f(xi, xj) meaning
that both candidate answers are incorrect.

For brevity, we define fxi(xi, xj) as the probability re-
turned by the model specifying that xi is the correct
answer. The probabilities that the answer xi wins its
duels are aggregated in the scoring module:

sxi =
∑
j 6=i

fxi(xi, xj) (1)

Let us denote s = (sx0 , ..., sxK ) where K is the num-
ber of candidate answers. The final decision of the pro-
posed system is ŷ = argmaxx s.

4.3.2 Winning frequency scoring

Following the notation introduced in the previous sec-
tion, we formulate the winning frequency approach
used in the scoring module. Conceptually, it resem-
bles max-voting in ensembles. Here, instead of prob-
abilities, the number of duels wins is considered. Let
us denote the equivalent of sxi from the previous ap-
proach:

freqxi =
∑
j 6=i

I(argmax
x

f(xi, xj) = xi) (2)

Later, similarly to the probability sum approach, the f
vector is defined as f = (freqx0 , ..., freqxK ). The final
answer of the proposed system for a given IQ task,
in this scenario, is ŷ = argmaxx f .

There can happen a particularity when more than one
answer has the same number of duels won. In such
a case, the system returns the one with a smaller index
as the final answer.

5 EXPERIMENTAL SETUP

5.1 Datasets

We use a data generation scheme analogous to that in
[Mańdziuk and Żychowski, 2019], but we increase the
number of data samples.

The RPM as a whole (i.e. a 3x3 grid of panels) is
of the size of 150x150 pixels. Each of the generated
test instances reflects a change in one of the fol-
lowing features: shape, size, or rotation. In the case
of shape, each row/column contains three different
shapes and the task is to point the missing shape
in the last row/column. For size and rotation tests,
the respective feature (size or rotation) increases or
decreases iteratively (with a constant ratio) in con-
secutive rows/columns. Additionally, in half of the
test instances, random perturbations were applied, i.e.
apart from the main feature change (described above),
another feature was changed randomly (e.g. a figure
which iteratively changes its size was randomly ro-
tated).

All figures’ features were generated within the follow-
ing ranges: size (width and height) from 25 to 50 pix-
els, rotation from 0 to 2π, shading from 0 to 255. Each
figure was placed centrally within a panel (a square
cell). Please consult [Mańdziuk and Żychowski, 2019]
for the details.

To verify the generalization capability of the proposed
system, three experiment scenarios were created:

1. the same shapes in training, validation and test
datasets (14 figure shapes presented in Figure 3),

2. the figures in training and validation sets were
the same (left set of 7 figure shapes in Figure 3)
but different than in test set (right set of 7 figure
shapes in Figure 3),

3. the same shapes in training, validation and test
sets (left set of 7 figure shapes in Figure 3)

Figure 3: Figure shapes used in experiments.

In experiment 2, we wanted to perform a cross-dataset
check. To have a baseline to refer to, experiment 3 is
run to assess how difficult the task was. In practice, ex-
periment 2 is conducted in such a way that the model
is trained on data from experiment 3 but evaluated on
testing set from experiment 2. As the number of figure
shapes in the training set in experiments 2 and 3 is two
times smaller than in the case of experiment 1, we used
a two times smaller training dataset (see Table 1).
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Table 1: The number of single task questions as shown
in Figure 1. In the preprocessing stage, each task is
extended to 5 filled-in RPMs that are subsequently
combined into pairs for the duels. The training set in
experiments 2 and 3 is shared, likewise the validation
set. In experiments 2 and 3 the same trained model is
tested on two different sets.

TRAIN VAL TEST

experiment 1 34 400 9 800 4 800
experiment 2

17 200 4 900
4 800

experiment 3 4 800

5.2 Autoencoder

The final architecture of the autoencoder (depicted in
Figure 4) was chosen by means of a grid search where
the number of layers and the numbers of filters in con-
volutions and transposed convolutions were selected.
We analyzed architectures that resulted in different
hidden representation sizes and investigated the im-
pact of changing transposed convolution layers into a
combination of upsampling and convolution.

It turned out that the proposed architecture (Figure 4)
resulted in a lower mean squared error (MSE) and
a slightly higher structural similarity index measure
(SSIM) than the method with the same latent repre-
sentation size but with no use of transposed convo-
lution. At the same time, a peak signal-to-noise ratio
(PSNR) of our model was slightly lower than that of
its fully convolutional counterpart. In conclusion, the
proposed architecture presents the best tradeoff be-
tween performance metrics (see Section 6) and hidden
representation size.

Figure 4: Autoencoder architecture. The convolutional
layer parameters are denoted as “conv-kernel size-
number of filters”. Likewise transposed convolutional
layers are described. The max pooling layer parameter
refers to the receptive field size.

5.3 Classification

The architecture of the Duel-IQ classifier is shown in
Figure 5. The classifier takes a pair of filled-in RPMs
that participate in a duel as an input. Both RPMs
are compressed using the encoder and then passed

through an additional trainable convolutional layer
(kernel size = 2, n filters = 4). Next, the two rep-
resentations are concatenated and processed by two
fully connected layers to make the final prediction.

Figure 5: Classification network with auxiliary training
applied. Convolutional layers are denoted in the same
manner as in Figure 4. A parameter in each fully con-
nected layer refers to the number of neurons.

In order to choose an optimal architecture of the classi-
fication network, we checked the impact of making the
weights of the encoder trainable as opposed to frozen
and observed that enabling fine-tuning is beneficial.
We decided to stack an additional convolutional layer
on top of the encoder, followed by dense layers, in order
to further decrease the size of hidden representations
before their concatenation. This convolutional layer is
a proxy between the encoder (meant to compress the
input in possibly lossless manner) and the dense layers
(that focus on comparing the two inputs).

Please note that the networks were not pretrained on
Imagenet data (which is a common practice) since
RPMs have a different structure than natural scene
images. In filled-in RPMs, there are high frequencies
and a lot of white space. Moreover, the image is not
coherent since it is composed of 9 panels. Furthermore,
the images in the dataset are in grayscale and therefore
transforming them to RGB space would be redundant
and would simply multiply the same information.

In some of the experimental modes, we employed
auxiliary training where the model was asked to re-
turn the measure of dissimilarity between the candi-
date answers within the input RPMs. The dissimilar-
ity measure was computed according to Algorithm 1.
In the formulas for each term, we applied normaliza-
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tion to the [0,1] interval. The most complex is the for-
mula for rotation similarity as it takes into consider-
ation the cyclic nature of the issue. The symbol %
means a remainder. The overall dissimilarity measure
is also normalized to 0-1, i.e. 0 means exactly the same
figure answers, 1 – completely different ones.

Algorithm 1: Dissimilarity measure between two
candidate answers.
Input: parameters of candidate answer 1 and 2
score = 0
if shape1 == shape2 then score+ = 1
score+ = |intensity1 − intensity2|/256
score+ = |width1 − width2|/50
score+ = |height1 − height2|/50
first angle = |rotation1%360− rotation2%360|
score+ = min(first angle, 360−first angle)/180
Return: dissimilarity = score/5

6 EXPERIMENTAL RESULTS

All experiments were run with the following parame-
ters. The training was scheduled for 20 epochs each,
however, it could have been stopped earlier if the loss
on validation set increased in more than 5 consecu-
tive epochs. The model was optimized using Adam
[Kingma and Ba. 2014] with the learning rate 0.001
and decaying coefficients β1 0.9 and β2 0.999.

6.1 Autoencoder

The highest spatial compression ratio of the autoen-
coder with still satisfactory quality of the recon-
structed images was 4. The quality was assessed using
three metrics: MSE, SSIM and PSNR - see Table 2.

Table 2: Performance metrics of the autoencoder on
test data in different experiments (MSE - the lower,
the better; SSIM, PSNR - the higher, the better).

MSE ↓ SSIM ↑ PSNR ↑
experiment 1 0.002 0.959 29.156
experiment 2 0.003 0.947 27.259
experiment 3 0.001 0.969 30.495

Reconstructed images are of high quality - all struc-
tural information is preserved. Note that SSIM is close
to the ideal value of 1, whereas PSNR of about 30 is
also considered very high.

The best values are achieved in experiment 3 where
the task is the easiest because the same figures are used
in the training and the testing sets, and only 7 types of
object types (shapes) are considered. The second-best

scores are in experiment 1 which is similar to exper-
iment 3, but the number of shapes is doubled (there
are 14 of them). Experiment 2, in which the model is
trained on a dataset containing shapes different from
those composing the test set, exhibits the worst per-
formance.

Apart from the verification of quality metrics, a visual
inspection was also performed which indicated that de-
spite the drop of SSIM and PSNR measures in experi-
ment 2, the reconstructed images are almost identical
to the original images except that the edges of the fig-
ures are slightly blurry (cf. Figure 6).

Figure 6: Comparison of original image (left) and
the reconstructed one (right).

6.2 Classification network

In total, 8 different variants of classification networks
were analyzed. We trained the networks for experi-
ments 1 and 3. In experiment 2, the same model was
used as in experiment 3 (training and validation sets
are shared in both scenarios). Moreover, we verified
whether the choice of the winner in or any in ap-
proach has any impact on the performance. Another
combination was with and without the auxiliary train-
ing applied. Each variant was trained 10 times with
different random seeds. Results of these experiments
on the test set are presented in Table 3.

The following conclusions can be drawn from the ex-
periments. (1) Given the same maximum number of
training epochs, there was no significant difference in
the results in experiments with and without auxiliary
training. (2) The metrics were higher in the winner in
scenario than in any in which is not that surprising
since in the former case a two-class classification was
performed, whereas in the latter case, a three-class one.
(3) The classification network was able to generalize
to the test data composed of figures other than those
used in the training set (experiment 2). (4) The results
are visibly better than a random choice that would be
50% in the winner in scenario and 33% in the any in.

6.3 Scoring module

The scoring module was applied on top of the clas-
sification variants specified in Table 3. We analyzed
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Table 3: Classifier performance on test set in various
scenarios - mean accuracy (%) and its standard devi-
ation. For brevity, ”exp” stands for experiment.

INPUT ACC

w
it

h
au

x.
tr

ai
ni

ng exp 1
winner in 92.7± 2.0

any in 77.1± 7.7

exp 2
winner in 70.9± 1.2

any in 53.1± 1.6

exp 3
winner in 90.8± 0.6

any in 83.6± 0.8

w
it

ho
ut

au
x.

tr
ai

ni
ng exp 1

winner in 92.2± 2.5
any in 70.0± 15.8

exp 2
winner in 70.6± 1.8

any in 53.3± 1.3

exp 3
winner in 90.3± 1.6

any in 83.3± 1.6

the performance achieved with the two scoring ap-
proaches: probability sum and winning frequency de-
scribed in Section 4.3. The outcomes are presented in
Table 4.

Table 4: Mean test accuracy (%) and its standard de-
viation of Duel-IQ in various scenarios. The best per-
formance (in terms of mean) in corresponding experi-
ments is presented in bold. ”PROB.” stands for prob-
ability sum and ”WINNER” for winning frequency al-
gorithm in the scoring module.

INPUT PROB. WINNER

w
it

h
au

x.
tr

ai
ni

ng exp 1
winner in 82.8± 6.2 59.1± 7.8

any in 79.4± 7.3 78.4± 7.4

exp 2
winner in 47.4± 1.9 36.4± 2.3

any in 49.1± 1.8 47.5± 1.3

exp 3
winner in 77.6± 6.6 59.8± 4.8

any in 73.0± 9.1 70.3± 10.0

w
it

ho
ut

au
x.

tr
ai

ni
ng exp 1

winner in 60.1± 11.5 42.7± 6.5
any in 47.2± 10.3 47.3± 7.6

exp 2
winner in 47.3± 2.0 37.5± 2.0

any in 48.9± 1.9 46.8± 1.5

exp 3
winner in 80.0± 3.2 58.7± 5.9

any in 77.7± 8.0 75.5± 10.2

In most of the cases, the high standard deviation in
Table 4 is due to the fact that one of the runs resulted
in significantly lower performance, whereas the rest of
them featured similarly high quality metrics.

The results show that in the probability sum scoring,
the impact of the auxiliary training is negligible only in
the case of experiment 2. In experiment 1, the auxiliary
training improved the accuracy, whereas in the case of
experiment 3, it slightly deteriorated the performance

(however, the difference is within the standard devi-
ation limits). This can be attributed to the fact that
in experiment 1, the dataset was twice as big as in
experiments 2 and 3.

The overall performance of the system with probabil-
ity sum scoring in any in and winner in scenarios was
almost the same in every analyzed case. Note that
the classifier accuracy (Table 3) was higher in win-
ner in than in any in scenario. A possible explanation
why the advantage in terms of classifier accuracy was
not directly translated to the accuracy of the overall
system, can be attributed to the fact that the win-
ner in approach has a flavor of out-of-distribution,
which makes the problem to be solved more difficult.
Therefore, the classifier accuracy in winner in and
any in did not transfer in the same way to the overall
system’s results in Table 4.

A comparison of the probability sum and winning fre-
quency shows that the results are very similar in
the any in scenario whereas significantly different in
the winner in scenario where probability sum outper-
forms winning frequency approach. This difference can
be attributed to the fact that in the any in scenario,
the model is not explicitly taught which probabilities
it should generate. Therefore, if in the duel with two
incorrect answers it favors one of the answers even a
little bit, the final model decision in the winning fre-
quency approach can be distorted.

6.4 Baseline comparison

We tested our hypothesis and the main motivation be-
hind the proposed system saying that (in this task) it
is more effective to perform a series of 2- or 3- class
classifications (duels) than a single K-class classifica-
tion, where K is the number of candidate answers. The
latter approach was mostly investigated in previous
works. Therefore, we analyzed the analogous neural
network architecture to the one from Figure 5 but in
a 5-class classification scenario, this time with 5 filled-
in RPMs as input. In this case, neither an auxiliary
training nor the scoring module were incorporated. To
adjust to the increased overall input dimensionality,
we changed the number of neurons in the penultimate
fully connected layer to 400. The other training param-
eters were the same as in the baseline Duel-IQ system.

We compared the performance of Duel-IQ with other
methods of similar complexity: DeepIQ proposed in
[Mańdziuk and Żychowski, 2019], Wild Relation Net-
work (WReN) from [Barrett et al., 2018], and “IQ of
NN” from [Hoshen and Werman, 2017].

In the case of WReN, we adjusted the publicly avail-
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able code1 to our dataset features. We also resigned
from the auxiliary training due to its fundamentally
different nature in WReN [Barrett et al., 2018] com-
pared to our approach. While in Duel-IQ only the dis-
similarity measure between the candidate answers
is presented during training, in [Barrett et al., 2018]
an information about the underlying relations in RPM
is provided. The use of this key information makes the
overall task of choosing the correct answer much easier
for WReN, rendering a direct comparison unfair.

Regarding the “IQ of NN” approach, recall that in the
original implementation [Hoshen and Werman, 2017]
only the relationship in one row (not the entire
RPM) was analyzed. Therefore, we first of all changed
the number of input panels. Furthermore, we im-
plemented and tested two versions of this method
which are direct extensions of the solution proposed
in [Hoshen and Werman, 2017] and differ only in the
number of output classes (output neurons). The first
one (5-class) has 5 outputs (a traditional classification
approach), whereas the second one (2-class) has only
two outputs (a duel-based approach). Results of a se-
ries of such duels are further aggregated in the scoring
module using the probability sum algorithm from Duel-
IQ. This option allows verifying the potential benefits
of the duel-based approach vs traditional K -class clas-
sification in “IQ of NN” model. winner in scenario was
investigated as it brought better results in the case of
Duel-IQ.

The above-mentioned baseline methods were run 10
times. The accuracy (mean and standard deviation)
is presented in Table 5. We summarize the results of
Duel-IQ by indicating the highest performance across
8 different variants of the experiment (two pairing
schemes: winner in/any in, two algorithms in the scor-
ing module: probability sum/winning frequency, two
training schemes: with/without auxiliary training).

The results prove that Duel-IQ outperforms other an-
alyzed methods when the training and testing datasets
consist of the same figure shapes (experiments 1 and
3). Otherwise (experiment 2), the leading method is
DeepIQ.

A possible reason for the better performance of
DeepIQ in this setting is that it learns the relations
between two panels and not the whole filled-in RPM.
Such an approach (focusing on two shapes) may lead to
developing a more universal representations that help
solving an out-of-distribution scenario. Furthermore,
DeepIQ is explicitly enforced to focus on predefined
aspects such as rotations, changes in size, etc.

However, the drawback of the DeepIQ solution is

1https://github.com/Fen9/WReN,
https://github.com/mikomel/wild-relation-network

Table 5: Performance comparison of different meth-
ods for solving IQ tests: mean, standard deviation,
and maximum accuracy (in brackets). Best results in
each experiment are in bold.

ALGORITHM EXP 1 EXP 2 EXP 3

Duel-IQ
82.8± 6.2
(88.8)

49.1± 1.8
(54.9)

80.0± 3.2
(85.3)

Duel-IQ
(5-class version)

72.2± 5.4
(75.6)

49.2± 1.1
(50.8)

71.5± 3.2
(74.1)

DeepIQ
73.0± 3.7
(78.3)

61.7± 3.9
(67.4)

68.8± 2.4
(72.5)

WReN
54.1± 1.1
(56.3)

34.1± 1.2
(36.0)

49.0± 1.5
(51.1)

IQ of NN
(2-class version)

67.3± 20.1
(90.3)

49.1± 10.2
(72.8)

68.3± 11.2
(89.8)

IQ of NN
(5-class version)

55.8± 11.5
(76.3)

44.3± 5.7
(54.8)

55.1± 6.7
(69.3)

the need to incorporate expert knowledge for the def-
inition of a possible set of relations within the RPMs.
On the contrary, the proposed duel-based system is
fully autonomous (does not require a priori expert in-
formation about the aspects that need to be taken into
consideration while solving IQ tests).

Moreover, the experiments confirmed that Duel-IQ
results in better accuracy than 5-class classification
model of similar architecture (referred to as “Duel-IQ
(5-class version)” in Table 5). This observation aligns
with the initial hypothesis that classification with two
input RPMs can be easier than the one with as many
input filled-in RPMs as the number of candidate an-
swers.

Similar conclusions can be drawn from an analysis of
the results of the two variants of “IQ of NN”. Here,
the 2-class version outperforms the 5-class one, as well.
However, due to the high variance of “IQ of NN” exper-
imental results, the claim that round-robin approach
is beneficial in this case should be taken with care.

The results achieved by “IQ of NN” are mediocre.
The possible reason is that the authors used their al-
gorithm for a simplified task with 2 panels and the sys-
tem was supposed to choose the candidate answer that
fits the relation – the third missing panel. This task
is much less complex than the analyzed RPMs where
there are three rows (matrix) and the relations can oc-
cur vertically, horizontally, and/or diagonally. Another
aspect is the tendency of the “IQ of NN” to overfit.
The authors of the model reported its training for 30
to 100 epochs depending on a problem. When applying
the algorithm to our dataset, the model was stopped
after 8 to 15 epochs as a result of an early stopping
mechanism – the loss on validation set with patience
parameter set to 5. The 2-class version achieved the
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highest accuracy (in a single run), though, at the same
time, the highest variance was reported for this model.

The worst results were achieved with WReN. If figure
shapes in the training and testing sets were from the
same distribution, the performance of WReN was sim-
ilar to “IQ of NN (5-class)”, otherwise (experiment 2)
it was clearly lower.

Quite surprisingly, WReN results were worse in exper-
iment 3 than in experiment 1. This is unexpected be-
cause experiment 1 is more difficult than experiment 3
due to higher number of figure shapes. The perfor-
mance degradation in experiment 3 can be attributed
to the fact that in order to train the relation network
within WReN, a large number of samples is required
(note that the number of training samples in experi-
ment 1 was twice as big as in experiment 3).

In order to assert that the results of Duel-IQ are not
biased by the figure shapes chosen for training and
testing (see Figure 3), additional tests were performed
with randomly shuffled figure shapes between these
two sets. The averaged accuracy (over 10 independent
runs) in experiments 2 and 3 equaled 51% ± 3% and
84% ± 3%, respectively. The results were generally 2-
3% higher compared to the baseline cases (cf. Table 5)
which confirms that neither the choice of figures nor
their particular split into training and test sets were
biased. In fact, the results suggest that the particular
setting in the baseline experiments can be considered
“more difficult than average”.

7 HUMAN PERFORMANCE

The performance of Duel-IQ was confronted with hu-
man performance in two surveys conducted among 94
university students and PhD candidates, mostly with
Computer Science (CS) background. 61 people took
part in the first survey and 33 others in the second
one. Each survey was composed of 21 representative
RPM problems from our dataset of experiment 1 (7
problem types x 3 instances). The questions (42 in to-
tal) varied in their level of difficulty.

The average human accuracy weighted by the ratio
of participants in each survey equaled 77.3% ± 5.6%
which is on par (within standard deviation ranges)
with Duel-IQ in experiment 1 (82.8% ± 6.2%). Hu-
man performance on Raven’s Matrices of similar com-
plexity was tested within the general population in
[Matzen et al., 2010] with 60% to 80% of correct an-
swers depending on the test type, which is consistent
with our survey, taking into account a particular edu-
cation profile (CS) and age of our participants.

8 CONCLUSIONS

In this paper, we propose a duel-based neural network
system (Duel-IQ) suitable for solving RPMs - a well-
known example of abstract visual reasoning tasks.
The following variants of the system are investigated:
(1) the same vs different sets of figures in RPMs in
training and test sets, respectively; (2) with vs with-
out auxiliary training; (3) winner in vs any in pair-
ing schemes; (4) probability sum vs winning frequency
scoring formulas.

The results prove that an auxiliary training that en-
forces the system to assess the similarity between
the candidate answers may improve the performance,
mainly in the case of the most complex dataset (exper-
iment 1). For probability sum scoring function, when
the training and test data have the same distribu-
tion (experiments 1 and 3), the winner in slightly
outperforms the any in approach, whereas in out-of-
distribution scenario (experiment 2), it is the other
way around. Further investigation of this observation
is a focus of our further studies.

Overall, the results confirm the abstract reasoning
abilities of the ensemble-like duel-based model and
its superiority over 5 reference methods when train-
ing and test sets are composed of the same figure
shapes. In out-of-distribution setting Duel-IQ is infe-
rior to DeepIQ [Mańdziuk and Żychowski, 2019].

Moreover, the performance of Duel-IQ is on par with
the results of a group of 94 CS students and PhD can-
didates.

Societal impact

Apart from the technical aspects and the properties of
the proposed solution, the societal impact of the po-
tential misuse of the system was analyzed. It could hy-
pothetically happen that somebody would use the pro-
posed solution to cheat during online IQ tests and
would claim to have a higher IQ than it really is.
On a general note, such a fraudulent situation may
lead to unequal position in job recruitment process or
in other competitive situations referring to IQ scores.

Acknowledgement

The project was funded by POB Research Centre Cy-
bersecurity and Data Science of Warsaw University of
Technology within the Excellence Initiative Program -
Research University (ID-UB).

References

[Adams et al., 2012] Adams, S., Arel, I., Bach, J.,
Coop, R., Furlan, R., Goertzel, B., Hall, J., Sam-



Duel-based Deep Learning system for solving IQ tests

sonovich, A., Scheutz, M., Schlesinger, M., Shapiro,
S., and Sowa, J. (2012). Mapping the Landscape
of Human-Level Artificial General Intelligence. AI
Magazine, 33:25–42.

[Antol et al., 2015] Antol, S., Agrawal, A., Lu, J.,
Mitchell, M., Batra, D., Zitnick, C. L., and Parikh,
D. (2015). VQA: Visual Question Answering. In
Proceedings of the IEEE International Conference
on Computer Vision (ICCV).

[Barrett et al., 2018] Barrett, D., Hill, F., Santoro, A.,
Morcos, A., and Lillicrap, T. (2018). Measuring ab-
stract reasoning in neural networks. In ICML, pages
511–520. PMLR.

[Chollet, 2019] Chollet, F. (2019). On the Measure of
Intelligence. arXiv preprint arXiv:1911.01547.

[Dietterich, 2000] Dietterich, T. G. (2000). Ensemble
Methods in Machine Learning. In Proceedings of the
First International Workshop on Multiple Classifier
Systems, MCS ’00, page 1–15, Berlin, Heidelberg.
Springer-Verlag.

[Evans, 1964] Evans, T. G. (1964). A heuristic pro-
gram to solve geometric-analogy problems. In Pro-
ceedings of the spring joint computer conference,
pages 327–338.

[Geman et al., 2015] Geman, D., Geman, S., Hallon-
quist, N., and Younes, L. (2015). Visual Turing test
for computer vision systems. Proceedings of the Na-
tional Academy of Sciences of the United States of
America, 112.

[Hoshen and Werman, 2017] Hoshen, D. and Wer-
man, M. (2017). IQ of neural networks.
arXiv:1710.01692.

[Hu et al., 2021] Hu, S., Ma, Y., Liu, X., Wei, Y., and
Bai, S. (2021). Stratified rule-aware network for ab-
stract visual reasoning. In AAAI.

[Klenk et al., 2011] Klenk, M., Forbus, K., Tomai, E.,
and Kim, H. (2011). Using analogical model for-
mulation with sketches to solve Bennett Mechan-
ical Comprehension Test problems. Journal of
Experimental & Theoretical Artificial Intelligence,
23(3):299–327.

[Małkiński and Mańdziuk, 2020] Małkiński, M. and
Mańdziuk, J. (2020). Multi-Label Contrastive
Learning for Abstract Visual Reasoning. arXiv
preprint arXiv:2012.01944.

[Małkiński and Mańdziuk, 2022a] Małkiński, M. and
Mańdziuk, J. (2022a). Deep learning methods for
abstract visual reasoning: A survey on Raven’s Pro-
gressive Matrices. arXiv preprint arXiv:2201.12382.

[Małkiński and Mańdziuk, 2022b] Małkiński, M. and
Mańdziuk, J. (2022b). A review of emerging re-
search directions in Abstract Visual Reasoning.
arXiv preprint arXiv:2202.10284.

[Mańdziuk and Żychowski, 2019] Mańdziuk, J. and
Żychowski, A. (2019). DeepIQ: A human-inspired
AI System for Solving IQ Test Problems. In 2019
International Joint Conference on Neural Networks
(IJCNN), pages 1–8.

[Matzen et al., 2010] Matzen, L. E., Benz, Z. O.,
Dixon, K. R., Posey, J., Kroger, J. K., and Speed,
A. E. (2010). Recreating Raven’s: Software for sys-
tematically generating large numbers of Raven-like
matrix problems with normed properties. Behavior
research methods, 42(2):525–541.

[Ohlsson et al., 2013] Ohlsson, S., Sloan, R. H.,
Turán, G., and Urasky, A. (2013). Verbal IQ of a
four-year old achieved by an AI system. Age, 4(5):6.

[Raven, 2000] Raven, J. (2000). The Raven’s progres-
sive matrices: change and stability over culture and
time. Cognitive psychology, 41(1):1–48.

[Raven, 1936] Raven, J. C. (1936). Mental Tests Used
in Genetic Studies: The Performances of Related In-
dividuals in Tests Mainly Educative and Mainly Re-
productive. Master’s thesis, University of London.

[Raven and Court, 1998] Raven, J. C. and Court,
J. H. (1998). Raven’s progressive matrices and vo-
cabulary scales. Oxford Psychologists Press Oxford,
UK.

[Stranneg̊ard et al., 2013] Stranneg̊ard, C.,
Amirghasemi, M., and Ulfsbäcker, S. (2013).
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