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Abstract

For the misspecified linear Markov decision
process (MLMDP) model of Jin et al. (2020),
we propose an algorithm with three desirable
properties. (P1) Its regret after K episodes
scales as K max{εmis, εtol}, where εmis is the
degree of misspecification and εtol is a user-
specified error tolerance. (P2) Its space and
per-episode time complexities are bounded as
K → ∞. (P3) It does not require εmis as
input. To our knowledge, this is the first al-
gorithm satisfying all three properties. For
concrete choices of εtol, we also improve ex-
isting regret bounds (up to log factors) while
achieving either (P2) or (P3) (existing al-
gorithms satisfy neither). At a high level,
our algorithm generalizes (to MLMDPs) and
refines the Sup-Lin-UCB algorithm, which
Takemura et al. (2021) recently showed satis-
fies (P3) for contextual bandits. We also pro-
vide an intuitive interpretation of their result,
which informs the design of our algorithm.

1 INTRODUCTION

Due to the large state spaces of modern reinforcement
learning applications, practical algorithms must gen-
eralize across states. To understand generalization
on a theoretical level, recent work has studied lin-
ear Markov decision processes (LMDPs), among other
models (see Section 1.1). The LMDP model assumes
the next-state distribution and reward are linear in
known d-dimensional features, which enables tractable
generalization when d is small. Of course, this assump-
tion most likely fails in practice, which motivates the
misspecified LMDP (MLMDP) model. Here linearity
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holds up to some misspecification error εmis in total
variation and absolute value for the next-state distri-
bution and reward, respectively (see Assumption 1).

In this work, we consider episodic finite-horizon
MLMDPs, i.e., for each of K episodes, the algorithm
interacts with the MLMDP for H steps. We assume
the action space A is finite, though the state space S
may be infinite. We measure performance in terms of
regret R(K), i.e., the additive loss in expected cumu-
lative reward compared to the optimal policy (see (1)).
We seek an algorithm with three basic properties:

(P1) Asymptotically non-trivial regret: Given a
user-specified error tolerance εtol > 0 and a failure
probability δ > 0, the algorithm should ensure that
with probability at least 1− δ,

lim sup
K→∞

R(K)

K
≤ poly

(
d,H, log 1

δεtol

)
max{εmis, εtol}.

Hence, in terms of K, εmis, and εtol, we desire regret
that scales as K max{εmis, εtol}. The Kεmis term is
unavoidable due to misspecification, while the Kεtol

term can be controlled by the user.

(P2) Bounded complexity: The space and per-
episode time complexities should both be independent
of K, so that the algorithm can be implemented for
arbitrarily large K.

(P3) Parameter free: The algorithm should not re-
quire knowledge of the degree of misspecification εmis,
which is unavailable in practice.

These properties seem benign, but to the best of our
knowledge, no existing algorithm satisfies all three. We
note in particular that (P1) often fails because regret
guarantees include Kεmispolylog(K) terms. We would
argue such super-linear (in K) bounds are asymptoti-
cally trivial, since the regret of any policy is linear in
K (for bounded rewards). However, even if K is small
and one can tolerate failure of the asymptotically-
motivated (P1) and (P2), there are (essentially) no
algorithms withKεmispolylog(K)-type regret that sat-
isfy (P3). (An exception is model selection, which vi-
olates a stronger version of (P3); see Section 1.1.)
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Table 1: Summary of MLMDP algorithms, where εmis is the degree of misspecification and εtol is a user-chosen
input. Regret bounds hide constants and log terms, except those that yield super-linear in K terms. See Section
1.1 for other existing algorithms that require more restrictive assumptions.

Algorithm (P1) (P2) (P3) Regret bound

Ours, εtol ∈ (0, 1)∗ Yes Yes Yes
√
d3H4 min{( d

εtol
)2,K}+

√
H3K +

√
dH2K max{εmis, εtol}

Ours, εtol = d/
√
K No No Yes

√
d3H4K +

√
dH2Kεmis

√
logK

Ours, εtol = εmis Yes Yes No
√
d3H4 min{( d

εtol
)2,K}+

√
H3K +

√
dH2Kεmis

Jin et al. (2020) No No No
√
d3H4K + dH2Kεmis

√
logK

Zanette et al. (2020a)† Yes No No
√
d4H5K + dH2Kεmis

Zanette et al. (2020b)† ‡ Yes No No
√
d2H4K +

√
dH2Kεmis

∗To satisfy (P1) and avoid a super-linear regret bound, this row assumes we choose εtol independent of K.
†These papers report regret with Õ notation but (as far as we can tell) do not hide super-linear terms.
‡The algorithm from this paper is defined in terms of an optimization problem but no solution to that problem is

provided, so it is unclear how to implement it efficiently.

The situation is better if we restrict to misspecified
linear contextual bandits (MLCBs), which are the spe-
cial case H = 1 (there, states are called contexts; we
use the terms interchangeably). In particular, Take-
mura et al. (2021) showed that a Sup-Lin-UCB (Auer,
2002; Chu et al., 2011) variant that satisfies (P3)
has Kεmispolylog(K) regret. This result is important
because the simpler Lin-UCB (Abbasi-Yadkori et al.,
2011) can suffer Ω(K) regret when εmis is unknown
(Lattimore et al., 2020). In light of this, and because
Sup-Lin-UCB was originally motivated by technical is-
sues seemingly unrelated to misspecification, Takemura
et al. (2021)’s result is also rather surprising. However,
Sup-Lin-UCB is a complicated algorithm, so it was not
intuitively clear (at least to us) why it should adapt to
the misspecified setting better than Lin-UCB. As will
be seen, one of our contributions is to provide a new in-
terpretation of Sup-Lin-UCB that intuitively explains
this. Furthermore, our interpretation is a key building
block that leads to improved results for MLMDPs.

Contributions: Our contributions are as follows.

• An intuitive Sup-Lin-UCB variant: In Section
3, we show that Sup-Lin-UCB’s success for MLCBs
is not an accident; rather, it can be derived from
the perspective of misspecification. More precisely,
we first propose an MLCB algorithm called EXPL3,
which explicitly decides to explore or exploit. EXPL3
is simple and intuitive but requires εmis as input to
perform well. We overcome this requirement by con-
structing an intuitive ensemble of EXPL3 algorithms,
one for each possible εmis value (see Proposition 2).
The ensemble closely resembles Sup-Lin-UCB and
sheds light onto Takemura et al. (2021)’s result.

• The Sup-LSVI-UCB algorithm: In Section 4, we
leverage the insights developed for MLCBs to de-

sign an MLMDP algorithm called Sup-LSVI-UCB.1

At a high level, Sup-LSVI-UCB combines our Sup-

Lin-UCB variant with a backward induction proce-
dure, analogous to how LSVI-UCB (Jin et al., 2020)
was derived from Lin-UCB. However, because Sup-

Lin-UCB is more complicated than Lin-UCB, we en-
counter new technical issues when generalizing from
MLCBs to MLMDPs, which requires some new al-
gorithmic ideas; see Remarks 3 and 4.

• Improved guarantees: In Section 5, we show that
when the input εtol is chosen independent ofK, Sup-
LSVI-UCB is the first algorithm to satisfy (P1), (P2),
and (P3) (see Theorem 1). If instead εtol = d/

√
K,

Sup-LSVI-UCB improves existing regret bounds (up
to log factors), while simultaneously removing the
requirement that εmis is known (Corollary 1). Fi-
nally, if εmis is known, we can set εtol = εmis to im-
prove existing bounds while simultaneously avoiding
unbounded complexity (Corollary 2). See Table 1.

Finally, though somewhat orthogonal to our main re-
sults, we also revisit Lin-UCB for MLCBs. While it
is known that this algorithm can be modified to ob-
tain Kεmispolylog(K) regret when εmis is known (Lat-
timore et al., 2020; Jin et al., 2020), we are not aware
of any bounds that satisfy (P1). Hence, we propose
a new modification that satisfies (P1) and sharpens
existing bounds when K ≥ ε−2

mis. See Section 6.

1.1 Related work

MLMDP: Jin et al. (2020) proposed the aforemen-
tioned LSVI-UCB, which fails to satisfy all of (P1),
(P2), and (P3). Zanette et al. (2020a) analyzed the
Thompson sampling-based randomized LSVI (Osband

1“LSVI” stands for “least-squares value iteration” and
“UCB” stands for “upper confidence bound.”
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et al., 2019). Their regret bound uses Õ(·) notation,
so (P1) is a bit ambiguous, but we believe it holds.
However, (P2) and (P3) again fail.

Regarding sample complexity: Several papers (in-
cluding Jin et al. (2020)) provide sample complexity
bounds, i.e., number of samples to learn an approx-
imately optimal policy, though to our knowledge, all
violate (P3). On the other hand, such bounds yield al-
gorithms that satisfy (P2) (and possibly (P1), though
not for Jin et al. (2020)): one can just fix the approx-
imately optimal policy after finding it. However, this
requires well-behaved initial states, e.g., fixed across
episodes as in Jin et al. (2020). In contrast, we allow
for arbitrary initial states, as in the regret analyses
from Jin et al. (2020); Zanette et al. (2020a).

Low inherent Bellman error: Zanette et al.
(2020b) proposed the low inherent Bellman error
(LIBE) model, which generalizes MLMDPs while re-
taining a linear flavor. For this model, Zanette et al.
(2020b) improved the regret of Jin et al. (2020), while
Hu et al. (2021) studied multi-task learning. However,
these algorithms are defined in terms of optimization
problems but no solutions are provided, so the algo-
rithms lack explicit implementation. Zanette et al.
(2020c) proved a sample complexity bound, which
yields a regret minimization algorithm that satisfies
(P2) but requires i.i.d. initial states. All violate (P3).

Linear mixture: The linear mixture model (LMM)
assumes the transition kernel is a linear combination
of d known measures (see, e.g., Jia et al. (2020);
Modi et al. (2020); Zhang et al. (2021); Zhou et al.
(2021a,b)), which is distinct from our Assumption 1.
To our knowledge, the only regret bound for misspeci-
fied LMMs is from Ayoub et al. (2020); the algorithm
satisfies (P1) but violates (P2) and (P3).

Nonlinear generalizations: Some nonlinear gen-
eralizations of LMDPs have been proposed, such as
the case where the state-action value function belongs
to a class of bounded eluder dimension (Russo and
Van Roy, 2013) or can be represented by a kernel
function or neural network. While such generaliza-
tion is important, these works (see, e.g., Chowdhury
and Oliveira (2020); Ishfaq et al. (2021); Kong et al.
(2021); Wang et al. (2020a,b); Yang et al. (2020a,b))
fail to improve over Jin et al. (2020); Zanette et al.
(2020a) in terms of (P1), (P2), or (P3) (or regret).

Model selection: To overcome the fact that exist-
ing MLMDP algorithms require εmis as input, one
could alternatively use a model selection algorithm
(see, e.g., Cutkosky et al. (2021); Pacchiano et al.
(2020a,b)). In our context, these initialize M base
algorithms (e.g., LSVI-UCB) with respective inputs
εmis(1), . . . , εmis(M). Then at each episode, the bases

compute policies and a master algorithm uses past
data to choose one of the policies. To our knowledge,
the only explicit results use Zanette et al. (2020b) as
the base, which lacks an efficient implementation, and
while the resulting master achieves (P3), it violates
(P1) and (P2) (see Appendix D.4 in Cutkosky et al.
(2021) and Section 6.4 in Pacchiano et al. (2020a)).
Another downside is that the master algorithms in
Cutkosky et al. (2021); Pacchiano et al. (2020a) require
a regret bound for each base, so while (P3) holds, the
stronger “parameter free” property that neither εmis

nor regret bounds are known (which we satisfy) is vio-
lated. On the other hand, Pacchiano et al. (2020b) do
not require such regret bounds, but their paper only
considers the special case of MLCBs (H = 1).

MLCBs: For MLCBs, Gopalan et al. (2016) showed
(unmodified) Lin-UCB can achieve sublinear regret
when εmis is very small. Foster and Rakhlin (2020)
proved regret bounds more generally but (P3) fails.
Foster et al. (2021) provided expected regret bounds
for an algorithm that satisfies (P3). As mentioned
above, Takemura et al. (2021)’s algorithm satisfies
(P3), and their bounds hold with high probability. In
the noncontextual case, Lattimore et al. (2020) pro-
posed an algorithm that achieves (P1) or (P3), but
not both. Ghosh et al. (2017) proved regret bounds
that may be polynomial in |A|.

Other related work: Dong et al. (2019) consid-
ered a misspecified state aggregation model; their algo-
rithm satisfies (P1) and (P2) but not (P3). Lattimore
et al. (2020) proved sample complexity bounds for dis-
counted MDPs where the Q-function is approximately
linear (more general than us), but they require a simu-
lator/generative model. Yin et al. (2021) considered a
similar setting, though only requires “local” simulator
access. Wang et al. (2021) only assumed the transition
kernel is linear but requires a simulator.

2 PRELIMINARIES

Finite-horizon MDP: We use the standard nota-
tion. S is the state space, A is the finite action space,
H ∈ N is the horizon, {rh}Hh=1 are the mean rewards,
and {Ph}H−1

h=1 are the transition kernels. We assume
rh(s, a) ∈ [0, 1] for each h ∈ [H] = {1, . . . ,H}, s ∈ S,
and a ∈ A. We let Π denote the set of policies, i.e., the
set of sequences π = (πh)Hh=1 with πh : S → A for each
h. For any π ∈ Π and h ∈ [H], V πh : S → [H − h+ 1]
denotes the value function

V πh (s) = E

[
H∑

h′=h

rh′(sh′ , πh′(sh′))

∣∣∣∣∣sh = s

]
,

where sh′+1 ∼ Ph′(·|sh′ , πh′(sh′)) for each h′. We let
Qπh : S×A → [H−h+1] denote the state-action value
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function (or Q-function) given by

Qπh(s, a) = rh(s, a) + E[V πh+1(sh+1)|sh = s, ah = a],

where sh+1 ∼ Ph(·|s, a) and V πH+1(sH+1) = 0 by con-
vention. It is well known that there exists an opti-
mal policy π? = (π?h)Hh=1, i.e., V ?h (s) , V π

?

h (s) =
maxπ∈Π V

π
h (s) for all h ∈ [H] and s ∈ S. Also, for

any h ∈ [H], π?h is greedy with respect to Q?h , Qπ
?

h ,
i.e., V ?h (s) = maxa∈AQ

?
h(s, a) for each s ∈ S.

MLMDP: As discussed in Section 1, we make the
following linearity assumption.

Assumption 1 (MLMDP). For some known φ : S ×
A → Rd and all h ∈ [H], there exists unknown θh ∈ Rd
and d unknown measures µh = (µh,1, . . . , µh,d) over S
such that, for all s ∈ S and a ∈ A,

|rh(s, a)− φ(s, a)Tθh| ≤ εmis,

‖Ph(·|s, a)− φ(s, a)Tµh‖1 ≤ εmis.

We also have max(s,a)∈S×A ‖φ(s, a)‖2 ≤ 1 and

maxh∈[H] max{‖θh‖2,
∫
s′∈S ‖µh(s′)‖2} ≤

√
d.

Remark 1 (Comparison to prior work). Assumption
1 matches Assumption B of Jin et al. (2020) and As-
sumption 1 of Zanette et al. (2020a), except the latter
has general `2 norm bounds (e.g., ‖φ(s, a)‖2 ≤ Lφ for
some Lφ). Our analysis can be similarly generalized.

A key consequence is that the Q-function is approxi-
mately linear. (See Proposition 2.3 of Jin et al. (2020)
or Corollary B.3 of Zanette et al. (2020a) for a proof.)

Proposition 1 (MLMDP Q-function). For any π ∈ Π
and h ∈ [H], there exists wπh ∈ Rd such that |Qπh(s, a)−
φ(s, a)Twπh | ≤ (H − h+ 1)εmis for any (s, a) ∈ S ×A.

Regret: We follow the standard episodic framework.
At episode k, we choose policy πk = (πkh)Hh=1 and begin
at an arbitrary initial state sk1 ∈ S. For each h ∈ [H],
we take action akh = πkh(skh), observe noisy reward
rkh(skh, a

k
h) = rh(skh, a

k
h) + ηkh (where ηkh is condition-

ally zero-mean noise, i.e., E[ηkh|skh, akh] = 0), and (when
h < H) transition to skh+1 ∼ Ph(·|skh, akh). We assume

rh(skh, a
k
h) and rkh(skh, a

k
h) lie in [0, 1], so ηkh ∈ [−1, 1].2

We measure performance in terms of the regret

R(K) =

K∑
k=1

(
V ?1 (sk1)− V πk1 (sk1)

)
. (1)

MLCB: For MLCBs, we use the notation above with
H = 1 and discard subscripts h. So, for each k ∈ [K],
we observe context sk ∈ S, take action ak ∈ A, and
receive reward rk(sk, ak) = r(sk, ak) + ηk. As above,
ηk is conditionally zero-mean, rk(sk, ak) and r(sk, ak)
are [0, 1]-valued, and |r(s, a)− φ(s, a)Tθ| ≤ εmis.

2The results extend with minor modification to
bounded mean rewards and subgaussian noise.

Algorithm 1: EXPL3(thres)

1 Ψ0 = ∅
2 for episode k = 1, . . . ,K do
3 Observe sk ∈ S
4 Λk = I +

∑
τ∈Ψk−1 φ(sτ , aτ )φ(sτ , aτ )T

5 wk = (Λk)−1
∑
τ∈Ψk−1 φ(sτ , aτ )rτ (sτ , aτ )

6 if maxa∈A ‖φ(sk, a)‖(Λk)−1 > thres then
7 ak = arg maxa∈A ‖φ(sk, a)‖(Λk)−1

8 Ψk = Ψk−1 ∪ {k}
9 else

10 ak = arg maxa∈A φ(sk, a)Twk , Ψk = Ψk−1

11 Play ak, observe rk(sk, ak)

3 MLCB ALGORITHMS

In this section, we restrict to MLCBs and discuss
EXPL3 and our Sup-Lin-UCB variant. We will later
leverage the insights developed in this section to de-
sign our MLMDP algorithm (see, e.g., Remark 4).

Warm-up: noncontextual, known εmis: Assume
momentarily that s1 = · · · = sK and εmis is known.
In this case, we propose a simple two stage algorithm.
For the first stage, we play the action with the highest
noise/uncertainty in order to reduce it. Mathemati-
cally, we quantify the uncertainty in the usual way for
LCBs: let Λk = I +

∑
τ≤k φ(sτ , aτ )φ(sτ , aτ )T,

‖φ(sk, a)‖(Λk)−1 =
√
φ(sk, a)T(Λk)−1φ(sk, a), (2)

and play ak = arg maxa ‖φ(sk, a)‖(Λk)−1 . After ≈ ε−2
mis

such episodes, the uncertainty falls below εmis, which
means |φ(sk, a)T(wk − θ)| = O(εmis) for the least-
squares estimate wk of θ. Hence, arg maxa φ(sk, a)Twk

is an εmis-suboptimal policy, which is the best possi-
ble under Assumption 1. Accordingly, the second stage
exploits by playing ak = arg maxa φ(sk, a)Twk.

General case: For the contextual setting and un-
known εmis, EXPL3 (Algorithm 1) generalizes this ap-
proach. Note uncertainty now depends on the context
sk, and we can no longer define “high” as “≥ εmis”.
Thus, at episode k, EXPL3 checks if the uncertainty at
the current context sk exceeds the input thres (Line
6). If so, it explores a high uncertainty action (Line 7);
otherwise, it exploits the estimated best action (Line
10). Here Λk and wk are only computed from episodes
Ψk−1 where EXPL3 explored. When thres ≈ εmis,
EXPL3(thres) is essentially a contextual version of the
previous approach and should perform well. However,
if thres 6≈ εmis, it will fail for one of two reasons:

(A) If thres � εmis, EXPL3(thres) stops exploring as
soon as the uncertainty falls below thres, so it
only learns a thres-suboptimal policy.
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Algorithm 2: Sup-Lin-UCB-Var

1 Ψ0
l = ∅ ∀ l ∈ [L]

2 for episode k = 1, . . . ,K do
3 Observe sk ∈ S, set Ak1 = A
4 for phase l = 1, . . . , L do
5 Λkl = I +

∑
τ∈Ψk−1

l
φ(sτ , aτ )φ(sτ , aτ )T

6 wkl = (Λkl )−1
∑
τ∈Ψk−1

l
φ(sτ , aτ )rτ (sτ , aτ )

7 if maxa∈Akl ‖φ(sk, a)‖(Λkl )−1 > 2−l then

8 ak = arg maxa∈Akl ‖φ(sk, a)‖(Λkl )−1

9 Ψk
l = Ψk−1

l ∪ {k}, Ψk
l′ = Ψk−1

l′ ∀ l′ 6= l
10 break

11 else if l < L then
12 Akl+1 = {a ∈ Akl : φ(sk, a)Twkl ≥

maxa′∈Akl φ(sk, a′)Twkl −Θ(2−l)}
13 else
14 ak = arg maxa∈AkL φ(sk, a)TwkL
15 Ψk

l′ = Ψk−1
l′ ∀ l′

16 Play ak, observe rk(sk, ak)

(B) If thres� εmis, EXPL3(thres) explores too much
– for roughly thres−2 episodes when ε−2

mis suffice.
This may cause sp(r)thres−2 additional regret,
where sp(r) = maxa r(s

k, a)−mina r(s
k, a).

Ensemble approach: We next show these failures
can be overcome by carefully interconnecting the en-
semble {EXPL3(2−l)}Ll=1. Roughly, the l-th will explore
until its uncertainty is 2−l, as above. Thereafter, we
know its greedy policy is only 2−l-suboptimal, and
since εmis is unknown, we may have 2−l � εmis.
Hence, instead of choosing the best action – which
causes failure (A) – we only ask it to eliminate 2−l-
suboptimal actions. By the same token, the (l − 1)-
th algorithm has already eliminated 21−l-suboptimal
actions, so the l-th sees a more favorable problem in-
stance, with sp(r) = O(2−l). Thus, if instead 2−l �
εmis, the extra regret in (B) scales as 2−l(2−l)−2 = 2l,
which is tolerable if we choose L = log2(O(

√
K)).

More precisely, our Sup-Lin-UCB variant is given in
Algorithm 2. At episode k, it chooses an action via
a phased elimination procedure that lasts at most L
phases. Generalizing EXPL3, it computes Λkl and wkl
using Ψk

l , which are the exploratory episodes at phase
l. As discussed above, the l-th phase chooses a high
uncertainty action if one exists (Line 8) and otherwise
eliminates actions with estimated reward Θ(2−l) less
than the maximal (Line 12). Finally, if phase L is
reached and an action was never chosen in Line 8, it
exploits the estimated best action (Line 14).

Formal interpretation: To complement this intu-
ition, we provide a formal result. Roughly, it shows

that if S is rich enough, then for any phase l and any
contexts in Sup-Lin-UCB-Var, there are contexts in
EXPL3(2−l) such that the latter learns the same pol-
icy as the l-th phase of Sup-Lin-UCB-Var. In other
words, Sup-Lin-UCB-Var runs {EXPL(2−l)}Ll=1. In this
way, Sup-Lin-UCB is akin to model selection, but un-
like those approaches, does not attempt to learn the
best EXPL(2−l). See Appendix D.1 for a proof.

Proposition 2 (Sup-Lin-UCB = EXPL3 ensemble).
Assume that for any {φa}a∈A ⊂ Rd and {ra}a∈A ⊂ R,
there exists s ∈ S such that φ(s, a) = φa and r(s, a) =
ra ∀ a ∈ A. Then for any l ∈ [L] and {sk}Kk=1 ⊂ S,
there exists {s̃k}Kk=1 ⊂ S such that, if Algorithms 1
and 2 are run with contexts {s̃k}Kk=1 and {sk}Kk=1, re-
spectively, and if both face the same noise sequence
{ηk}Kk=1, then (wk,Λk) = (wkl ,Λ

k
l ) ∀ k ∈ [K].

Remark 2 (Historical note). Sup-Lin-UCB-Var sim-
plifies Takemura et al. (2021)’s algorithm (see Ap-
pendix A), which modifies Sup-Lin-UCB (Chu et al.,
2011), which builds upon Sup-Lin-Rel (Auer, 2002).
The latter three set L = log2(O(

√
K)) as above, but

we keep it general, which is crucial for (P1) and (P2).

4 MLMDP ALGORITHM

We can now leverage the intuition of the previous sec-
tion to discuss Sup-LSVI-UCB (Algorithm 3). To be-
gin, it initializes the aforementioned parameter L, an
exploration parameter α, a rounding parameter εrnd

(to be discussed shortly), and the sets Ψh,l = ∅ (now
indexed by step h ∈ [H] but similar to Ψl in Algorithm
2). The k-th episodes then contains two parts:

• Policy update (Alg. 3, Lines 4-10): Starting at
h = H and inducting backward, for each l ∈ [L],
Lines 6 and 7 use the episodes Ψk

h,l to compute a

least-squares estimate wkh,l of the vector wπh from

Proposition 1 (and the matrix Λkh,l). This is the
same approach used by LSVI-UCB; see Section 4 of
Jin et al. (2020) for intuition. The difference is that
the next-state value estimate V kh+1(sτh+1) in Line 7
is computed via Algorithm 4, which is essentially
Sup-Lin-UCB-Var and will be discussed soon. In
contrast, LSVI-UCB uses Lin-UCB-style estimates

max
a∈A

(
φ(s, a)Twkh+1 + α‖φ(s, a)‖(Λkh+1)−1

)
, (3)

where wkh+1 and Λkh+1 are computed using all data

(not just Ψk
h,l). Additionally, Lines 8 and 9 elemen-

twise round wkh,l and (Λkh,l)
−1 to w̃kh,l and (Λ̃kh,l)

−1

for reasons discussed in Remark 3.3

3We emphasize (Λ̃k
h,l)
−1 elementwise rounds (Λk

h,l)
−1;

we have not defined Λ̃k
h,l and inverted it.
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Algorithm 3: Sup-LSVI-UCB(εtol, δ)

1 L = dlog2(
√
d/εtol)e, α = 42dHL

√
log( 3dHL

δ )

2 εrnd = 2−4L/d, Ψ0
h,l = ∅ ∀ l ∈ [L], h ∈ [H]

3 for episode k = 1, . . . ,K do
4 for step h = H, . . . , 1 do
5 for phase l = 1, . . . , L do
6 Λkh,l = 16I +

∑
τ∈Ψk−1

h,l
φ(sτh, a

τ
h)φ(sτh, a

τ
h)T

7 wkh,l = (Λkh,l)
−1
∑
τ∈Ψk−1

h,l
φ(sτh, a

τ
h)×

(rτh(sτh, a
τ
h) + V kh+1(sτh+1))

8 (Λ̃kh,l)
−1 = εrndd(Λkh,l)−1/εrnde

9 w̃kh,l = εrnddwkh,l/εrnde
10 (πkh(·), V kh (·), lkh(·)) = Sup-Lin-UCB-Var(·)

(see Algorithm 4)
11 Observe sk1 ∈ S
12 for step h = 1, . . . ,H do
13 Play akh = πkh(skh), observe rkh(skh, a

k
h)

14 Transition to skh+1 ∼ Ph(·|skh, akh)

15 if lkh(skh) ≤ L then

16 Ψk
h,lkh(skh)

= Ψk−1
h,lkh(skh)

∪ {k}
17 Ψk

h,l = Ψk−1
h,l ∀ l ∈ [L] \ {lkh(skh)}

18 else Ψk
h,l = Ψk−1

h,l ∀ l ∈ [L]

• Policy execution (Alg. 3, Lines 11-18): After
updating the policy, we execute it by computing its
relevant entries {πkh(skh)}Hh=1 via Algorithm 4. (We
discuss the Ψh,l update in Lines 16, 17, and 18 soon.)

Subroutine (Alg. 4): As mentioned above, Algo-
rithm 4 implements Sup-Lin-UCB-Var logic to choose
πkh(s) for a given s ∈ S, though using the rounded

w̃kh,l and (Λ̃kh,l)
−1. A small technical issue is that the

analogue of (2) may be ill-defined, so instead we let4

‖φ(s, a)‖(Λ̃kh,l)−1 =
√
|φ(s, a)T(Λ̃kh,l)

−1φ(s, a)|.

Algorithm 4 also returns V kh (s), which is the value esti-
mate used in the backward induction, and lkh(s), where
lkh(s)− 1 is the number of eliminations conducted (see
Lines 5 and 13). For the value estimate, we use P[0,H]

to project onto [0, H], i.e., P[0,H](x) = 0, x, and H
when x < 0, ∈ [0, H], and > H, respectively. This is
typical for MLMDPs and ensures boundedness of the
random variables. See Remark 4 for further discussion
of V kh . Also note lkh(s) ≤ L only when an exploratory
action is chosen in Line 4, in which case Sup-LSVI-UCB
adds the episode to Ψh,l (Line 16 of Algorithm 3).

Remark 3 (Rounding). The rounding in Lines 8 and
9 of Algorithm 3 ensures that V kh+1 : S → [0, H] defined

4While this need not be a norm, εrnd is small enough
that it behaves like one (at least enough for our purposes).

Algorithm 4: Sup-Lin-UCB-Var(s)

1 Akh,1(s) = A, V kh,0(s) = H

2 for phase l = 1, . . . , L do
3 if maxa∈Akh,l(s) ‖φ(s, a)‖(Λ̃kh,l)−1 > 2−l then

4 πkh(s) = arg maxa∈Akh,l(s) ‖φ(s, a)‖(Λ̃kh,l)−1

5 V kh (s) = P[0,H](V
k
h,l−1(s) + 21−lα), lkh(s) = l

6 return (πkh(s), V kh (s), lkh(s))

7 else if l < L then
8 πkh,l(s) = arg maxa∈Akh,l(s) φ(s, a)Tw̃kh,l
9 V kh,l(s) = φ(s, πkh,l(s))

Tw̃kh,l
10 Akh,l+1(s) = {a ∈ Akh,l(s) : φ(s, a)Tw̃kh,l ≥

V kh,l(s)− 21−lα}
11 else
12 πkh(s) = πkh,L(s)

13 V kh (s) = P[0,H](V
k
h,L(s)), lkh(s) = L+ 1

14 return (πkh(s), V kh (s), lkh(s))

by Algorithm 4 belongs to a finite function class. This
enables a union bound over the function class in our
concentration lemma, which is needed because V kh+1 is
a random function that depends on past data. In con-
trast, Jin et al. (2020) shows (3) is close to a func-
tion class with a small covering number, then takes a
union bound over the cover. This relies on the fact
that their S-dimensional value function estimate is it-
self a continuous function of the poly(d)-dimensional
wkh and Λkh. In our case, Lines 3 and 10 of Algorithm
4 introduce discontinuities that cause this to fail.

Remark 4 (Off-policy estimates). Algorithm 4’s (un-
projected) value estimate takes one of two forms. In
Line 13, it is φ(s, πkh(s))Tw̃kh,L, which is the Q-function

estimate at the chosen action πkh(s). In this sense, it is
the usual “on-policy” estimate used in LSVI-UCB and
most other algorithms. In contrast, Line 5 uses

φ(s, πkh,l−1(s))Tw̃kh,l−1 + Θ(2−l). (4)

Since πkh,l−1(s) 6= πkh(s) in general, this estimate is off-
policy. We use such estimates in Line 5 because Lines
4-6 correspond to the explicit exploration discussed in
Section 3. When such exploration is needed, the on-
policy estimate may be quite low, so we use an off-
policy estimate to incentivize the algorithm to visit s
(after which we can conduct the exploration). The 2−l

term in (4) is also motivated by Section 3. In essence,
since EXPL(2−l) learns up to 2−l noise, it is an uncer-
tainty bonus that makes (4) the highest statistically-
plausible value from the perspective of EXPL(2−l).

Remark 5 (Adversarial corruptions). Lykouris et al.
(2021) assume the MDP is linear (εmis = 0) except
for a small number of episodes, where it changes arbi-
trarily. While quite different from MLMDP, they also
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combine backward induction and phased elimination,
with each phase using a subset of episodes. The com-
monality is high level, though; in that work, each phase
runs its own backward induction subroutine, which
episodes each phase uses differ, and the algorithm is
model-based (among other differences).

5 MAIN RESULTS

We can now present Theorem 1, which provides regret
and complexity guarantees for Sup-LSVI-UCB. This is
our most general result, and we will soon examine some
special cases of εtol to build further intuition. For now,
we mention that the theorem (and the fact that εmis

does not appear in our algorithms) guarantees (P1),
(P2), and (P3) hold when εtol is independent of K,
which (to our knowledge) is a first for MLMDPs.

Theorem 1 (General result). If Assumption 1 holds
and we run Algorithm 3 with inputs εtol ∈ (0, 1) and
δ ∈ (0, 1), then with probability at least 1− δ,

R(K) = O
(√

d3H4 min{(d/εtol)2,K} log5( d
εtol

)ι

+
√
H3Kι

+
√
dH2K max{εmis, εtol}

√
log3( d

εtol
)ι
)
,

where ι = log(3dH/δ). Furthermore, Algorithm 3’s
space complexity is

O
(
d2H log( d

εtol
) + dH|A|min

{
d2 log( d

εtol
)/ε2

tol,K
})

,

(5)
and its per-episode time complexity is

O
(
d2H|A|min

{
d2 log( d

εtol
)/ε2

tol,K
}

log( d
εtol

)
)
. (6)

Alternatively, if K is small (so (P1) and (P2) are less
relevant), we can choose εtol in terms of K to obtain
the following corollary. Here (P3) still holds, though
(like many existing algorithms) (P1) and (P2) fail.

Corollary 1 (Unknown εmis, smallK). If Assumption
1 holds and we run Algorithm 3 with inputs εtol = d√

K

and δ ∈ (0, 1), then with probability at least 1− δ,

R(K) = O
(√

d3H4K log5(K)ι

+
√
dH2Kεmis

√
log3(K)ι

)
,

where ι = log(3dH/δ). Furthermore, Algorithm 3’s
space complexity is O(d2H log(K) + dHK|A|) and its
per-episode time complexity is O(d2HK|A| log(K)).

Finally, given knowledge of εmis as in Jin et al. (2020);
Zanette et al. (2020a), we can set εmis = εtol to ensure
(P1) and (P2) hold with the following regret bound.

Corollary 2 (Known εmis, large K). If Assumption 1
holds and we run Algorithm 3 with inputs εtol = εmis

and δ ∈ (0, 1), then with probability at least 1− δ,

R(K) = O
(√

d3H4 min{(d/εmis)2,K} log5( d
εmis

)ι

+
√
H3Kι+

√
dH2Kεmis

√
log3( d

εmis
)ι
)
,

where ι = log(3dH/δ). Furthermore, Algorithm 3’s
space and per-episode time complexities are bounded
by (5) and (6), respectively, with εtol replaced by εmis.

Remark 6 (Comparison to prior work). Up to log fac-
tors, the “linear” terms in the corollaries improve the
results from Jin et al. (2020); Zanette et al. (2020a) by
a
√
d factor; the sublinear term in Corollary 1 matches

those results, while Corollary 2 improves them for
K ≥ (d/εtol)

2 (see Table 1). The complexity bounds
in Corollary 1 match Jin et al. (2020); Zanette et al.
(2020a), while Corollary 2 improves these bounds (also
for K ≥ (d/εtol)

2). The regret bound in Zanette et al.
(2020b) beats ours by a

√
d factor in the sublinear

term, but it is unclear how to implement their algo-
rithm efficiently (again, see Table 1).

Remark 7 (Linear term). Again neglecting logs, the
linear terms in the corollaries are

√
dH2Kεmis. Lat-

timore et al. (2020) shows the
√
d “blow-up” is un-

avoidable and conjectures that for γ-discounted MDPs,
(1 − γ)−2 dependence (the analogue of H2 in the dis-
counted setting) is optimal.

Remark 8 (Choice of L). When εtol = d√
K

in Corol-

lary 1, L = log2( K√
d
) in Algorithm 4, which is the

choice used in Takemura et al. (2021). When εtol =

εmis in Corollary 2, L = log2(
√
d

εmis
), which roughly

means the ensemble {EXPL3(2−l)}Ll=1 explores until the
lowest noise level matches the misspecification bias.

Remark 9 (MLCB). When H = 1 and L = log2( K√
d
),

Corollary 1 can be sharpened to d
√
K +

√
dKεmis (see

Remark 11 in Appendix B), which matches Takemura
et al. (2021)’s result when |A| is large.

We prove Theorem 1 in Appendix B. At a high level,
the proof generalizes that of Takemura et al. (2021)’s
Theorem 1 from MLCBs to MLMDPs so is structurally
similar. However, there are some key differences and
challenges that are unique to the MLMDP setting:

• As discussed in Remark 3, we use rounding to cope
with dependent noise that arises when H > 1; see
Lemma 1 for details. The downside is that rounding
introduces additional errors. However, we general-
ize the proof in such a way that we can define an
“effective misspecification” that accounts for both
rounding error and misspecification, and that plays
the same role the latter alone plays in Takemura
et al. (2021) (see discussion preceding Lemma 2).
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• As discussed in Remark 4, we need to ensure the
backward induction uses optimistic estimates V kh (s)
despite the fact that the algorithm occasionally
takes exploratory (non-optimistic) actions. We show
in Lemmas 3 and 4 that our definition of V kh (s) in Al-
gorithm 4 judiciously balances two competing forces:
estimating the value of the algorithm’s policy (i.e.,
ensuring V kh ≈ V πkh ) and remaining optimistic with
respect to the optimal policy (i.e., V ?h ≈ V kh ), which
together imply low regret (i.e., V ?h ≈ V

πk
h ).

• In general, we are more careful with log terms that
Takemura et al. (2021) simply bound by logK (see,
e.g., discussion before Claim 3), as this leads to
super-linear bounds that our analysis avoids.

• Along these lines, the proof shows that at each phase
of Algorithm 4, the misspecification may cause all
εmis-suboptimal actions to be eliminated (see Claim
6, which generalizes Takemura et al. (2021)’s Lemma
4). Hence, after Ω(L) phases, Algorithm 4 may rec-
ommend Ω(Lεmis)-suboptimal actions, which leads
to super-linear regret bounds when L grows with
K. This is why we need to choose εtol (and sub-
sequently L) independent of K in order to achieve
(P1) in Theorem 1 and Corollary 2.

• Finally, when H = 1, Takemura et al. (2021) sep-
arately bounds regret when (1) lk1(sk1) = 1, (2)
lk1(sk1) ∈ {2, . . . , L}, and (3) lk1(sk1) = L+ 1 (though
they do not use this notation). For general H ∈ N,
we have an entire sequence {lkh(skh)}Hh=1, which ren-
ders this case-based analysis intractable. Instead,
we streamline their approach by showing (1) never
occurs for our parameter choices (see Corollary 6)
and by introducing the lkh notation to treat (2) and
(3) in a more unified manner (see, e.g., Claim 5).

6 OTHER RESULTS

Finally, we return to discuss Lin-UCB. Recall we as-
sume ηk is zero-mean, r(sk, ak) and rk(sk, ak) =
r(sk, ak) + ηk lie in [0, 1] (so ηk ∈ [−1, 1]), |r(s, a) −
φ(s, a)Tθ| ≤ εmis, and ‖φ(s, a)‖2 ≤ 1; we strengthen
the assumption ‖θ‖2 ≤

√
d to ‖θ‖2 ≤ 1 in this section.5

For this setting, the regret definition (1) simplifies to

R(K) =

K∑
k=1

(r(sk, ak?)− r(sk, ak)),

where ak? = arg maxa∈A r(s
k, a) and ak is the chosen

action. In our notation, Lin-UCB chooses

ak = arg max
a∈A

(
φ(sk, a)Twk + α‖φ(sk, a)‖(Λk)−1

)
, (7)

5To prove (8), Lattimore et al. (2020) assumes 1-
subgaussian noise (see their Section 5), ‖φ(s, a)‖2 ≤ 1, and
|φ(s, a)Tθ| ≤ 1 (see their Appendix E), which is similar.

where Λk = λI +
∑k−1
τ=1 φ(sτ , aτ )φ(sτ , aτ )T and wk =

(Λk)−1
∑k−1
τ=1 φ(sτ , aτ )rτ (sτ , aτ ). Lattimore et al.

(2020) (building upon Jin et al. (2020)) show that
choosing δ ∈ (0, 1), λ = 1, and α = O(

√
d log(K/δ) +√

Kεmis) ensures that with probability at least 1− δ,6

R(K) = O
(
d
√
K log(K/δ) +

√
dKεmis

√
logK

)
(8)

(see their Lemma E.1). While
√
dKεmis

√
logK is opti-

mal up to the log term, it violates (P1). We show this
can be remedied (and, when K � ε−2

mis, (8) improved)
by choosing a different regularizer λ.

Proposition 3. Let δ ∈ (0, 1), λ = 1 + Kε2
mis, and

α = 1 +
√

2d log((λ+K)/(λδ)) + 2
√
Kεmis. Under

the assumptions of Section 6, with probability at least
1− δ, Lin-UCB (7) satisfies

R(K) = O
(
d
√
K log(min{K, ε−2

mis}/δ) (9)

+
√
dKεmis

√
log(min{K, ε−2

mis})
)
.

Proof idea. The proof is standard; see Appendix D.2
for a sketch. The key step is the sum-of-bonuses cal-
culation, which (ignoring lower order terms) shows

α

K∑
k=1

‖φ(sk, ak)‖(Λk)−1 = O
(
εmisK

√
d log(K/λ)

)
.

Hence, when λ = O(1) and λ = O(Kε2
mis), respec-

tively, we obtain a super-linear term like (8) and a
linear term like (9), respectively.

Remark 10 (Intuition). Consider the case S = {1},
A = {1, . . . , d}, and φ(1, i) = ei (the i-th standard ba-
sis vector). For λ = O(1) and α = Ω(

√
Kεmis) as

in Lattimore et al. (2020); Jin et al. (2020), we have
(α‖φ(1, i)‖(Λk)−1)2 = O(Kε2

mis/Nk(i)), where Nk(i) is
the number of times action i was played in the first k
episodes. By (7), this means the algorithm needs to
explore uniformly for the first Ω(Kε2

mis) steps to drive
the exploration bonuses down to O(1). In contrast,
(α‖φ(1, i)‖(Λk)−1)2 = O(Kε2

mis/(Kε
2
mis + Nk(i))) =

O(1) holds right away (i.e., for k = 1) with our λ.

7 DISCUSSION

Before closing, we discuss some additional important
aspects of our algorithms.

Practicality of Sup-Lin-UCB and Sup-LSVI-UCB:
Recall from the introduction that, in the setting of
MLCBs with unknown εmis, Lattimore et al. (2020)

6The lemma actually bounds E[R(K)] for a refined al-
gorithm, but (8) can be similarly proven for (7).
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devised a problem instance for which Lin-UCB incurs
Ω(K) regret and Takemura et al. (2021) showed Sup-

Lin-UCB can achieve Kεmispolylog(K) regret. For
MLMDPs, the instance of Lattimore et al. (2020)
similarly shows that LSVI-UCB can incur Ω(K) re-
gret and we devised Sup-LSVI-UCB and proved it has
K max{εmis, εtol} regret. While this suggests the supe-
riority of Sup-Lin-UCB and Sup-LSVI-UCB over Lin-

UCB and LSVI-UCB, respectively, the latter two algo-
rithms are much simpler and easier to deploy in prac-
tice. Thus, an important open problem is to devise
algorithms with the strong theoretical guarantees of
the former but the practical advantages of the latter.
Alternatively, it would be interesting to understand
the minimal assumptions under which the latter ob-
tain the guarantees of the former (namely, assumptions
which rule out the Ω(K) instance from Lattimore et al.
(2020), which is somewhat pathological).

Empirical evaluation: As shown in Table 1, our al-
gorithm incurs lower regret than those from Jin et al.
(2020); Zanette et al. (2020a), and it would be use-
ful to see if this improvement also occurs empirically.
Unfortunately, both of these existing algorithms have
parameters that the papers only specify in a big-O
sense (β in Jin et al. (2020) and σ in Zanette et al.
(2020a)), so it is unclear how to choose these param-
eters to meaningfully compare the algorithms to ours.
Of course, one would typically optimize the parame-
ters for all algorithms, then use the optimized param-
eters to compare. But in our case, β and σ are defined
in terms of εmis, so this hyperparameter optimization
implicitly exploits knowledge of εmis. In short, since
the existing work does not provide guidance on how
to choose their parameters, it is unclear how to choose
them without exploiting knowledge of εmis. This in
turn renders a comparison to our algorithm (which
does not require knowledge of εmis for the theoreti-
cal results) less meaningful. Nevertheless, we believe
numerical comparison is important and leave it as an
important point for future work.

8 CONCLUSION

In this work, we proposed the Sup-LSVI-UCB algorithm
and showed it is the first to achieve (P1), (P2), and
(P3). Our algorithm is motivated by a new interpre-
tation of Sup-Lin-UCB, which also helps explain the
results of Takemura et al. (2021) intuitively. Addition-
ally, we improved existing regret bounds for MLMDPs
when only (P3), or (P1) and (P2), are required. We
also showed Lin-UCB can be improved in terms of (P1)
when εmis is known, which should extend to LSVI-UCB.

Broader societal impact: While this work is theoreti-
cal, it is motivated by the very practical issue of model

misspecification. In practice, automated decision mak-
ing algorithms like ours should be actively monitored
to mitigate the risk of biased decisions (which may
arise from biased training data, for example).
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Supplementary Material:
Improved Algorithms for Misspecified Linear Markov Decision

Processes

A Takemura et al. (2021)’s ALGORITHM

Algorithm 5 is the Sup-Lin-UCB variant from Takemura et al. (2021) (in our notation). The key differences
from Algorithm 2 are twofold. First, at each phase l, Algorithm 5 either chooses an optimistic action (Line 7),
eliminates suboptimal actions (Line 9), or chooses an exploratory action (Line 11). In contrast, Algorithm 2
either explores (Line 8) or eliminates (Line 12) for phases l < L and either explores (Line 8) or exploits (Line
14) in phase l = L. Second, Algorithm 5 uses Lin-UCB-style exploration bonuses in Lines 7 and 9, which the
corresponding lines of Algorithm 2 do not. In both cases, we made these changes to simplify the algorithm and
unify the presentation with EXPL3, and we found this does not worsen regret in an order sense.

Algorithm 5: Sup-Lin-UCB-Var

1 Ψ0
l = ∅ ∀ l ∈ [L]

2 for episode k = 1, . . . ,K do
3 Observe sk ∈ S, set l = 1 and Akl = A
4 repeat
5 Λkl = I +

∑
τ∈Ψk−1

l
φ(sτ , aτ )φ(sτ , aτ )T, wkl = (Λkl )−1

∑
τ∈Ψk−1

l
φ(sτ , aτ )rτ (sτ , aτ )

6 if maxa∈Akl ‖φ(sk, a)‖(Λkl )−1 ≤
√
d/K then

7 ak = arg maxa∈Akl (φ(sk, a)Twkl + α‖φ(sk, a)‖(Λkl )−1), Ψk
l′ = Ψk−1

l′ ∀ l′

8 else if maxa∈Akl ‖φ(sk, a)‖(Λkl )−1 ≤ 2−l then

9 Akl+1 = {a ∈ Akl : φ(sk, a)Twkl + α‖φ(sk, a)‖(Λkl )−1 ≥
maxa′∈Akl (φ(sk, a′)Twkl + α‖φ(sk, a′)‖(Λkl )−1)− 21−lα}

10 else

11 ak ∈ {a ∈ Akl : ‖φ(sk, a)‖(Λkl )−1 > 2−l}, Ψk
l = Ψk−1

l ∪ {k}, Ψk
l′ = Ψk−1

l′ ∀ l′ 6= l

12 until ak is chosen

13 Play ak, observe rk(sk, ak)

B THEOREM 1 PROOF

In this appendix, we prove Theorem 1. We begin with some basic inequalities in Appendix B.1. We then prove
our main concentration result in Appendix B.2. Next, Appendix B.3 provides a general result for the Q-function
estimates in Algorithm 4. Using this result, Appendices B.4 and B.5 bound the differences V kh (s)− V πkh (s) and
V ?h (s) − V kh (s), respectively. This yields a bound on the episode k regret V ?1 (sk1) − V πk1 (sk1), which we use in
Appendix B.6 to prove the regret guarantee. Along the way, we defer some proof details to Appendix C, which
also contains the complexity analysis.

B.1 Simple results

We first bound the error that arises from the rounding performed in Algorithm 3.

Claim 1 (Rounding error). For any k ∈ [K], h ∈ [H], l ∈ [L], s ∈ S, and a ∈ A, we have

|φ(s, a)T(wkh,l − w̃kh,l)| ≤
√
dεrnd,

∣∣∣‖φ(s, a)‖(Λkh,l)−1 − ‖φ(s, a)‖(Λ̃kh,l)−1

∣∣∣ ≤√dεrnd.
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Next, we have the following bounds for the bonus terms.

Claim 2 (Bonuses). For any k ∈ [K], h ∈ [H], s ∈ S, l ∈ [lkh(s)−1], and a ∈ Akh,l(s), we have ‖φ(s, a)‖(Λ̃kh,l)−1 ≤
2−l and ‖φ(s, a)‖(Λkh,l)−1 ≤ 21−l.

Proof. The first bound holds by definition in Algorithm 4. For the second bound, we use the first, Claim 1, and
εrnd ≤ 2−2l/d in Algorithm 3 to obtain ‖φ(s, a)‖(Λkh,l)−1 ≤ ‖φ(s, a)‖(Λ̃kh,l)−1 + 2−l ≤ 2−l + 2−l = 21−l.

Finally, we bound the cardinality of Ψk
h,l. This is an analogue of Takemura et al. (2021)’s Lemma 1, which shows

|Ψk
h,l| = O(4ld log(K/d)). With a more careful argument, we obtain a bound that is independent of K (for any

fixed l), which will be crucial in achieving (P1) and (P2).

Claim 3 (Dataset bound). For any k ∈ [K], h ∈ [H], and l ∈ [L], we have |Ψk
h,l| ≤ 40 · 4ldl ≤ 23l+5d.

Proof sketch. By Lines 4-5 of Algorithm 4 and Line 16 of Algorithm 3, for each τ ∈ Ψk
h,l, we know that

‖φ(sτh, a
τ
h)‖(Λ̃τh,l)−1 > 2−l. This implies |Ψk

h,l| ≤ 4l
∑
τ∈Ψkh,l

‖φ(sτh, a
τ
h)‖2

(Λ̃τh,l)
−1 = Õ(4ld), where the equality

follows from Claim 1 and Abbasi-Yadkori et al. (2011). See Appendix B for details.

B.2 Concentration

For any k ∈ [K], h ∈ [H], l ∈ [L], and V : S → R, define the bad event

B(k, h, l, V ) =


∥∥∥∥∥∥∥
∑

τ∈Ψk−1
h,l

φ(sτh, a
τ
h)
(
ητh + V (sτh+1)− Esτh+1

V (sτh+1)
)∥∥∥∥∥∥∥

(Λkh,l)
−1

> β

 ,

where Esτh+1
V (sτh+1) =

∫
s′∈S V (s′)Ph(s′|sτh, aτh) only averages over sτh+1 (even if V is random, in particular, if

V = V kh+1) and β = 13dHL
√

log(3dHL/δ). Also define the good event

G = ∩Kk=1 ∩Hh=1 ∩Ll=1B(k, h, l, V kh+1)C .

As discussed in Remark 3, a similar event is analyzed in Jin et al. (2020) using covering arguments. In contrast,
here V kh+1 belongs to a finite function class, which allows us to show that G occurs with high probability via a
direct union bound over the function class.

Lemma 1 (Concentration). The good event G occurs with probability at least 1− δ/2.

Proof. We fix h ∈ [H] and l ∈ [L] and show P(∪Kk=1B(k, h, l, V kh+1)) ≤ δ
2HL , which (by the union bound) completes

the proof. Toward this end, we introduce some notation. For any (ordered) sets X = {xl′}Ll′=1 ⊂ Rd and
Y = {Yl′}Ll′=1 ⊂ Rd×d, let VX ,Y : S → [0, H] be the function that results from running Algorithm 4 with w̃kh+1,l′

and (Λ̃kh+1,l′)
−1 replaced by xl′ and Yl′ , respectively. Hence, if X = {w̃kh+1,l′}Ll′=1 and Y = {(Λ̃kh+1,l′)

−1}Ll′=1,

then VX ,Y = V kh+1. Next, define

X = {[εrndij ]
d
j=1 : ij ∈ {−d(2LdH)4/εrnde, . . . , d(2LdH)4/εrnde} ∀ j ∈ [d]} ⊂ Rd,

Y = {[εrndij1,j2 ]dj1,j2=1 : ij1,j2 ∈ {−d1/(16εrnd)e, . . . , d1/(16εrnd)e} ∀ (j1, j2) ∈ [d]2} ⊂ Rd×d.

By Claim 10 in Appendix B (which shows ‖wkh,l‖∞ ≤ (2LdH)4), we have {w̃kh+1,l′}Ll′=1 ∈ XL. Further,

by a standard matrix norm inequality and the fact that the eigenvalues of Λkh+1,l′ are at least 16, we have

maxj1,j2 |(Λkh+1,l′)
−1
j1,j2
| ≤ ‖(Λkh+1,l′)

−1‖2 ≤ 1/16, so {(Λ̃kh+1,l′)
−1}Ll′=1 ∈ YL. Finally, we know V kh+1 : S → [0, H]

by Lines 5 and 13 of Algorithm 4. Thus, if we define V = {VX ,Y : S → [0, H]|X ∈ XL,Y ∈ YL}, then
V kh+1 ∈ V ∀ k ∈ [K], which implies ∪Kk=1B(k, h, l, V kh+1) ⊂ ∪V ∈V ∪Kk=1 B(k, h, l, V ). Hence, taking another union
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bound, it suffices to show that for any V ∈ V, P(∪Kk=1B(k, h, l, V )) ≤ δ
2HL|V| . Let 1(·) denote the indicator

function, and for each τ ∈ [K], define the folllowing:

sτ+1 = sτh+1, φ
τ

= φ(sτh, a
τ
h)1(τ ∈ Ψτ

h,l), Λk = 16I +

k−1∑
τ=1

φ
τ
φT
τ
, υτ = ητh + V (sτ+1)− Esτh+1

V (sτh+1).

Then by definition, for any k ∈ [K], we have

Λkh,l = Λk,

∥∥∥∥∥∥∥
∑

τ∈Ψk−1
h,l

φ(sτh, a
τ
h)
(
ητh + V (sτh+1)− Esτh+1

V (sτh+1)
)∥∥∥∥∥∥∥

(Λkh,l)
−1

=

∥∥∥∥∥
k−1∑
τ=1

φ
τ
υτ

∥∥∥∥∥
Λ−1
k

. (10)

Also let F0 = ∅ and Fτ = σ(Fτ−1 ∪ σ(sτ1 , a
τ
1 , η

τ
1 , . . . , s

τ
h−1, a

τ
h−1, η

τ
h−1, s

τ
h, a

τ
h)) for each τ ∈ N, where σ(·) is

the generated σ-algebra. Hence, in words, Fτ contains all randomness until the random reward and next state
are realized at step h of episode τ . Note φ

τ
is Fτ -measurable and υτ is Fτ+1-measurable with E[υτ |Fτ ] = 0.

Furthermore, since ητh ∈ [−1, 1] by assumption (see Section 2) and V : S → [0, H] by definition, we have
υτ ∈ [−2H, 2H], so υτ is (2H)-subgaussian. Therefore,

P(∪Kk=1B(k, h, l, V )) = P

∪Kk=1


∥∥∥∥∥
k−1∑
τ=1

φ
τ
υτ

∥∥∥∥∥
Λ−1
k

> β




≤ P

∪Kk=1


∥∥∥∥∥
k−1∑
τ=1

φ
τ
υτ

∥∥∥∥∥
Λ−1
k

>

√√√√8H2 log

(
det(Λkh,l)

det(16I)

2HL|V|
δ

)
 ≤ δ

2HL|V|
,

where the equality uses (10), the first inequality is a simple calculation (see Claim 11 in Appendix B for details),
and the second inequality is Theorem 1 from Abbasi-Yadkori et al. (2011).

Remark 11 (MLCB). When H = 1, we simply have υτ = ητh in the proof of Lemma 1, so we do not require
a union bound over V. This union bound makes β, and subsequently α, have linear (instead of square root)
dependence on d, which in turn gives the

√
K term in our regret bound d3/2 (instead of d) dependence.

B.3 Estimation error

For the remainder of the proof, we bound regret on the good event G. We first show that on G, the least-squares
estimate wkh,l is close to w̄kh , θh +

∫
s′∈S V

k
h+1(s′)µh(s′) in a certain sense. For this, it will be convenient to

introduce the following notation:

∆r
h(s, a) = rh(s, a)− φ(s, a)Tθh, ∆P

h (s′|s, a) = Ph(s′|s, a)− φ(s, a)Tµh.

(Note |∆r
h(s, a)|, ‖∆P

h (·|s, a)‖1 ≤ εmis by Assumption 1.) We can now prove a generalization of Takemura et al.
(2021)’s Lemma 2 using an approach somewhat similar to Jin et al. (2020)’s Lemma B.4.

Claim 4 (Least-squares error). On the event G, for any k ∈ [K], h ∈ [H], s ∈ S, l ∈ [lkh(s)−1], and a ∈ Akh,l(s),

we have |φ(s, a)T(wkh,l − w̄kh)| ≤ 2−lα+ 26H
√
dlεmis.

Proof. By definition of Λkh,l, we have

w̄kh = (Λkh,l)
−1Λkh,lw̄

k
h = 16(Λkh,l)

−1w̄kh + (Λkh,l)
−1

∑
τ∈Ψk−1

h,l

φ(sτh, a
τ
h)φ(sτh, a

τ
h)Tw̄kh.

By definition of w̄kh and Assumption 1, for any τ ∈ Ψk−1
h,l , we know

φ(sτh, a
τ
h)Tw̄kh = rh(sτh, a

τ
h) + Esτh+1

V kh+1(sτh+1)−∆r
h(sτh, a

τ
h)−

∫
s′∈S

V kh+1(s′)∆P
h (s′|sτh, aτh).
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Additionally, recall that in Algorithm 3, we have

wkh,l = (Λkh,l)
−1

∑
τ∈Ψk−1

h,l

φ(sτh, a
τ
h)(rh(sτh, a

τ
h) + ητh + V kh+1(sτh+1)).

It follows that φ(s, a)T(wkh,l − w̄kh) =
∑3
i=1 φ(s, a)T(Λkh,l)

−1zi, where we define

z1 =
∑

τ∈Ψk−1
h,l

φ(sτh, a
τ
h)
(
ητh + V kh+1(sτh+1)− Esτh+1

V kh+1(sτh+1)
)
, z2 = −16w̄kh,

z3 =
∑

τ∈Ψk−1
h,l

φ(sτh, a
τ
h)

(
∆r
h(sτh, a

τ
h) +

∫
s′∈S

V kh+1(s′)∆P
h,s′(s

τ
h, a

τ
h)

)
.

Hence, we aim to bound |φ(s, a)T(Λkh,l)
−1zi| for each i ∈ [3]. By Cauchy-Schwarz, on the event G,

|φ(s, a)T(Λkh,l)
−1z1| ≤ ‖z1‖(Λkh,l)−1‖φ(s, a)‖(Λkh,l)−1 ≤ β‖φ(s, a)‖(Λkh,l)−1 . (11)

Again using Cauchy-Schwarz, we have

|φ(s, a)T(Λkh,l)
−1z2| ≤ 16‖w̄kh‖(Λkh,l)−1‖φ(s, a)‖(Λkh,l)−1 ≤ 8

√
dH‖φ(s, a)‖(Λkh,l)−1 , (12)

where the second inequality holds because, by Claim 9 in Appendix B (a simple norm equivalence), Assumption
1, and the fact that V kh+1 : S → [0, H] in Algorithm 4,

‖w̄kh‖(Λkh,l)−1 ≤ ‖w̄kh‖2/4 ≤
√
d(1 +H)/4 ≤

√
dH/2.

For z3, first note that by Assumption 1 and Algorithm 4,∣∣∣∣∆r
h(sτh, a

τ
h) +

∫
s′∈S

V kh+1(s′)∆P
h (s′|sτh, aτh)

∣∣∣∣ ≤ (1 + max
s′∈S

V kh+1(s′)

)
εmis ≤ (1 +H)εmis ≤ 2Hεmis.

Furthermore, since l ≤ lkh(s)− 1 and a ∈ Akh,l(s), we can use Claims 2 and 3 to obtain

|Ψk−1
h,l | × φ(s, a)T(Λkh,l)

−1φ(s, a) ≤ 40 · 4ldl × 41−l = 160dl < 132dl.

By the previous two bounds, Cauchy-Schwarz, and positive-semidefiniteness, we obtain

|φ(s, a)T(Λkh,l)
−1z3| ≤ 2Hεmis

∑
τ∈Ψk−1

h,l

|φ(s, a)T(Λkh,l)
−1φ(sτh, a

τ
h)| (13)

≤ 2Hεmis

√√√√|Ψk−1
h,l |φ(s, a)T(Λkh,l)

−1
∑

τ∈Ψk−1
h,l

φ(sτh, a
τ
h)φ(sτh, a

τ
h)(Λkh,l)

−1φ(s, a)

= 2Hεmis

√
|Ψk−1
h,l |φ(s, a)T(Λkh,l)

−1(Λkh,l − 16I)(Λkh,l)
−1φ(s, a)

≤ 2Hεmis

√
|Ψk−1
h,l |φ(s, a)T(Λkh,l)

−1φ(s, a) ≤ 26Hεmis

√
dl.

Hence, combining (11), (12), and (13), we obtain

|φ(s, a)T(wkh,l − w̄kh)| ≤
3∑
i=1

|φ(s, a)T(Λkh,l)
−1zi| ≤ (β + 8

√
dH)‖φ(s, a)‖(Λkh,l)−1 + 26Hεmis

√
dl.

This completes the proof, because ‖φ(s, a)‖(Λkh,l)−1 ≤ 21−l by Claim 2, and by definition,

β + 8
√
dH = 13dHL

√
log(3dHL/δ) + 8

√
dH ≤ 21dHL

√
log(3dHL/δ) = α/2.
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We conclude this subsection by using Claim 4 to show the Q-function estimates in Algorithm 4 are close to the
function Q̄kh : S ×A → [0, 2H] defined by

Q̄kh(s, a) = rh(s, a) +

∫
s′∈S

V kh+1(s′)Ph(s′|s, a) ∀ (s, a) ∈ S ×A.

It will also be convenient to define εeff = 2α
√
dεrnd + 28H

√
dLεmis, which is the effective misspecification (true

misspecification and rounding error) that we carry through the next portion of the proof.

Lemma 2 (Q-function error). On the event G, for any k ∈ [K], h ∈ [H], s ∈ S, l ∈ [lkh(s)− 1], and a ∈ Akh,l(s),

we have |φ(s, a)Tw̃kh,l − Q̄kh(s, a)| ≤ 2−lα+ εeff.

Proof. By the triangle inequality, we have

|φ(s, a)Tw̃kh,l − Q̄kh(s, a)||φ(s, a)T(w̃kh,l − wkh,l)|+ |φ(s, a)T(wkh,l − w̄kh)|+ |φ(s, a)Tw̄kh − Q̄kh(s, a)|.

For the first term, by Claim 1, and since α ≥ 1 and εrnd ∈ (0, 1),

|φ(s, a)T(w̃kh,l − wkh,l)| ≤
√
dεrnd ≤ α

√
dεrnd.

For the second term, by Claim 4 and since l ≤ lkh(s)− 1 ≤ L,

|φ(s, a)T(wkh,l − w̄kh)| ≤ 2−lα+ 26H
√
dlεmis ≤ 2−lα+ 26H

√
dLεmis

For the third term, by Assumption 1 and Algorithm 4,

|Q̄kh(s, a)− φ(s, a)Tw̄kh| =
∣∣∣∣∆r

h(s, a) +

∫
s′∈S

∆P
h (s′|s, a)V kh+1(s′)

∣∣∣∣ ≤ 2Hεmis ≤ 2H
√
dLεmis.

Hence, combining all of the above, we obtain

|φ(s, a)Tw̃kh,l − Q̄kh(s, a)| ≤ 2−lα+ 2α
√
dεrnd + 28H

√
dLεmis = 2−lα+ εeff.

B.4 Algorithm policy error

Our next goal is to bound the difference between the value function estimate V kh and the true value function
V πkh of the algorithm’s policy. We begin with an intermediate result. This is roughly an analogue of Takemura
et al. (2021)’s Lemma 5 and 8, though our streamlined approach yields a single result. Additionally, we have to
deal with the projection in Algorithm 4, which complicates the proof.

Claim 5 (Algorithm error, one-step). On the event G, for any k ∈ [K], h ∈ [H], and s ∈ S, we have V kh (s) −
Q̄kh(s, πkh(s)) ≤ 8α · 2−lkh(s) + εeff.

Proof. Let l = lkh(s) − 1. By Corollary 6 from Appendix B, we know that l ∈ [L]. We first assume l ∈ [L − 1],
which implies V kh (s) = P[0,H](V

k
h,l(s) + 2−lα) in Algorithm 4. Hence, if V kh,l(s) < −2−lα, then V kh (s) = 0,

which immediately yields the desired bound (since Q̄kh(s, πkh(s)) ≥ 0). If instead V kh,l(s) ≥ −2−lα, then V kh (s) ≤
V kh,l(s) + 2−lα, so it suffices to prove the bound with V kh (s) replaced by V kh,l(s) + 2−lα. Toward this end, first

observe that by Lemma 2 and since πkh(s) ∈ Akh,l+1(s) ⊂ Akh,l(s),

φ(s, πkh(s))Tw̃kh,l ≤ Q̄kh(s, πkh(s)) + 2−lα+ εeff.

On the other hand, again using πkh(s) ∈ Akh,l+1(s), we know

V kh,l(s) + 2−lα ≤ φ(s, πkh(s))Tw̃kh,l + 21−lα+ 2−lα.

Hence, combining the inequalities, we obtain

V kh,l(s) + 2−lα− Q̄kh(s, πkh(s)) ≤ 21−lα+ 2−lα+ 2−lα+ εeff = 8α · 2−l
k
h(s) + εeff.
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For l = L, we have V kh (s) = P[0,H](V
k
h,L(s)) in Algorithm 4. If V kh,L(s) < 0, the bound is again immediate. If

instead V kh,L(s) ≥ 0, we know V kh (s) ≤ V kh,L(s), so we can prove the bound with V kh (s) replaced by V kh,L(s). By
Algorithm 4 and Lemma 2, we have

V kh,L(s)− Q̄kh(s, πkh(s)) = φ(s, πkh(s))Tw̃kh,L − Q̄kh(s, πkh(s)) ≤ 2−Lα+ εeff < 8α · 2−l
k
h(s) + εeff,

where the final inequality is 2−L = 21−lkh(s) < 8 · 2−lkh(s).

Next, for any k ∈ [K] and h ∈ [H], define the martingale noise term

γkh = Eskh+1
(V kh+1(skh+1)− V πkh+1(skh+1))− (V kh+1(skh+1)− V πkh+1(skh+1)).

Using the previous claim and a simple inductive argument, we can prove the following lemma (see Appendix
B for details). In essence, similar to Jin et al. (2020)’s Lemma B.6, this lemma shows that the noise γkh in the
backward induction yields a martingale difference sequence.

Lemma 3 (Algorithm error, multi-step). On the event G, for any k ∈ [K] and any h ∈ [H], we have

V kh (skh)− V πkh (skh) ≤ 8α

H∑
h′=h

2−l
k
h′ (s

k
h′ ) +

H∑
h′=h

γkh′ + (H − h+ 1)εeff. (14)

B.5 Optimal policy error

Next, we bound the difference between the optimal value function V ?h and the value function estimate V kh .
We start with two intermediate results. First, for each k ∈ [K], h ∈ [H], s ∈ S, and l ∈ [lkh(s) ∧ L], let
π̄kh,l(s) = arg maxa∈Akh,l(s) Q̄

k
h(s, a). We can then generalize Takemura et al. (2021)’s Lemma 4.

Claim 6 (Error across phases). On the event G, for any k ∈ [K], h ∈ [H], s ∈ S, and l ∈ [lkh(s) ∧ L], we have
Q̄kh(s, π̄kh,1(s))− Q̄kh(s, π̄kh,l(s)) ≤ 2(l − 1)εeff.

Proof. We use induction on l. For l = 1, the bound holds with equality. Assuming it holds for l ∈ [(lkh(s)∧L)−1],
we prove it for l + 1. By the inductive hypothesis, it suffices to show

Q̄kh(s, π̄kh,l(s))− Q̄kh(s, π̄kh,l+1(s)) ≤ 2εeff. (15)

If π̄kh,l(s) ∈ Akh,l+1(s), then since Akh,l+1(s) ⊂ Akh,l(s), we have π̄kh,l+1(s) = π̄kh,l(s) by definition, so (15) is

immediate. Hence, it only remains to prove (15) when π̄kh,l(s) /∈ Akh,l+1(s). Since πkh,l(s) ∈ Akh,l+1(s) in Algorithm

4, the definition of π̄kh,l+1(s) implies

Q̄kh(s, π̄kh,l(s))− Q̄kh(s, π̄kh,l+1(s)) ≤ Q̄kh(s, π̄kh,l(s))− Q̄kh(s, πkh,l(s)).

By l ≤ lkh(s)− 1, Lemma 2, the assumption that π̄kh,l(s) /∈ Akh,l+1(s), and Algorithm 4, we have

Q̄kh(s, π̄kh,l(s))− Q̄kh(s, πkh,l(s)) ≤ φ(s, π̄kh,l(s))
Tw̃kh,l − φ(s, πkh,l(s))

Tw̃kh,l + 21−lα+ 2εeff < 2εeff.

Combining the previous two inequalities, we obtain the desired bound (15).

As an immediate corollary, we have the following.

Corollary 3 (Error across phases). On the event G, for any k ∈ [K], h ∈ [H], s ∈ S, and l ∈ [lkh(s) ∧ L], we
have Q̄kh(s, π̄kh,1(s))− Q̄kh(s, π̄kh,l(s)) ≤ 2(L− 1)εeff.

We can now bound the difference between V ?h and V kh in terms of the difference at the next step, i.e., between
V ?h+1 and V kh+1. This is similar in spirit to Jin et al. (2020)’s Lemma B.5.

Claim 7 (Optimal error, one-step). On the event G, for any k ∈ [K], h ∈ [H], and s ∈ S,

V ?h (s)− V kh (s) ≤ max

{
max
a∈A

∫
s′∈S

(V ?h+1(s′)− V kh+1(s′))Ph(s′|s, a) + 2Lεeff + 2−Lα, 0

}
.
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Proof. Let l = lkh(s)− 1 ∈ [L]. Note that if (1) l ∈ [L− 1] and V kh,l(s) + 2−lα > H or (2) l = L and V kh,l(s) > H,

then V kh (s) = H, so the bound V ?h (s)− V kh (s) ≤ 0 holds. Hence, we assume for the remainder of the proof that
either (3) l ∈ [L− 1] and V kh,l(s) + 2−lα ≤ H or (4) l = L and V kh,l(s) ≤ H. By definition of V ?h and Q̄kh, we have

V ?h (s) = Q̄kh(s, π?h(s)) +

∫
s′∈S

(V ?h+1(s′)− V kh+1(s′))Ph(s′|s, π?h(s))

≤ Q̄kh(s, π?h(s)) + max
a∈A

∫
s′∈S

(V ?h+1(s′)− V kh+1(s′))Ph(s′|s, a)

By definition of π̄kh,1(s), since Akh,1(s) = A, and by Corollary 3,

Q̄kh(s, π?h(s)) ≤ Q̄kh(s, π̄kh,1(s)) ≤ Q̄kh(s, π̄kh,l(s)) + 2(L− 1)εeff.

Again using the definition of π̄kh,l(s), along with Lemma 2, we know that

Q̄kh(s, π̄kh,l(s)) = max
a∈Akh,l(s)

Q̄kh(s, a) ≤ max
a∈Akh,l(s)

φ(s, a)Tw̃kh,l + 2−lα+ εeff = V kh,l(s) + 2−lα+ εeff.

Hence, stringing together the inequalities, we obtain

V ?h (s) ≤ max
a∈A

∫
s′∈S

(V ?h+1(s′)− V kh+1(s′))Ph(s′|s, a) + V kh,l(s) + 2−lα+ 2Lεeff. (16)

Now in case (3), we have V kh (s) = P[0,H](V
k
h,l(s) + 2−lα) and V kh,l(s) + 2−lα ≤ H, which together imply

V kh,l(s) + 2−lα ≤ V kh (s) < V kh (s) + 2−Lα. (17)

In case (4), we have V kh (s) = P[0,H](V
k
h,l(s)) and V kh,l(s) ≤ H, which implies V kh,l(s) ≤ V kh (s). Hence, because

L = l in case (4), we again have (17). Therefore, combining (16) and (17), we obtain

V ?h (s)− V kh (s) ≤ max
a∈A

∫
s′∈S

(V ?h+1(s′)− V kh+1(s′))Ph(s′|s, a) + 2Lεeff + 2−Lα.

Finally, a simple inductive argument yields the following. See Appendix B for details.

Lemma 4 (Optimal error, multi-step). On the event G, for any k ∈ [K], h ∈ [H], and s ∈ S, we have
V ?h (s)− V kh (s) ≤ (2Lεeff + 2−Lα)(H − h+ 1).

B.6 Regret bound

First observe that by Algorithms 3-4 and Corollary 6 from Appendix C, for any h ∈ [H], we have

K∑
k=1

2−l
k
h(skh) =

K∑
k=1

L+1∑
l=2

2−l1(lkh(skh) = l) =

L∑
l=2

2−l
K∑
k=1

1(lkh(skh) = l) + 2−(L+1)
K∑
k=1

1(lkh(skh) = L+ 1)

=

L∑
l=2

2−l|ΨK
h,l|+ 2−(L+1)

K∑
k=1

1(lkh(skh) = L+ 1) ≤
L∑
l=2

2−l|ΨK
h,l|+ 2−(L+1)K.

Combined with Lemmas 3 and 4, on the event G, we obtain

R(K) ≤ 8α

H∑
h=1

K∑
k=1

2−l
k
h(skh) +

K∑
k=1

H∑
h=1

γkh + (2−Lα+ 3Lεeff)HK (18)

≤ 8α

H∑
h=1

L∑
l=2

2−l|ΨK
h,l|+

K∑
k=1

H∑
h=1

γkh + (22−Lα+ 2−Lα+ 3Lεeff)HK.
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For the first summation, by Claim 3 and a simple geometric series computation, for any h ∈ [H],

L∑
l=2

2−l|ΨK
h,l| ≤ 40dL

L∑
l=2

2−l · 4l = 40dL

L∑
l=2

2l < 80 · 2LdL.

Alternatively, we can use Cauchy-Schwarz and Claim 3 to obtain

L∑
l=2

2−l|ΨK
h,l| =

L∑
l=2

2−l
√
|ΨK
h,l|
√
|ΨK
h,l| ≤

√
40dL

L∑
l=1

√
|ΨK
h,l| ≤

√√√√40dL2

L∑
l=1

|ΨK
h,l| ≤

√
40dL2K.

Hence, combining the previous two inequalities, we have shown

L∑
l=2

2−l|ΨK
h,l| ≤ min{80 · 2LdL,

√
40dL2K} =

√
40dL2 min{160 · 22Ld,K}. (19)

Returning to (18), since {γkh}k∈[K]h∈[H] is a martingale difference sequence with |γkh| ≤ 2H, the Azuma-Hoeffding
inequality implies that with probability at least 1− δ/2,

K∑
k=1

H∑
h=1

γkh ≤
√

8H3K log(2/δ). (20)

For the last term in (18), by definition εeff = 2α
√
dεrnd + 28H

√
dLεmis and εrnd = 2−4L/d, and since L ≤

2L−1 ∀ L ∈ N, we have

Lεeff = 21−2LLα+ 28
√
dL3Hεmis ≤ 2−Lα+ 28

√
dL3Hεmis. (21)

Hence, when G and the event (20) both occur (which happens with probability at least 1 − δ by Lemma 1 and
Azuma-Hoeffding), we can combine (18), (19), (20), and (21) to obtain

R(K) = O

(
α
√
dH2L2 min{22Ld,K}+

√
H3K log(δ−1) + 2−LαHK +

√
dL3H2Kεmis

)
.

Recall α = 42dHL
√

log(3dHL/δ) and ι = log(3dH/δ), so α = O(
√
d2H2L3ι). Substituting above,

R(K) = O

(√
d3H4L5 min{22Ld,K}ι+

√
H3Kι+ 2−L

√
d2L3ιH2K +

√
dL3H2Kεmis

)
.

The regret bound in Theorem 1 follows by definition L = dlog2(
√
d/εtol)e.

C THEOREM 1 PROOF DETAILS

C.1 Regret bound details

Proof of Claim 1. The first bound follows from Holder’s inequality, Algorithm 3, a standard norm equivalence,
and Assumption 1:

|φ(s, a)T(wkh,l − w̃kh,l)| ≤ ‖φ(s, a)‖1‖wkh,l − w̃kh,l‖∞ ≤
√
d‖φ(s, a)‖2εrnd ≤

√
dεrnd.

For the second bound, by similar logic, we have

|φ(s, a)T((Λkh,l)
−1 − (Λ̃kh,l)

−1)φ(s, a)| ≤
d∑

i,j=1

|φi(s, a)||φj(s, a)||((Λkh,l)−1 − (Λ̃kh,l)
−1)ij |

≤ ‖φ(s, a)‖21εrnd ≤ d‖φ(s, a)‖22εrnd ≤ dεrnd,

which implies that

‖φ(s, a)‖(Λkh,l)−1 ≤
√
|φ(s, a)T(Λ̃kh,l)

−1φ(s, a)|+ |φ(s, a)T((Λkh,l)
−1 − (Λ̃kh,l)

−1)φ(s, a)|

≤ ‖φ(s, a)‖(Λ̃kh,l)−1 +
√
dεrnd.

By symmetry, ‖φ(s, a)‖(Λ̃kh,l)−1 ≤ ‖φ(s, a)‖(Λkh,l)−1 +
√
dεrnd as well, which completes the proof.
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Claim 8. For any k ∈ [K], h ∈ [H], and l ∈ [L], we have∑
τ∈Ψkh,l

‖φ(sτh, a
τ
h)‖2(Λτh,l)−1 ≤ 2 log(det(Λkh,l)/det(16I)) ≤ 2d log(1 + |Ψk

h,l|/(16d)).

Proof. The first bound is a restatement of Lemma D.2 from Jin et al. (2020). The second follows from Lemma
10 of Abbasi-Yadkori et al. (2011) and Assumption 1.

Proof of Claim 3. Since Ψ0
h,l ⊂ · · · ⊂ ΨK

h,l, it suffices to prove the bound for k = K. By Algorithm 3, ΨK
h,l is the

set of episodes k ∈ [K] for which lkh(skh) = l. By Algorithm 4, lkh(skh) = l implies that ‖φ(skh, a
k
h)‖(Λ̃kh,l)−1 > 2−l.

Combined with Claim 1, and since εrnd ≤ 2−4l/d ≤ 2−2(l+1)/d in Algorithm 3, we obtain

1 < 22l‖φ(skh, a
k
h)‖2

(Λ̃kh,l)
−1 ≤ 22l+1‖φ(skh, a

k
h)‖2(Λkh,l)−1 + 22l+1dεrnd ≤ 22l+1‖φ(skh, a

k
h)‖2(Λkh,l)−1 + 1/2,

or, after rearranging, 1 < 22(l+1)‖φ(skh, a
k
h)‖2

(Λkh,l)
−1 . Combined with Claim 8, we obtain

|ΨK
h,l| =

∑
k∈ΨKh,l

1 < 22(l+1)
∑

k∈ΨKh,l

‖φ(skh, a
k
h)‖2(Λkh,l)−1 ≤ 22l+3d log(1 + |ΨK

h,l|/(16d)). (22)

Multiplying and dividing the right side of (22) by 2, we get

|ΨK
h,l| ≤ 22(l+2)d log

(√
1 + |ΨK

h,l|/(16d)
)
≤ 22(l+2)d log

(
1 +

√
|ΨK
h,l|/(16d)

)
≤ 22(l+1)

√
d|ΨK

h,l|,

or, after rearranging,
|ΨK
h,l| ≤ (22(l+1)

√
d)2 = 24(l+1)d. (23)

Plugging (23) into the right side of (22), we obtain

|Ψk
h,l| ≤ 22l+3d log(1 + 24l) < 22l+3d log(2 · 24l) ≤ 22l+3d log 25l < 22l+3d · 5l = 40 · 4ldl.

Finally, since 40 < 64 = 26 and l ≤ 2l−1 for any l ∈ N, we have 40 · 4l · l < 26 · 4l · 2l−1 = 23l+5.

Corollary 4. For any k ∈ [K], h ∈ [H], and l ∈ [L], we have det(Λkh,l)/det(16I) ≤ 25dl.

Proof. Combining Claims 8 and 3, we obtain

det(Λkh,l)/det(16I) ≤ (1 + |Ψk
h,l|/(16d))d ≤ (1 + 23l+1)d < (2 · 23l+1)d = 2(3l+2)d ≤ 25dl.

Corollary 5. For any k ∈ [K], h ∈ [H], and l ∈ [L], we have
∑
τ∈Ψk−1

h,l
‖φ(sτh, a

τ
h)‖(Λkh,l)−1 ≤ (2ld)4.

Proof. By Cauchy-Schwarz, Claim 3, and Lemma D.1 of Jin et al. (2020),

∑
τ∈Ψk−1

h,l

‖φ(sτh, a
τ
h)‖(Λkh,l)−1 ≤

√√√√|Ψk−1
h,l | ×

∑
τ∈Ψk−1

h,l

‖φ(sτh, a
τ
h)‖2

(Λkh,l)
−1 ≤

√
23l+5d× d ≤ 24ld ≤ (2ld)4.

Claim 9. For any k ∈ [K], h ∈ [H], l ∈ [L], and x ∈ Rd, we have ‖x‖(Λkh,l)−1 ≤ ‖x‖2/4.

Proof. Let λi ∈ [16,∞) and qi ∈ Rd denote the eigenvalues and eigenvectors of Λkh,l. Then

‖x‖2(Λkh,l)−1 =

d∑
i=1

(qTi x)2/λi ≤
d∑
i=1

(qTi x)2/16 = ‖[q1 · · · qd]Tx‖22/16 = ‖x‖22/16.

Corollary 6. For any k ∈ [K], h ∈ [H], and s ∈ S, we have lkh(s) ∈ {2, . . . , L+ 1}.
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Proof. Since lkh(s) ∈ [L + 1] by definition in Algorithm 4, it suffices to show lkh(s) = 1 cannot occur. If it does,
then by Algorithm 4, Claim 1, Claim 9, Assumption 1, and definition εrnd = 2−4L/d, we can find a ∈ A to obtain
the following contradiction:

1/2 < ‖φ(s, a)‖(Λ̃kh,l)−1 ≤ ‖φ(s, a)‖(Λkh,l)−1 +
√
dεrnd ≤ (‖φ(s, a)‖2/4) + 2−2L ≤ 1/2.

Claim 10. For any k ∈ [K], h ∈ [H], and l ∈ [L], we have ‖wkh,l‖2 ≤ (2ldH)4.

Proof. For any x ∈ Rd, Claim 9 implies

‖(Λkh,l)−1x‖2 = ‖(Λkh,l)−1/2x‖(Λkh,l)−1 ≤ ‖(Λkh,l)−1/2x‖2/4 = ‖x‖(Λkh,l)−1/4.

Combined with the triangle inequality and Corollary 5, we obtain

‖wkh,l‖2 ≤
1

4

∑
τ∈Ψk−1

h,l

‖φ(sτh, a
τ
h)‖(Λkh,l)−1 |rτh(sτh, a

τ
h) + V kh+1(sτh+1)|

< H
∑

τ∈Ψk−1
h,l

‖φ(sτh, a
τ
h)‖(Λkh,l)−1 ≤ H(2ld)4 ≤ (2ldH)4,

where the second inequality holds because rτh(sτh, a
τ
h) ∈ [0, 1] by assumption and V kh+1(sτh+1) ∈ [0, H] by definition

in Algorithm 4 (so |rτh(sτh, a
τ
h) + V kh+1(sτh+1)| ≤ 1 +H ≤ 2H < 4H).

Claim 11. Define V as in the proof of Lemma 1. Then for any k ∈ [K], h ∈ [H], and l ∈ [L], we have√√√√8H2 log

(
det(Λkh,l)

det(16I)

2HL|V|
δ

)
≤ β.

Proof. We first bound |V|. Clearly, |V| ≤ |X |L|Y|L. Next, observe

|Y| = (1 + 2d1/(16εrnd)e)d
2

≤ (3 + 1/(8εrnd))d
2

< 1/εd
2

rnd = 24Ld2dd
2

,

where the second inequality holds since εrnd < 7/24 in Algorithm 3. For X , we have

|X | ≤ (3 + 2(2LdH)4/εrnd)d ≤ ((3 · 2−4 + 2)(2LdH)4/εrnd)d < (4(2LdH)4/εrnd)d = 2(8L+2)dd5dH4d,

where the second inequality uses εrnd ≤ 1 in Algorithm 3. Hence, we have shown

|V| ≤ (24Ld2dd
2

· 2(8L+2)dd5dH4d)L ≤ (214d6H4)L
2d2 .

Furthermore, by Corollary 4, we have det(Λkh,l)/ det(16I) ≤ 25dl ≤ 25L2d2 . Combining,

log

(
2HL

δ
·

det(Λkh,l)|V|
det(16I)

)
≤ log

(
2HL

δ
· (219d6H4)L

2d2
)
≤ 20L2d2 log(2dHL/δ).

Together with the fact that 8 · 20 = 160 < 169 = 132, we obtain√√√√8H2 log

(
det(Λkh,l)

det(16I)

2HL|V|
δ

)
< 13dHL

√
log(3dHL/δ) = β.

Proof of Lemma 3. We fix k and use induction on h. When h = H, since V kH+1(·) = 0, we have γkH = 0 and

V πkH (s) = rH(s, πkH(s)) = Q̄kH(s, πkH(s)) (for any s). Therefore, by Claim 5, for any s,

V kH(s)− V πkH (s) = V kH(s)− Q̄kH(s, πkH(s)) ≤ 8α · 2−l
k
H(s) + εeff.
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Hence, choosing s = skH yields the bound. Now assume (14) holds for h+ 1 ∈ {2, . . . ,H}. Then for any s ∈ S,

V kh (s)− V πkh (s) = V kh (s)− Q̄kh(s, πkh(s)) +

∫
s′∈S

(V kh+1(s′)− V πkh+1(s′))Ph(s′|s, πkh(s))

≤ 8α · 2−l
k
h(s) + εeff +

∫
s′∈S

(V kh+1(s′)− V πkh+1(s′))Ph(s′|s, πkh(s)),

where the inequality again uses Claim 5. Choosing s = skh and using the fact that akh = πkh(skh) and the inductive
hypothesis, we thus obtain

V kh (skh)− V πkh (skh) ≤ 8α · 2−l
k
h(skh) + εeff + γkh + V kh+1(skh+1)− V πkh+1(skh+1)

≤ 8α

H∑
h′=h

2−l
k
h′ (s

k
h′ ) +

H∑
h′=h

γkh′ + (H − h+ 1)εeff.

Proof of Lemma 4. We again use induction on h. For h = H, the bound follows immediately from Claim 7 and
V ?H+1(·) = V kH+1(·) = 0. Now assume that for some h+ 1 ∈ {2, . . . ,H} and all s′ ∈ S,

V ?h+1(s′)− V kh+1(s′) ≤ (2Lεeff + 2−Lα)(H − h).

Combining this bound with Claim 7, for any s ∈ S, we obtain

V ?h (s)− V kh (s) ≤ max

{
max
a∈A

∫
s′∈S

(V ?h+1(s′)− V kh+1(s′))Ph(s′|s, a) + 2Lεeff + 2−Lα, 0

}
≤ max

{
(2Lεeff + 2−Lα)(H − h+ 1), 0

}
= (2Lεeff + 2−Lα)(H − h+ 1).

C.2 Complexity analysis

The time complexity of Algorithm 4 is dominated by the computation of the set of induced norms
{‖φ(s, a)‖(Λ̃kh,l)−1 : a ∈ Akh,l(s), l ∈ [lkh(s) ∧ L]}, which requires at most O(d2L|A|) time. At episode k of

Algorithm 3, Algorithm 4 is called to compute {V kh+1(sτh+1) : τ ∈ Ψk−1
h,l , l ∈ [L], h ∈ {2, . . . ,H}} in Line 7 and

{πkh(skh) : h ∈ [H]} in Line 13, for a total number of calls

H∑
h=2

L∑
l=1

|Ψk−1
h,l |+H ≤ 40dHL

L∑
l=1

4l +H = O(4LdHL),

where the inequality uses Claim 3. Alternatively, since ∪Ll=1Ψk−1
h,l ⊂ [K] for each h ∈ [H], we can simply bound

the number of calls by O(HK). Hence, during each episode, the time complexity of all Algorithm 4 calls is
bounded above by

O(d2HL|A|min{4LdL,K}). (24)

Besides these calls, by a similar argument, computing the summations in Line 7 has runtime at most
dmin{

∑H
h=1

∑L
l=1 |Ψ

k−1
h,l |, HK} = O(dH min{4LdL,K}), which is dominated by (24). Iterative updates of Λkh,l

and (Λkh,l)
−1 and the rounding in Lines 8-9 both have complexity O(d2HL) per episode, and maintaining Ψk

h,l

has complexity O(H); both quantities are dominated by (24). Hence, Algorithm 3’s per-episode runtime is

O(d2HL|A|min{4LdL,K}) = O
(
d2H|A|min

{
d2 log( d

εtol
)/ε2

tol,K
}

log( d
εtol

)
)
.

At episode k, Algorithm 3 uses {Λkh,l}h∈[H],l∈[L] and {wkh,l}h∈[H],l∈[L], and their rounded versions, which requires

O(d2HL) storage. Note these can be overwritten across episodes, so the total storage is O(d2HL) as well.
Additionally, at episode k, it needs to store rτh(sτh, a

τ
h) and {φ(sτh, a)}a∈A, for each τ ∈ Ψk−1

h,l , h ∈ [H], and l ∈ [L].

Similar to above, this storage can be bounded by either d|A|HK or d|A|
∑H
h=1

∑L
l=1 |Ψ

k−1
h,l | = O(4Ld2HL|A|).

Hence, the total space complexity is

O(d2HL+ dH|A|min{4LdL,K}) = O
(
d2H log( d

εtol
) + dH|A|min

{
d2 log( d

εtol
)/ε2

tol,K
})

.



Daniel Vial, Advait Parulekar, Sanjay Shakkottai, R. Srikant

D PROOFS OF PROPOSITIONS

D.1 Proposition 2 proof

We use induction on k. For k = 1, since Ψ0 = Ψ0
l = ∅, we have (wk,Λk) = (wkl ,Λ

k
l ) = (0, 0). For the inductive

hypothesis, suppose (wk,Λk) = (wkl ,Λ
k
l ) for some k ∈ [K]. By assumption, we can find s̃k ∈ S such that

φ(s̃k, a) =

{
φ(sk, a), k ∈ ΨK

l , a ∈ Akl
0, otherwise

, r(s̃k, a) = r(sk, a) ∀ a ∈ A. (25)

Now consider two cases. First, if k /∈ ΨK
l , then (wk+1

l ,Λk+1
l ) = (wkl ,Λ

k
l ). On the other hand, (25) implies

maxa∈A ‖φ(s̃k, a)‖(Λk)−1 = 0, so Ψk = Ψk−1 and (wk+1,Λk+1) = (wk,Λk). Hence, (wk+1,Λk+1) = (wk+1
l ,Λk+1

l )

follows from the inductive hypothesis. Next, assume k ∈ ΨK
l . Then maxa∈Akl ‖φ(sk, a)‖(Λkl )−1 > 2−l in Sup-

Lin-UCB-Var, and it plays ak = arg maxa∈Akl ‖φ(sk, a)‖(Λkl )−1 , observes rk(sk, ak) = r(sk, ak) + ηk, and updates

Λk+1
l = I +

∑
τ∈Ψkl

φ(sτ , aτ )φ(sτ , aτ )T = Λkl + φ(sk, ak)φ(sk, ak)T, (26)

wk+1
l = (Λk+1

l )−1
∑
τ∈Ψkl

φ(sτ , aτ )rτ (sτ , aτ ) = (Λk+1
l )−1(Λkl w

k
l + φ(sk, ak)rk(sk, ak)). (27)

On the other hand, maxa∈A ‖φ(s̃k, a)‖(Λk)−1 = maxa∈Akl ‖φ(sk, a)‖(Λkl )−1 > 2−l by (25) and the inductive hy-

pothesis. Hence, if we write ãk (instead of ak) for the action chosen by EXPL(2−l), we have

ãk = arg max
a∈A

‖φ(s̃k, a)‖(Λk)−1 = arg max
a∈Akl

‖φ(sk, a)‖(Λkl )−1 = ak.

By (25), this implies φ(s̃k, ãk) = φ(sk, ak), and by (25) and the noise assumption, we also have rk(s̃k, ãk) =
rk(sk, ak). Hence, similar to (26) and (27), we see that EXPL(2−l) updates

Λk+1 = Λk + φ(sk, ak)φ(sk, ak)T, wk+1 = (Λk+1)−1(Λkwk + φ(sk, ak)rk(sk, ak). (28)

Combining (26), (27), (28), and the inductive hypothesis completes the proof.

D.2 Proposition 3 proof

We essentially follow the existing proof . First, define the good event

G′ = ∩Kk=1


∥∥∥∥∥
k−1∑
τ=1

φ(sτ , aτ )ητ

∥∥∥∥∥
(Λk)−1

≤
√

2d log((λ+K)/(λδ))

 .

By Theorem 1 of Abbasi-Yadkori et al. (2011), the assumption on ητ , Lemma 10 of Abbasi-Yadkori et al. (2011),
and the `2 norm assumption on φ(sτ , aτ ), P(G′) ≥ 1−δ. We bound regret on G′. Let ∆τ = r(sτ , aτ )−φ(sτ , aτ )Tθ.
Then if we define

wk,1 = (Λk)−1
k−1∑
τ=1

φ(sτ , aτ )φ(sτ , aτ )Tθ, wk,2 = (Λk)−1
k−1∑
τ=1

φ(sτ , aτ )ητ , wk,3 = (Λk)−1
k−1∑
τ=1

φ(sτ , aτ )∆τ ,

we have wk =
∑3
i=1 wk,i, which implies

|φ(s, a)T(wk − θ)| ≤ |φ(s, a)T(wk,1 − θ)|+ |φ(s, a)Twk,2|+ |φ(s, a)Twk,3|.

Similar to the analysis of z2 in the proof of Claim 4, we have

|φ(s, a)T(wk,1 − θ)| = λ|φ(s, a)T(Λk)−1θ| ≤
√
λ‖φ(s, a)‖(Λk)−1 .
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On the event G′, we obtain

|φ(s, a)Twk,2| ≤
√

2d log((λ+K)/(λδ))‖φ(s, a)‖(Λk)−1 .

Similar to analysis of z3 in the proof of Claim 4, we know

|φ(s, a)Twk,3| ≤ εmis

√
K‖φ(s, a)‖(Λk)−1 .

Hence, combining the previous four inequalities, we have shown that on G′,

|φ(s, a)T(wk − θ)| ≤
(√

λ+
√

2d log((λ+K)/(λδ)) + εmis

√
K
)
‖φ(s, a)‖(Λk)−1 ≤ α‖φ(s, a)‖(Λk)−1 ,

where the second inequality is by choice of λ and α. Thus, by the misspecification assumption,

|r(s, a)− φ(s, a)Twk| ≤ |r(s, a)− φ(s, a)Tθ|+ |φ(s, a)T(θ − wk)| ≤ εmis + α‖φ(s, a)‖(Λk)−1 .

Hence, by definition of the optimal policy and Lin-UCB,

r(sk, ak?) ≤ max
a∈A

(
φ(sk, a)Twk + α‖φ(sk, a)‖(Λk)−1 + εmis

)
≤ r(sk, ak) + 2α‖φ(sk, ak)‖(Λk)−1 + 2εmis.

Substituting into the regret definition, then using Cauchy-Schwarz, Lemma 11 from Abbasi-Yadkori et al. (2011),
and some simple eigenvalue bounds, we obtain

R(K) ≤ 2α

K∑
k=1

‖φ(sk, ak)‖(Λk)−1 + 2εmisK ≤ 2α
√
Kd log((λ+K)/K) + 2εmisK.

Since (λ+K)/λ = 1 +K/(1 + ε2
misK) ≤ 1 + min{K, ε−2

mis}, by definition of α, we have

α = O

(√
2d log(min{K, ε−2

mis}/δ) + εmis

√
K

)
.

Combining the previous two bounds and again using (λ+K)/λ ≤ 1 + min{K, ε−2
mis} yields the desired bound.
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