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Abstract

In this paper, we estimate free energy, aver-
age mutual information, and minimum mean
square error (MMSE) of a linear model un-
der the assumption that the source is gen-
erated by a Markov chain. Our estimates
are based on the replica method in statistical
physics. We show that under the MMSE esti-
mator, the linear model with Markov sources
is decoupled into single-input AWGN chan-
nels with state information available at both
encoder and decoder where the state distribu-
tion follows the stationary distribution of the
stochastic matrix of Markov chains. Numer-
ical results show that the free energies and
MSEs obtained via the replica method are
closely approximate to their counterparts via
MCMC simulations.

1 Introduction

In the canonical compressed sensing problem, the pri-
mary goal is to reconstruct an n-dimensional vector
X = (X1, X2, · · · , Xn) with independent and identi-
cal prior from an m-dimensional vector of noisy lin-
ear observations Y = (Y1, Y2, · · · , Ym) of the form
Yk = 〈Φk,X〉 + Wk, k = 1, 2, · · · ,m, where {Φk}
is a sequence of n-dimensional measurement vectors,
{Wk} is a sequence of standard Gaussian random vari-
ables, and 〈·, ·〉 denotes the Euclidean inner product
between vectors. In this paper, under the assump-
tion that X has a Markov or hidden Markov prior, we
wish to estimate the asymptotic mutual information
limn→∞

1
nI(X;Y ) and the MMSE limn→∞

1
nE[‖X −

E[X|Y ,Φ]‖2]. Our estimates are based on the replica
method which was developed originally to study mean
field approximations in spin glasses (Edwards and An-
derson, 1975). Although this method lacks of rigorous
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mathematical proof in some particular parts, it has
been widely accepted as an analytic tool and utilized
to investigate a variety of problems in statistics, infor-
mation processing, and coding (Bereyhi et al., 2019).

1.1 Related Work

In recent years, there has been the progress on a co-
herent mathematical theory of the replica and inter-
polation method in statistical physics of spin glasses
(Edwards and Anderson, 1975). These methods have
been fruitfully extended and adapted to the problems
of interest in a wide range of applications in Bayesian
inferences, multiuser communications, and theoretical
computer science (Tanaka, 2002; Guo et al., 2005).
The results of replica method have been rigorously in a
number of settings in compressed sensing. One exam-
ple is given by message passing on matrices with spe-
cial structure, such as sparsity (Guo and Wang, 2006;
Montanari and Tse, 2006; Baron et al., 2010; Korada
and Macris, 2010; Barbier et al., 2020) or spatial cou-
pling (Kudekar and Pfister, 2010; Krzakala et al., 2012;
Donoho et al., 2011). In (Rangan et al., 2012), Ran-
gan et al. studied the asymptotic performance of a
class of Maximize-A-Posterior (MAP) estimators. Us-
ing standard large deviation techniques, the authors
represented the MAP estimator as the limit of an
indexed MMSE estimator’s sequence. Consequently,
they determined the estimator’s asymptotics employ-
ing the results from (Guo and Verdu, 2005) and justi-
fied the decoupling property of MAP estimators under
Replica Symmetry (RS) assumption for an i.i.d. mea-
surement matrix Φ. The asymptotic performance for
the MAP estimator where the RS assumption does not
hold but satisfies some looser symmetric assumptions,
called Replica Symmetry Breaking (RSB) is consid-
ered in (Bereyhi et al., 2019). Under the RSB assump-
tion with b steps of breaking (bRSB), the equivalent
noisy single-user channel is given in form of an input
term added by an impairment term. The impairment
term, moreover, is expressed as a sum of an indepen-
dent Gaussian random variable and b correlated non-
Gaussian interference terms.

Recently, there have been some works which aim to
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close the gap between mathematically rigorous proof
and results from the replica method. Reeves and Pfis-
ter considered the fundamental limit of compressed
sensing for i.i.d. signal distributions and i.i.d. Gaus-
sian measurement matrices (Reeves and Pfister, 2019).
Under some mild technical conditions, their results
show that the limiting mutual information and Min-
imum Mean Square Error (MMSE) are equal to the
values predicted by the replica method. Their proof
techniques are based on establishing relationships be-
tween mutual information and MMSE at finite n,m,
and extending obtained results in large system limits.
In (Barbier et al., 2019), Barbier et al. showed that
the results for Generalized Linear Models (GLM) and
i.i.d. sources stemming from the replica method are
indeed correct and imply the optimal value of both es-
timation and generalization error. The proof is based
on the adaptive interpolation method (Barbier and
Macris, 2017) which is an extension of interpolation
method developed by Guerra and Toninelli (Guerra
and Toninelli, 2002) in the context of spin glasses, with
an adaptive interpolation path. Recently, the exact
asymptotic expressions for the normalized mutual in-
formation and minimum mean-square-error (MMSE)
of sparse linear regression in the sub-linear sparsity
regime have been established by using the same ap-
proach (Truong, 2021b).

In all above research literature, the authors assume
that the source is independently and identically dis-
tributed (i.i.d.). In many practical applications, sam-
ples of input data may be dependent on each other,
e.g., Markov chains or hidden Markov models. There
were a few non-rigorous literatures handling Markov
chains using the replica method (Skantzos et al., 1999;
Takeda and Kabashima, 2011, 2010). However, to the
best of our knowledge, there exists no rigorously an-
alytic result which was developed based on replica-
related methods for these models. It looks hard to
apply the adaptive interpolation method looks for the
linear model with Markov sources since this method
requires that X1, X2, . . . , Xn are i.i.d. (or at least
i.i.d. block-by-block) to guarantee a fixed interpolat-
ing free energy at the final (k, t)-interpolation model
for each finite value of n (Barbier and Macris, 2017).
There exist some other works which proposed MSE
fundamental limits which can be achieved by practi-
cal Approximate Message Passing algorithms (AMP)
for the linear model with Markov or hidden Markov
sources (Schniter, 2010; Ma et al., 2019; Berthier et al.,
2020). AMP is initially proposed for sparse signal
recovery and compressed sensing (Kabashima, 2003;
Donoho, 2006; Candès and Wakin, 2008; Metzler et al.,
2016). AMP algorithms achieve state-of-the-art per-
formance for several high-dimensional statistical esti-
mation problems, including compressed sensing and

low-rank matrix estimation (Bayati and Montanari,
2011; Montanari and Venkataramanan, 2020).

1.2 Main Contributions

In this paper, based on the same replica assumptions
as (Guo and Verdu, 2005), we establish free energy,
mutual information, and MMSE for the linear model
with Markov sources. The same fundamental limits for
the linear model with hidden Markov signal priors were
characterized in (Truong, 2021a). When limiting to
the linear model with i.i.d. sources as case, we recover
Guo and Verdú’s results (Guo and Verdu, 2005), which
extends Tanaka work (Tanaka, 2002) to more general
alphabets. More specially, our main contributions are
as follows:

• Using the replica method, we estimate the free
energy, the normalized mutual information in
the large system limit for the linear model with
Markov sources (cf. Claim 1).

• Using the replica method, we characterize MMSE
in the large system limit for the linear model
with Markov signal prior (cf. Claim 2). We
show that under the posterior mean estimator,
the linear model with Markov sources is decou-
pled into single-input AWGN channels with state
information available at both encoder and de-
coder where the state distribution follows the
left Perron-Frobenius eigenvector with unit Man-
hattan norm of the stochastic matrix of Markov
chains1.

• We show that the free energies and MSEs ob-
tained via the replica method are closely ap-
proximate to their counterparts achieved by the
well-known MCMC algorithm called Metropo-
lis–Hastings algorithm (cf. Section 4).

Compared with the linear model with i.i.d. sources
(Guo and Verdu, 2005), we need to deal with some
new technical challenges related to the estimation of
the derivative of Perron-Frobenius eigenvalue of non-
negative matrices. In this work, we develop a new
technique to estimate this derivative in the large sys-
tem limit.

1.3 Paper Organization

The problem setting is placed in Section 2, where
we introduce the system model, MMSE estimation,

1For any irreducible Markov process {Zn}∞n=1, the left
Perron-Frobenius eigenvector with unit Manhattan norm
is the stationary distribution of this Markov process, and
the Perron-Frobenius eigenvalue is equal to 1 (Lancaster
and Tismenetsky, 1985).
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free energy and replica method in statistical physics.
We also introduce some new concepts such as single-
symbol MMSE channel with state information, free
energy functions, and other related notations in this
section. Our main results are stated and proved in Sec-
tion 3. We apply our main results to estimate free en-
ergy, mutual information, and MMSE for some specific
Markov chains in Section 4, where we also compare our
obtained MMSEs with achievable MSEs by the clas-
sical Metropolis–Hastings algorithm in research liter-
ature. An outline of proof is given in Section 5 and
more detailed proofs can be found in (Truong, 2020).

1.4 Notation

Use [n] to denote the set {1, . . . , n}. Random vec-
tors and matrices are in bold letters. Expectations
with respect to “quenched” random variables (i.e., the
variables that are fixed by the realization of the prob-
lem) are denoted by E and those with respect to “an-
nealed” random variables (i.e., dynamical variables)
are denoted by Gibbs bracket 〈−〉 possibly with ap-
propriate subscripts. This choice follows the stardards
of statistical physics.

As standard literature, we define xn =
(x1, x2, · · · , xn)T to denote a vector of length n.
However, if the dimension of a vector x is clear from
context, we omit it for simplicity. Define two loss
functions l1 : R × R → R and l2 : R × R → R
as l1(x, y) = |x − y| and l2(x, y) = (x − y)2.
Let log x := log2 x and lnx be the natural log-
arithm of x for all x ∈ R+. Manhattan and
Euclidean norms of a vector x ∈ Rn are defined as
‖x‖1 :=

∑n
i=1 |xi|, ‖x‖2 :=

√∑n
i=1 |xi|2, respectively.

In addition, vec(·) denotes the vectorization operator.

The moment generating function of a random vector
X ∈ Rn is defined as M(λ) := E[exp(λTX)] for all
λ ∈ Rn. LetM(Q̃) := E[exp(tr(Q̃Q))] be the moment
generating function of a random matrix Q ∈ Rn×n for
all matrix Q̃ ∈ Rn×n.

Denote by

Q :=

{
sxxT for some (s, x) ∈ S × X ν+1

}
. (1)

For simplicity of presentation, we enumerate all ma-
trices in Q as Q̄0, Q̄1, · · · , Q̄M where M := |Q| − 1.

2 Problem Setting

We consider the linear model

Y = ΦX +W = AS1/2X +W . (2)

Here Y ∈ Rm is a vector of observations, X ∈ Rn is
the signal vector, A ∈ Rm×n is a measurement matrix,

S is diagonal matrix of positive scale factors:

S = diag(S1, S2, · · · , Sn), Sj ∈ R+, (3)

andW ∈ Rm is a noise vector. We consider a sequence
of problems indexed by n, and make the following as-
sumptions on the model. These assumptions are iden-
tical to those in earlier works (Guo and Verdu, 2005;
Rangan et al., 2012) except for the signal prior, which
we allow to be Markov or hidden Markov in contrast
to the i.i.d. priors considered in earlier works.

1. We assume that the number of measurements m
scales linearly with n, and limn→∞

n
m = β, for

some β > 0.

2. The elements {Aij}i∈[m],j∈[n] of the matrix A are

i.i.d. and distributed as Aij
d
= 1√

m
A, where A is

a random variable with zero mean, unit variance
and all moments finite.

3. The scale factors (S1, . . . , Sn) are i.i.d. accord-
ing to PS , which is supported on a set S ⊂ R+.
The scale factors (S1, . . . , Sn) are independent of
A,X, and W .

4. The noise vector W is standard normal, i.e.,
Wj ∼i.i.d. N (0, 1) for j ∈ [m].

5. Signal prior : We assume that the components of
X take values on a Polish space on R, and are
distributed according to a Markov prior, i.e.,

pX(x1, . . . , xn)

= p(x1)π(x1, x2) · · ·π(xn−1, xn) (4)

for some initial probability distribution p(·) on X ,
where π(·, ·) is the transition probability of a time-
homogeneous, irreducible Markov chain on X .

For simplicity of presentation, we assume that Markov
chains {Xn}∞n=1 has finite state spaces and S has a fi-
nite number of elements in our proofs. However, it
is not hard to extend these proofs to Markov chains
on Polish spaces in R and an infinite set S by refer-
ring to a more general definition of Markov chain in
(Tuominen and Tweedie, 1979). An irreducible and
recurrent Markov chain on an infinite state-space is
called a Harris chain (Tuominen and Tweedie, 1979),
which owns many similar properties to the finite state-
space version such as the existence of an unique sta-
tionary distribution. For both models, we denote
the joint probability mass distribution (pmf) of the
signal by p(x1, . . . , xn). For general proofs, we use
Radon–Nikodym derivatives with respect to corre-
sponding measures (Royden and Fitzpatrick, 2010).
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2.1 MMSE Estimation

The problem setting described above induces a poste-
rior distribution pX|Y ,Φ, given by

pX|Y ,Φ(x | y,φ) =
pY |X,Φ(y | x,φ)pX(x)

pY |Φ(y | φ)
, (5)

where

pY |X,Φ(y | x,Φ) = (2π)−m/2 exp

[
− ‖y − φx‖

2

2

]
,

(6)

and

pY |Φ(y | φ) = Ep[pY |X,Φ(y |X,φ)] (7)

=
∑
x

pY |X,Φ(y | x,φ)pX(x). (8)

The (canonical) MMSE estimator, which computes
the mean value of the posterior distribution pX|Y ,Φ
is given by,

〈X〉 = Ep
[
X|Y ,Φ]. (9)

This estimator achieves the minimum Mean-Square
Error (MSE) between the estimated and the original
signal.

2.2 Free Energy and Replica Method

Let

Z(Y ,Φ) := pY |Φ(Y |Φ). (10)

The free energy of the model in (2) is defined as

Fn := − 1

n
logZ(Y ,Φ). (11)

The expectation of the free energy (with respect to
pY |Φ(Y |Φ)) is equal to the conditional entropy of the

observation 1
nHp(Y |Φ) as well as (up to an additive

constant) to the mutual information density between
the signal and the observations 1

nIp(X,Y ).

The asymptotic free energy is the limit of the sequence
{Fn}∞n=1, i.e.,

F := lim
n→∞

Fn. (12)

In general, it is very challenging to prove the existence
and estimate the limit in (12). Replica method, orig-
inally developed in statistical physics, is usually used
to evaluate this limit (Tanaka, 2002; Guo and Verdu,
2005) because the linear model is similar to the ther-
modynamic system. For this model, replica method is
based on the following assumptions (A) and facts (F):

• (A1) The free energy Fn has the self-averaging
property as n→∞. This means that

F := lim
n→∞

E[Fn]. (13)

The self-averaging property essentially assumes
that the variations of Z(Y ,Φ) due to the random-
ness of the measurement matrix Φ vanish in the
limit n→∞. Although a large number of statisti-
cal physics quantities exhibit such self-averaging,
the self-averaging of the relevant quantities for the
MMSE and MAP analyses has not been rigorously
established (Rangan et al., 2012). For the purpose
of estimating the average mutual information of
the Markov model only, we don’t need to make
use of this assumption.

• (F1) The following identity holds:

E[logZ(Y ,Φ)] = lim
ν→0

∂

∂ν
logE[Zν(Y ,Φ)]. (14)

• (A2) Estimation of E[Z(Y ,Φ)ν ] for a positive real
number ν in the neighbourhood of 0 can be done
by two steps: (1) Estimate E[Zν(Y ,Φ)] for a gen-
eral positive integer ν (2) Take the limit of the
obtained result as ν → 0. This is called “replica
trick” in statistical physics.

• (F2) For any positive integer ν and a realization
(y,Φ) of (Y ,Φ), the quantity Zν(y,Φ) can be
written as

Zν(y,Φ) =
{
pY |Φ(y|Φ)

}ν
(15)

=

{
EpX

[
pY |X,Φ(y|X,Φ)

]}ν
(16)

= EpX
{ ν∏
a=1

pY |X,Φ(y|X(a),Φ)

}
.

(17)

where the last expectation is taken over relicated
vectors X(a), a = 1, 2, · · · , ν which are indepen-
dent copies of a random vector with distribution
pX .

• (A3) The order of limit n→∞ and ν → 0 can be
interchanged. Mathematically, under some con-
ditions such as Theorem Moore-Osgood (Stewart,
2008), the interchange between limits work. This
theorem is used in (Barbier et al., 2016) for a sim-
ilar purpose.

• (A4) Usually, the free energy can be expressed
an optimal value of an optimization problem over
the space of covariance matrices of replica sam-
ples, say Q. This optimization is general diffi-
cult to perform. To overcome this, the replica
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method also makes an additional assumption that
the optimizer Q∗ is symmetric with respect to
permutations of ν replica indices. This assump-
tion is called Replica Symmetry (RS) in statisti-
cal physics. See Definition 9 for our assumption
about RS in this paper.

(A1)-(A4) are assumed in various research literature
on replica method such as (Tanaka, 2002; Guo and
Verdu, 2005; Rangan et al., 2012).

3 Main results

3.1 Results for Markov Priors

Our results on the free energy and MMSE will be
stated in terms of a single-symbol channel, similar to
the equivalent single-user Gaussian channel which is
obtained via decoupling as in (Guo and Verdu, 2005,
Section D). Let λ(π) be the left Perron-Frobenius with
unit Manhattan norm2 of Pπ = {π(x, y)}x∈X ,y∈X
which is the stochastic matrix of the Markov chain
{Xn}∞n=1, and let λ

(π)
x0 be the component of λ(π) associ-

ated with the x0-th row of Pπ. Let us consider the com-
position of a Gaussian channel with one state X0 avail-
able at both encoder and decoder such that X0 ∼ λ(π),
a one-state MMSE, and a companion retrochannel in
the single-symbol setting depicted in Fig. 1. Given
the state information X0 = x0, the input-output rela-
tionship of this single-symbol channel is given by

U =
√
S X1 +

1
√
η
W, (18)

where the input X1 ∼ pX1|X0
(·|x0) := π(x0, ·), S ∼ PS

is the input Signal-to-Noise Ratio (SNR) which is in-
dependent X0 and X1, W ∼ N (0, 1) the noise inde-
pendent of X0 and X1, and η > 0 the inverse noise
variance.

The conditional distribution associated with the chan-
nel is

pU |X0,X1,S;η(u | x0, x1, s; η)

=

√
η

2π
exp

[
− η

2
(u−

√
sx1)2

]
. (19)

By setting the input distribution to be
pX1|X0

(·|x0) = π(x0, ·), a posterior probability
distribution pX1|X0,U,S;η is induced by pX1|X0

and

2Since there exists a unique left Perron-Frobenius eigen-
vector up to a positive scaling factor (Lancaster and Tis-

menetsky, 1985), λ(π) exists uniquely, which is the station-
ary distribution of the Markov chain.

pU |X0,X1,S;η using the Bayes rule, i.e.,

pX1|X0,S,U ;η(x | x0, s, u; η)

=
pX1|X0

(x | x0)pU |X0,X1,S;η(u | x0, x1, s; η)

pU |X0,S;η(u | x0, s; η)
.

(20)

This induces a single-use retrochannel with random
transformation pX1|X0,U,S;η, which outputs a random
variable X given the channel output U and the channel
state X0 (Fig. 1). An single-symbol MMSE estimator
with state available X0 = x0 is defined naturally as

〈X
∣∣X0 = x0〉p = Ep

[
X|X0 = x0, U, S; η

]
, (21)

where the expectation is taken over the (conditionally)
distribution in (20).

The single-symbol MMSE estimator (21) is merely a
decision function applied to the Gaussian channel out-
put with state X0 = x0 available at both encoder and
decoder (or input and output), which can expressed
explicitly as

Ep
[
X|U,X0 = x0, S; η

]
=
p1(U, x0, S; η)

p0(U, x0, S; η)
, (22)

where

p0(u, x0, S; η) := pU |X0,S;η(u | x0, s; η) (23)

= Eπ(x0,·)

[
pU |X0,X1,S;η(u | x0,X, S; η)

∣∣∣∣S], (24)

p1(z, x0, S; η)

= Eπ(x0,·)

[
X pU |X0,X1,S;η(z | x0,X, S; η)

∣∣∣∣S].
(25)

The probability law of the (composite) single-symbol
channel depicted by Fig. 1 is determined by S and
parameter η given state X0. We define the conditional
mean-square error of the MMSE estimator as

E(S; η|x0)

= E[(X1 − 〈X
∣∣X0 = x0〉p)2 | X0 = x0, S; η].

(26)

Define

G :=
∑
x0∈X

λ(π)
x0
G(x0), (27)

where G(x0) is defined in (28), and η is the solution of
the following equation

η−1 = 1 + β
∑
x0∈X

λ(π)
x0

E[SE(S; η | x0)], (29)
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Figure 1: The equivalent single-symbol Gaussian channel with state available at both encoder and decoder,
MMSE estimator, and retrochannel.

G(x0) := −E
{∫

pU |X0,X1,S;η(u | x0,X1, S; η) log pU |X0,X1,S;η(u | x0,X1, S; η)du

}
+

1

2β

[
(η − 1) log e− log η

]
− 1

2
log

2π

η
− η

2η
log e+

1

2β
log(2π) +

η

2βη
log e. (28)

such that they minimize G. Observe that for the case
X0,X1, · · · ,Xn are i.i.d., G(x0) does not depend on x0

and we recovers the result in (Guo and Verdu, 2005,
Eq. (22)) for this special case.

Claim 1. The free energy of the linear model with
Markov sources in Section 2 satisfies

F = G, (30)

where G is defined in (27). In addition, the average
mutual information of this model satisfies:

C = lim
n→∞

1

n
I(Xn;Y m) = F − 1

2β
. (31)

Claim 2. Recall the definition of {λ(π)
x0 }x0∈X in Sec-

tion 3.1. Assume that the MMSE estimator defined
in (9) is used for estimation. Then, for all k ∈
{1, 2, · · · , n}, the joint moments satisfy:

lim
n→∞

E
[
Xi0
k X̃

j0
k 〈Xk〉l0p

]
=
∑
x0∈X

λ(π)
x0

E
[
Xi01 Xj0〈X

∣∣X0〉l0p
∣∣X0 = x0

]
(32)

for all i0, j0, l0 ∈ Z+, where (X1,X, 〈X|X0〉p) is the
input and outputs defined in the (composite) single-
symbol MMSE channel in Fig. 1, and (Xk, X̃k, 〈Xk〉)
is the k-th symbol in the vector X ∈ Xn, the k-th
output of the vector retrochanel defined in (5), and its

corresponding estimated symbol by using the MMSE
estimator in (9), respectively.

In addition, the average MMSE satisfies:

1

n
E
[
‖X − 〈X〉‖22

]
= E

[
X2

1

]
−
∑
x0∈X

λ(π)
x0

E
[
〈X|X0〉2p

∣∣X0 = x0

]
, (33)

where X1 ∼
∑
x0∈X π(x0, ·)p(x0).

4 Numerical examples and
comparison with algorithmic
performance

4.1 Binary-valued Markov Prior

In this experiment, we consider a homogeneous
Markov chain on the alphabet X = {−1, 1} with the
stochastic matrix

Pπ =

[
π(−1,−1) π(−1, 1)
π(1,−1) π(1, 1)

]
=

[
1− α α
δ 1− δ

]
(34)

for some α and δ in (0, 1).

We compare the free energies achieved by the replica
prediction (cf. Claim 1) and MCMC (Metropo-
lis–Hastings algorithm) for the linear model with
binary-valued Markov prior defined in (34). More
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specifically, we use the Markov Chain Monte-Carlo
(MCMC) simulation method to estimate the density
function Py|Φ(y|Φ) and verify our replica predictions
in Claim 1. Our results show that the free energy
curves by the replica method and MCMC nearly coin-
cide to each other for all three cases: (1) i.i.d. prior
(α = δ = 0.5), (2) symmetric Markov prior α = δ =
0.3, (3) asymmetric Markov prior (α = 0.2, δ = 0.5)
(cf. Figs. 2, 3, and 4). In our MCMC simulations,
the Metropolis–Hastings algorithm is used where the
state xt := vec(vec(Φt+1), yt+1) and the probability
transition g(xt+1|xt) ∼ N (xt, Imn+n).
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Figure 2: Free energy by Replica Method and MCMC
as functions for the i.i.d. prior α = δ = 0.5.
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Figure 3: Free energy by Replica Method and MCMC
as functions of β for the symmetric case α = δ = 0.3.

Since MMSE is fixed function of the free energy (or
mutual information) (Guo et al., 2005), these simula-
tion results also indicate that our replica prediction in
Claim 2 closely approximates the MMSE of the model.
Designing practical AMP algorithms to achieve these
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Figure 4: Free energy by Replica Method and MCMC
as functions of β for the non-symmetric case α = 0.2
and δ = 0.5.

fundamental limits is a future research direction of in-
terest.

4.2 Gauss-Markov Prior

In this experiment, we consider a Gauss-Markov prior
{Xn}∞n=1 on X = R, i.e., Xn = νXn−1 + Zn, where
Zn ∼ N (0, σ2

0) and ν ∈ (0, 1). Then, the transition
probability is

π(x0, x) :=
1

σ0

√
2π

exp

[
− 1

2σ2
0

(x− νx0)2

]
. (35)

In this subsection, we use the same MCMC algorithm
as Subsection 4.1, i.e., the Metropolis–Hastings algo-
rithm. In Fig. 5, we plot the free energy curves for
the linear model with Markov prior in (35) for three
cases ν = 0.1, ν = 0.5, and ν = 0.8. In these plots,

we set X1 ∼ N (0,
σ2
0

1−ν2 ) to force the state distribution

of the Markov (Harris) chain Xn ∼ N (0,
σ2
0

1−ν2 ) for all
n ≥ 1. The plot shows that the replica prediction for
the free energy (cf. Claim 12) is very closed to the
MCMC simulation result. As in the first experiment,
since the MMSE is a fixed function of the free energy
(or mutual information) (Guo et al., 2005), this also
means that the MMSE curve by replica method closely
approaches the MMSE of the model.

5 Sketch of Proofs of Claims 1 and 2

The proofs of Claims 1 and 2 are based on (Guo and
Verdu, 2005) with some important changes to account
for the Markov prior assumptions. The following are
main steps in the proof.
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Figure 5: Free energy by replica method and empirical
MCMC as functions of β for σ2

0 = 1 and s0 = 1.

• Let {Sn}∞n=1 be an i.i.d. sequence of random vari-
able on a finite set S ⊂ R+. Let X := {Xn}∞n=1

be a Markov chain with states on a Polish space X
with the transition matrix P = {π(x, x′)}x,x′∈X .
Assume this Markov chain is irreducible. Set
X(0) = X. Let X(a) := {X(a)

n }∞n=1 be a set of ν
replica sequences with distribution pX defined in
(4) for each a = 1, 2, · · · , ν. Define a new sequence
of (ν+1)×(ν+1) random matrices {Qn}∞n=1 such
that

Q(a,b)
n = SnX

(a)
n X(b)

n (36)

for all a ∈ [ν] and b ∈ [ν] and for all n = 1, 2, · · · .
Then, {Qn}∞n=1 is also an irreducible Markov
chain with states on Q, where Q is defined in (1).

• Let Tn := 1
n

∑n
k=1Qk. Prove that

1

n
logE[Zν(Y ,Φ)]

=
1

n
logE

{
exp

[
m

(
G(ν)(Tn) +O(n−1)

)]}
,

(37)

where G(ν) : Q → R such that

G(ν)(Q) := −1

2
log det(I + ΣQ)

− 1

2
log

(
1 +

ν

σ2

)
− ν

2
log(2πσ2), (38)

and Σ is a (ν + 1)× (ν + 1) matrix

Σ =
β

σ2 + ν

[
ν −eT
−e (1 + ν

σ2 )I − 1
σ2 ee

T

]
, (39)

where e is a ν×1 column vector whose entries are
all 1.

• Based on (F1)-(F2), (A1)-(A3), and the Large De-
viations Principle for the distribution of Tn, we
can show that

F = lim
n→∞

− 1

n
logE[Zν(Y ,Φ)] (40)

= − lim
ν→0

∂

∂ν
sup
Q

[
β−1G(ν)(Q)− I(ν)(Q)

]
,

(41)

where

I(ν)(Q) := sup
Q̃

[
tr(Q̃Q)− log ρ(PQ̃)

]
, (42)

and ρ(PQ̃) is the Perron-Frobenius eigenvalue of

the matrix PQ̃ = {etr(Q̃Q̄j)PQ̄j |Q̄i}0≤i,j≤M and

M = |Q| − 1 where Q := {sxxT for some s ∈
S, x ∈ X ν+1}.

• From (42), it is easy to see that the optimizer
(Q∗, Q̃∗) of (41) and the large deviation rate func-
tion I(ν)(Q), respectively, must satisfy

Q∗ =
∂ log ρ(PQ̃)

∂Q̃
(Q̃∗). (43)

Then, by adapting a result in (Deutsch and Neu-
mann, 1984) related to the derivatives of the
Perron-eigenvalue of a non-negative matrix and
(43), it can be shown that under the replica as-
sumptions (A1)-(A4), Q∗ is a convex combination
of moment generating functions which can be es-
timated by using the methods in (Guo and Verdu,
2005).

• Furthermore, by using (A1)-(A4) and the fact
that

ρ(PQ̃∗) =

M∑
i=1

λi(Q̃
∗)E[etr(Q̃∗Q1)|Q0 = Q̄i], (44)

we can show that
∂ log ρ(PQ̃)

∂ν (Q̃∗) is also a convex
combination of some conditional moment gener-
ating functions which can be estimated based on
(Guo and Verdu, 2005).

• Finally, by using (41) and results in bullet points
4 and 5, we can prove that the free energy of the
linear model with Markov signal prior is a convex
combination of the other conditional free energies
where each conditional free energy corresponds to
the free energy of a linear model with i. i. d. signal
prior with known expression in (Guo and Verdu,
2005). Here, the convex combination coefficients
follow the stationary distribution of the stochastic
matrix of Markov chains {Xn}∞n=1.
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• To prove Claim (107), we first recall that the
Large Deviations Principle for probability mea-
sures (distribution of Tn) also holds for any fi-
nite Borel measures on compact metric space
(e.g.(Young, 1990)) or on Polish space (Swart,
2012). Then, the proof follows the same ideas
as the proof of Claim 12.
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Suplementary Material

This section provides a sketch of proofs for Claims 1–2
using the replica method. We first state some related
lemmas which are required to estimate the free energy
of the linear model with Markov sources. Then, we
obtain the joint moments for the linear model with
Markov sources.

Lemma 3. (Guo and Verdu, 2005, p. 1998) Let X
(a)
n

be replicated vectors with distribution pX . Define a
sequence of (ν+1)×(ν+1) random matrices {Qn}∞n=1

such that

Q(a,b)
n = SnX

(a)
n X(b)

n (45)

for all a ∈ [ν] and b ∈ [ν] for all n = 1, 2, · · · . Let

Tn =
1

n

n∑
k=1

Qk, n = 1, 2, · · · . (46)

Then, the following holds:

1

n
logE[Zν(Y ,Φ)]

=
1

n
logE

{
exp

[
m

(
G(ν)(Tn) +O(n−1)

)]}
, (47)

where

G(ν)(Q) := −1

2
log det(I + ΣQ)

− 1

2
log

(
1 +

ν

σ2

)
− ν

2
log(2πσ2), (48)

and Σ is a (ν + 1)× (ν + 1) matrix

Σ =
β

σ2 + ν

[
ν −eT
−e (1 + ν

σ2 )I − 1
σ2 ee

T

]
, (49)

where e is a ν × 1 column vector whose entries are all
1.

The following two lemmas state some new results on
large deviations for Markov chains induced by the
channel setting.

Lemma 4. Let {Sn}∞n=1 be an i.i.d. sequence of
random variable on a finite set S ⊂ R+. Let
X := {Xn}∞n=1 be a Markov chain with states on
a Polish space X with the transition matrix P =
{π(x, x′)}x,x′∈X . Assume this Markov chain is irre-

ducible. Set X(0) = X. Let X(a) := {X(a)
n }∞n=1 be a

set of ν replica sequences with (postulated) distribution
qX for each a = 1, 2, · · · , ν. This means that

pX(0)X(1)X(2)···X(ν)(x(0), x(1), x(2), · · · , x(ν))

∼
ν∏
i=0

pX(x(i)), (50)

where

pX(x(a)) =

∞∏
i=1

π(x
(a)
i , x

(a)
i+1), ∀a ∈ {0, 1, · · · , ν}.

(51)

Define a new sequence of (ν + 1) × (ν + 1) random
matrices {Qn}∞n=1 such that

Q(a,b)
n = SnX

(a)
n X(b)

n (52)

for all a ∈ [ν] and b ∈ [ν] and for all n = 1, 2, · · · .
Then, {Qn}∞n=1 is also an irreducible Markov chain
with states on Q, where Q is defined in (1). In ad-
dition, the transition probability, namely P (Q|Q′), of
this Markov chain satisfies (53) where pXn−1

(·) is the
state distribution at time n − 1 of the Markov chain
{Xn}∞n=1 with the transition probability π defined in
(4) and

AQ :=
{

(s, x) ∈ S × X ν+1 : sxxT = Q
}
, ∀Q ∈ Q.

(54)

Lemma 5. Let X be a Polish space with finite cardi-
nality and a irreducible Markov chain X := {Xn}∞n=1

defined on X and ν be a positive integer number. Let

X
(a)
n for a ∈ {1, 2, · · · , ν} be replicas of the Markov

process X. Recall the definition of the sequence Qn in
Lemma 4 and Tn = 1

n

∑n
j=1Qj. Let Pn(U) := P(Tn ∈

U) for any measurable set U on the σ-algebra generated
by {Qn}∞n=1. Then, for and bounded and continuous
function F : Q → R

lim
n→∞

1

n
logE

[
enF (Tn)

]
= lim
n→∞

1

n
log

∫
enF (Q)dPn(Q)

(55)

= sup
Q

[
F (Q)− I(Q)

]
(56)

where I(Q) = supQ̃(tr(Q̃Q)− log ρ(PQ̃)) and ρ(PQ̃) is
the Perron-Frobenius eigenvalue of the matrix PQ̃ =

{etr(Q̃Q̄j)PQ̄j |Q̄i}0≤i,j≤M and M = |Q| − 1, where Q
and {Q̄i}Mi=0 are defined in Subsection 1.4.
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P (Q|Q′) =

∑
(s,x0,x1,··· ,xν ,s′,x′0,x′1,··· ,x′ν)∈AQ×AQ′

PS(s′)PS(s)pXn−1(x′0)π(x′0, x0)
∏ν
i=1 pXn−1(x′i)π(x′i, xi)∑

(s′,x′0,x
′
1,··· ,x′ν)∈AQ′

PS(s′)pXn−1
(x′0)

∏ν
i=1 pXn−1

(x′i)
(53)

Lemma 6. Let {Q̄i}Mi=0 be states of the Markov chain
{Qn}∞n=1 in Lemma 4. Then, the following holds:

∂ log ρ(PQ̃)

∂Q̃
(Q̃)

=
1

ρ(PQ̃)

M∑
i=0

λi(Q̃)

M∑
j=0

ψj(Q̃)Q̄jP (Q̄j |Q̄i)etr(Q̃Q̄j),

(57)

where λ(Q̃) and ψ(Q̃) are left and right eigenvectors
associated with the Perron-Frobenius eigenvalue ρ(PQ̃)

which are normalized such that λ(Q̃)Tψ(Q̃) = 1.

Theorem 7. Recall the definition of G(ν)(Q) in
Lemma 3. In the large system limit, the free energy
satisfies:

F = − lim
ν→0

∂

∂ν
sup
Q

[
β−1G(ν)(Q)− I(ν)(Q)

]
, (58)

where

I(ν)(Q) := sup
Q̃

[
tr(Q̃Q)− log ρ(PQ̃)], (59)

and ρ(PQ̃) is the Perron-Frobenius eigenvalue of the

matrix PQ̃ = {etr(Q̃Q̄j)PQ̄j |Q̄i}0≤i,j≤M and M = |Q|−
1 where Q := {sxxT for some s ∈ S, x ∈ X ν+1}.

Proof. The proof follows the same idea as (Guo and
Verdu, 2005, Part A, Sect. IV) with some important
changes to account for the Markov setting.

1. By applying Lemma 5, from (47), we obtain

lim
n→∞

1

n
logE[Zν(Y ,Φ)]

= lim
n→∞

1

n
logE

{
exp

[
n

β

(
G(ν)(Tn) +O(n−1)

)]}
(60)

= sup
Q

[
1

β
G(ν)(Q)− I(ν)(Q)

]
. (61)

2. Estimate the free energy.

Now, observe that

F = − lim
n→∞

1

n
lim
ν→0

∂

∂ν
logE[Zν(Y ,Φ)] (62)

= − lim
ν→0

∂

∂ν
lim
n→∞

1

n
logE[Zν(Y ,Φ)] (63)

= − lim
ν→0

∂

∂ν
sup
Q

[
1

β
G(ν)(Q)− I(ν)(Q)

]
, (64)

where (62) follows from the assumption (A1),
(A2), and the fact (F1), (63) follows from the as-
sumption (A3), and (64) follows from (61).

Theorem 8. Recall the definitions of Σ and the ma-
trix PQ̃ in Theorem 7 and the definitions of {Q̄i}Mi=0

in Lemma 6. The optimal matrix Q∗ of equation (58)
in Theorem 7 must satisfy the following constraints:

Q∗ =
∂ log ρ(PQ̃)

∂Q̃
(Q̃∗), (65)

Q̃∗ = −(2β)−1(I + ΣQ∗)−1Σ, (66)

∂ log ρ(PQ̃)

∂Q̃
(Q̃∗)

=
1

ρ(PQ̃∗)

M∑
i=0

λi(Q̃
∗)

M∑
j=0

ψj(Q̃
∗)Q̄jP (Q̄j |Q̄i)etr(Q̃∗Q̄j),

(67)

where λ(Q̃∗) and ψ(Q̃∗) are left and right eigen-
vectors associated with the Perron-Frobenius eigen-
value ρ(PQ̃∗) which are normalized such that

λ(Q̃∗)Tψ(Q̃∗) = 1.

Proof. Recall the definition of I(ν) in Theorem 7. It
is easy to see that the optimization problem in (61) is
equivalent to the following optimization problem:

sup
Q

inf
Q̃
T (ν)(Q, Q̃) (68)

where

T (ν)(Q, Q̃) := − 1

2β
log det(I + ΣQ)− tr(Q̃Q)

+ log ρ(PQ̃)− 1

2β
log
(
1 +

ν

σ2

)
− ν

2β
log(2πσ2).

(69)
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For an arbitrary Q, we first seek critical points with
respect to Q̃ and find that for any given Q, the ex-
tremum in Q̃ satisfies

Q =
∂ log ρ(PQ̃)

∂Q̃
(70)

Let Q̃(Q) be a solution to (70). We then seek the
critical point of T (ν)(Q, Q̃(Q)) with respect to Q.

Let

KQ,Q̃ :=

[
∂Q̃a,b
∂Qa,b

]ν
a,b=0

∈ Rν+1×ν+1. (71)

Observe that

∂tr(Q̃Q)

∂Q
=
∂tr(QQ̃)

∂Q
(72)

= Q̃+Q�KQ,Q̃, (73)

where � is the Hadamard product.

It follows that

∂T (ν)(Q, Q̃)

∂Q

= − 1

2β
(I + ΣQ)−1Σ

−
(
Q̃+Q�KQ,Q̃

)
+
∂ log ρ(PQ̃)

∂Q
(74)

= − 1

2β
(I + ΣQ)−1Σ

−
(
Q̃+Q�KQ,Q̃

)
+
∂ log ρ(PQ̃)

∂Q̃
�KQ,Q̃

(75)

= − 1

2β
(I + ΣQ)−1Σ− Q̃

−
[
Q−

∂ log ρ(PQ̃)

∂Q̃

]
�KQ,Q̃ (76)

= − 1

2β
(I + ΣQ)−1Σ− Q̃, (77)

where (74) follows from (73), and (77) follows from
(70). Hence, the optimal value of the Theorem 7 is
the solution of the following equation systems:

Q =
∂ log ρ(PQ̃)

∂Q̃
, (78)

Q̃ = −(2β)−1(I + ΣQ)−1Σ. (79)

Finally, from Lemma 6, we also obtain an additional
constraint in (67).

Observe that the matrix Σ defined in Theorem 7 is in-
variant if two non-zero indices are interchanged, i.e., Σ

is symmetric in replicas. Now, we use the RS assump-
tion (A4) to simplify the result in Theorem 7. More
specifically, we use the following RS assumption:

Definition 9. (Guo and Verdu, 2005, p. 1999) An
solution (Q̃∗, Q∗) of the optimization problem in The-
orem 7, i.e.,

sup
Q

[
β−1G(ν)(Q)− I(ν)(Q)

]
= sup

Q
inf
Q̃

[
− 1

2β
log det(I + ΣQ)− tr(Q̃Q)

+ log ρ(PQ̃)− 1

2β
log

(
1 +

ν

σ2

)
− ν

2β
log(2πσ2)

]
(80)

is called to satisfy the Replica Symmetry (RS) if both
Q∗ and Q̃∗ are invariant if two (nonzero) replica in-
dices are interchanged. In other words, the extremum
can be written as

Q∗ =



r m m · · · m
m p q · · · q

m q p
. . .

...
...

...
. . .

. . . q
m q · · · q p

 , (81)

Q̃∗ =



c d d · · · d
d g f · · · f

d f g
. . .

...
...

...
. . .

. . . q
d f · · · f g

 , (82)

where r,m, p, q, c, d, f, g are some real numbers which
are not dependent on ν.

First, we show the following auxiliary results:

Lemma 10. Let {Q̄i}Mi=0 be states of the Markov
chain {Qn}∞n=1 in Lemma 4. Assume that

ρ(PQ̃∗)→ 1 and

M∑
j=0

P (Q̄j |Q̄i)etr(Q̃∗Q̄j) → 1 (83)

for all i ∈ [M ] as ν → 0. Then, under the replica
symmetry assumptions in Definition 9, the following
holds:

Q∗ = lim
ν→0

M∑
i=0

λi(Q̃
∗)E[Q1e

tr(Q̃∗Q1)
∣∣Q0 = Q̄i] (84)

where Q∗ is defined in Theorem 8 and λ(Q̃∗) is a
left (positive) eigenvector associated with the Perron-
Frobenius eigenvalue ρ(PQ̃∗) such that ‖λ(Q̃∗)‖1 = 1.
In addition, we have

ρ(PQ̃∗) =

M∑
i=1

λi(Q̃
∗)E[etr(Q̃∗Q1)|Q0 = Q̄i]. (85)
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Proof. Since ψ(Q̃∗) is the right eigenvector associated
with the Perron-Frobenius eigenvalue of the matrix
PQ̃∗ , it holds that

M∑
j=0

P (Q̄j |Q̄i)etr(Q̃∗Q̄j)ψj(Q̃
∗) = ρ(PQ̃∗)ψi(Q̃

∗) (86)

for all i ∈ [M ]. From (86) and (83), we can set
ψ(Q̃∗) = (1, 1, · · · , 1)T is a right eigenvector associ-
ated with the eigenvalue ρ(PQ̃∗) as ν → 0.

Hence, from Theorem 8, we have

Q∗ = lim
ν→0

M∑
i=0

λi(Q̃
∗)E[Q1e

tr(Q̃∗Q1)
∣∣Q0 = Q̄i]. (87)

Now, since by Theorem 8, it holds that

M∑
j=0

ψj(Q̃
∗)λj(Q̃

∗) = 1, (88)

so we have

‖λ(Q̃∗)‖1 = 1. (89)

Now, since λ(Q̃∗) := (λ1(Q̃∗), λ2(Q̃∗), · · · , λM (Q̃∗)) is
the left (positive) eigenvector associated with ρ(PQ̃∗),
it holds that

λj(Q̃
∗)ρ(PQ̃∗) =

M∑
i=1

λi(Q̃
∗)etr(Q̃∗Q̄j)P (Q̄j |Q̄i). (90)

Then, it follows that

ρ(PQ̃∗) =

M∑
j=1

λj(Q̃
∗)ρ(PQ̃∗) (91)

=

M∑
j=1

M∑
i=1

λi(Q̃
∗)etr(Q̃∗Q̄j)P (Q̄j |Q̄i) (92)

=

M∑
i=1

λi(Q̃
∗)

M∑
j=1

etr(Q̃∗Q̄j)P (Q̄j |Q̄i) (93)

=

M∑
i=1

λi(Q̃
∗)E[etr(Q̃∗Q1)|Q0 = Q̄i], (94)

where (91) follows from (89), (92) follows from (90).

Lemma 11. Under the RS assumption in Definition
9, as ν → 0, the following hold:

ρ(PQ̃∗)→ 1 and

M∑
j=0

P (Q̄j |Q̄i)etr(Q̃∗Q̄j) → 1.

(95)

Furthermore, it holds that

∂ log ρ(PQ̃∗)

∂ν

∣∣∣∣
ν=0

= −ξ
2

(
E[S]EX0∼λ(π)

[
E[X2

1|X0]

]
+

1

η

)
log e+

1

2
log

2π

ξ

+ EX0∼λ(π)

[
ES
{∫

R
pU |X0,S;η(u|x0, S; η)

× log qU |X0,S;η(u|x0, S; η)du

}]
. (96)

Then, we obtain our first main result as follows.

Theorem 12. The free energy of the linear model with
Markov sources in Section 2 satisfies

F = G, (97)

where G is defined in (27). In addition, the average
mutual information of this model satisfies:

C = lim
n→∞

1

n
I(Xn;Y m) = F − 1

2β
. (98)

The following corollary recovers (Guo and Verdu, 2005,
Sect. II-D):

Corollary 13. For any i.i.d. sequence {Xn}∞n=1 on
the Polish space X defined in Section 2, the free energy
satisfies

F = G(∅), (99)

where G(∅) is the free-energy function estimated in
Section 3.1 when no state information appears in the
corresponding single-symbol MMSE channel.

In addition, the average mutual information of this
model satisfies

C = lim
n→∞

1

n
I(Xn;Y m) = F − 1

2β
. (100)

Proof. Observe that an i.i.d. sequence {Xn}∞n=1 can
be considered as a Markov sequence with transition
probability (function) π(x, y) = p(y) for all x, y ∈ X .
Hence, G(x0) is a constant, say G(∅), for all x0 ∈ X .
Here, G(∅) is the free energy function estimated in
Section 3.1 when there is no state information ap-
peared in the correponding single-symbol MMSE chan-
nel, i.e. X0 = ∅. In addition, the left Perron-Frobenius
with unit Manhattan norm for this special case is
{PX1(x)}x∈X .

Hence, by Theorem 12, we have

F =
∑
x0∈X

λ(π)
x0
G(x0) (101)

=

( ∑
x0∈X

PX1
(x0)

)
G(∅) (102)

= G(∅), (103)
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where the last equation follows from ‖λ(π)‖1 = 1.
Hence, we obtain (99). Finally, (100) is an direct ap-
plication of (98) in Theorem 12.

To state our next main result, we recall Carleman the-
orem.

Lemma 14. (Chalendar and Partington, 2007, Theo-
rem 3.1) DenoteM(Rn) be the set of all positive Borel
measures µ on Rn such that∫

Rn
‖x‖d2dµ(x) <∞ ∀d ≥ 0. (104)

Suppose that µ1, µ2 ∈M(Rn) satisfy

s(α) :=

∫
Rn
xαdµ1(x) =

∫
Rn
xαdµ2(x) for all α ∈ Nn

(105)

and that the conditions

∞∑
m=1

s(2mej)
−1/(2m) =∞, j = 1, 2, · · · , n, (106)

hold, where ej is the jth canonical basis vector of Rn.
Then µ1 = µ2.

Claim 15. Recall the definition of {λ(π)
x0 }x0∈X in Sec-

tion 3.1. Assume that the MMSE estimator defined
in (9) is used for estimation. Then, for all k ∈
{1, 2, · · · , n}, the joint moments satisfy:

lim
n→∞

E
[
Xi0
k X̃

j0
k 〈Xk〉l0p

]
=
∑
x0∈X

λ(π)
x0

E
[
Xi01 Xj0〈X

∣∣X0〉l0p
∣∣X0 = x0

]
,

(107)

for all i0, j0, l0 ∈ Z+, where (X1,X, 〈X|X0 = x0〉p) is
the input and outputs defined in the (composite) single-
symbol MMSE channel in Fig. 1, and (Xk, X̃k, 〈Xk〉)
is the k-th symbol in the vector X ∈ Xn, the k-th
output of the vector retrochanel defined in (5), and its
corresponding estimated symbol by using the MMSE
estimator in (9), respectively.

In addition, the average MMSE satisfies:

1

n
E
[
‖X − 〈X〉‖22

]
= E

[
X2

1

]
−
∑
x0∈X

λ(π)
x0

E
[
〈X1|X0〉2

∣∣X0 = x0
]
,

(108)

where X1 ∼
∑
x0∈X π(x0, ·)p(x0).

Remark 16. Some remarks are in order.

• For the i.i.d. sequence {Xn}∞n=1, we have a tight
bound in (107). It is not hard to check that
the Carleman condition (106) holds for the joint
Gaussian distribution on the composite single-
symbol Gaussian channel in Fig. 1. Hence, from
Carleman Theorem in Lemma 14, in the large
system limit, the channel between the input Xk

and 〈Xk〉p for each symbol k is equivalent to the
Gaussian channel pU |X,X0,S;η with available state
X0 = ∅ at both encoder and decoder concate-
nated with the one-to-one decision function with
S = Sk. This result recovers (Guo and Verdu,
2005, Corrolary 1) as a special case for the i.i.d.
sequence {Xn}∞n=1.

• From Theorem 15, it can be inferred that under
the MMSE estimator, the channel (model) has
been decoupled into AWGN channels with state
information at both transmitters and receivers,
where state vector distribution follows the left
Perron-Frobenius eigenvalue λ(π) of the stochas-
tic matrix Pπ.

Proof. Observe that by using the MMSE estimator de-
fined in Section 2.1, we have

E
[
‖X − 〈X〉‖22

]
=

n∑
k=1

E
[∣∣Xk − 〈X〉k

∣∣2] (109)

=

n∑
k=1

E
[∣∣Xk − 〈Xk〉

∣∣2] (110)

=

n∑
k=1

E
[
E
[∣∣Xk − 〈Xk〉

∣∣2∣∣Y ,Φ]]
(111)

=

n∑
k=1

E
[
E
[
X2
k

]
− 〈Xk〉2

∣∣Y ,Φ]]
(112)

=

n∑
k=1

E
[
X2
k

]
−

n∑
k=1

E
[
〈Xk〉2

]
, (113)

where (110) follows from (9), (111) follows from the
tower property (Billingsley, 1995), and (112) follows
from the fact that

〈Xk〉 = E
[
Xk

∣∣Y ,Φ] (114)

which is drawn from (9).

Now, by (107), we have as n→∞,

E
[
〈Xk〉2

]
=
∑
x0∈X

λ(π)
x0

E
[
〈X1|X0 = x0〉2

]
(115)

for all k ∈ {1, 2, · · · , n}.
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In addition, for all k ∈ {1, 2, · · · , n}, we also have

E
[
X2
k

]
= E

[
E
[
X2
k

∣∣Xk−1

]]
(116)

= E
[
E
[
X2

1

∣∣X0

]]
(117)

= E[X2
1 ] (118)

= E[X2
1], (119)

where (116) follows from the tower property (Billings-
ley, 1995), and (117) follows from the time-
homogeneity of Markov process {Xn}∞n=1.

From (113), (115), and (118), as n→∞, we have

E
[
‖X − 〈X〉‖22

]
= n

(
E[X2

1]−
∑
x0∈X

λ(π)
x0

E
[
〈X1|X0 = x0〉2

])
,

(120)

which leads to (108).
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