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Abstract

Combining the outputs of multiple classi-
fiers or experts into a single probabilis-
tic classification is a fundamental task in
machine learning with broad applications
from classifier fusion to expert opinion pool-
ing. Here we present a hierarchical Bayesian
model of probabilistic classifier fusion based
on a new correlated Dirichlet distribution.
This distribution explicitly models positive
correlations between marginally Dirichlet-
distributed random vectors thereby allow-
ing explicit modeling of correlations between
base classifiers or experts. The proposed
model naturally accommodates the classic In-
dependent Opinion Pool and other indepen-
dent fusion algorithms as special cases. It is
evaluated by uncertainty reduction and cor-
rectness of fusion on synthetic and real-world
data sets. We show that a change in perfor-
mance of the fused classifier due to uncer-
tainty reduction can be Bayes optimal even
for highly correlated base classifiers.

1 INTRODUCTION

Classification is one of the fundamental tasks in ma-
chine learning with broad applicability in many do-
mains. The most successful classification methods, e.g.
in machine learning competitions, have proven to be
classifier ensembles, which combine different classifiers
to improve classification performance (Kittler et al.,
1998; Dietterich, 2000; Mohandes et al., 2018; Pirs and
Strumbelj, 2019). Apart from the selection and train-
ing of individual classifiers, the fusion method used
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for classifier combination is of particular importance
for the success of an ensemble, as individual classifiers
can be biased or highly variable. Such fusion methods
can equivalently be applied for fusing human experts’
opinions. However, for convenience, most common fu-
sion methods assume independent classifiers (Schubert
et al., 2004; Mohandes et al., 2018), although in prac-
tice, classifiers trained on the same target as well as
human experts are highly correlated (Jacobs, 1995).

Different strategies for coping with correlated classi-
fiers have been proposed, such as selecting only those
classifiers with the lowest correlation (Petrakos et al.,
2000; Prabhakar and Jain, 2002; Goebel and Yan,
2004; Faria et al., 2013; Singh et al., 2018), explicitly
decorrelating the classifiers before fusion (Ulaş et al.,
2012), or weighting them according to their correla-
tion (Srinivas et al., 2009; Terrades et al., 2009; La-
coste et al., 2014; Safont et al., 2019). While there are
several non-Bayesian models of improved fusion of cor-
related classifiers (Drakopoulos and Lee, 1988; Kam
et al., 1991; Baertlein et al., 2001; Veeramachaneni
et al., 2008; Sundaresan et al., 2011; Ma et al., 2013),
Kim and Ghahramani (2012) introduced a Bayesian
model for fusing dependent discrete classifier outputs,
albeit not probabilistic outputs, thereby disregarding
valuable information about the uncertainty of deci-
sions. Pirs and Strumbelj (2019) extend the work of
Kim and Ghahramani (2012) by allowing probabilistic
classifier outputs. But, their focus is on outperform-
ing related fusion algorithms using an approximate
model of dependent classifiers rather than developing
a theoretically justified normative model of how corre-
lated classifier fusion should work. In particular, Pirs
and Strumbelj (2019) conclude that a fusion method
should not outperform the base classifiers if these are
highly correlated. However, while it is known that
there should be no fusion gain for a correlation of r = 1
between classifiers (Drakopoulos and Lee, 1988; Tumer
and Ghosh, 1996; Kuncheva and Jain, 2000; Petrakos
et al., 2000; Baertlein et al., 2001; Zhou, 2012), this
has not been shown for probabilistic classifiers. Here,
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we clarify how the correlation between classifiers af-
fects uncertainty reduction through fusion in general,
which is well known in the case of fusing independent
probabilistic classifier outputs (Andriamahefa, 2017).

Therefore, in order to show how correlated probabilis-
tic classifier outputs should be fused Bayes optimally,
in this work we introduce a hierarchical fully Bayesian
normative model of the fusion of correlated probabilis-
tic classifiers. We model the classifiers to be fused with
a new correlated Dirichlet distribution, which is able to
model Dirichlet-distributed random vectors with posi-
tive correlation. We show that existing fusion methods
such as Independent Opinion Pool are special cases of
this model. Evaluations on simulated and real data
reveal that fusion should reduce uncertainty the less,
the higher the classifiers are correlated. In particu-
lar, if the classifiers’ correlation is 1, there should be
no uncertainty reduction through fusion. Still, since
we learn a model of each base classifier, this does not
necessarily mean that the fused distribution equals the
base distributions. Empirical evaluations show the ap-
proach’s superiority on real-world fusion problems.

2 RELATED WORK

Bayesian models of classifier fusion are known as
Supra-Bayesian fusion approaches (Jacobs, 1995). For
combining expert opinions, they have already been
proposed before machine learning methods emerged.
Considering the opinions as data, a probability distri-
bution is learned over them, conditional on the true
outcome. From this expert model, a decision maker
can compute the likelihood of observed opinions and
combine it with its prior using Bayes’ rule. The re-
sulting posterior distribution over the possible out-
comes is the fusion result (Genest et al., 1986). For
instance, Lindley (1985), French (1980), and Winkler
(1981) modeled experts’ opinions using a multivariate
normal distribution, which enabled explicit modeling
of their correlations, while Jouini and Clemen (1996)
used copulas to model experts’ correlations.

Such Supra-Bayesian approaches have also been pro-
posed for classifier fusion. Kim and Ghahramani
(2012) model independent discrete classifier outputs
by learning a multinomial distribution over each row
of the classifiers’ confusion matrices, conditioned on
the true class label. This Independent Bayesian Clas-
sifier Combination Model (IBCC) is additionally ex-
tended to a Dependent Bayesian Classifier Combina-
tion Model (DBCC), which uses Markov networks to
model correlations. Inference is realized with Gibbs
Sampling, and training is unsupervised. Several au-
thors have extended the work of Kim and Ghahra-
mani (2012). However, most of them extend the IBCC

method, which assumes independent classifiers. For
example, Simpson et al. (2013) infer the IBCC param-
eters with variational inference instead of Gibbs Sam-
pling. Hamed and Akbari (2018) instead presented a
supervised extension of IBCC. Ueda et al. (2014) ad-
ditionally introduce another latent variable into the
original IBCC model that determines a classifier’s ef-
fectiveness, i.e. whether it always outputs the same
label for a class or varies considerably. Still, as in
(Kim and Ghahramani, 2012), this line of work con-
siders discrete classifier outputs without utilizing clas-
sifiers’ uncertainties for fusion. Thus, Nazabal et al.
(2016) introduced a Bayesian model for fusing proba-
bilistic classifiers that output categorical distributions
instead of only discrete class labels. The output distri-
butions of each classifier are modeled with a Dirichlet
distribution conditioned on the true class label. Pa-
rameter inference is realized with Gibbs Sampling on
labeled training data. However, similar to the ap-
proaches above, the model assumes independent base
classifiers and disregards potential correlations.

In contrast, Pirs and Strumbelj (2019) explicitly model
correlations between probabilistic classifiers. They
transform the classifiers’ categorical output distribu-
tions with the inverse additive logistic transform and
model the resulting real-valued vectors with mixtures
of multivariate normal distributions with means and
covariances conditioned on the true class labels. While
Pirs and Strumbelj (2019) show that this model out-
performs other Bayesian fusion methods on most data
sets, the model does not provide a normative ac-
count of how fusion of correlated probabilistic classi-
fiers should work Bayes optimally. In particular, they
conclude that a fused classifier cannot outperform the
base classifiers if these are highly correlated and pro-
vide empirical evidence for this conclusion based on
one data set. However, this has not been proven for
probabilistic classifiers, where a special focus should
be on uncertainty reduction through fusion. To in-
vestigate how this uncertainty reduction should be af-
fected by correlation, we propose a normative hierar-
chical Bayesian generative model of the fusion of cor-
related probabilistic classifiers. The model’s structure
resembles the structure presented by Pirs and Strum-
belj (2019) up to a newly introduced conjugate prior
of the categorical distribution, a correlated Dirichlet
distribution for jointly modeling the classifier outputs.
In contrast to Pirs and Strumbelj (2019), we do not
require any transformation of the classifier outputs or
mixture distributions and show that the fused classi-
fier can outperform the base classifiers, even for highly
correlated base classifiers.
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3 BAYESIAN MODELS OF
CLASSIFIER FUSION

Throughout this work, we assume K base classifiers
Ck, k = 1, ...,K to be given and fixed. For a given
example i, each base classifier Ck receives observation
oki with corresponding true class label ti = 1, ..., J .
Based on observation oki , each classifier Ck outputs
the respective probability distribution P (ti|oki ), which
is a J-dimensional categorical distribution. The goal
of the present work is to fuse these given classifier out-
puts P (ti|oki ) in order to obtain P (ti|o1i , ..., oKi ). Ac-
cordingly, in the following we investigate Bayes op-
timal fusion methods with successively more general
assumptions. In Section 3.1 we start with assuming
independent classifiers whose behavior is not known.
In Section 3.2 we proceed by modeling each individual
classifier’s behavior while still assuming independence.
The resulting Independent Fusion Model is finally ex-
tended to the Correlated Fusion Model in Section 3.3,
which explicitly models classifiers’ correlations. Our
implementation of the proposed fusion methods is pub-
licly available at https://github.com/RothkopfLab/
Bayesian_Correlated_Classifier_Fusion.

3.1 Independent Opinion Pool

If we assume that the outputs of all base classifiers are
conditionally independent given ti with an uninformed
prior, by applying Bayes’ rule we can transform the
sought P (ti|o1i , ..., oKi ) to:

P (ti|o1i , ..., oKi ) ∝
K∏

k=1

P (ti|oki ), (1)

which needs to be renormalized to sum to 1 (Proof in
SM). This fusion rule, which is known as Independent
Opinion Pool (IOP) (Berger, 1985), is therefore Bayes
optimal given the stated assumptions. Also, it leads to
intuitive results regarding uncertainty. Non-conflicting
base distributions reinforce each other in a way that
the fused categorical distribution’s uncertainty is re-
duced (Andriamahefa, 2017), and the more uncertain a
base distribution, the less it affects the resulting fused
distribution (Hayman and Eklundh, 2002).

3.2 Independent Fusion Model

Although IOP is Bayes optimal given conditionally in-
dependent base classifiers and an uninformed prior, it
is an ad-hoc method. Thus, only information given
by the current output distributions can be exploited
for fusion. The individual classifiers’ properties, their
bias, variance, and uncertainty, cannot be considered.
Therefore, the Independent Fusion Model (IFM) ad-
ditionally models the behavior of the classifiers to be

fused, while still assuming conditional independence of
classifiers and an uninformed prior over classes. Since
modeling each classifier’s behavior requires consider-
ing their categorical output distributions as data, here
we assume them as given and fixed and define them as
xk
i = P (ti|oki ) for base classifier Ck and example i.

By observing multiple training examples of classifier
outputs xk

i , a probability distribution over them con-
ditional on the true class label ti can be learned,
P (xk

i |ti). We set this distribution to be a Dirichlet
distribution. Thus, if ti can take J different values,
each base classifier’s outputs are modeled by J Dirich-
let distributions, P (xk

i |ti = 1), ..., P (xk
i |ti = J). The

graphical model of the proposed IFM is shown in Fig-
ure 1(a). The true label ti of example i is modeled with
a categorical distribution with parameter p. If suffi-
cient knowledge about the data is available, the prior
p over true labels ti can be chosen accordingly. For
the subsequent experiments we chose an uninformed
prior with p = ( 1

J , ...,
1
J ). α holds the parameters of

the Dirichlet distributions that model the classifiers’
outputs. αk

j with αkj l > 0 for l = 1, ..., J thereby con-
tains the parameters of the Dirichlet distribution over
the outputs of classifier Ck if ti = j. Hence, the output
xk
i of classifier Ck for example i with true label ti = j

is Dirichlet-distributed with parameter vector αk
j .

A similar model was proposed by Nazabal et al. (2016).
However, their model uses more parameters since they
chose the parameters of Dirichlet distributions to be a
product of two parameters.

3.2.1 Parameter Inference

For learning the classifier model parameters α, the
posterior distribution over α conditioned on observed
classifier outputs x and the corresponding true labels
t, P (α|x, t), needs to be inferred. The training data
x consist of I examples composed of K categorical
output distributions xk

i , and t holds I true labels ti
respectively. Inference is performed with Gibbs Sam-
pling. As an uninformed prior for all elements of αk

j

we chose a vague gamma prior with shape and scale set
to 10−3. Of course, one could choose any other prior
given additional domain knowledge about the data. In
the following, we take the expectations of inferred pos-
terior distributions as point estimates for αk

j .

3.2.2 Normative Fusion Behavior

For fusion, the posterior distribution over ti given all
K classifier outputs xk

i and the learned model parame-
ters α, P (ti|x1

i , ...,x
K
i ,α), needs to be inferred. Since

the IFM is a generative model for independent categor-
ical classifier outputs, performing fusion in this way is
Bayes optimal given the model assumptions. The pos-
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terior fused distribution can be derived analytically:

p(ti = j|xi,αj) ∝
K∏

k=1

1

B(αk
j )

J∏

l=1

(xki l)
αk

j l
−1. (2)

This unnormalized posterior probability can now be
computed for all ti = j for j = 1, ..., J , and normalizing
these values to make them sum to 1 gives the posterior
fused categorical distribution.

As (2) shows, using the IFM, we do not multiply the
categorical output distributions of the base classifiers,
such as for IOP, but their probabilities conditioned on
the modeling Dirichlet distributions. Thus, fusion can
take into account potential learned biases. Moreover,
also the variances and uncertainties of the base classi-
fiers can be considered for fusion.

This can be demonstrated with the following example.
If a classifier C1 is modeled by three Dirichlet distri-
butions with parameters α1

1 = (a+ n, a, a) for ti = 1,
α1

2 = (a, a + n, a) for ti = 2, α1
3 = (a, a, a + n) for

ti = 3, and a classifier C2 is modeled equivalently with
α2

1 = (b+m, b, b), α2
2 = (b, b+m, b), α2

3 = (b, b, b+m),
with a, b, n,m > 0, we can simplify (2) to:

p(ti = j|xi,αj) ∝ (x1i j)
n(x2i j)

m (3)

for j = 1, 2, 3. This case, which was not considered by
Nazabal et al. (2016), is of particular interest, because
if we set parameters n = m = 1, the IFM reduces
to IOP. However, increasing n and m results in lower
uncertainty of the fused distribution if non-conflicting
base distributions are fused. In addition, if n > m, C1

has a higher impact on the fused result than C2.

How n and m are related to variance and uncertainty
of a classifier can be quantified with two properties
of the Dirichlet distribution, its precision and the en-
tropy of its expectation, which is a categorical distri-
bution. The precision of a Dirichlet distribution with
parameter α, defined as

∑J
j=1 αj , is higher, the more

concentrated the distribution is around the Dirichlet’s
expectation (Huang, 2005). Thus, a Dirichlet distribu-
tion with a high precision models a classifier with a low
variance. On the other hand, the entropy of a Dirich-
let’s expectation quantifies the average uncertainty of
the modeled classifier. If we keep a fixed and increase
n, the precision of the corresponding Dirichlet distri-
bution increases. Also, it can be shown that its ex-
pectation uncertainty decreases (Proof in SM). Thus,
the lower classifier C1’s variance and uncertainty, the
higher is its fusion impact and uncertainty reduction
through fusion. If we instead increase a while keep-
ing n fixed, this again increases precision and reduces
C1’s variance, but also increases its mean uncertainty
(Proof in SM). Hence, a classifier with low variance

and high uncertainty has the same fusion impact as a
classifier with high variance and low uncertainty.

Note that if we set K = 1 in (2), the IFM can also
be used as a meta classifier for a single classifier C1.
This meta classifier classifies a given example i based
on C1’s output distribution x1

i . Thus, we only learn a
Dirichlet model of classifier C1 instead of multiple clas-
sifiers. Conditioned on the learned model parameters
α1 and the single base classifier’s output distribution
x1
i , then the posterior distribution over all possible

class labels, P (ti = j|x1
i ,α

1
j ), is computed, which is

the meta classifier’s result.

3.3 Correlated Fusion Model

The IFM introduced in Section 3.2 enables optimal
fusion of categorical output distributions of condition-
ally independent base classifiers. However, in prac-
tice most classifiers trained on the same target are
highly correlated (Jacobs, 1995). Therefore, we ex-
tend the IFM to a Correlated Fusion Model (CFM)
to explicitly model the correlations between different
classifiers’ outputs. As in the IFM, we also model the
categorical classifier outputs xk

i given the true label
ti as a probability distribution. However, instead of
modeling all classifiers independently with individual
Dirichlet distributions, we model the joint distribu-
tion P (x1

i , ...,x
K
i |ti) with a new correlated Dirichlet

distribution that can express correlations between the
classifiers’ outputs.

3.3.1 Correlated Dirichlet Distribution

For modeling correlated classifiers’ categorical out-
put distributions with their conjugate prior, a dis-
tribution is required that can model correlations be-
tween marginally Dirichlet-distributed random vari-
ables. While previous generalizations of the Dirich-
let distribution focused on more flexible correlations
between individual random vector entries x1, ..., xJ of
a Dirichlet variate x (Connor and Mosimann, 1969;
Wong, 1998; Linderman et al., 2015), here we in-
troduce a correlated Dirichlet distribution that mod-
els correlations between two random vectors x1 =
(x11, . . . , x

1
J) and x2 = (x21, . . . , x

2
J) with arbitrary

marginal Dirichlet distributions.

A J-dimensional correlated Dirichlet distribution is
thereby constructed from 3J independent gamma vari-
ates A1

1, ..., A
1
J , A

2
1, ..., A

2
J , D1, ..., DJ with shape pa-

rameters α1
1−δ1, ..., α1

J−δJ , α2
1−δ1, ..., α2

J−δJ , δ1, ..., δJ
with α1

l , α
2
l , δl > 0, α1

l , α
2
l > δl, and equal scale param-

eter 1. x1 = (x11, ..., x
1
J) and x2 = (x21, ..., x

2
J) with:

xkl =
Akl +Dl∑J
n=1A

k
n +Dn

, l = 1, ..., J, k = 1, 2, (4)



Susanne Trick, Constantin A. Rothkopf

p

tiαk
j

xk
i I examplesK classifiers

J classes

ti ∼ Categorical(p)

xk
i |ti = j ∼ Dirichlet(αk

j )

(a) IFM

p

tiαk
j

xk
i

δj

I examplesK classifiers

J classes

ti ∼ Categorical(p)

xk
i |ti = j ∼ CorrDirichlet(αk

j , δj)

(b) CFM

xki l ti

p

Ak
j il

αk
j l

Djil

δj l

I examples

K = 2 classifiers

J classes

L = J
dimensions

ti ∼ Categorical(p)

Ak
j il
∼ Gamma(αk

j l
− δj l, 1)

Djil
∼ Gamma(δj l, 1)

xki l|ti=j ←
Ak

j il
+Djil∑J

n=1A
k
j in

+Djin

(c) CFM with latent variables of correlated Dirichlet

Figure 1: Graphical models of the IFM (a), CFM (b) and a detailed CFM for K = 2 classifiers with all latent
variables (c). The full CFM model for K > 2 can be found in the SM.

are marginally Dirichlet-distributed with
Dirichlet(x1;α1

1, ..., α
1
J) and Dirichlet(x2;α2

1, ..., α
2
J).

Their positive correlation, i.e. positive correlations
between x1l and x2l for l = 1, ..., J , is generated by
the shared variables D1, ..., DJ with the correlation
parameters δ1, ..., δJ . If δl tends to zero for l = 1, ..., J ,
x1 and x2 are independent and each follow a standard
Dirichlet distribution. If x1 and x2 have the same
marginal distributions with α1 = α2, their correlation
tends to 1 if δ tends to α1 = α2. Thus, if x1 and x2

have different marginal distributions, the correlation
is limited below 1. While no closed-form solution
for the distribution is available, sampling from it is
straightforward so that it can be applied to the CFM.

Figure 1(b) shows the CFM’s graphical model. The
only difference to the IFM in Figure 1(a) is that classi-
fier outputs x1

i , ...,x
K
i are jointly correlated-Dirichlet-

distributed with parameters αk
j and δj if ti = j. As

in the IFM, αk
j with αkj l > 0 holds the parameter vec-

tor of the marginal Dirichlet distribution of classifier
Ck if ti = j. The new parameter δj is responsible for
the pairwise correlation between the classifier outputs
if ti = j. Its dimensionality is 1 × J for K = 2 and
(
(
K
2

)
+1)×J for K > 2 classifiers. For the reduced case

of K = 2 classifiers, Figure 1(c) additionally shows a
more detailed graphical model of the CFM including
the latent variables of the correlated Dirichlet distri-
bution. For K = 2, it must hold that δj l > 0 and
δj l < αkj l for l = 1, ..., J, k = 1, ...,K.

3.3.2 Parameter Inference

We learn the joint classifier model by inferring the
posterior distribution over parameters α and δ given
observed classifier outputs x and their true labels t,
P (α, δ|x, t), using Gibbs Sampling. For all elements of
αk

j and δj , we chose a vague gamma prior with shape

and scale set to 10−3, which however can be set dif-
ferently according to prior knowledge about the data.
To increase robustness, inference can also be split up
in two steps by first inferring the marginal Dirichlet

parameters α as described in Section 3.2.1 and sub-
sequently inferring the posterior distribution over the
correlation parameters given the inferred marginal pa-
rameters, P (δ|x, t,α). This step-wise inference gives
the same results as full inference on data generated
from the CFM, but was observed to be more robust
empirically on real data since it guarantees correctly
inferred marginal distributions. As for the IFM, we use
the expectation of the inferred posterior distributions
as point estimates for αk

j and δj .

3.3.3 Normative Fusion Behavior

The fusion of K categorical base distributions
x1
i , ...,x

K
i is performed by inferring the posterior dis-

tribution over the true label ti conditioned on the base
distributions xk

i and the learned model parameters α
and δ, P (ti|x1

i , ...,x
K
i ,α, δ). Different from the IFM,

here we cannot derive the fused distribution analyti-
cally because we do not have a closed-form solution
for the probability density function of the correlated
Dirichlet distribution. However, by assuming α, δ, and
x1
i , ...,x

K
i to be observed, inference of latent ti can

be performed with Gibbs Sampling. From a sufficient
number of samples of ti we can infer the categorical
distribution over ti, which is the fused result. Alter-
natively inferring ti with variational methods in order
to speed up fusion is left for future work.

Note that if we let all correlation parameters δj tend
to zero, the CFM reduces to the IFM, and its fusion
behavior coincides with the one we derived analytically
for the IFM in Section 3.2.2. Thus, bias, variance, and
uncertainty of individual classifiers similarly influence
the fusion when fusing with the CFM. Additionally,
in contrast to previous fusion algorithms, our model
can be used to investigate how uncertainty reduction
through fusion should be affected by the correlation of
the fused classifiers in a normative way. We examine
this in detail with the two examples in the following.

Specifically, we compare the fusion behavior of the
CFM for systematically varied correlations between
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two base classifiers. We implement inference using
JAGS (Plummer et al., 2003). The blue bars in Fig-
ure 2 show an example where the marginal parame-
ters of the correlated Dirichlet distributions are cho-
sen to replicate IOP fusion behavior for zero corre-
lation (n = m = 1 in (3)). The higher the corre-
lation between the two classifiers, the smaller is the
uncertainty reduction through fusion. In particular,
there is no uncertainty reduction if the correlation is
r = 1. In this case, the fused distribution equals the
two base distributions. The orange bars in Figure 2
show the fusion results given different correlation lev-
els for marginal parameters that imply increased un-
certainty reduction compared to IOP (n = m = 2
in (3)) for zero correlation because of lower classifier
variance and uncertainty. As can be seen, there is also
less uncertainty reduction, the higher the correlation
between both classifiers. However, for r = 1, the fused
distribution is not identical to the two base distribu-
tions; its uncertainty is reduced despite the high cor-
relation. Yet, the reason for this is not fusion but the
Dirichlet models we learned for each individual clas-
sifier. The resulting fused distribution for r = 1 is
similar to the resulting distributions we get if we use
the IFM as a meta classifier individually for each base
distribution (see Section 3.2.2). Hence, the fusion of
two highly correlated classifiers does not additionally
reduce the uncertainty. This also applies to the first
example. However, in this case, due to the chosen
marginal distributions, the meta classifier results are
equal to the base distributions. Both examples reveal
that the uncertainty reduction through fusion should
decrease progressively if the base classifiers’ correlation
increases. For a correlation of r = 1, fusion should not
reduce the uncertainty at all. Still, the fused distribu-
tion might be less uncertain than the base distributions
since uncertainty cannot only be reduced by fusion but
also as a result of modeling each individual classifier’s
behavior, i.e. bias, variance, and uncertainty.

4 EVALUATION

We evaluate our model on simulated and real data
sets. The fused distributions returned by the CFM
are compared to those of the IFM and IOP and the
base distributions. In addition, we compare the fu-
sion performances to the performances of each classi-
fier’s meta classifier and the related method proposed
by Pirs and Strumbelj (2019). As performance mea-
sures, we consider entropy for quantifying uncertainty
reduction through fusion and log-loss for quantifying
correctness of classifications. The log-loss, which is a
standard measure for the performance of probabilistic
classifiers (Vovk, 2015), penalizes wrong classifications
according to their uncertainty, thus considering both

x1
i x2

i
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 m1

i m
2
i
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base fused dependent on r metabase fused dependent on r meta

p(ti = 1)

p(ti = 2)

p(ti = 3)

Figure 2: The base distributions x1
i =x2

i =(0.6, 0.2, 0.2)
are fused using the CFM assuming different marginal
parameters and correlations. Each bar represents a
categorical distribution consisting of the probabilities
for p(ti = 1), p(ti = 2), p(ti = 3). For the blue bars we
assume IOP marginal parameters, for the orange bars
we assume marginals that imply stronger uncertainty
reduction. We progressively increase the assumed cor-
relation between classifiers from 0.0 to 1.0 and show
the corresponding fused distributions as well as the
results of the meta classifiers m1

i and m2
i .

correctness and uncertainty of a classifier.

4.1 Simulated Data Sets

We created different simulated data sets by generating
random samples of output distributions x1

i and x2
i of

K = 2 classifiers for different given marginal parame-
ters α, correlation parameters δ and true class labels
ti with J = 3 possible outcomes according to the gen-
erative model of the CFM (Figure 1(b)). To show the
normative fusion behavior depending on the base clas-
sifiers’ correlation, for two sets of marginal parameters
α, we chose different correlation parameters δ respec-
tively that correspond to the correlations 0.0, 0.25, 0.5,
0.75, 1.0 between the two classifiers’ outputs. For all
five correlation levels, we generated 25 simulated ran-
dom test sets on which we evaluate, each consisting of
60 test examples (20 per class) composed of two cate-
gorical distributions and their corresponding class la-
bel. Since the true parameters of the data were known,
no training data were required. We chose the marginal
parameters to represent two prototype cases of classi-
fier models in order to demonstrate that the effect of
correlation on the fusion behavior also depends on the
individual classifiers’ marginal Dirichlet models. One
of the chosen classifier models leads to IOP fusion for
zero correlation, one represents two classifiers with de-
creased variance and uncertainty.

For the first simulated data set SIM 1, we determine
the marginal parameters α of the CFM such that it re-
duces to IOP if r = 0. As shown in Figure 3(a), there-
fore, the results of IOP and the IFM are equal regard-
ing entropy and log-loss. The shown entropies reveal
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(a) SIM 1: α1 = α2 = ((3, 2, 2), (2, 3, 2), (2, 2, 3))
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(b) SIM 2: α1 = α2 = ((12, 8, 8), (8, 12, 8), (8, 8, 12))

Figure 3: Fusion performances on simulated data in terms of mean entropy and log-loss. We compare the
performance of base classifiers C1, C2, the three fusion methods IOP, IFM, and CFM, and the meta classifiers
M1, M2. We show the fusion behavior for five levels of correlation between the base classifiers and different
marginal model parameters, implying IOP fusion (a) and higher reinforcement due to decreased classifier variance
and uncertainty (b). Standard deviations are shown as error bars.

that the higher the correlation between the classifiers
is, the more uncertainty is reduced by fusing with IOP
or the IFM. In contrast, when fusing with the CFM,
we see less uncertainty reduction through fusion for
higher correlations. Particularly, for r = 1, there is no
uncertainty reduction. The mean entropy is the same
as for the two meta classifiers. Also, the CFM’s mean
log-loss is equal to the meta classifiers’ log-loss if r = 1.
Thus, as expected, we see no change in performance
through fusion for highly correlated classifiers when us-
ing the CFM. Since we chose the marginals according
to IOP fusion, the CFM’s performance also equals the
performances of the base classifiers. In general, the
CFM performs best at all correlation levels. Partic-
ularly for high correlations, it outperforms the other
fusion methods, which assume independence, overes-
timate uncertainty reduction, and therefore perform
even worse than the base classifiers.

The second simulated data set SIM 2 was generated
setting the CFM’s marginal parameters α according
to the example in (3) with n = m = 4, which leads
to increased uncertainty reduction through fusion in
comparison to IOP for independent classifiers, since
the modeled base classifiers’ variance and uncertainty
is decreased. Accordingly, Figure 3(b) shows signifi-
cantly lower mean entropies for the IFM than for IOP
for all correlation levels. In contrast, for the CFM,
the fused distributions’ mean entropy increases with
the correlation such as for SIM 1. If r = 1, the CFM
again shows the same entropy as the two meta classi-
fiers. Hence, the fusion of two highly correlated base
classifiers does not reduce the uncertainty. This is con-
firmed by the log-loss (Figure 3(b)). However, in con-
trast to SIM 1, here, the meta classifiers’ performances
are increased compared to the base classifiers, and un-
certainty is reduced. Therefore, the CFM outperforms

the base classifiers also for a correlation of r = 1. Note
that, again, the CFM achieves the lowest log-loss and
thus the best performance for all correlation levels.

4.2 Real Data Sets

In addition to simulated data sets, we also evaluated
the CFM on 5 real data sets, Bookies A, Bookies B,
DNA A, DNA B, DNA C. Both Bookies data sets
are composed of K = 2 bookmakers’ odds for foot-
ball matches of the English Premier League1 (Book-
ies A) and the German Bundesliga2 (Bookies B). The
target variable has J = 3 possible outcomes, and for
each match example, the odds were transformed to a
3-dimensional categorical probability distribution by
normalizing their reciprocals. Thus, each bookie is
considered as a base classifier and each example in the
Bookies data sets is composed of two categorical dis-
tributions and a true class label. The correlation be-
tween the bookmakers’ predictions is approximately
1 in both data sets; it ranges from 0.955 to 0.996 in
different dimensions and for different values of ti.

The DNA data set from the StatLog project3 with a
target variable with J = 3 possible outcomes was used
to construct three more data sets for evaluating the
CFM. For each, we trained K = 2 different classifiers
on this data set. Their categorical output distribu-
tions on the corresponding test data set form the re-
spective data set DNA A, DNA B, DNA C. For DNA
A, we trained two highly correlated classifiers by us-
ing the same classification method (kNN) and same
training data but different hyperparameters (k = 120

1https://www.football-data.co.uk/englandm.php
2https://www.football-data.co.uk/germanym.php
3https://archive.ics.uci.edu/ml/datasets/Molecular+

Biology+(Splice-junction+Gene+Sequences)
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Figure 4: Fusion performances on real data in terms
of mean entropy and log-loss. We compare the perfor-
mance of base classifiers C1, C2, the fusion methods
IOP, IFM, and CFM, and the meta classifiers M1, M2.
Standard deviations are shown as error bars.

and k = 150). The correlation between both classi-
fiers is approximately 1; it ranges from 0.962 to 0.986
for different dimensions and values of ti. For DNA
B, we trained two classifiers using the same classifi-
cation method (kNN, k = 50) but different training
data. Their correlation ranges from 0.463 to 0.709 for
different dimensions and values for ti. DNA C was cre-
ated by training two different classifiers, a kNN clas-
sifier (k = 50) and a Random Forest classifier, on the
same training set. The correlation between their out-
put distributions ranges from 0.5 to 0.693 in different
dimensions and for different values of ti. More detailed
information on the data sets can be found in the SM.

We randomly split each real data set into test and
training set, while the test set contains 60 examples
(20 per class) and the training set all remaining ones.
On each random training split the model parameters
α and δ were inferred, which were then used to fuse
the distributions in the test set. The random splitting
was repeated five times with different random seeds,
and expectations and standard deviations of the re-
sulting performance measures were computed, which
are shown in Figure 4.

For the three highly correlated data sets, Bookies A,
B, DNA A, the CFM’s performance is equal to the
performances of the meta classifiers, both regarding
entropy and log-loss. Thus, also on real data we con-
firm that fusion causes no uncertainty reduction and
no change in performance if the base classifiers are
highly correlated. However, this does not necessarily
result in equal performances of the CFM and the base
classifiers. Depending on the Dirichlet models learned
for the individual classifiers, the CFM can still outper-
form highly correlated base classifiers, which we see for
DNA A. Also, the CFM can perform worse than the
base classifiers, e.g. for Bookies B, which is an effect
of too similar Dirichlet models for different class labels
ti, as also noticed by Pirs and Strumbelj (2019).

Table 1: Comparison of log-losses of the CFM and
Pirs’ method (Pirs and Strumbelj, 2019) on simulated
and real data.

data set CFM (µ± σ) Pirs (µ± σ)
SIM 1 r=0.0 0.834± 0.067 0.915± 0.03
SIM 1 r=0.5 0.89± 0.065 0.938± 0.039
SIM 1 r=1.0 0.944± 0.065 0.96± 0.056
SIM 2 r=0.0 0.412± 0.085 0.582± 0.048
SIM 2 r=0.5 0.583± 0.092 0.66± 0.065
SIM 2 r=1.0 0.672± 0.058 0.717± 0.041
Bookies A 1.056± 0.067 1.165± 0.035
Bookies B 1.108± 0.085 1.176± 0.052
DNA A 0.169± 0.078 0.177± 0.021
DNA B 0.301± 0.067 0.421± 0.043
DNA C 0.298± 0.178 0.351± 0.092
Bookies C 1.056± 0.056 1.297± 0.046

For the less correlated data sets, DNA B and C, we see
that the CFM reduces less uncertainty than the IFM
but is more certain than the meta classifiers. Also, the
CFM performs best of all fusion methods and better
than base and meta classifiers.

4.3 Comparison to Pirs and Strumbelj

The model introduced by Pirs and Strumbelj (2019),
which relies on modeling transformed classifier outputs
with a multivariate normal mixture, is the only compa-
rable Bayesian method for fusing correlated probabilis-
tic classifiers. Contrary to Pirs and Strumbelj (2019),
on simulated and real data we show that although fu-
sion should not reduce the uncertainty if r = 1, in
a normative framework fused classifiers can outper-
form highly correlated base classifiers due to the mod-
els learned for the individual classifiers. Moreover, we
additionally compared the performances of the CFM
and Pirs’ model in terms of log-loss. As can be seen
in Table 1, the CFM outperforms on all tested data
sets. The simulated data sets not displayed in the ta-
ble showed similar results but are left out for brevity.
In addition to the real data sets discussed in Section
4.2 we also compared the CFM and Pirs’ model on an
additional data set equivalent to Bookies A but with
K = 3 bookmakers, Bookies C. Also on this data set,
the CFM outperform Pirs’ method.

5 CONCLUSION

In this work, we introduced a Bayesian model of clas-
sifier fusion based on a new correlated Dirichlet distri-
bution. We derived Bayes optimal fusion behavior for
probabilistic classifiers that output categorical distri-
butions, which considers the classifiers’ bias, variance,
uncertainty, and correlation. We showed that uncer-
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tainty reduction through fusion should be the lower,
the higher the correlation between the classifiers is,
resulting in no uncertainty reduction through fusion
if r = 1. However, this does not necessarily lead to
equal performances of the fused classifier and the base
classifiers if a model for each classifier is learned.

A limitation of the proposed Correlated Fusion Model
is that the improvements in handling uncertainties
come at the price of a high number of required param-
eters. Additionally, the inference algorithm proposed
in this paper, which uses Gibbs Sampling, is compu-
tationally expensive and therefore slower compared to
alternative previous models and their inference algo-
rithms. For future work, we thus plan to investigate
alternatives to inference via Gibbs Sampling to speed
up the inference for fusion.

Still, the proposed normative fusion model offers a new
perspective on Bayesian combination of probabilistic
classifiers, thereby clarifying how the correlation be-
tween classifiers affects uncertainty reduction through
fusion and subsuming well known pioneering expert
opinion aggregation techniques. Since it additionally
outperforms the only comparable model on all tested
data sets, it should be the method of choice if cor-
rect Bayes optimal fusion is the goal. However, as
classification could potentially be used in conjunction
with data and tasks with negative societal impact, we
encourage responsible deployment of the proposed ap-
proach.
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Supplementary Material:
Bayesian Classifier Fusion with an Explicit Model of Correlation

A DERIVATION OF THE FUSION RULE OF INDEPENDENT OPINION
POOL

In the following, we show in detail how the fusion rule (1) known as Independent Opinion Pool can be derived
using Bayes’ rule if we assume conditional independence between the fused classifiers given the true class label
ti and an uninformed prior over ti. Particularly, this derivation proves that Independent Opinion Pool is the
Bayes optimal fusion rule given these assumptions.

By applying Bayes’ rule, we can transform

P (ti|o1i , ..., oKi ) =
P (o1i , ..., o

K
i |ti)P (ti)

P (o1i , ..., o
K
i )

. (A.5)

If we assume conditional independence given the true class ti and expand the fraction by P (ti)
K−1, we can

reformulate this to

P (ti|o1i , ..., oKi ) =

∏K
k=1 P (oki |ti)P (ti)

K

P (o1i , ..., o
K
i )P (ti)K−1

. (A.6)

By again applying Bayes’ rule and commutativity we get

P (ti|o1i , ..., oKi ) =

∏K
k=1

(
P (ti|oki )P (oki )

���P (ti) �
��P (ti)
)

P (o1i , ..., o
K
i )P (ti)K−1

(A.7)

=

∏K
k=1 P (ti|oki )P (oki )

P (o1i , ..., o
K
i )P (ti)K−1

(A.8)

=

∏K
k=1 P (ti|oki )

∏K
k=1 P (oki )

P (o1i , ..., o
K
i )P (ti)K−1

(A.9)

=

∏K
k=1 P (oki )

P (o1i , ..., o
K
i )︸ ︷︷ ︸

constant

∏K
k=1 P (ti|oki )

P (ti)K−1
, (A.10)

where the first fraction is constant, which allows us to rewrite the expression as

P (ti|o1i , ..., oKi ) ∝
∏K
k=1 P (ti|oki )

P (ti)K−1
. (A.11)

When assuming an uninformed prior on P (ti) this simplifies to a product of the categorical probability distribu-
tions outputted by the individual base classifiers

P (ti|o1i , ..., oKi ) ∝
K∏

k=1

P (ti|oki ), (A.12)

which needs to be renormalized to sum to 1.

B DERIVATION OF THE FUSION BEHAVIOR OF THE INDEPENDENT
FUSION MODEL

The normative fusion behavior of the Independent Fusion Model introduced in Section 3.2 can be derived
analytically. We show the derivation in detail, as well for the most general case (Section B.1) as for two examples
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demonstrating the influence of classifier variance and uncertainty (Section B.2) and bias (Section B.3) on the
normative fusion behavior.

B.1 Derivation of the Normative Fusion Behavior

The joint distribution of the Independent Fusion Model shown in Figure 1(a) is

P (xi,α, ti) = P (ti|p)P (α)

K∏

k=1

P (xk
i |αk

j , ti). (B.13)

Since we observe α and assume the prior over ti, P (ti|p), to be uninformed, this can be simplified to

P (xi,α, ti) ∝
K∏

k=1

P (xk
i |αk

j , ti). (B.14)

The fusion rule (2) can be obtained by computing the posterior probability of ti = j for j = 1, ..., J given the
categorical distributions xi and the respective α learned before,

p(ti = j|xi,αj) ∝ p(ti = j,xi,αj) (B.15)

∝
K∏

k=1

p(xk
i |αk

j , ti = j) (B.16)

=

K∏

k=1

Dirichlet(xk
i ;αk

j ) (B.17)

=

K∏

k=1

1

B(αk
j )

J∏

l=1

(xki l)
αk

j l
−1. (B.18)

This unnormalized posterior probability can now be computed for all ti = j for j = 1, ..., J . Normalizing the
respective values in order to make them sum to 1 gives the posterior fused categorical distribution.

B.2 Influence of Classifier Variance and Uncertainty on the Fusion Behavior

In order to demonstrate how a classifier’s variance and uncertainty affect the normative fusion behavior, we
derive the fusion rule for fusing two exemplary classifiers C1 and C2, modeled with parameters α1

1 = (a+n, a, a)
for ti = 1, α1

2 = (a, a + n, a) for ti = 2, and α1
3 = (a, a, a + n) for ti = 3 for C1 and α2

1 = (b + m, b, b),
α2

2 = (b, b+m, b), and α2
3 = (b, b, b+m) for C2 with a, b, n,m > 0.

The detailed derivation of the resulting fusion rule (3) is shown in the following.

If we set K = 2 and J = 3 according to the chosen 2 classifiers which differentiate between 3 classes, (B.18) can
be simplified to

p(ti = j|xi,αj) ∝
2∏

k=1

1

B(αk
j )

3∏

l=1

(xki l)
αk

j l
−1 (B.19)

∝
2∏

k=1

3∏

l=1

(xki l)
αk

j l
−1 (B.20)

= (x1i 1)α
1
j1
−1(x1i 2)α

1
j2
−1(x1i 3)α

1
j3
−1(x2i 1)α

2
j1
−1(x2i 2)α

2
j2
−1(x2i 3)α

2
j3
−1. (B.21)

If we now exemplarily compute this for j = 1, we get
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p(ti = 1|xi,α1) = (x1i 1)a+n−1(x1i 2)a−1(x1i 3)a−1(x2i 1)b+m−1(x2i 2)b−1(x2i 3)b−1 (B.22)

= (x1i 1)n(x2i 1)m (x1i 1x
1
i 2x

1
i 3)a−1(x2i 1x

2
i 2x

2
i 3)b−1︸ ︷︷ ︸

constant

(B.23)

∝ (x1i 1)n(x2i 1)m. (B.24)

Equivalently, for j = 2 and j = 3 we get

p(ti = 2|xi,α2) ∝ (x1i 2)n(x2i 2)m (B.25)

p(ti = 3|xi,α3) ∝ (x1i 3)n(x2i 3)m (B.26)

and can thus formulate the general fusion rule (3)

p(ti = j|αj ,xi) ∝ (x1i j)
n(x2i j)

m, (B.27)

while, again, the resulting values must be normalized to sum to 1.

The shown example demonstrates the relation between variance and uncertainty of a classifier and the fusion
behavior. A higher value of n results in a higher fusion impact of classifier C1 and more uncertainty reduction
of the fused distribution; equivalently this applies to m and classifier C2.

In the following, we will show how n corresponds to the variance and uncertainty of classifier C1.

Classifier variance can be quantified with the precision skj of the corresponding Dirichlet distributions, which is

the sum of all elements in αk
j for each j = 1, ..., 3. In general, of course, for different values of j the precision can

differ. However, in the example we consider here, for simplicity it is the same for all j = 1, ..., 3 and therefore
can be regarded as a measure for the classifier’s variance. The precision, sometimes also termed as concentration
parameter, determines how concentrated the categorical samples are around the Dirichlet distribution’s expec-
tation mk

j . The higher the precision, the closer the categorical samples, i.e. the classifier outputs, are to the
expectation and thus the lower is the classifier’s variance.

Classifier uncertainty can be described by the entropies of the modeling Dirichlet distributions’ expectations mk
j

for j = 1, ..., 3. Again, in general the entropies of the expectations can be different for different values of j, but
due to the chosen example parameters the expectations’ entropies are equal for j = 1, ..., 3. Therefore, we can
regard this mean entropy as the mean entropy of the modeled classifier. The lower it is, the lower is the average
uncertainty of the respective classifier.

If we increase n while a remains fixed, the precision of C1’s modeling Dirichlet distributions obviously increases,
implying a lower variance of classifier C1. In addition, its mean entropy decreases, which we show in the following.

The expectation of classifier C1 for j = 1 is m1
1 = ( a+n3a+n ,

a
3a+n ,

a
3a+n ). Thus, its entropy is
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Hm1
1

= −
(
a+ n

3a+ n
· log

(
a+ n

3a+ n

)
+

a

3a+ n
· log

(
a

3a+ n

)
+

a

3a+ n
· log

(
a

3a+ n

))
(B.28)

= − 1

3a+ n
((a+ n) · log (a+ n)− (a+ n) · log (3a+ n) + a · log (a)− a · log (3a+ n) (B.29)

+ a · log (a)− a · log (3a+ n))

= − 1

3a+ n
(a · log (a+ n) + n · log (a+ n)− a · log (3a+ n)− n · log (3a+ n) (B.30)

+ a · log (a)− a · log (3a+ n) + a · log (a)− a · log (3a+ n))

= − 1

3a+ n
(a · (log (a+ n)− log (3a+ n) + log (a)− log (3a+ n) + log (a)− log (3a+ n)) (B.31)

+ n · (log (a+ n)− log (3a+ n)))

= − 1

3a+ n

(
a · log

(
a2(a+ n)

(3a+ n)3

)
+ n · log

(
a+ n

3a+ n

))
. (B.32)

Differentiating Hm1
1

w.r.t. n yields

H′m1
1
(n) =

a
(

log
(
a2(a+n)
(3a+n)3

)
− 3 log

(
a+n
3a+n

))

(3a+ n)2
. (B.33)

The derivative H′
m1

1
(n) is negative for all a, n > 0.

Proof:

H′m1
1
(n) =

a
(

log
(
a2(a+n)
(3a+n)3

)
− 3 log

(
a+n
3a+n

))

(3a+ n)2
< 0 (B.34)

⇔ log

(
a2(a+ n)

(3a+ n)3

)
− 3 log

(
a+ n

3a+ n

)
< 0 (B.35)

⇔ log

(
a2(a+ n)

(3a+ n)3

)
− log

(
(a+ n)3

(3a+ n)3

)
< 0 (B.36)

⇔ log

(
a2(a+ n)

(3a+ n)3
· (3a+ n)3

(a+ n)3

)
< 0 (B.37)

⇔ log

(
a2

(a+ n)2

)
< 0 (B.38)

⇔ a2

(a+ n)2
< 1 (B.39)

⇔ a2 < (a+ n)2 (B.40)

⇔ a < a+ n (B.41)

⇔ 0 < n (B.42)

�

Hence, Hm1
1

is decreasing if n increases, which means that higher values for n decrease the mean uncertainty
of classifier C1. Since higher values for n lead to a higher fusion impact of classifier C1 and higher uncertainty
reduction of the fused distribution, this means that a low variance and a low uncertainty of a classifier increase
its fusion impact and uncertainty reduction.

If we instead increase a while n remains fixed, again the precision of C1’s modeling Dirichlet distributions
increases. The variance of classifier C1 thus decreases. In contrast, its mean entropy increases, which can be
shown if we differentiate the mean entropy w.r.t. a,
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H′m1
1
(a) =

−n
(

log
(
a2(a+n)
(3a+n)3

)
− 3 log

(
a+n
3a+n

))

(3a+ n)2
(B.43)

The derivative H′
m1

1
(a) is positive for all a, n > 0.

Proof:

H′m1
1
(a) =

−n
(

log
(
a2(a+n)
(3a+n)3

)
− 3 log

(
a+n
3a+n

))

(3a+ n)2
> 0 (B.44)

⇔ log

(
a2(a+ n)

(3a+ n)3

)
− 3 log

(
a+ n

3a+ n

)
< 0 (B.45)

⇔ log

(
a2(a+ n)

(3a+ n)3

)
− log

(
(a+ n)3

(3a+ n)3

)
< 0 (B.46)

⇔ log

(
a2(a+ n)

(3a+ n)3
· (3a+ n)3

(a+ n)3

)
< 0 (B.47)

⇔ log

(
a2

(a+ n)2

)
< 0 (B.48)

⇔ a2

(a+ n)2
< 1 (B.49)

⇔ a2 < (a+ n)2 (B.50)

⇔ a < a+ n (B.51)

⇔ 0 < n (B.52)

�

Consequently, in addition to a decreased variance, the mean entropy Hm1
1

and with it the classifier’s uncertainty
increases if we increase a and keep n fixed. Accordingly, decreasing a while n remains fixed leads to a decreased
precision and hence an increased variance, while the mean entropy and with it the classifier’s uncertainty de-
creases. Since according to (B.27) a (and b for classifier C2) does not affect the fusion behavior, a classifier with
a low variance and a high uncertainty thus has the same fusion impact as a classifier with a high variance and a
low uncertainty. Regarding fusion, variance and uncertainty cancel out each other.

B.3 Influence of Classifier Bias on the Fusion Behavior

The Independent Fusion Model does not only consider the individual classifiers’ variance and uncertainty for
fusion but also their potential biases. The bias of a classifier terms the extent to which the average prediction of
the classifier deviates from the true class label. A classifier Ck is biased if for its Dirichlet parameters it applies
that argmax(αk

j ) 6= j for some class j. As a consequence, also for the Dirichlet’s categorical expectation mk
j it

applies that argmax(mk
j ) 6= j. Hence, on average, the classifier would misclassify class j as another class.

The example classifiers introduced in Section B.2 can be modified in order to show how biased classifiers are fused.
Accordingly, in the following we derive the fusion rule for classifiers C1 and C2 with parameters α1

1 = (a+n, a, a)
for ti = 1, α1

2 = (a, a + n, a) for ti = 2, and α1
3 = (a, a, a + n) for ti = 3 for C1 and α2

1 = (b, b + m, b),
α2

2 = (b+m, b, b), and α2
3 = (b, b, b+m) for C2 with a, b, n,m > 0. C2 is a biased classifier; on average it predicts

class 2 if the true label is ti = 1 and class 1 if ti = 2.

Given these model parameters, for ti = 1 (B.21) can be transformed to:

p(ti = 1|xi,α1) = (x1i 1)a+n−1(x1i 2)a−1(x1i 3)a−1(x2i 1)b−1(x2i 2)b+m−1(x2i 3)b−1 (B.53)

= (x1i 1)n(x2i 2)m (x1i 1x
1
i 2x

1
i 3)a−1(x2i 1x

2
i 2x

2
i 3)b−1︸ ︷︷ ︸

constant

(B.54)

∝ (x1i 1)n(x2i 2)m (B.55)
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Equivalently, for ti = 2 and ti = 3 we get:

p(ti = 2|xi,α2) ∝ (x1i 2)n(x2i 1)m (B.56)

p(ti = 3|xi,α3) ∝ (x1i 3)n(x2i 3)m (B.57)

As can be seen, if classifier C2 assigns a high probability to class 1, i.e. x2i 1 is high, our model interprets this
as evidence for ti = 2. Without having learned the classifier’s bias inherent in the learned Dirichlet parameters,
high values for x2i 1 would however be evidence for ti = 1. In particular, this would be the case if Independent
Opinion Pool was used.

C MORE DETAILS ON THE CORRELATED FUSION MODEL AND THE
CORRELATED DIRICHLET DISTRIBUTION

In the proposed Correlated Fusion Model we jointly model all classifiers’ output distributions with a new cor-
related Dirichlet distribution, which we introduce in Section 3.3.1. Section C.1 shows some examples of the
proposed distribution, which were omitted in the manuscript for brevity. Section C.2 presents a more intuitive
interpretation of the correlated Dirichlet distribution as a pairwise combination of 3 Dirichlet distributions. In
Section C.3 we additionally show a detailed version of the CFM’s graphical model including all latent variables
of the correlated Dirichlet distribution also for K > 2 classifiers. In Section C.4 we give additional information
on Gibbs Sampling for parameter inference and fusion with the CFM, including the derivation of the conditional
distributions required in Gibbs Sampling for parameter inference with the CFM.

C.1 Examples of the Correlated Dirichlet Distribution

In Section 3.3.1 we introduce the correlated Dirichlet distribution for jointly modeling multiple classifiers’ cate-
gorical output distributions. While previous generalizations of the Dirichlet distribution such as the generalized
Dirichlet distribution (Connor and Mosimann, 1969; Wong, 1998) or the work of Linderman et al. (2015) fo-
cused on more flexible correlations between individual random vector entries x1, ..., xJ of a Dirichlet variate x,
the correlated Dirichlet distribution can model correlations between two random vectors x1 = (x11, . . . , x

1
J) and

x2 = (x21, . . . , x
2
J) with arbitrary marginal Dirichlet distributions. Figures C.5 and C.6 show four examples

of correlated Dirichlet distributions with different marginal distributions and correlations. The shown examples
demonstrate that the correlated Dirichlet can model different or equal marginal Dirichlet distributions for x1 and
x2 and correlations between 0 (Figure C.5(a)) and 1 (Figure C.6(b)). In the figures, rjj names the correlation
in the j-th dimension of the correlated Dirichlet distribution, thus the correlation between x1j and x2j . As Figure
C.6(a) shows, the correlation can also differ for different dimensions of the correlated Dirichlet distribution.

C.2 The Correlated Dirichlet Distribution as a Pairwise Combination of 3 Dirichlet
Distributions

The correlated Dirichlet distribution can also be constructed as a pairwise combination of three independent
Dirichlet distributions, which might serve as a more intuitive interpretation of the correlated Dirichlet distribu-
tion.

To show this we transform the 3J independent gamma-distributed random variables A1
1, . . . , A

1
J , A2

1, . . . , A
2
J ,

D1, . . . , DJ into three independent gamma- and three independent Dirichlet-distributed random variables
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(a) α1 = (2, 5, 2), α2 = (2, 7, 2), δ = (0.01, 0.01, 0.01) → r11 = 0.0, r22 = 0.0, r33 = 0.0

[1, 0, 0] [0, 1, 0]

[0, 0, 1]

Dirichlet(x1; 2, 2, 3)

0.0

1.2

2.4

3.6

4.8

6.0

[1, 0, 0] [0, 1, 0]

[0, 0, 1]

Dirichlet(x2; 1, 1, 2)

0.0

1.2

2.4

3.6

4.8

6.0

0 0.2 0.4 0.6 0.8 1

x1
1

0

0.2

0.4

0.6

0.8

1

x
2 1

0 0.2 0.4 0.6 0.8 1

x1
2

0

0.2

0.4

0.6

0.8

1

x
2 2

0 0.2 0.4 0.6 0.8 1

x1
3

0

0.2

0.4

0.6

0.8

1

x
2 3

0.0

1.5

3.0

4.5

6.0

7.5

9.0

0.0

1.5

3.0

4.5

6.0

7.5

9.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(b) α1 = (2, 2, 3), α2 = (1, 1, 2), δ = (0.4, 0.4, 0.9) → r11 = 0.26, r22 = 0.24, r33 = 0.29

Figure C.5: Marginal and joint densities of correlated Dirichlet distributions with selected parameter values
leading to low correlations. The simplexes display the marginal Dirichlet distributions of x1 and x2, while the
joint densities of x1i and x2i , i = 1, . . . , 3, are shown for each dimension of the correlated Dirichlet distribution.
In (a) x1 and x2 are independent with dimension-wise correlations r11 = r22 = r33 = 0.0 between x1i and x2i and
different marginals. (b) shows different marginals with low correlations r11 = 0.26, r22 = 0.24, r33 = 0.29. The
joint density plots were created with kernel density estimation based on 107 samples.
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(a) α1=(10, 50, 20), α2=(5, 25, 20), δ=(0.01, 15, 19.9) → r11=0.07, r22=0.59, r33=0.78
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(b) α1 = (3, 7, 5), α2 = (3, 7, 5), δ = (2.9, 6.9, 4.9) → r11 = 0.97, r22 = 0.98, r33 = 0.98

Figure C.6: Marginal and joint densities of correlated Dirichlet distributions with selected parameter values.
The simplexes display the marginal Dirichlet distributions of x1 and x2, while the joint densities of x1i and x2i ,
i = 1, . . . , 3, are shown for each dimension of the correlated Dirichlet distribution. (a) shows different marginals
with different dimension-wise correlations r11 = 0.07, r22 = 0.59, r33 = 0.78 between x1i and x2i . (b) shows equal
marginals with correlations close to 1, r11 = 0.97, r22 = 0.98, r33 = 0.98. The joint density plots were created
with kernel density estimation based on 107 samples.
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U1, U2, U3,W1,W2,W3 with

U1 =

J∑

i=1

A1
i , U1 ∼ Gamma(υ1, 1)

U2 =

J∑

i=1

A2
i , U2 ∼ Gamma(υ2, 1)

U3 =

J∑

i=1

Di, U3 ∼ Gamma(υ3, 1)

W1i =
A1
i∑J

j=1A
1
j

, i = 1, . . . , J, W1 ∼ Dirichlet(α1
1 − δ1, . . . , α1

J − δJ)

W2i =
A2
i∑J

j=1A
2
j

, i = 1, . . . , J, W2 ∼ Dirichlet(α2
1 − δ1, . . . , α2

J − δJ)

W3i =
Di∑J
j=1Dj

, i = 1, . . . , J, W3 ∼ Dirichlet(δ1, . . . , δJ)

(C.58)

with

υ1 =

J∑

i=1

α1
i − δi, υ2 =

J∑

i=1

α2
i − δi υ3 =

J∑

i=1

δi. (C.59)

With these definitions we can then rewrite construction (4) as

x1 =
U1

U1 + U3
·W1 +

U3

U1 + U3
·W3 = X ′W1 + (1−X ′)W3

x2 =
U2

U2 + U3
·W2 +

U3

U2 + U3
·W3 = Y ′W2 + (1− Y ′)W3.

(C.60)

Thus, the correlated Dirichlet distribution can be constructed as a pairwise combination of the three Dirichlet
distributions Dirichlet(α1

1 − δ1, . . . , α1
J − δJ), Dirichlet(α2

1 − δ1, . . . , α2
J − δJ), and Dirichlet(δ1, . . . , δJ). If the

correlation parameters δ1, . . . , δJ tend to 0, weights X ′ and Y ′ tend to 1 and we obtain two independent Dirichlet
distributions for x1 and x2, Dirichlet(α1

1 − δ1, . . . , α1
J − δJ) and Dirichlet(α2

1 − δ1, . . . , α2
J − δJ), which is then

Dirichlet(α1
1, . . . , α

1
J) and Dirichlet(α2

1, . . . , α
2
J). If instead the correlation parameters tend to the marginal pa-

rameters, weights X ′ and Y ′ tend to 0 and x1 and x2 follow the same marginal Dirichlet distribution and have
a correlation close to 1.

C.3 Detailed Graphical Model of the Correlated Fusion Model for K > 2 Classifiers

Figure C.7 shows the graphical model of the CFM given in Figure 1(c) for K > 2 classifiers. αk
j holds the marginal

parameters of classifier Ck’s Dirichlet model if ti = j. δkmj holds the correlation parameters that determine the
pairwise correlations between classifier Ck and all other classifiers Cm, m = 1, ...,K,m 6= k if ti = j. Therefore,
it applies that δkmj l

= δmkj l
and equivalently Dkm

j il
= Dmk

j il
. δaj holds the common correlation parameters

between all classifiers C1, ..., Ck if ti = j. Thus, note that for the special case of K = 2 classifiers δj only consists
of δaj .

C.4 Gibbs Sampling

The Correlated Fusion Model requires Gibbs Sampling for parameter inference (Section 3.3.2), i.e. inference of
the posterior distribution over parameters α and δ given observed classifier outputs x and their true labels t,
P (α, δ|x, t), and fusion, i.e. inference of the posterior distribution over the true label ti conditioned on the base
distributions xk

i and the learned model parameters α and δ, P (ti|x1
i , ...,x

K
i ,α, δ) (Section 3.3.3).

Inferring the parameters of the CFM requires inferring the parameters of J J-dimensional correlated Dirich-
let distributions, where the j-th correlated Dirichlet distribution jointly models all Ij categorical distributions
x1
i , ...,x

K
i with ti = j.
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Figure C.7: The graphical model of the proposed Correlated Fusion Model for K > 2 classifiers. Note that
δkmj l

= δmkj l
and equivalently Dkm

j il
= Dmk

j il
.

The conditional distributions required for Gibbs Sampling for a single correlated Dirichlet distribution over
K = 2 J-dimensional random variables x1 and x2 can be obtained with a change of variables with xk

l defined
as in (4), ak

j = αk
j − δj , ck =

∑J
l=1A

k
j l
, zl = Dl for l = 1, ..., J, k = 1, 2:

logP (akj l|Θ−akj l
) ∝ (ξ − 1) log(akj l)− ξa

k
j l
− Ij log(Γ(akj l)) (C.61)

+ akj l

Ij∑

i=1

log

(
xki l

(
cki +

J∑

n=1

zni

)
− zli

)
, k = 1, 2, l = 1, ..., J

logP (δj l|Θ−δjl) ∝ (ξ − 1) log(δj l)− ξδj l − Ij log(Γ(δj l)) (C.62)

+ δj l

Ij∑

i=1

log(zli), l = 1, ..., J

logP (ck|Θ−ck) ∝
Ij∑

i=1

[
(J − 1) log

(
cki +

J∑

n=1

zni

)
(C.63)

+

J∑

n=1

[
(akj n − 1) log

(
xki n

(
cki +

J∑

m=1

zmi

)
− zni

)]
− cki

]
k = 1, 2

logP (zl|Θ−zl
) ∝

Ij∑

i=1

[
(J − 1)

2∑

k=1

log

(
cki +

J∑

n=1

zni

)
(C.64)

+

2∑

k=1

[ J∑

n=1

[
(akj n − 1) log

(
xki n

(
cki +

J∑

m=1

zmi

)
− zni

)]]

+ (δj l − 1) log(zli)− zli
]
, l = 1, ..., J

with Θ = {x1,x2, a1j1, ..., a
1
j J
, a2j1, ..., a

2
j J
, δj1, ..., δjJ , c

1, c2, z1, ...,zJ}. Note that for mathematical simplicity

we sample from ak
j = αk

j − δj instead of directly sampling from αk
j . Therefore, after sampling, the marginal

parameters αk
j must be calculated from ak

j .

With the conditional distributions derived above a Gibbs Sampler can be implemented that can be used to infer
the parameters of J correlated Dirichlet distributions in the CFM if we consider K = 2 classifiers. Again, note
that for each correlated Dirichlet distribution to be inferred we only consider the Ij categorical classifier outputs
x1
i ,x

2
i of all examples for which ti = j.
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Figure D.8: Fusion performances on simulated data of two biased classifiers in terms of mean entropy and log-
loss. We compare the performance of base classifiers C1, C2, the three fusion methods IOP, IFM, and CFM, and
the meta classifiers M1, M2 for five levels of correlation between the base classifiers. The marginal parameters
of the two biased classifiers are α1 = α2 = ((7, 5, 5), (5, 5, 7), (5, 7, 5)). Standard deviations are shown as error
bars.

However, it is much more efficient to implement inference using standard inference tools such as JAGS (Plummer
et al., 2003), which allow sampling given a definition of the generative model of the CFM (as shown in Figure
1(c) and C.7). Thus, for efficiency reasons, as well for parameter inference as for inferring the fused distribution
P (ti|x1

i , ...,x
K
i ,α, δ) we resort to Gibbs Sampling using JAGS. Since xki l in the CFM is a deterministic variable,

and inference tools such as JAGS do not allow deterministic variables to be observed, as commonly done,
we inserted another random variable into the CFM. This additional variable xki

∗
l is normally distributed with

xki
∗
l ∼ N (xki l, ε) and ε = 10−4.

D MORE DETAILS ON EVALUATION

Here, we provide additional information on the evaluations presented in Section 4 of the paper and show further
evaluations on additional data sets. In Section D.1, we evaluate the CFM on an additional simulated data set
consisting of biased base classifiers. Section D.2 provides detailed information on the real data sets in Section
4.2. In Section D.3 we additionally evaluate the CFM on a real data set consisting of the output distributions of
K = 3 classifiers, and in Section D.4 we provide details on the comparison of the CFM and the approach of Pirs
and Strumbelj (2019) and additionally compare them in terms of required time for fusion. Finally, in Section
D.5, we provide the CFM’s parameters used for generating the simulated data sets and inferred for the real data
sets.

D.1 Additional Evaluations on Simulated Biased Classifiers

In Section 4.1, we show the normative fusion behavior of the CFM on two simulated data sets. The first data set
was generated with marginal parameters leading to IOP fusion for zero correlation, the second one leads to higher
uncertainty reduction through fusion due to decreased classifier variance and uncertainty. Since the CFM also
considers potential biases of classifiers for fusion, here we additionally show the respective fusion performances
in terms of entropy and log-loss for two biased base classifiers, which on average predict class 3 if ti = 2 and
vice versa. For the resulting third simulated data set (SIM 3), in Figure D.8 we see similar results as for the
other simulated data sets in Figure 3(a) and (b): less uncertainty reduction for higher correlations, no fusion
gain for r = 1, and best performance of the CFM compared to other fusion methods. In addition, for the biased
data set, we observe a performance decline of IOP compared to the base classifiers according to log-loss, since
IOP reinforces the mainly wrong classifications. In contrast, the IFM and CFM have learned the bias and thus
compensate for it. This demonstrates the superiority of learning classifier models over ad-hoc methods.
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D.2 Detailed Information on the Real Data Sets in Section 4.2

As stated in Section 4.2, we evaluated the CFM on 5 real data sets, Bookies A, Bookies B, DNA A, DNA B,
DNA C. In the following we give detailed information on these data sets.

Bookies A and Bookies B are each constructed from the odds of two bookmakers for football matches. The
target variable has three possible outcomes (home, draw, away), and for each match, the odds were transformed
to a 3-dimensional categorical probability distribution by normalizing their reciprocals. Thus, each bookie is
considered as a base classifier and each example in the data sets is composed of two categorical distributions
and a true class label. Bookmakers’ predictions were also used for evaluations in the related work by Pirs and
Strumbelj (2019).

Bookies A contains predictions of two bookmakers (B365 and BW) for football matches of the English Premier
League4 from 14 seasons from 2005 to 2019. Excluding matches with missing odds, the data set comprises 5317
examples in total. The correlation between the bookmakers’ predictions is approximately 1; it ranges from 0.955
to 0.993 in different dimensions and for different values of ti.

Bookies B consists of the predictions of two bookmakers (B365 and BW) for matches of the German Bundesliga5

from 14 seasons from 2005 to 2019. Similar to the Bookies A data set, we excluded matches with missing odds,
totaling to 4278 matches. The correlation between the bookmakers’ predictions is approximately 1; it ranges
from 0.955 to 0.996 in different dimensions and for different values of ti.

The DNA data set from the StatLog project6, which was also chosen for evaluations in the related work by
Pirs and Strumbelj (2019) and Kim and Ghahramani (2012), was used to construct three more data sets for
evaluating the CFM. The original DNA data set contains DNA sequences in which splice junctions are detected.
It consists of 3188 examples with 60 attributes and a target variable with J = 3 possible outcomes. For each
data set DNA A, DNA B, DNA C, we trained two different classifiers on this data set. Their categorical output
distributions on the corresponding test data set form the respective data set DNA A, DNA B, DNA C.

For DNA A, we trained two highly correlated classifiers by using the same classification method (kNN) and
the same training data but different hyperparameters (k = 120 and k = 150). For training we used 10-fold
cross-validation. The output distributions in the 10 test splits form the DNA A data set, totaling to 3188
examples. The correlation between both base classifiers is approximately 1; it ranges from 0.962 to 0.986 for
different dimensions and values for ti.

For DNA B, we trained two classifiers by using the same classification method (kNN, k = 50) but different
training data. Each classifier was trained on 5% of the DNA data set, their classifications on the remaining 90%
of the data (2869 examples) formed the DNA B data set. The correlation between both base classifiers ranges
from 0.463 to 0.709 for different dimensions and values for ti.

DNA C was created by training two different classifiers, one kNN classifier (k = 50) and one Random Forest
classifier, on the same training set composed of 5% of the DNA data set. The classifiers’ output distributions on
the remaining 95% of the data (3030 examples) construct the DNA C data set.

D.3 Additional Evaluations on a Real Data Set Consisting of K = 3 Classifiers’ Outputs

In Section 4.2 we evaluated the CFM on five real data sets. Since all of these data sets consist of the output
distributions of only K = 2 classifiers, here we additionally evaluate the CFM on Bookies C, a data set consisting
of K = 3 classifiers. Bookies C is equivalent to Bookies A but additionally includes a third bookmaker’s (IW)
predictions. Thus, it contains the predictions of three bookmakers (B365, BW, IW) for football matches of the
English Premier League4 from 14 seasons from 2005 to 2019. As Bookies A, excluding matches with missing odds,
the data set comprises 5317 examples in total. Also, the correlation between all three bookmakers’ predictions
is approximately 1.

Figure D.9 shows the same behavior as for the data sets Bookies A and B in Figure 4. The CFM’s performance
is equal to the performance of all three meta classifiers. Thus, also when fusing three highly correlated classifiers

4https://www.football-data.co.uk/englandm.php
5https://www.football-data.co.uk/germanym.php
6https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Splice-junction+Gene+Sequences)
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Figure D.9: Fusion performances on the additional real data set Bookies C in terms of mean entropy and log-loss.
We compare the performance of base classifiers C1, C2, C3, the three fusion methods IOP, IFM, and CFM, and
the meta classifiers M1, M2, and M3. Standard deviations are shown as error bars.

fusion with the CFM causes no uncertainty reduction and no change in performance. Moreover, also for three
classifiers, the IFM and IOP perform worse than the CFM since they assume independence and overestimate
uncertainty reduction.

D.4 Comparison to the Approach of Pirs and Strumbelj

In Section 4.3 we compare the performance in terms of log-loss of the proposed CFM to the performance of the
only comparable model introduced by Pirs and Strumbelj (2019). For this, we use the code7 provided by Pirs
and Strumbelj (2019) and apply it to our data sets.

For the simulated data sets, we compare the Bayes optimal fusion performance of the CFM to the performance
of the model proposed by Pirs and Strumbelj (2019). For each simulated data set and correlation level, we
generated training sets consisting of 1500 examples (500 per class label) according to the generative model of the
CFM for learning the model parameters for Pirs’ model, fused the categorical distributions of the simulated data
sets described in Section 4.1, and compared the fusion performances to the ones of the CFM shown in Figure 3.
The results in Table D.2 show that the CFM outperforms Pirs’ model on all simulated data sets.

Note that Table D.2 not only shows the results given in Table 1 in the paper, but additionally shows the model
performances on SIM 1 r=0.25 , SIM 1 r=0.75 , SIM 2 r=0.25 , SIM 2 r=0.75 , which were left out for brevity in
the paper, and the model performances on the SIM 3 data set, we additionally included in the Supplementary
Material in Section D.1.

Also for the five real data sets in Section 4.2, Bookies A, Bookies B, DNA A, DNA B, DNA C, and the additional
data set Bookies C, which consists of the outputs of three instead of two classifiers (Section D.3), we compared
the performances of the CFM and Pirs’ model in terms of log-loss. We trained Pirs’ model on the same training
sets we used for inferring the CFM’s parameters and fused the distributions in the respective test sets accordingly.
As can be seen in Table D.2, also on all tested real data sets, the CFM outperforms Pirs and Strumbelj (2019).

7https://github.com/gregorp90/MM
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Table D.2: Comparison of the performances of the CFM and the model proposed by Pirs and Strumbelj (2019).
We compared performances in terms of log-loss on the simulated data sets SIM 1, SIM 2, SIM 3 with different
correlation levels and the six real data sets Bookies A, Bookies B, DNA A, DNA B, DNA C, Bookies C.

data set CFM (µ± σ) Pirs (µ± σ)
SIM 1 r=0.0 0.834± 0.067 0.915± 0.03
SIM 1 r=0.25 0.867± 0.07 0.925± 0.041
SIM 1 r=0.5 0.89± 0.065 0.938± 0.039
SIM 1 r=0.75 0.94± 0.066 0.955± 0.043
SIM 1 r=1.0 0.944± 0.065 0.96± 0.056
SIM 2 r=0.0 0.412± 0.085 0.582± 0.048
SIM 2 r=0.25 0.489± 0.076 0.607± 0.051
SIM 2 r=0.5 0.583± 0.092 0.66± 0.065
SIM 2 r=0.75 0.604± 0.082 0.687± 0.048
SIM 2 r=1.0 0.672± 0.058 0.717± 0.041
SIM 3 r=0.0 0.701± 0.098 0.836± 0.047
SIM 3 r=0.25 0.782± 0.073 0.869± 0.039
SIM 3 r=0.5 0.836± 0.074 0.887± 0.04
SIM 3 r=0.75 0.844± 0.082 0.901± 0.057
SIM 3 r=1.0 0.865± 0.063 0.893± 0.043
Bookies A 1.056± 0.067 1.165± 0.035
Bookies B 1.108± 0.085 1.176± 0.052
DNA A 0.169± 0.078 0.177± 0.021
DNA B 0.301± 0.067 0.421± 0.043
DNA C 0.298± 0.178 0.351± 0.092
Bookies C 1.056± 0.056 1.297± 0.046

D.4.1 Comparison of Required Time for Fusion

As we discuss in Section 5, one limitation of the proposed algorithm for inference in the CFM is slow fusion as a
result of Gibbs Sampling. Therefore, in addition to their performance we also compared the CFM to the model
by Pirs and Strumbelj (2019) in terms of required time for fusion. Fusing all 60 base distributions in the first
random test split of data set DNA B requires 940.92 seconds when using the CFM with 120 parallel chains with
175.000 samples each. Fusing the same test split with the model by Pirs and Strumbelj takes only 3.53 seconds.
However, note that we intentionally decided to use a large number of samples to guarantee correctness of the
fusion results, whereas time efficiency is not in the scope of this paper but left for future work. We conclude
that the CFM should be chosen if correct fusion is the goal. If instead fast fusion is the goal the method by Pirs
and Strumbelj can be selected with the risk of incorrect fusion and performance losses.

D.5 Model Parameters Used for Evaluation

We evaluated the Correlated Fusion Model on simulated as well as on real data sets. In the following, we present
the model parameters that we chose for generating the simulated data sets (Section D.5.1) and that were inferred
for the real data sets (Section D.5.2).

D.5.1 Parameters for the Simulated Data Sets

The parameters we used for generating the simulated data sets used for evaluation in Section 4.1 are presented
in Table D.3 for the first simulated data set (SIM 1), Table D.4 for the second simulated data set (SIM 2), and
Table D.5 for the third simulated data set (SIM 3), which was not shown in the paper but additionally in Section
D.1. Note that the shown correlations can only be generated approximately with the presented parameters.

D.5.2 Parameters for the Real Data Sets

The parameters of the Correlated Fusion Model that we inferred for the five real data sets Bookies A, Bookies
B, DNA A, DNA B, DNA C are presented in Table D.6.
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For the three data sets Bookies A, Bookies B, DNA A, the correlation parameters δ are very close to the marginal
parameters α1 and α2, modeling a correlation close to r = 1 between the two classifiers.

In contrast, for the data sets DNA B and DNA C, we see that the correlation parameters δ differ more from the
marginal parameters α1 and α2. This reflects the lower correlation between the corresponding base classifiers
in these data sets.

Table D.7 shows the parameters of the additional real data set Bookies C, which consists of the predictions of
three bookmakers. Since all three are highly correlated, the common correlation parameters δa are close to the
marginal parameters in α1, α2, α3, while the pairwise correlation parameters are close to 0.

Table D.3: Model parameters of the Correlated Fusion Model that we used to generate the first simulated data
set (SIM 1) for five correlation levels from r ≈ 0 to r ≈ 1. α1 holds the marginal Dirichlet parameters of classifier
C1, α2 the ones of C2, and δ the correlation parameters of the correlated Dirichlet distribution. The j-th row of
each parameter matrix holds the parameters modeling the classifier outputs of examples with true label ti = j.

correlation α1 α2 δ

r ≈ 0.0




3 2 2

2 3 2

2 2 3







3 2 2

2 3 2

2 2 3







0.1 0.1 0.1

0.1 0.1 0.1

0.1 0.1 0.1




r ≈ 0.25




3 2 2

2 3 2

2 2 3







3 2 2

2 3 2

2 2 3







0.75 0.5 0.5

0.5 0.75 0.5

0.5 0.5 0.75




r ≈ 0.5




3 2 2

2 3 2

2 2 3







3 2 2

2 3 2

2 2 3







1.5 1 1

1 1.5 1

1 1 1.5




r ≈ 0.75




3 2 2

2 3 2

2 2 3







3 2 2

2 3 2

2 2 3







2.25 1.5 1.5

1.5 2.25 1.5

1.5 1.5 2.25




r ≈ 1.0




3 2 2

2 3 2

2 2 3







3 2 2

2 3 2

2 2 3







2.9 1.9 1.9

1.9 2.9 1.9

1.9 1.9 2.9



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Table D.4: Model parameters of the Correlated Fusion Model that we used to generate the second simulated
data set (SIM 2) for five correlation levels from r ≈ 0 to r ≈ 1. α1 holds the marginal Dirichlet parameters of
classifier C1, α2 the ones of C2, and δ the correlation parameters of the correlated Dirichlet distribution. The
j-th row of each parameter matrix holds the parameters modeling the classifier outputs of examples with true
label ti = j.

correlation α1 α2 δ

r ≈ 0.0




12 8 8

8 12 8

8 8 12







12 8 8

8 12 8

8 8 12







0.1 0.1 0.1

0.1 0.1 0.1

0.1 0.1 0.1




r ≈ 0.25




12 8 8

8 12 8

8 8 12







12 8 8

8 12 8

8 8 12







3 2 2

2 3 2

2 2 3




r ≈ 0.5




12 8 8

8 12 8

8 8 12







12 8 8

8 12 8

8 8 12







6 4 4

4 6 4

4 4 6




r ≈ 0.75




12 8 8

8 12 8

8 8 12







12 8 8

8 12 8

8 8 12







9 6 6

6 9 6

6 6 9




r ≈ 1.0




12 8 8

8 12 8

8 8 12







12 8 8

8 12 8

8 8 12







11.9 7.9 7.9

7.9 11.9 7.9

7.9 7.9 11.9



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Table D.5: Model parameters of the Correlated Fusion Model that we used to generate the third simulated data
set (SIM 3) presented in D.1 for five correlation levels from r ≈ 0 to r ≈ 1. α1 holds the marginal Dirichlet
parameters of classifier C1, α2 the ones of C2, and δ the correlation parameters of the correlated Dirichlet
distribution. The j-th row of each parameter matrix holds the parameters modeling the classifier outputs of
examples with true label ti = j.

correlation α1 α2 δ

r ≈ 0.0




7 5 5

5 5 7

5 7 5







7 5 5

5 5 7

5 7 5







0.1 0.1 0.1

0.1 0.1 0.1

0.1 0.1 0.1




r ≈ 0.25




7 5 5

5 5 7

5 7 5







7 5 5

5 5 7

5 7 5







1.75 1.25 1.25

1.25 1.25 1.75

1.25 1.75 1.25




r ≈ 0.5




7 5 5

5 5 7

5 7 5







7 5 5

5 5 7

5 7 5







3.5 2.5 2.5

2.5 2.5 3.5

2.5 3.5 2.5




r ≈ 0.75




7 5 5

5 5 7

5 7 5







7 5 5

5 5 7

5 7 5







5.25 3.75 3.75

3.75 3.75 5.25

3.75 5.25 3.75




r ≈ 1.0




7 5 5

5 5 7

5 7 5







7 5 5

5 5 7

5 7 5







6.9 4.9 4.9

4.9 4.9 6.9

4.9 6.9 4.9



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Table D.6: Model parameters of the Correlated Fusion Model that we inferred for the real data sets in Section 4.2.
α1 holds the marginal Dirichlet parameters of classifier C1, α2 the ones of C2, and δ the correlation parameters
of the correlated Dirichlet distribution. The j-th row of each parameter matrix holds the parameters modeling
the classifier outputs of examples with true label ti = j. Since for different train/test set splits, the inferred
parameters are slightly different, here we show the mean parameters over all five splits for all data sets.

data
set

α1 α2 δ

Bookies
A




6.460 3.365 2.847

5.860 4.018 4.149

3.877 3.459 4.638







7.150 3.781 3.262

6.706 4.572 4.801

4.464 3.922 5.281







6.426 3.343 2.823

5.833 3.993 4.123

3.853 3.435 4.612




Bookies
B




7.239 3.853 3.459

7.087 4.670 4.923

4.788 3.784 4.773







7.673 4.086 3.786

7.409 4.880 5.251

5.112 4.009 5.127







7.210 3.832 3.437

7.058 4.647 4.898

4.765 3.763 4.748




DNA
A




9.655 2.564 3.59

3.585 12.398 4.153

3.432 3.123 7.743







10.301 2.955 4.108

4.177 13.527 4.899

3.848 3.544 8.645







9.616 2.543 3.564

3.558 12.345 4.125

3.409 3.1 7.712




DNA
B




13.176 9.762 12.408

9.235 20.014 14.673

7.141 8.442 16.428







16.403 9.584 14.081

11.073 21.295 16.027

7.840 8.335 16.226







9.004 6.664 7.163

5.838 13.53 8.122

4.968 5.453 10.163




DNA
C




17.313 10.022 19.258

12.478 20.759 22.879

8.517 7.881 21.761







10.359 4.097 9.337

4.335 9.307 9.938

5.528 4.838 19.167







8.014 4.000 8.936

4.237 7.569 8.836

4.989 3.790 14.264




Table D.7: Model parameters of the Correlated Fusion Model that we inferred for the additional real data set
Bookies C. α1 holds the marginal Dirichlet parameters of classifier C1, α2 the ones of C2, and α3 the ones
of C3. The δ parameters hold the correlation parameters of the correlated Dirichlet distribution. δ12 defines
the pairwise correlation between C1 and C2, δ13 between C1 and C3, and δ23 between C2 and C3. δa holds
the common correlation parameters for all three classifiers. The j-th row of each parameter matrix holds the
parameters modeling the classifier outputs of examples with true label ti = j. Since for different train/test set
splits, the inferred parameters are slightly different, here we show the mean parameters over all five splits for all
data sets.

data
set

α1 α2 α3

Bookies
C




6.456 3.363 2.845

5.856 4.016 4.148

3.872 3.455 4.631







7.14 3.775 3.258

6.694 4.564 4.792

4.456 3.914 5.27







6.033 3.343 2.573

5.484 3.757 3.814

3.594 3.235 4.329




δ12 δ13 δ23 δa


0.448 0.260 0.288

0.394 0.277 0.349

0.298 0.234 0.319







0.037 0.024 0.025

0.031 0.025 0.03

0.027 0.025 0.031







0.034 0.025 0.026

0.031 0.026 0.027

0.028 0.023 0.027







5.931 3.049 2.5

5.392 3.681 3.731

3.514 3.166 4.245





