
Momentum Accelerates the Convergence of
Stochastic AUPRC Maximization

Guanghui Wang1, Ming Yang2, Lijun Zhang1, Tianbao Yang3

1National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
2Hefei University of Technology, Hefei 230000, China

3Department of Computer Science, the University of Iowa, Iowa City, IA 52242, USA
{wanggh,zhanglj}@lamda.nju.edu.cn, yangming@mail.hfut.edu.cn, tianbao-yang@uiowa.edu

Abstract

In this paper, we study stochastic optimiza-
tion of areas under precision-recall curves
(AUPRC), which is widely used for com-
bating imbalanced classification tasks. Al-
though a few methods have been proposed
for maximizing AUPRC, stochastic optimiza-
tion of AUPRC with convergence guarantee
remains an undeveloped territory. A state-
of-the-art complexity is O(1/ǫ5) for finding
an ǫ-stationary solution. In this paper, we
further improve the stochastic optimization
of AURPC by (i) developing novel stochas-
tic momentum methods with a better itera-
tion complexity of O(1/ǫ4) for finding an ǫ-
stationary solution; and (ii) designing a novel
family of stochastic adaptive methods with
the same iteration complexity, which enjoy
faster convergence in practice. To this end,
we propose two innovative techniques that
are critical for improving the convergence: (i)
the biased estimators for tracking individual
ranking scores are updated in a randomized
coordinate-wise manner; and (ii) a momen-
tum update is used on top of the stochastic
gradient estimator for tracking the gradient
of the objective. The novel analysis of Adam-
style updates is also one main contribution.
Extensive experiments on various data sets
demonstrate the effectiveness of the proposed
algorithms. Of independent interest, the pro-
posed stochastic momentum and adaptive al-
gorithms are also applicable to a class of two-
level stochastic dependent compositional op-
timization problems.

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

1 INTRODUCTION

In supervised machine learning systems, the perfor-
mance metrics used for model evaluation play a vital
role (Ferri et al., 2009). Traditional machine learning
algorithms typically employ accuracy (proportion of
correctly predicted examples) as the measure of per-
formance, which is a natural choice when the classes
of data are balanced. However, in many real-world
applications, such as activity recognition (Gao et al.,
2016), and medical diagnosis (Krawczyk et al., 2016),
the distribution of classes is highly skewed, for which
the accuracy usually fails to characterize the hard-
ness of the problem. In such cases, a more enhanced
metric, named areas under the precision-recall curves
(AUPRC), is proposed and commonly used to assess
classifiers (Boyd et al., 2013). Over the past decades,
the superiority of AUPRC for evaluating imbalanced
classifiers has been witnessed by a long line of research
(Davis and Goadrich, 2006b; Clemencon and Vayatis,
2009; Kok and Domingos, 2010; Boyd et al., 2012;
Flach and Kull, 2015).

How to utilize AUPRC to facilitate algorithm design
remains a challenging question. As observed by Cortes
and Mohri (2003), maximizing accuracy on training
data does not necessarily lead to a satisfactory solu-
tion with maximal AUPRC. On the other hand, di-
rectly optimizing AUPRC is generally intractable due
to the complicated integral operation. To mitigate this
issue, most of the existing works seek to optimize cer-
tain estimator of AUPRC (Qin et al., 2010; Brown
et al., 2020; Qi et al., 2021). In this paper, we focus
on maximizing average precision (AP), which is one
of the most commonly used estimators in practice for
the purpose of maximizing AUPRC. Given a training
set D = {(xi, yi)}ni=1, AP is defined as (Boyd et al.,
2013):

AP =
1

m

∑

xi,yi=1

r+(xi)

r(xi)
, (1)

Momentum Accelerates the Convergence of Stochastic AUPRC Maximization

where (xi, yi = 1) denotes a positive example, r+(xi)
denotes its rank among all positive examples (i.e., the
number of positive examples that are ranked higher
than xi including itself), r(xi) denotes its rank among
all examples (i.e., the number of examples that are
ranked higher than xi including itself), and m de-
notes the total number of positive examples. It can be
proved that AP is an unbiased estimator of AUPRC
as the number of examples n goes infinity.

However, the optimization of AP is challenging due
to the non-differential ranking functions r+(xi) and
r(xi) and the complicated form. Although a few stud-
ies have tried to optimize AP for AUPRC optimiza-
tion (Burges et al., 2007; Qin et al., 2010; Henderson
and Ferrari, 2016; Mohapatra et al., 2018; Cakir et al.,
2019; Rolinek et al., 2020; Brown et al., 2020), most of
them are heuristic driven and do not provide any con-
vergence guarantee. Recently, Qi et al. (2021) made a
breakthrough towards optimizing a differentiable sur-
rogate loss of AP with provable convergence guarantee.
They cast the objective as a sum of non-convex com-
positional functions, and propose a principled stochas-
tic method named SOAP for solving the special opti-
mization problem. A key in their algorithmic design
is to maintain and update biased estimators of the
surrogate ranking functions for all positive data. The-
oretical analysis show that the iteration complexity of
SOAP is on the order of O(1/ǫ5).

However, it is still unclear whether faster rates
than O(1/ǫ5) can be obtained. Moreover, whether
more advanced update rules such as momentum and
Adam (Kingma and Ba, 2014) are useful to accelerate
the convergence also remains an open question. This
paper aims to address these problems, and makes the
following contributions.

• We propose momentum-based methods to accel-
erate the convergence for solving the finite-sum
stochastic compositional optimization problem of
AP maximization. The key idea is to employ a
momentum update to compute a stochastic gradi-
ent estimator of the objective function.

• We investigate two schemes for updating the bi-
ased estimators of the ranking functions, and es-
tablish a faster rate in the order of O(1/ǫ4) for
the iteration complexity. The first is similar to
the one proposed by Qi et al. (2021). However,
an improved rate of this scheme is difficult to es-
tablish unless the sampled positive data include
all positive examples due to a subtle randomness
issue. To address this limitation, we propose the
second scheme by updating them in a randomized
coordinate-wise fashion.

• We propose and analyze a family of adaptive al-

gorithms by using different adaptive step sizes in-
cluding the Adam-style step size. We establish
the same order of iteration complexity by employ-
ing the second scheme mentioned above for updat-
ing the biased estimators of the ranking functions.
To the best our knowledge, this is the first
time the convergence of Adam-style methods for
stochastic compositional problems is established
in the literature. A comparison between our con-
vergence results and the existing results for maxi-
mizing AP is presented in Table 1.

• We conduct extensive experiments on benchmark
datasets comparing with previous stochastic algo-
rithms for AUPRC/AP optimization and verify
the effectiveness of the proposed algorithms.

2 RELATED WORK

AUPRC/AP Optimization. Many studies in ma-
chine learning (Yue et al., 2007; McFee and Lanckriet,
2010; Song et al., 2016), information retrieval (Met-
zler and Croft, 2005; Burges et al., 2007; Chen et al.,
2009; Qin et al., 2010), computer vision (Henderson
and Ferrari, 2016; Mohapatra et al., 2018; Cakir et al.,
2019; Chen et al., 2019; Oksuz et al., 2020; Rolinek
et al., 2020; Brown et al., 2020) have investigated the
issue of AUPRC/AP maximization. Traditional ma-
chine learning studies are based on classical optimiza-
tion techniques, such as hill climbing search (Metzler
and Croft, 2005), cutting-plane method (Yue et al.,
2007; McFee and Lanckriet, 2010), and dynamic pro-
gramming (Song et al., 2016). However, these meth-
ods do not scale well when the training set is large.
Many studies have considered various methods for
computing an (approximiate) gradient for the origi-
nal AP score function, e.g., finite difference estima-
tors (Henderson and Ferrari, 2016), linear envelope
estimators (Henderson and Ferrari, 2016), soft his-
togram binning technique (Cakir et al., 2019), a black-
box differentiation of a combinatorial solver (Rolinek
et al., 2020), loss-augmented inference for estimat-
ing the semi-gradient (Mohapatra et al., 2018), using
the gradient of implicit cost functions (Burges et al.,
2007), using the gradient of a smooth approximation
of AP (Qin et al., 2010; Brown et al., 2020), etc. How-
ever, none of these studies provide any convergence
guarantee when using these techniques for stochastic
optimization of AUPRC/AP.

Recently, Eban et al. (2017) propose a systematic
framework for AUPRC optimization, which makes use
of a finite set of samples to approximate the integral.
They then cast the optimization as a min-max saddle-
point problem, and optimize it by SGD-style methods
without providing any convergence analysis. To the

Guanghui Wang, Ming Yang, Lijun Zhang, Tian-bao Yang

Table 1: Comparison with previous results for maximizing AP or its surrogate loss. “-” indicate results not
available or applicable.

Method Provable Convergence Adaptive Step Size Iteration Complexity
MOAP (this work) Yes No O(1/ǫ4)

ADAP (this work) Yes
Adam, AMSGrad,

AdaGrad, Adabound, etc.
O(1/ǫ4)

SOAP (SGD-style) (Qi et al., 2021) Yes No O(1/ǫ5)
SOAP (AMSGrad-style) (Qi et al., 2021) Yes AMSGrad O(1/ǫ5)
SOAP (Adam-style) (Qi et al., 2021) No Adam -

best of our knowledge, (Qi et al., 2021) is the first
work that proposes a principled stochastic method for
maximizing a smooth approximation of the AP func-
tion with provable convergence guarantee.

AUROC Optimization. Another territory related
to AUPRC/AP maximiation is AUROC (aka areas
under the ROC curves) maximization. Compared to
AUPRC, AUROC is easier to optimize, and the prob-
lem of AUROC optimization have been investigated
by a large number of previous studies (Herschtal and
Raskutti, 2004; Joachims, 2005; Zhao et al., 2011; Gao
et al., 2013; Liu et al., 2018b; Natole et al., 2018; Ying
et al., 2016; Yuan et al., 2020; Guo et al., 2020). How-
ever, an algorithm that maximizes AUROC does not
necessarily maximize AUPRC (Davis and Goadrich,
2006a). Hence, we will not directly compare with these
studies in the present work.

Stochastic Compositional Optimization. The op-
timization problem considered in this paper for AP
maximization is closely related to stochastic composi-
tional optimization (SCO), where the objective func-
tion is of the form Eξ1 [f(Eξ2 [g(w; ξ2)]; ξ1)], and ξ1 and
ξ2 are random variables. SCO has been extensively
studied by previous work (Wang et al., 2016, 2017;
Lian et al., 2017; Huo et al., 2018; Lin et al., 2018;
Liu et al., 2018a; Zhang and Xiao, 2019; Yang et al.,
2019; Balasubramanian et al., 2020; Ghadimi et al.,
2020; Chen et al., 2021). The major difference is that
the inner function in our objective depends on both
the random variable of the inner level and that of the
outer level, which makes the stochastic algorithm de-
sign and theoretical analysis much more involved. We
notice that a recent work (Hu et al., 2020) have consid-
ered a family of stochastic compositional optimization
problems, where the inner function depends on both
the random variable of the inner level and that of the
outer level. They proposed biased stochastic methods
based on mini-batch averaging. However, their algo-
rithms require a large mini-batch size in the order of
O(1/ǫ2) for finding an ǫ-stationary solution, which is
not practical, and have a worse sample complexity in
the order of O(1/ǫ6) or O(1/ǫ5). In contrast, our algo-

rithms do not require a large mini-batch size and enjoy
a better sample complexity in the order of O(m/ǫ4),
where m is the number of positive data points that is
usually a moderate number for imbalanced data.

3 MAIN RESULTS

Notation. In this paper, we consider binary classifica-
tion problems. Let (x, y) be a feature-label pair where
x ∈ R

d,y ∈ {1,−1}, sw(x) : Rd 7→ R be the score
function of a classifier characterized by a parameter
vector w ∈ R

d. Let D+ = {(x1, y1), . . . , (xm, ym)}
denote a set of positive examples, and let D− =
{(xm+1, ym+1), . . . , (xn, yn)} denote a set of negative
examples. The whole training set is denoted by D =
D+ ∪ D−. We denote by ‖ · ‖ the Euclidean norm of
a vector. Let ΠΩ[u] = argminv∈Ω ‖v − u‖2 be the
Euclidean projection onto a convex set Ω.

Preliminaries. To tackle the non-differentiable rank-
ing functions in (1), a differentiable surrogate loss func-
tion can be used for approximating the ranking func-
tions. Following Qi et al. (2021), we consider the fol-
lowing approximation:

ÂP =
1

m

∑

xi∈D+

∑n
j=1 ℓ(w;xj ,xi)I(yj = 1)∑n

j=1 ℓ(w;xj ,xi)
, (2)

where ℓ(w;xj ,xi) is an surrogate function of the indi-
cator function I(sw(xj) ≥ sw(xi)). In the literature,
various surrogate functions ℓ(w;xj ,xi) have been con-
sidered (Brown et al., 2020; Qi et al., 2021; Qin et al.,
2010), including a squared hinge loss ℓ(w;xj ,xi) =
max(0, (sw(xj) − sw(xi) + γ))2, and a logistic func-

tion ℓ(w;xj ,xi) =
exp(γ(sw(xj)−sw(xi)))

1+exp(γ(sw(xj)−sw(xi)))
, where γ is

a margin or scaling parameter. Define the following
notations:

g(w;xj ,xi) =

[
g1(w;xj ,xi)
g2(w;xj ,xi)

]
=

[
I(yj = 1)ℓ(w;xj ,xi)

ℓ(w;xj ,xi)

]
,

(3)
and gi(w) =

∑n
j=1 g(w;xj ,xi) ∈ R

2, and f(u) =

−u1

u2
: R2 7→ R for any u = [u1, u2]

⊤ ∈ R
2. We can

Momentum Accelerates the Convergence of Stochastic AUPRC Maximization

see that the two coordinates of gi(w) are the surro-
gates of the two ranking functions r+(xi) and r(xi),
respectively.

Then, the optimization problem for AP maximization
based on the surrogate function in (2) is equivalent to
the following minimization problem:

min
w

F (w) = Exi∼D+
[f(gi(w))] =

1

m

∑

xi∈D+

f(gi(w)).

(4)
We refer to the above problem as finite-sum two-
level stochastic compositional optimization. We em-
phasize that a standard ℓ2 norm regularizer λ‖w‖2
can be added to the above objective to control over-
fitting. Note that the above problem is generally
non-convex even if gi(w) is convex. Hence, our goal
for solving (4) is to find a nearly stationary solu-
tion. Throughout this paper, we denote by g̃i(w)
and ∇g̃i(w) independent unbiased stochastic estima-
tors of gi(w) and ∇gi(w), respectively, which are
computed based on sampled (mini-batch) data from
all data points in D. For example, we can sample
two sets of examples from D denoted by S1 and S2

and compute g̃i(w) = n
|S1|

∑
xj∈S1

g(w;xj ,xi) and

∇g̃i(w) = n
|S2|

∑
xj∈S1

∇g(w;xj ,xi). To this end, we

impose the following assumptions (Qi et al., 2021).

Assumption 1. Assume (i) there exist C > 0 such
that ℓ(w;xi;xi) ≥ C, for any xi ∈ D+; (ii) ℓ(w;xj ;xi)
is Cℓ-Lipschitz continuous and Lℓ-smooth with respect
to w for any xi ∈ D+, xj ∈ D, where Cℓ, Lℓ > 0 are
constants; (iii) it holds that 0 ≤ ℓ(w;xj ;xi) ≤ M for
some M > 0 for any xi ∈ D+, xj ∈ D.

Assumption 2. Assume there exists a positive con-
stant σ, such that ‖∇g(w;xj ,xi)‖2 ≤ σ2 for any
xi ∈ D+,xj ∈ D.

Remark 1. The above assumptions can be easily satis-
fied for a smooth surrogate loss function ℓ(·;xj ,xi) and
a bounded score function sw(x). For example, for a lin-
ear model we can use sw(x) = 1/(1 + exp(−w⊤x)) ∈
[0, 1] as the score function.

Based on Assumption 1, we can establish the smooth-
ness of the objective function in the optimization prob-
lem (4), and show that gi(w) ∈ Ω = {u ∈ R

2, u1 ≤
Mm,C ≤ u2 ≤ Mn} (cf. the supplement). Our goal
is then to find a solution w such that ‖∇F (w)‖ ≤ ǫ in
expectation, to which we refer as ǫ-stationary solution.

Before ending this section, we summarize the updates
of SOAP algorithm (Qi et al., 2021) to facilitate com-
parisons. An essential component of SOAP is to com-
pute an estimator of the gradient of the objective func-
tion, i.e., ∇F (w) = 1

m

∑m
i=1 ∇gi(wt)

⊤∇f(gi(wt)) at
each iteration. Since both gi(wt) and∇gi(wt) involves
processing all examples, stochastic estimators of these

Algorithm 1 MOAP-V1

1: Input: η, β0, β1, B
2: Initialize: w1 ∈ R

d, U1 ∈ R
m×2,m1 ∈ R

d

3: for t = 1, . . . , T do
4: Sample B points from D+, denoted by Bt

5: Set [Ut+1]i as:{
ΠΩ[(1− β0)[Ut]i + β0g̃i(wt)

⊤] i ∈ Bt

[Ut]i o.w.

6: ∇̃t =
1
B

∑
i∈Bt

∇g̃i(wt)
⊤ · ∇f([Ut+1]

⊤
i)

7: mt+1 = (1− β1)mt + β1∇̃t

8: wt+1 = wt − ηmt+1

9: end for

quantities are computed. In addition, due to the fact
that gi(wt) is inside ∇f a better technique than a sim-
ple mini-batch averaging is used in order to control
the variance. To this end, they introduce a sequence
Ut ∈ R

m×2 for tracking g(w) = [g1(w), . . . , gm(w)]⊤ ∈
R

m×2, and proposes the SOAP algorithm with the fol-
lowing updates:

SOAP





Sample B points from D+, denoted by Bt

[Ut+1]i =

{
(1− β)[Ut]i + βg̃i(wt)

⊤ i ∈ Bt

[Ut]i o.w.

∇̃t =
1

B

∑

i∈Bt

∇g̃i(wt)
⊤ · ∇f([Ut+1]

⊤
i)

wt+1 = wt − η∇̃t

(5)
where [Ut]i denotes the i-th row of Ut. The Ut+1

sequence is known as the moving average estimator
in the literature of stochastic compositional optimiza-
tion (Wang et al., 2017). SOAP enjoys an iteration
complexity of O(1/ǫ5) for using the above update to
find an ǫ-stationary solution of the objective when
Bt = D+ and an iteration complexity of O(m/ǫ5) when
|Bt| = O(1). Below, we present novel algorithms to im-
prove these complexities.

3.1 Stochastic Momentum Methods for AP
Maximization: MOAP

To improve the convergence of SOAP, we propose to
exploit momentum when updating the model parame-
ter wt. Similar to the stochastic momentum method
widely used in stochastic optimization (Yang et al.,
2016), we maintain and update the following stochastic
gradient estimator:

mt+1 = (1− β1)mt + β1∇̃t, (6)

where ∇̃t is a stochastic estimator of the gradient
at wt, which is computed based on Ut+1 similarly
to SOAP. Then, we update the solution by wt+1 =
wt − ηmt+1. We investigate two methods for updat-
ing Ut+1.

Guanghui Wang, Ming Yang, Lijun Zhang, Tian-bao Yang

Algorithm 2 MOAP-V2

1: Input: η, β0, β1, B
2: Initialize: w1 ∈ R

d, U1 ∈ R
m×2,m1 ∈ R

d

3: for t = 1, . . . , T do
4: Sample B points from D+, denoted by Bt

5: Set [Ut+1]i as:{
ΠΩ[(1− β0)[Ut]i + β0

m
B g̃i(wt)

⊤] i ∈ Bt

ΠΩ[(1− β0)[Ut]i] o.w.

6: ∇̃t =
1
B

∑
i∈Bt

∇g̃i(wt)
⊤ · ∇f([Ut+1]

⊤
i)

7: mt+1 = (1− β1)mt + β1∇̃t

8: wt+1 = wt − ηmt+1

9: end for

MOAP-V1. The first method for updating Ut+1 is
similar to that in (Qi et al., 2021), which is presented in
Algorithm 1. It is worth mentioning that we conduct
a projection ΠΩ[·] in Step 5 to ensure the two compo-
nents of each row in U is appropriately bounded such
that ∇f(·) is Lipschitz continuous with respect to its
input. Regarding the convergence of Algorithm 1, we
first present the following result by setting Bt = D+ at
every iteration.

Theorem 1. Suppose Assumptions 1 and 2 hold.
Then, Algorithm 1 with Bt = D+, β0 = O(ǫ2), β1 =
O(ǫ2), η = O(ǫ2), and T = O(1/ǫ4) ensures

E

[
1

T

T∑

t=1

‖∇F (wt)‖2
]
≤ ǫ2.

Remark 2. Compare with Theorem 2 in Qi et al.
(2021), the MOAP has a better iteration complexity,
i.e., T = O(1/ǫ4) vs T = O(1/ǫ5) of SOAP. The total
sample complexity of MOAP in this case is O(m/ǫ4).
We include all omitted proofs in the supplementary
materials and exhibit the constants in the big O in the
proof.

Next, we consider using random samples Bt ∼ D.
Without loss of generality, we assume |Bt| = 1 and
the sample is randomly chosen from D with replace-
ment. Then, for Algorithm 1, we provide the following
convergence rate.

Theorem 2. Suppose Assumptions 1 and 2 hold.
Then, Algorithm 1 with B = 1, β0 = O(ǫ2), β1 = O(ǫ2),
η = O(ǫ3/m), T = O(m/ǫ5) satisfies

E

[
1

T

T∑

t=1

‖∇F (wt)‖2
]
≤ ǫ2.

Remark 3. Theorem 2 implies that, for a stochas-
tic Bt, Algorithm 1 suffers a worst case iteration com-
plexity in the order of O(m/ǫ5), which is the same as
SOAP for using a stochastic Bt. This is mainly due to
a subtle dependent issue caused by the infrequent up-
dates of the moving average estimator Ut, which makes

the momentum fail to accelerate the convergence. The
detailed discussion is presented in the supplementary.

MOAP-V2. To address the limitation of Algorithm
1 for using a stochastic Bt, we propose a second method
for updating Ut+1. The procedure is presented in Al-
gorithm 2. Different from MOAP-V1, MOAP-V2 up-
dates all coordinates of Ut+1 according to

[Ut+1]i =

{
ΠΩ[(1− β0)[Ut]i + β0

m
B g̃i(wt)

⊤] i ∈ Bt

ΠΩ[(1− β0)[Ut]i] o.w.
,

i.e, the coordinate of Ut+1 corresponding to a sam-
pled positive data i ∈ Bt is updated similarly to that
in MOAP-V1 except the unbiased estimator g̃i(wt) is
scaled bym/B, and the coordinate of Ut+1 correspond-
ing to a non-sampled data i ∈ Bt is updated trivially
by multiplying with a scaling factor 1 − β0. It is no-
table that we can delay updating these coordinates un-
til they are sampled because at the current iteration,
these coordinates are not used for updating the model
parameter wt+1.

In order to understand why this method can help im-
prove the convergence for using a stochastic Bt. We
can write the update of Ut+1 equivalently as Ut+1 =
ΠΩm [(1− β0)Ut + β0ĝ(wt)], where ĝ(wt) is defined as

ĝ(wt) =
1

B

∑

i∈BT




0
·

mg̃i(wt)
⊤

·
0




. (7)

It is not difficult to show that E[ĝ(wt)] = g(wt), where
the expectation is taken over the randomness in Bt and
g̃i(wt). We refer to this update of Ut+1 as the ran-
domized coordinate update. This update is similar
to Step 5 in MOAP-V1 when using Bt = D+ to up-
date the model, in which case all coordinates of Ut+1

are updated by Ut+1 = ΠΩm [(1 − β0)Ut + β0g̃(wt)],
where g̃(wt) = (g̃1(wt), . . . , g̃m(wt))

⊤. Both ĝ(wt)
and g̃(wt) are unbiased estimators of g(wt). The dif-
ference is that the variance of ĝ(wt) is scaled up by a
factor of m

B . We emphasize it is the combination of the
momentum update (6) and the randomized coordinate
update (7) that yields an improved convergence rate
of Algorithm 2 presented below.

Theorem 3. Suppose Assumptions 1 and 2 hold.
Then, Algorithm 2 with β0 = O(ǫ2B/m), β1 =
O(ǫ2B/m), η = O(β), T = O(m/[Bǫ4]) ensures that

E
[
1
T

∑T
t=1 ‖∇F (wt)‖2

]
≤ ǫ2.

Remark 4. The above theorem implies that, for a
stochastic Bt, Algorithm 2 enjoys a better iteration
complexity in the order of O(m/ǫ4), which is the better
than SOAP for using a stochastic Bt.

Momentum Accelerates the Convergence of Stochastic AUPRC Maximization

Algorithm 3 ADAP

1: Input: η, β0, β1, δ, B
2: Initialize: w1 ∈ R

d, U1 ∈ R
m×2,m1 ∈ R

d

3: for t = 1, . . . , T do
4: Sample B points from D+, denoted by Bt

5: Set [Ut+1]i as:{
ΠΩ[(1− β0)[Ut]i + β0

m
B g̃i(wt)

⊤] i ∈ Bt

ΠΩ[(1− β0)[Ut]i] o.w.

6: ∇̃t =
1
B

∑
i∈Bt

∇wg̃i,t(wt)
⊤ · ∇f([Ut+1]

⊤
i)

7: mt+1 = (1− β)mt + β∇̃t

8: vt+1 = ht(vt, ∇̃2
t) ⋄ht can be implemented by

any of the methods in (8)
9: wt+1 = wt − η√

vt+1+δmt+1

10: end for

3.2 Stochastic Adaptive Algorithms for AP
Maximization: ADAP

In this section, we extend our technique to stochas-
tic adaptive algorithms, which use adaptive step sizes.
For standard stochastic optimization, various adap-
tive step sizes have been investigated, including Ada-
Grad (Duchi et al., 2011), Adam (Kingma and Ba,
2014), AMSGrad (Reddi et al., 2018), AdaBound (Luo
et al., 2019), etc.

Motivated by these existing adaptive methods, we pro-
pose stochastic adaptive algorithms for AP maximiza-
tion in Algorithm 3, which is referred to as ADAP.
The difference from Algorithm 2 is that we need to
maintain and update another sequence vt ∈ R

d in or-
der to compute an adaptive step size in Step 8, where
ht(·) denotes a generic updating function. The vt is
usually computed from the second-order moment (i.e.,
coordinate-wise square of the stochastic gradient esti-
mator). For our problem, we compute vt from ∇̃2

t , and
ht(·) can be implemented by the following methods for
having different adaptive step sizes:

Adam-style: vt+1 = (1− β′
t)vt + β′

t∇̃2
t

AdaGrad-style: vt+1 =
1

t+ 1

t∑

i=1

∇̃2
i

AMSGrad-style: v′
t+1 = (1− β′

t)v
′
t + β′

t∇̃2
t ,

vt+1 = max(vt,v
′
t+1)

AdaBound-style: v′
t+1 = (1− β′

t)v
′
t + β′

t∇̃2
t ,

vt+1 = Π[1/c2u,1/c
2
l
][v

′
t+1]

(8)

where cl < cu are two parameters of the AdaBound
method and Π[a,b] denotes a clipping operator that
clips the input argument into the range [a, b]. Given
vt+1, we update the model parameter by

wt+1 = wt −
η

√
vt+1 + δ

mt+1,

where δ > 0 is a parameter. The convergence analy-
sis of ADAP relies on the boundness of the step size
scaling factor ηst = 1/(

√
vt+1+ δ) following similarly a

recent study on the convergence of the Adam-style al-
gorithms for standard stochastic non-convex optimiza-
tion (Guo et al., 2021a). Specifically, under Assump-
tions 1 and 2, we could show that ‖∇̃t‖∞ are bounded
by a constant, which further implies that the step size
scaling factor ηst = 1/(

√
vt+1 + δ) is upper bounded

and lower bounded by some constants cu and cl. Fi-
nally, we present the convergence of Algorithm 3 be-
low.

Theorem 4. Suppose Assumptions 1 and 2 hold.
Then, Algorithm 3 with β0 = O(Bǫ2/m), β1 =
O(Bǫ2/m), η = O(β), T = O(m/[Bǫ4]) and any of
the methods in (8) for computing vt+1 ensures that

E
[
1
T

∑T
t=1 ‖∇F (wt)‖2

]
≤ ǫ2.

Remark 5. We note that previous work (Qi et al.,
2021) also proposed a Adam-style algorithm, but their
analysis only covers the AMSGrad-style adaptive step
size and has a worse iteration complexity in the order
of O(m/ǫ5) for using a stochastic Bt.

Finally, it is worth mentioning that both Theorem 3
and Theorem 4 can be extended to using a decreas-
ing step size η and parameters β0, β1 in the order of
1/
√
t, where t denotes the current round. We refer the

readers to the supplement for the proofs.

4 EXPERIMENTS

In this section, we conduct experiments on benchmark
datasets to demonstrate the effectiveness of the pro-
posed algorithms. More results can be found in the
Appendix.

4.1 Optimizing Linear Models

We first consider learning a linear model for prediction.
For baselines, we choose three state-of-the-art meth-
ods for stochastic optimization of AP, namely SOAP
(SGD) (Qi et al., 2021), SOAP (Adam) (Qi et al., 2021)
and SmoothAP (Brown et al., 2020). For our algo-
rithms, we implement MOAP (v2) and ADAP (Adam-
style).

Datasets. We use six imbalanced benchmark datasets
from LIBSVM data (Chang and Lin, 2011), whose
statistics are summarized in the appendix. For all data
sets, we scale the feature vectors into [0, 1]. For mush-
rooms and phishing dataset, since the original class
distribution is relatively balanced, and no testing set
is given, we randomly drop a set of positive data from
the training examples, and divide them into training
and testing according to 2:1 ratio.

Guanghui Wang, Ming Yang, Lijun Zhang, Tian-bao Yang

Table 2: Statistics of Datasets.

Data Set #training examples #testing examples Proportion of positive data
mushrooms 2920 1504 5.27%
phishing 4987 2568 35.65%
w6a 17188 32561 3.05%
a9a 32561 16281 24.08%
w8a 49749 14951 2.97%
ijcnn1 49990 91701 9.71%

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

R
re

c
is

io
n

ADAP

MOAP

SOAP(SGD)

SOAP(Adam)

SmoothAP

(a) mushrooms dataset

0 0.2 0.4 0.6 0.8 1

Recall

0.2

0.4

0.6

0.8

1

R
re

c
is

io
n

ADAP

MOAP

SOAP(SGD)

SOAP(Adam)

SmoothAP

(b) phishing dataset

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

R
re

c
is

io
n

ADAP

MOAP

SOAP(SGD)

SOAP(Adam)

SmoothAP

(c) w6a dataset

0 0.2 0.4 0.6 0.8 1

Recall

0.2

0.4

0.6

0.8

1

R
re

c
is

io
n

ADAP

MOAP

SOAP(SGD)

SOAP(Adam)

SmoothAP

(d) a9a dataset

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

R
re

c
is

io
n

ADAP

MOAP

SOAP(SGD)

SOAP(Adam)

SmoothAP

(e) w8a dataset

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

R
re

c
is

io
n

ADAP

MOAP

SOAP(SGD)

SOAP(Adam)

SmoothAP

(f) ijcnn1 dataset

Figure 1: Precision-Recall curves of the Final models on the testing set

Configurations. In all experiments, we use the sig-
moid function 1/(exp(−w⊤x) + 1) to generate a pre-
diction score for computing the AP. We set the ℓ2-
regulation parameter as 10−4, the mini-batch size as
20, and run a total of T = 500 iterations. For MOAP,
ADAP, SOAP, we choose the squared hinge ls as the
surrogate function following Qi et al. (2021). For
SmoothAP, we apply the sigmoid function to approx-
imate the indicator function following Brown et al.
(2020). Other involved parameters for each algorithm
are tuned on the training data. For MOAP and ADAP,
we decrease η and β0 = β1 on the order of O(1/

√
t) ac-

cording to the theoretical analysis, and tune the initial
value of the step size in the set {20, 10, 1, 10−1, 10−2},
and β0 = β1 in the set {0.9, 0.5, 0.1}. For other al-
gorithms, we observe poor performance when using a
decreasing step size and β parameters, and thus re-
port their results by using fixed parameters tuned in
the same range as our algorithms. We repeat each al-
gorithm 5 times on each data and report the averaged
results.

Results. The convergence curves of AP on training
examples are reported in Figure 2, and the final AP
scores on the testing data are shown in Table 3. We
also plot the Precision-Recall curves of the final mod-
els on testing data in Figure 1. From Figure 2, we
can see that the proposed ADAP converges faster than
other methods. MOAP converges faster than SOAP on
mushrooms, phishing, and w8a, and has similar perfor-
mance as SOAP on other three datasets. From Table 3,
we can see that ADAP has the best performance on all
data sets except ijcnn1, on which ADAP is similar to
SOAP (Adam). These results verify the effectiveness
of the proposed methods, in particular the adaptive
method ADAP.

4.2 Training Deep Neural Networks

Next, we present empirical results on optimizing
deep neural networks. We mainly focus on compar-
ing the performance of our proposed ADAP (Adam-
style) algorithm with the two state-of-the-art algo-

Momentum Accelerates the Convergence of Stochastic AUPRC Maximization

Table 3: Final averaged AP scores on the testing data.

Method mushrooms phishing w6a
MOAP 0.999± 2E-6 0.978± 2E-6 0.596± 2E-3
ADAP 1 0.981± 2E-7 0.675± 1E-4
SOAP (SGD) 0.997± 1E-5 0.978± 4E-6 0.612± 4E-5
SOAP (Adam) 1 0.977± 1E-6 0.592± 3E-4
SmoothAP 0.962± 1E-3 0.967± 8E-6 0.473± 1E-4

Method a9a w8a ijcnn1
MOAP 0.715± 3E-5 0.584± 4E-4 0.471± 6E-4
ADAP 0.730± 1E-6 0.659± 5E-4 0.536± 1E-3
SOAP (SGD) 0.714± 3E-5 0.561± 1E-3 0.476± 2E-4
SOAP (Adam) 0.721± 1E-5 0.475± 2E-3 0.547± 1E-3
SmoothAP 0.713± 3E-5 0.459± 3E-4 0.374± 3E-4

0 100 200 300 400 500

Rounds

0.2

0.4

0.6

0.8

1

A
P

ADAP

MOAP

SOAP(SGD)

SOAP(Adam)

SmoothAP

(a) mushrooms dataset

10 20 30 40 50

Rounds

0.5

0.6

0.7

0.8

0.9

1

A
P

ADAP

MOAP

SOAP(SGD)

SOAP(Adam)

SmoothAP

(b) phishing dataset

200 300 400 500

Rounds

0.3

0.4

0.5

0.6

0.7

A
P

ADAP

MOAP

SOAP(SGD)

SOAP(Adam)

SmoothAP

(c) w6a dataset

100 200 300 400 500

Rounds

0.65

0.7

0.75

A
P

ADAP

MOAP

SOAP(SGD)

SOAP(Adam)

SmoothAP

(d) a9a dataset

0 100 200 300 400 500

Rounds

0

0.2

0.4

0.6

A
P

ADAP

MOAP

SOAP(SGD)

SOAP(Adam)

SmoothAP

(e) w8a dataset

0 100 200 300 400 500

Rounds

0.2

0.4

0.6

A
P

ADAP

MOAP

SOAP(SGD)

SOAP(Adam)

SmoothAP

(f) ijcnn1 dataset

Figure 2: AP vs # of rounds on the training set

Table 4: Test AUPRC on CIFAR10 and CIFAR100.
Method CIFAR10 CIFAR100
ADAP 0.7667± 0.0015 0.6371± 0.0041
SOAP (Adam) 0.7629± 0.0014 0.6251± 0.0053
SmoothAP 0.7365± 0.0088 0.6071± 0.0064

rithms, i.e., SmoothAP (Brown et al., 2020) and SOAP
(Adam) (Qi et al., 2021).

Datasets. Following Qi et al. (2021), we conduct
experiments on the imbalanced binary-class version
of CIFAR10 and CIFAR100 datasets, which are con-
structed as follows: Firstly, half of the classes in the
original CIFAR10 and CIFAR100 datasets are desig-
nated to be the positive class, and the rest half of

classes are considered to be the negative class. Then,
we remove 98% of the positive examples in the train-
ing set to make it imbalanced, while keeping the test
set unchanged. Finally, the training data set is splited
into train/validation sets as a 4 : 1 ratio.

Configurations. We choose ResNet-18 (He et al.,
2016) to be the neural network for our imbalanced
binary image classification task. Before the training
process, similar to (Qi et al., 2021), the ResNet-18
model is initialized with a model pretrained by the
Adam optimizer for optimizing the cross entropy loss,
whose learning rate and weight decay parameter are
searched in {10−6, 10−5, 10−4}. Then, the last layer of
the neural network is re-initialized and the network is
trained by different AP maximization methods, with

Guanghui Wang, Ming Yang, Lijun Zhang, Tian-bao Yang

hyper-parameters individually tuned for fair compari-
son. For SOAP and ADAP, we tune the β0 parame-
ter in range {0.001, 0.1, 0.5, 0.9, 0.99, 0.999}, the mar-
gin parameter m in {0.5, 1, 2, 5, 10}, and learning rate
η in {10−6, 10−5, 10−4}.
Results We conduct each experiment for 5 times, and
report the mean test AUPRC as well as the standard
variation in Table 4. We could observe that our pro-
posed ADAP enjoys the best results on both datasets.

5 CONCLUSION AND FUTURE

WORK

In this paper, we investigate the stochastic optimiza-
tion of AUPRC by maximizing a surrogate loss of AP,
which is one of the most important performance met-
rics for imbalanced classification problems. Previous
study has shown that an O(1/ǫ5) convergence rate can
be achieved. In this work, we further improve the theo-
retical guarantee by proposing a stochastic momentum
method as well as a family of adaptive methods, which
enjoy a better convergence rate of O(1/ǫ4). Our essen-
tial ideas the are two-folds: (i) updating the biased
estimator for individual ranking-scores-tracking in a
randomized coordinate-wise manner; (ii) applying the
momentum step on top of the stochastic gradient esti-
mator for tracking the gradient of the objective. Em-
pirical studies on optimizing linear models and deep
networks show the effectiveness of the proposed adap-
tive methods. For future work, we consider applying
the proposed algorithms to other deep learning tasks.

Acknowledgements

T. Yang was was partially supported by NSF Career
Award #1844403, NSF Award #2110545, NSF Award
#1933212. L. Zhang was partially supported by Jiang-
suSF (BK20200064).

References

Krishnakumar Balasubramanian, Saeed Ghadimi, and
Anthony Nguyen. Stochastic multi-level composi-
tion optimization algorithms with level-independent
convergence rates. arXiv preprint arXiv:2008.10526,
2020.

Kendrick Boyd, Vitor Santos Costa, Jesse Davis, and
David Page. Unachievable region in precision-recall
space and its effect on empirical evaluation. In Pro-
ceedings of 29th International Conference on Ma-
chine Learning, pages 639–646, 2012.

Kendrick Boyd, Kevin H Eng, and C David Page.
Area under the precision-recall curve: point esti-
mates and confidence intervals. In Proceedings of the

13rd Joint European Conference on Machine Learn-
ing and Knowledge Discovery in Databases, pages
451–466, 2013.

Andrew Brown, Weidi Xie, Vicky Kalogeiton, and An-
drew Zisserman. Smooth-ap: Smoothing the path
towards large-scale image retrieval. In Proceedings
of the 6th European Conference on Computer Vision,
pages 677–694, 2020.

Christopher Burges, Robert Ragno, and Quoc Le.
Learning to rank with nonsmooth cost functions. In
Advances in Neural Information Processing Systems
19, 2007.

Fatih Cakir, Kun He, Xide Xia, Brian Kulis, and Stan
Sclaroff. Deep metric learning to rank. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 2019.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A
library for support vector machines. ACM Transac-
tions on Intelligent Systems and Technology, 2:1–27,
2011.

Kean Chen, Jianguo Li, Weiyao Lin, John See,
Ji Wang, Lingyu Duan, Zhibo Chen, Changwei He,
and Junni Zou. Towards accurate one-stage ob-
ject detection with ap-loss. In Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. Solving
stochastic compositional optimization is nearly as
easy as solving stochastic optimization. IEEE Trans-
actions on Signal Processing, 69:4937–4948, 2021.

Wei Chen, Tie-Yan Liu, Yanyan Lan, Zhiming Ma, and
Hang Li. Ranking measures and loss functions in
learning to rank. In Advances of International Con-
ference on Neural Information Processing Systems
22, page 315–323, 2009.

Stephan Clemencon and Nicolas Vayatis. Nonpara-
metric estimation of the precision-recall curve. In
Proceedings of the 26th International Conference on
Machine Learning, pages 185–192, 2009.

Corinna Cortes and Mehryar Mohri. Auc optimiza-
tion vs. error rate minimization. Advances in Neural
Information Processing Systems 16, pages 313–320,
2003.

Jesse Davis and Mark Goadrich. The Relationship Be-
tween Precision-Recall and ROC Curves. In Proceed-
ings of the 23rd international conference on Machine
learning, pages 233–240, 2006a.

Jesse Davis and Mark Goadrich. The relationship be-
tween precision-recall and roc curves. In Proceed-
ings of the 23rd International Conference on Ma-
chine Learning, pages 233–240, 2006b.

Momentum Accelerates the Convergence of Stochastic AUPRC Maximization

John Duchi, Elad Hazan, and Yoram Singer. Adaptive
subgradient methods for online learning and stochas-
tic optimization. Journal of Machine Learning Re-
search, 12:2121–2159, 2011.

Elad Eban, Mariano Schain, Alan Mackey, Ariel Gor-
don, Ryan Rifkin, and Gal Elidan. Scalable learn-
ing of non-decomposable objectives. In the 20th In-
ternational Conference on Artificial Intelligence and
Statistics, pages 832–840, 2017.

César Ferri, José Hernández-Orallo, and R Modroiu.
An experimental comparison of performance mea-
sures for classification. Pattern Recognition Letters,
30(1):27–38, 2009.

Peter A Flach and Meelis Kull. Precision-recall-gain
curves: Pr analysis done right. In Advances in Neu-
ral Information Processing Systems 28, pages 838–
846, 2015.

Wei Gao, Rong Jin, Shenghuo Zhu, and Zhi-Hua Zhou.
One-pass auc optimization. In Proceedings of the
30th International Conference on Machine learning,
pages 906–914, 2013.

Xingyu Gao, Zhenyu Chen, Sheng Tang, Yongdong
Zhang, and Jintao Li. Adaptive weighted imbalance
learning with application to abnormal activity recog-
nition. Neurocomputing, 173:1927–1935, 2016.

Saeed Ghadimi, Andrzej Ruszczynski, and Mengdi
Wang. A single timescale stochastic approximation
method for nested stochastic optimization. SIAM
Journal on Optimization, 30(1):960–979, 2020.

Zhishuai Guo, Mingrui Liu, Zhuoning Yuan, Li Shen,
Wei Liu, and Tianbao Yang. Communication-
efficient distributed stochastic auc maximization
with deep neural networks. In Proceedings of the
37th International Conference on Machine Learning,
pages 3864–3874, 2020.

Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and
Tianbao Yang. On stochastic moving-average
estimators for non-convex optimization. CoRR,
abs/2104.14840, 2021a.

Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tian-
bao Yang. On stochastic moving-average estima-
tors for non-convex optimization. arXiv preprint
arXiv:2104.14840, 2021b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

Paul Henderson and Vittorio Ferrari. End-to-end train-
ing of object class detectors for mean average preci-
sion. In Proceedings of the 13th Asian Conference
on Computer Vision, pages 198–213. Springer, 2016.

Alan Herschtal and Bhavani Raskutti. Optimising area
under the roc curve using gradient descent. In Pro-
ceedings of the 21st international conference on Ma-
chine learning, pages 49–57, 2004.

Yifan Hu, Siqi Zhang, Xin Chen, and Niao He. Bi-
ased stochastic first-order methods for conditional
stochastic optimization and applications in meta
learning. Advances in Neural Information Process-
ing Systems 33, 2020.

Zhouyuan Huo, Bin Gu, Ji Liu, and Heng Huang.
Accelerated method for stochastic composition op-
timization with nonsmooth regularization. In Pro-
ceedings of the 35th AAAI Conference on Artificial
Intelligence, pages 3287–3294, 2018.

Thorsten Joachims. A support vector method for
multivariate performance measures. In Proceedings
of the 22nd International Conference on Machine
learning, pages 377–384, 2005.

Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Stanley Kok and Pedro M Domingos. Learning markov
logic networks using structural motifs. In Proceed-
ings of the 21st international conference on Machine
learning, 2010.

Bartosz Krawczyk, Mikel Galar, Lukasz Jelen, and
Francisco Herrera. Evolutionary undersampling
boosting for imbalanced classification of breast can-
cer malignancy. Applied Soft Computing, 38:714–
726, 2016.

Xiangru Lian, Mengdi Wang, and Ji Liu. Finite-sum
composition optimization via variance reduced gra-
dient descent. In The 20th International Conference
on Artificial Intelligence and Statistics, pages 1159–
1167, 2017.

Tianyi Lin, Chenyou Fan, Mengdi Wang, and
Michael I Jordan. Improved oracle complexity for
stochastic compositional variance reduced gradient.
arXiv preprint arXiv:1806.00458, 2018.

Liu Liu, Ji Liu, and Dacheng Tao. Dualityfree methods
for stochastic composition optimization. Advances
in neural information processing systems 31, pages
1205–1217, 2018a.

Mingrui Liu, Xiaoxuan Zhang, Zaiyi Chen, Xiaoyu
Wang, and Tianbao Yang. Fast stochastic auc max-
imization with o(1/n)-convergence rate. In Proceed-
ings of the 35th International Conference on Ma-
chine Learning, pages 3189–3197, 2018b.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun.
Adaptive gradient methods with dynamic bound of
learning rate. In the 7th International Conference
on Learning Representations, 2019.

Guanghui Wang, Ming Yang, Lijun Zhang, Tian-bao Yang

Brian McFee and Gert Lanckriet. Metric learning
to rank. In Proceedings of the 27th International
Conference on International Conference on Machine
Learning, page 775–782, 2010. ISBN 9781605589077.

Donald Metzler and W Bruce Croft. A markov random
field model for term dependencies. In Proceedings of
the 28th annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 472–479, 2005.

P. Mohapatra, Michal Rolinek, C. V. Jawahar, V. Kol-
mogorov, and M. Kumar. Efficient optimization for
rank-based loss functions. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recogni-
tion, pages 3693–3701, 2018.

Michael Natole, Yiming Ying, and Siwei Lyu. Stochas-
tic proximal algorithms for auc maximization. In
Proceedings of the 35th International Conference on
Machine Learning, pages 3710–3719. PMLR, 2018.

Kemal Oksuz, Baris Can Cam, Emre Akbas, and Sinan
Kalkan. A ranking-based, balanced loss function uni-
fying classification and localisation in object detec-
tion. In Advances in Neural Information Processing
Systems 33, pages 15534–15545, 2020.

Qi Qi, Youzhi Luo, Zhao Xu, Shuiwang Ji, and Tian-
bao Yang. Stochastic optimization of area under
precision-recall curve for deep learning with prov-
able convergence. Advances in Neural Information
Processing Systems 34, 2021.

Tao Qin, Tie-Yan Liu, and Hang Li. A general approx-
imation framework for direct optimization of infor-
mation retrieval measures. Information retrieval, 13
(4):375–397, 2010.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On
the convergence of adam and beyond. In the 6th In-
ternational Conference on Learning Representations,
2018.

Michal Rolinek, Vit Musil, Anselm Paulus, Marin
Vlastelica, Claudio Michaelis, and Georg Martius.
Optimizing rank-based metrics with blackbox differ-
entiation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
2020.

Yang Song, Alexander Schwing, Raquel Urtasun, et al.
Training deep neural networks via direct loss mini-
mization. In Proceedings of the 33rd International
Conference on Machine Learning, pages 2169–2177,
2016.

Mengdi Wang, Ji Liu, and Ethan X Fang. Accelerating
stochastic composition optimization. arXiv preprint
arXiv:1607.07329, 2016.

Mengdi Wang, Ethan X Fang, and Han Liu. Stochas-
tic compositional gradient descent: algorithms for

minimizing compositions of expected-value func-
tions. Mathematical Programming, 161(1-2):419–
449, 2017.

Shuoguang Yang, Mengdi Wang, and Ethan X Fang.
Multilevel stochastic gradient methods for nested
composition optimization. SIAM Journal on Op-
timization, 29(1):616–659, 2019.

Tianbao Yang, Qihang Lin, and Zhe Li. Unified conver-
gence analysis of stochastic momentum methods for
convex and non-convex optimization. arXiv preprint
arXiv:1604.03257, 2016.

Yiming Ying, Longyin Wen, and Siwei Lyu. Stochas-
tic online auc maximization. In Advances in neural
information processing systems 30, pages 451–459,
2016.

Zhuoning Yuan, Yan Yan, Milan Sonka, and Tian-
bao Yang. Robust deep auc maximization: A new
surrogate loss and empirical studies on medical im-
age classification. arXiv preprint arXiv:2012.03173,
2020.

Yisong Yue, Thomas Finley, Filip Radlinski, and
Thorsten Joachims. A support vector method for
optimizing average precision. In Proceedings of the
30th annual International ACM SIGIR Conference
on Research and Development in Information Re-
trieval, pages 271–278, 2007.

Junyu Zhang and Lin Xiao. A stochastic composite
gradient method with incremental variance reduc-
tion. arXiv preprint arXiv:1906.10186, 2019.

Peilin Zhao, Steven CH Hoi, Rong Jin, and Tianbao
Yang. Online auc maximization. In Proceedings
of the 28th International Conference on Machine
Learning, pages 233–240, 2011.

Supplementary Material:
Momentum Accelerates the Convergence of

Stochastic AUPRC Maximization

A NOTATIONS

We first introduce the following lemma, which demonstrates the basic properties of the functions in our opti-
mization problem (4).

Lemma 1. Suppose Assumptions 1 and 2 hold, then there exist G,Cg, Lg, Cf , Lf , CF , LF > 0, such that ∀w,
‖gi(w)‖2 ≤ G2, gi(w) is Cg-Lipschitz and Lg-smooth, and ∀u ∈ Ω, f(u) is Cf -Lipschitz and Lf -smooth. Finally,
∀w, F (w) is CF -Lipschiz and LF -smooth.

Proof. For gi(w), we have ‖gi(w)‖2 ≤ m2M2 + n2M2 = G2, ‖∇gi(w)‖2 ≤ m2σ2 + n2σ2 = C2
g , and ‖∇gi(w)−

∇gi(w
′)‖2 ≤ m2L2

l ‖w − w′‖2 + n2L2
l ‖w − w′‖2 = L2

g‖w − w′‖2. Similarly, for f(u), we have ‖∇f(u)‖22 =

‖(−1
u2

, u1

u2
2

)‖2 ≤ 1/C2+M2m2/C2 = C2
f and ‖∇f(u)−∇f(u′)‖22 = ‖(−1

u2
− −1

u′

2

, u1

u2
2

− u′

1

u
′2
2

)‖2 ≤ (u2−u′

2)
2

C2 +
2(u1−u′

1)
2

C4 +

8(Mm)2(Mn)2(u2−u′

2)
2

C8 ≤ L2
f (‖u − u′‖2) for any u,u′ ∈ Ω. Hence, f(gi(w)) is CF = (CgCf)-Lipschitz, and

LF = (C2
gLf +LgCf)-smooth. Since F (w) is the average of f(gi(w)), it is also CF -Lipschitz and LF -smooth.

B PROOF OF THEOREM 1

Let ∆t = mt+1 −∇F (wt). According to the update rule in Algorithm 1, and we have

‖∆t‖2 =

∥∥∥∥∥(1− β1)mt + β1
1

m

m∑

i=1

∇g̃i(wt)
⊤ · ∇f

(
[Ut+1]

⊤
i

)
−∇F (wt)

∥∥∥∥∥

2

=

∥∥∥∥∥ (1− β1)[mt −∇F (wt−1)]︸ ︷︷ ︸
A1

+(1− β1)[∇F (wt−1)−∇F (wt)]︸ ︷︷ ︸
A2

+ β1

[
1

m

m∑

i=1

∇g̃i(wt)
⊤ · ∇f

(
[Ut+1]

⊤
i

)
− 1

m

m∑

i=1

∇g̃i(wt)
⊤ · ∇f (gi(wt))

]

︸ ︷︷ ︸
A3

+ β1

[
1

m

m∑

i=1

∇g̃i(wt)
⊤ · ∇f (gi(wt))−∇F (wt)

]

︸ ︷︷ ︸
A4

∥∥∥∥∥

2

.

(9)

Let Et[·] = E[·|Ft−1], where Ft−1 is the σ-algebra of MOAP-V1, which contains the learning history from round
1 to round t− 1. Since g̃t(w) is an unbiased estimator of gi(w), we have Et[A4] = 0. Moreover, A1 and A2 are

Guanghui Wang, Ming Yang, Lijun Zhang, Tian-bao Yang

fixed given Ft−1. Thus

Et[‖∆t‖2]
≤ Et[‖A1 +A2 +A3‖2] + Et[‖A4‖2] + 2Et[‖A3‖‖A4‖] + 2(A1 +A2)

⊤Et[A4]︸ ︷︷ ︸
=0

≤ Et[‖A1 +A2 +A3‖2] + 2Et[‖A4‖2] + Et[‖A3‖2]

≤ (1 + β1)Et[‖A1‖2] +
(
1 +

1

β1

)
Et[‖A2 +A3‖2] + 2Et[‖A4‖2] + Et[‖A3‖2]

≤ (1 + β2
1)(1− β1)‖∆t−1‖2 +

2(1 + β1)

β1
‖A2‖2 +

2 + 3β1

β1
Et[‖A3‖2] + 2Et[‖A4‖2],

(10)

where the third inequality is based on Young’s inequality. To proceed, according to Lemma 1, we have

‖A2‖2 = (1− β1)
2‖∇F (wt−1)−∇F (wt)‖2 ≤ (1− β1)

2L2
F ‖wt −wt−1‖2, (11)

‖A3‖2 ≤ β2
1

1

m

m∑

i=1

‖∇g̃i(wt)
⊤ · ∇f

(
[Ut+1]

⊤
i

)
−∇g̃i(wt)

⊤ · ∇f (gi(wt)) ‖2

≤ β2
1

C2
g

m

m∑

i=1

‖∇f([Ut+1]
⊤
i)−∇f(gi(wt))‖2

≤ β2
1

C2
gL

2
f

m

m∑

i=1

‖[Ut+1]
⊤
i − gi(wt)‖2 =

β2
1C

2
gL

2
f

m
‖Ut+1 − g(wt)‖2,

(12)

where g(wt) = [g1(wt), . . . , gm(wt)]
⊤, and

Et[‖A4‖2] ≤ β2
1Et



∥∥∥∥∥
1

m

m∑

i=1

∇g̃i(wt)
⊤ · ∇f([Ut+1]

⊤
i)

∥∥∥∥∥

2

 ≤ β2

1C
2
gC

2
f . (13)

Combining (10), (11), (12), (13), we get

Et[‖∆t‖2] ≤ (1− β1)‖∆t−1‖2 +
2L2

F ‖wt −wt−1‖2
β1

+
5β1C

2
gL

2
fEt[‖Ut+1 − g(wt)‖2]

m

+ 2β2
1C

2
gC

2
f .

(14)

Summing over from 1 to T , we get

E

[
T∑

i=1

‖∆i‖2
]
≤‖∆0‖2

β1
+

2L2
F

∑T
i=1 ‖wi −wi−1‖2

β2
1

+
5C2

gL
2
f

∑T
i=1 Ei[‖Ui+1 − g(wi)‖2]

m

+ 2β1C
2
gC

2
fT

=
2C2

F

β1
+

2L2
F η

2
∑T

i=1 ‖mi‖2
β2

+
5C2

gL
2
f

∑T
i=1 Ei[‖Ui+1 − g(wi)‖2]

m

+ 2β1C
2
gC

2
fT

(15)

Note that here w0 can be considered as a psudo-decision which follows the same update procedure as wt. Next,
we turn to bound the third term of the R.H.S. of the inequality, and introduce the following lemma.

Lemma 2 (Variance Recursion Wang et al. (2017)). Consider a sequence mt+1 = (1 − β)mt + βh̃(wt) for
tracking h(wt), where E[h̃(wt)] = h(wt) and h is a C-Lipchitz continuous mapping. Then we have

Et[‖mt+1 − h(wt)‖2] ≤ (1− β)‖mt − h(wt−1)‖2 + β2Et[‖h̃(wt)− h(wt)‖2] +
2C2‖wt −wt−1‖2

β
. (16)

With Lemma 2, we have

T∑

i=1

Ei[‖Ui+1 − g(wi)‖2] ≤
mG2

β0
+ 2β0TmG2 +

2mC2
gη

2
∑T

i=1 ‖mi‖2
β2
0

. (17)

Momentum Accelerates the Convergence of Stochastic AUPRC Maximization

Combining all the about results together, and set β0 = β1 = β, we have

E

[
T∑

i=1

‖∆i‖2
]
≤

2C2
F + 5C2

gL
2
fG

2

β
+

(2L2
F + 10C4

gL
2
f)η

2

β2

T∑

i=1

‖mi‖2

+ β(10C2
gL

2
fG

2 + 2C2
gC

2
f)T.

(18)

We introduce the following lemma Guo et al. (2021b), which can be obtained following the definition of the
smoothness.

Lemma 3. Consider a sequence wt+1 = wt − ηmt+1 for a LF -smooth function F , with ηLF ≤ 1/2 we have

F (wt+1) ≤ F (wt) +
η

2
‖∇F (wt)−mt+1‖2 −

η

2
‖∇F (wt)‖2 −

η

4
‖mt+1‖2.

Based on Lemma 3, with (2L2
F + 10C4

gL
2
f)η

2/β2 ≤ 1/2, we get

E

[
1

T

T∑

t=1

‖∇Fw(wt)‖2
]
≤ 2(F (wT+1)− F (w1))

ηT
+

C2
F + 5C2

gL
2
fG

2

βT

+ β(10C2
gL

2
fG

2 + 2C2
gC

2
f).

(19)

Thus, by setting β = O(ǫ2) and η = O(β), we have E
[
1
T

∑T
t=1 ‖∇Fw(wt)‖2

]
= O(ǫ2) for

T ≥ max

{
2(F (w1)− F (wT+1))

ηǫ2
,
C2

F + 10C2
gL

2
fG

2

βǫ2

}
.

C PROOF OF THEOREM 2

Let it be the positive data chosen in round t, and for convenience we set β0 = β1 = β. According to the update
rule in Algorithm 1, and we have

‖∆t‖2 =
∥∥(1− β)mt + β∇g̃it(wt)

⊤ · ∇f
(
[Ut+1]

⊤
it

)
−∇F (wt)

∥∥2

=

∥∥∥∥∥ (1− β)[mt −∇F (wt−1)]︸ ︷︷ ︸
A1

+(1− β)[∇F (wt−1)−∇F (wt)]︸ ︷︷ ︸
A2

+ β
[
∇g̃it(wt)

⊤ · ∇f
(
[Ut+1]

⊤
it

)
−∇g̃it(wt)

⊤ · ∇f (git(wt))
]

︸ ︷︷ ︸
A3

+ β
[
∇g̃it(wt)

⊤ · ∇f (git(wt))−∇F (wt)
]

︸ ︷︷ ︸
A4

∥∥∥∥∥

2

.

(20)

Thus

Et[‖∆t‖2] ≤ (1− β)‖∆t−1‖2 +
2(1 + β)

β
‖A2‖2 +

2 + 3β

β
Et[‖A3‖2] + 2Et[‖A4‖2], (21)

where
‖A2‖2 = (1− β1)

2‖∇F (wt−1)−∇F (wt)‖2 ≤ (1− β1)
2L2

F ‖wt −wt−1‖2, (22)

‖A3‖2 ≤ β2‖∇g̃it(wt)
⊤ · ∇f

(
[Ut+1]

⊤
it

)
−∇g̃it(wt)

⊤ · ∇f (git(wt)) ‖2

≤ β2C2
g‖∇f([Ut+1]

⊤
it)−∇f(git(wt))‖2

≤ β2C2
gL

2
f‖[Ut+1]

⊤
it − git(wt)‖2,

(23)

and
E[‖A4‖2] ≤ β2E[‖∇g̃it(wt)

⊤ · ∇f([Ut+1]
⊤
it)‖

2] ≤ β2
1C

2
gC

2
f . (24)

Guanghui Wang, Ming Yang, Lijun Zhang, Tian-bao Yang

Combining the results above, we get

E[‖∆t‖2] ≤ (1− β)‖∆t−1‖2 +
2L2

F ‖wt −wt−1‖2
β1

+ 5βC2
gL

2
fE[‖[Ut+1]it − git(wt)‖2]

+ 2β2C2
gC

2
f .

(25)

Next, we turn to bound the third term on the R.H.S. of (25). Following Qi et al. (2021), we divide the whole
interval into m groups, with the i-th group Ti = {ti1, . . . , tik, . . . }, where tik denotes the k-th time that the i-th
positive data is chosen to update [Uti

k
]i and obtain [Uti

k
+1]i. Note that since we only update the chosen data, we

have [Uti
k
+1]i = · · · = [Uti

k+1
]i. Without loss of generality, assume it is picked for the k-th time at round t. Thus

E[‖[Ut+1]it − git(wt)‖2]
= E[‖[U

t
it
k
+1

]it − git(wt
it
k

)‖2]
≤ E[‖(1− β)[U

t
it
k−1

+1
]it + βg̃i(wt

it
k

)− git(wt
it
k

)‖2]

= E[‖(1− β)([U
t
it
k−1

+1
]it − git(wt

it
k−1

)) + β(g̃it(wt
it
k−1

)− git(wt
it
k−1

)) + git(wt
it
k−1

)− git(wt
it
k

)‖2]

≤ (1 + β)(1− β)2E[‖[U
t
it
k−1

+1
]it − git(wt

it
k−1

)‖2] + 2(1 + 1/β)β2 · 2G2

+ 2(1 + 1/β)E[‖git(wt
it
k−1

)− git(wt
it
k

)‖2]

≤ (1− β)E[‖[U
t
it
k−1

+1
]it − git(wt

it
k−1

)‖2] + 8βG2 +
4C2

g

β
E[‖w

t
it
k−1

−w
t
it
k

‖2]

≤ (1− β)E[‖[U
t
it
k−1

+1
]it − git(wt

it
k−1

)‖2] + 8βG2 +
4C2

gη
2

β
E




∥∥∥∥∥∥∥

t
it
k∑

j=t
it
k−1

+1

mt

∥∥∥∥∥∥∥

2


≤ (1− β)E[‖[U
t
it
k−1

+1
]it − git(wt

it
k−1

)‖2] + 8βG2 +
4C2

gη
2

β
E


(titk − titk−1)

t
it
k∑

j=t
it
k−1

+1

‖mj‖2



(26)

where the second and last inequalities are based on Young’s inequality. Note that, based on Lemma 1 of Qi
et al. (2021), titk − titk−1 is a random variable with conditional distribution given by a geometric distribution

with p = 1/m, i.e., E[titk − titk−1|titk−1] ≤ m. However, since titk − titk−1 and
∑t

it
k

j=t
it
k−1

+1
‖mj‖2 are dependent, this

conclusion can not be applied to bound the last term, which further making the advantages of the momentum
can not be used. Because of this issue, we have to rewrite (26) and bound the last term as

E




∥∥∥∥∥∥∥

t
it
k∑

j=t
it
k−1

+1

mt

∥∥∥∥∥∥∥

2
 ≤ C2

FE[(t
it
k − titk−1)

2] ≤ 2m2C2
F . (27)

Thus

E[‖[U
t
it
k
+1

]it − git(wt
it
k

)‖2] ≤ (1− β)E[‖[U
t
it
k−1

]it − git(wt
it
k−1

)‖2] + 8βG2 +
8m2C2

FC
2
gη

2

β
.

Summing over for all intervals, we have

m∑

i=1

E[

Ki∑

k=1

‖[Uti
k−1

]i − gi(wti
k−1

)‖2] ≤ mG2

β
+ 8G2T +

8m2C2
FC

2
gη

2T

β2

where Ki denotes that the i-th positive data is chosen for Ki times. Combining with (25), we get

E[

T∑

i=1

‖∆i‖2] ≤
2L2

fη
2C2

FT

β2
+

40C4
gL

2
fm

2C2
F η

2T

β
+

C2
F

β
+ 5C2

gL
2
fmG2 + βT (40C2

GL
2
fG

2 + 8C2
gC

2
f). (28)

Momentum Accelerates the Convergence of Stochastic AUPRC Maximization

With Lemma 3, we obtain

E

[
1

T

T∑

i=1

‖∇F (w)‖2
]
≤ 2(F (w1)− F (wT+1))

ηT
+

2L2
fη

2C2
F

β2
+

40C4
gL

2
fm

2C2
F η

2

β

+
C2

F

βT
+

5C2
gL

2
fmG2

T
+ β(40C2

GL
2
fG

2 + 8C2
gC

2
f).

(29)

Finally, we can obtain a ǫ-stationary solution by setting β = O(ǫ2), η = O(ǫ3/m), and

T ≥
{
2(F (w1)− F (wT+1))

ηǫ2
,
C2

F

βǫ2
,
5C2

gL
2
fmG2

ǫ2

}
.

D PROOF OF THEOREM 3

Let ∆t = mt+1 −∇F (wt). According to the update rule in Algorithm 2, and we have

‖∆t‖2 =

∥∥∥∥∥(1− β1)mt + β1
1

B

∑

xi∈Bt

∇g̃i(wt)
⊤ · ∇f

(
[Ut+1]

⊤
i

)
−∇F (wt)

∥∥∥∥∥

2

=

∥∥∥∥∥ (1− β1)[mt −∇F (wt−1)]︸ ︷︷ ︸
A1

+(1− β1)[∇F (wt−1)−∇F (wt)]︸ ︷︷ ︸
A2

+ β1

[
1

B

∑

xi∈Bt

∇g̃i(wt)
⊤ · ∇f

(
[Ut+1]

⊤
i

)
− 1

B

∑

xi∈Bt

∇g̃i(wt)
⊤ · ∇f (gi(wt))

]

︸ ︷︷ ︸
A3

+ β1

[
1

B

∑

xi∈Bt

∇g̃i(wt)
⊤ · ∇f (gi(wt))−∇F (wt)

]

︸ ︷︷ ︸
A4

∥∥∥∥∥

2

.

(30)

Following similar procedure as in the proof of Theorem 1, we have

Et[‖∆t‖2] ≤ (1− β1)‖∆t−1‖2 +
2(1 + β1)

β1
‖A2‖2 +

2 + 3β1

β1
Et[‖A3‖2] + 2Et[‖A4‖2], (31)

where
‖A2‖2 = (1− β1)

2‖∇F (wt−1)−∇F (wt)‖2 ≤ (1− β1)
2L2

F ‖wt −wt−1‖2 (32)

‖A3‖2 ≤ β2
1

1

B

∑

xi∈Bt

‖∇g̃i(wt)
⊤ · ∇f

(
[Ut+1]

⊤
i

)
−∇g̃i(wt)

⊤ · ∇f (gi(wt)) ‖2

≤ β2
1

C2
g

B

∑

xi∈Bt

‖∇f([Ut+1]
⊤
i)−∇f(gi(wt))‖2

≤ β2
1

C2
gL

2
f

B

∑

xi∈Bt

‖[Ut+1]
⊤
i − gi(wt)‖2

(33)

and

Et[‖A4‖2] ≤ β2
1Et



∥∥∥∥∥
1

B

∑

xi∈Bt

∇g̃i(wt)
⊤ · ∇f([Ut+1]

⊤
i)

∥∥∥∥∥

2

 ≤ β2

1C
2
gC

2
f . (34)

Combining (31), (32), (33), (34), and taking expectation over the randomness of Bt, we get

Et[‖∆t‖2] ≤ (1− β1)‖∆t−1‖2 +
2L2

F ‖wt −wt−1‖2
β1

+
5β1C

2
gL

2
fEt[‖Ut+1 − g(wt)‖2]

m

+ 2β2
1C

2
gC

2
f .

(35)

Guanghui Wang, Ming Yang, Lijun Zhang, Tian-bao Yang

Summing over from 1 to T and taking the expectation with respect to all the randomness, we get

E

[
T∑

i=1

‖∆i‖2
]
≤‖∆0‖2

β1
+

2L2
F

∑T
i=1 ‖wi −wi−1‖2

β2
1

+
5C2

gL
2
f

∑T
i=1 Ei[‖Ui+1 − g(wi)‖2]

m

+ 2β1C
2
gC

2
fT

=
C2

F

β1
+

2L2
F η

2
∑T

i=1 ‖mi‖2
β2

+
5C2

gL
2
f

∑T
i=1 Ei[‖Ui+1 − g(wi)‖2]

m

+ 2β1C
2
gC

2
fT.

(36)

Next, note that Ut+1 = ΠΩm [(1 − β0)Ut + β0ĝ(wt)], where ĝ(wt) is an unbiased estimator of g(wt), which is
defined in (7). Thus, with Lemma 2 and the fact that

E[‖ĝ(wt)− g(wt)‖2] ≤ E[‖ĝ(wt)‖2] = E

[∑

xi∈Bt

∥∥∥m
B
g̃i(w)

∥∥∥
2
]
≤ m2

B
G2.

we have
T∑

i=1

Ei[‖Ui+1 − g(wi)‖2] ≤
mG2

β0
+ 2β0T

m2

B
G2 +

2mC2
gη

2
∑T

i=1 ‖mi‖2
β2
0

. (37)

Combining all the about results together, and set β0 = β1 = β, we have

E

[
T∑

i=1

‖∆i‖2
]
≤

C2
F + 5C2

gL
2
fG

2

β
+

(2L2
F + 10C4

gL
2
f)η

2

β2

T∑

i=1

‖mi‖2

+ β(10C2
gL

2
fG

2m

B
+ 2C2

gC
2
f)T.

(38)

Based on Lemma 3, with (2L2
F + 10C4

gL
2
f)η

2/β2 ≤ 1/2, we get

E

[
1

T

T∑

t=1

‖∇F (wt)‖2
]
≤ 2(F (w1)− F (wT))

ηT
+

C2
F + 5C2

gL
2
fG

2

βT

+ β(5C2
gL

2
fG

2m

B
+ 2C2

gC
2
f).

(39)

Thus, by setting β = O(ǫ2B/m) and η = O(β), we have E
[
1
T

∑T
t=1 ‖∇Fw(wt)‖2

]
= O(ǫ2) for

T ≥ max

{
2(F (w1)− F (wT+1))

ηǫ2
,
C2

F + 5C2
gL

2
fG

2

βǫ2

}
.

E PROOF OF THEOREM 4

Let ∆t = mt+1 − ∇F (wt), and ηst = 1/(
√
vt+1 + δ). Based on the boundedness of ‖tilde∇‖, we know that

ηcl ≤ [ηst]i ≤ ηcu for all i ∈ [d]. According to the update rule in Algorithm 3, we have

‖∆t‖2 =

∥∥∥∥∥(1− β1)mt + β1
1

B

∑

xi∈Bt

∇g̃i(wt)
⊤ · ∇f

(
[Ut+1]

⊤
i

)
−∇F (wt)

∥∥∥∥∥

2

(40)

Following similar procedure as in Appendix D, we can get

E

[
T∑

i=1

‖∆i‖2
]
≤

C2
F + 5C2

gL
2
fG

2

β
+

(2L2
F + 10C4

gL
2
f)η

2c2u
β2

T∑

i=1

‖mi‖2

+ β(10C2
gL

2
fG

2m

B
+ 2C2

gC
2
f)T.

(41)

Next, we introduce the following lemma, which is the counterpart of Lemma 3 for Adam-style algorithms Guo
et al. (2021b).

Momentum Accelerates the Convergence of Stochastic AUPRC Maximization

Table 5: Final averaged AP scores on the testing data.

Method phishing w6a
ADAP 0.981± 2E-7 0.675± 1E-4
MOAP-V2 0.978± 2E-6 0.596± 2E-3
MOAP-V1 0.972± 4E-6 0.608± 4E-4

10 20 30 40 50

Rounds

0.7

0.8

0.9

1

A
P

ADAP

MOAP-v2

MOAP-v1

(a) phishing dataset

200 300 400 500

Rounds

0.4

0.5

0.6

0.7

A
P

ADAP

MOAP-v2

MOAP-v1

(b) w6a dataset

Figure 3: AP vs # of rounds on the training set

Lemma 4. For wt+1 = wt − ηst ·mt+1 with ηcl ≤ [ηt]i ≤ ηcu and ηLF ≤ cl/(2c
2
u), we have

F (wt+1) ≤ F (wt) +
ηcu
2

‖∇F (wt)−mt+1‖2 −
ηcl
2

‖∇F (wt)‖2 −
ηcl
4

‖mt+1‖2.

Combining (41) and Lemma 4, and with (2L2
F + 10C4

gL
2
f)η

2c3u/(clβ
2) ≤ 1/2, we get we get

E

[
1

T

T∑

t=1

‖∇F (wt)‖2
]
≤ 2(F (w1)− F (wT+1))/cl

ηT
+

cu(C
2
F + 5C2

gL
2
fG

2)/cl

βT

+ βcu(5C
2
gL

2
fG

2m

B
+ 2C2

gC
2
f)/cl.

(42)

Thus, by setting β = O(ǫ2B/m) and η = O(β), we have E
[
1
T

∑T
t=1 ‖∇Fw(wt)‖2

]
= O(ǫ2) for

T ≥ max

{
2(F (w1)− F (wT+1))

clηǫ2
,
cu(C

2
F + 5C2

gL
2
fG

2)

clβǫ2

}
.

F COMPARISONS BETWEEN MOAP-V1 AND MOAP-V2

In this section, we first discuss the differences between the analysing techniques of MOAP-V1 and MOAP-V2,
and then compare their empirical performances on real-world datasets.

Comparison of proofs We note that, when B = m, that is, when Bt includes all positive data, the proofs
of the two algorithms are the same. For B < m, the major difference lies in the techniques used for bounding∑T

i=1 Ei[‖Ui+1 − g(wi)‖2], i.e., the variance term of g(w) estimation. In MOAP-V2, Ut+1 is the moving average
of ĝ(wt) (defined in (7)), which is an unbiased estimator of g(wt). Thus, we can directly use the variance

recursion property (Lemma 2) on Ut+1 to bound
∑T

i=1 Ei[‖Ui+1−g(wi)‖2] (Eq. (37)), and then further combine
the property of momentum step (Lemma 3) to obtain a tight bound. In contrast, the Ut+1 in MOAP-V1 is only

Guanghui Wang, Ming Yang, Lijun Zhang, Tian-bao Yang

0 0.2 0.4 0.6 0.8 1

Recall

0.2

0.4

0.6

0.8

1

R
re

c
is

io
n

ADAP

MOAP-V2

MOAP-V1

(a) phishing dataset

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

R
re

c
is

io
n

ADAP

MOAP-V2

MOAP-V1

(b) w6a dataset

Figure 4: Precision-Recall curves of the Final models on the testing set

updated for the sampled data, and thus tracking a biased estimator of g(wt). Because of this problem, Lemma

2 can not be directly applied on Ut+1, and we have to bound
∑T

i=1 Ei[‖Ui+1 − g(wi)‖2] coordinate-wisely as
in (26), using the fact that g̃i(wt) is an biased estimator of gi(wt). However, the dependent issue makes the
advantages of the momentum step in Lemma 3 can not be fully exploited, which leads to a worse convergence
rate. Whether we can overcome the dependant problem and directly improve the convergence rate of MOAP-V1
is still an open question.

Experiments Next, we compare the performances of MOAP-V1 and MOAP-V2 on two real-world datasets,
that is, w6a and phishing. The parameter configurations are the same as the experiments in Section 4. The
convergence curves of AP on training examples are reported in Figure 3, and the final AP scores on the testing
data are shown in Table 3. We also plot the Precision-Recall curves of the final models on testing data in Figure 4.
From these results, it can be seen that, although MOAP-V1 currently suffers worse theoretical guarantees, it
achieves comparable empirical results as MOAP-V2.

