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Abstract

Fast  Johnson-Lindenstrauss  Transform
(FJLT) and Sparse Johnson-Lindenstrauss
Transform (SJLT) are two important obliv-
ious subspace embeddings. So far, the
developments of these two methods are
almost orthogonal. In this work, we propose
an iterative algorithm for oblivious subspace
embedding which makes a connection be-
tween these two methods. The proposed
method is built upon an iterative implemen-
tation of FJLT and is equipped with several
theoretically motivated modifications. One
important strategy we adopt is the early
stopping strategy. On the one hand, the
early stopping strategy makes our algorithm
fast. On the other hand, it results in a
sparse embedding matrix. As a result, the
proposed algorithm is not only faster than
the FJLT, but also faster than the SJLT
with the same degree of sparsity. We present
a general theoretical framework to analyze
the embedding property of sparse embedding
methods, which is used to prove the embed-
ding property of the proposed method. This
framework is also of independent interest.
Lastly, we conduct numerical experiments to
verify the good performance of the proposed
algorithm.

1 INTRODUCTION

In the practice of statistics and machine learning, it is
often necessary to deal with datasets with extremely
large volume. When handling large dataset, exact al-
gorithms often cost prohibitive computing time. In
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recent years, approximate algorithms based on sketch-
ing techniques have been actively researched for var-
ious tasks. Sketching methods use random subspace
embeddings to reduce the data volume, yielding a
fast computing time for subsequent procedures; see,
e.g., Woodruff (2014); Kannan and Vempala (2017);
Martinsson and Tropp (2020) for reviews of sketching
methods. Take the linear regression problem as an ex-
ample, suppose we have a data matrix A € R**? and
a response vector y € R™. And we would like to solve
the least-squares problem

1

arg min — ||Ax — y||°.
x€ER? 2

Using sketching method, we generate a random matrix

II € R™*" with m < n and consider the sketched

least-squares problem

arg min 1||HAX — Iy .
x€R4 2

Note that the sketched least-squares problem only re-
lies on the the sketched data (ITA, ITy). If (IIA, ILy)
can well preserve the information of the original data
and can be obtained efficiently, then one can obtain
an approximate solution to the least-squares problem
efficiently. Furthermore, when used in conjunction
with iteration algorithms, sketching methods can also
yield high-precision approximation to the least-squares
problem; see, e.g., Rokhlin and Tygert (2008); Avron
et al. (2010); Pilanci and Wainwright (2016); Lacotte
et al. (2020); Lacotte and Pilanci (2020b). For these
sketching methods, the subspace embedding step is
one of the computational bottlenecks. Also, the preci-
sion of sketching methods is often largely affected by
the subspace embedding property of II.

In this paper, we consider subspace embeddings that
are oblivious to the input data. Following Cohen
(2016), for €,6 € (0,1), an m x n random matrix IT is
called an Oblivious Subspace Embedding (OSE) with
parameter (d, €, ) if for any non-random n x d column
orthogonal matrix U,

Pr([U'TI'TIU — 1] > ¢€) < 4. (1)
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If d = 1, an OSE with property (1) reduces
to a Johnson-Lindenstrauss transform (Johnson and
Lindenstrauss, 1984). The celebrated Johnson-
Lindenstrauss lemma (Johnson and Lindenstrauss,
1984) implies that there exists a (1,¢,d)-OSE with
m = O(e ?log(1/8)). Standard proofs of Johnson-
Lindenstrauss lemma consider unstructured dense II.
For example, one can choose IT to be a random matrix
whose elements are independent and identically dis-
tributed (i.i.d.) sub-Gaussian random variables. How-
ever, it is not efficient to apply such unstructured IT
to input data.

Researchers have made much efforts to achieve fast em-
bedding time while preserving good embedding prop-
erty. In the seminal work of Ailon and Chazelle
(2006, 2009), a highly structured embedding ma-
trix, known as Fast Johnson-Lindenstrauss Transform
(FJLT), is constructed. Since FJLT is constructed
via Walsh-Hadamard matrix, it is also known as Sub-
sampled Randomized Hadamard Transform (SRHT).
For FJLT, the embedding time for an input data
A € R™? is O(ndlog(m)); see, e.g., Ailon and Lib-
erty (2009). The embedding property of FJLT has
been investigated by many researchers; see, e.g., Sarlés
(2006), Tropp (2011), Boutsidis and Gittens (2013),
Lu et al. (2013), Cohen et al. (2016), Lacotte et al.
(2020), Lacotte and Pilanci (2020a). In Cohen et al.
(2016), it was shown that FJLT is (d,¢,)-OSE for
m = Qe 2(d + log(1/(€d))) log(d/d)).

In another line of work, researchers sought for fast
embedding time by making IT sparse. This direc-
tion was initiated by Achlioptas (2003) who consid-
ered an embedding matrix whose elements are i.i.d.
and equal to 0 with probability 2/3. After some subse-
quent developments (Dasgupta et al., 2010; Braverman
et al., 2010; Clarkson and Woodruff, 2013; Meng and
Mahoney, 2013), Kane and Nelson (2014) introduced
Sparse Johnson-Lindenstrauss Transform (SJLT). For
SJLT, each column of IT contains exactly s nonzero
entries. For input data A € R™*? the application of
SJLT can be completed within O(nds) time. Further-
more, SJLT can achieve input sparsity time for sparse
input data. The subspace embedding property of SJLT
for general d > 1 was investigated by Nelson and
Nguyen (2013); Bourgain et al. (2015); Cohen (2016).
In Cohen (2016), it was shown that some constructions
of SJLT are (d,¢,8)-OSE with m = Q(e~2dlog(d/s))
and s = (e !log(d/?)).

FJLT and SJLT have their own advantages. The re-
cursive structure of FJLT allows for fast embedding
time for arbitrary input data. However, the FJLT em-
bedding matrix is dense and does not utilize sparsity.
On the other hand, while SJLT does not have a recur-
sive structure, its sparsity yields fast embedding time.

So far, the developments of FJLT and SJLT are almost
orthogonal. The goal of the present work is to propose
a new OSE method which utilizes the advantages of
both FJLT and SJLT. The widely used algorithm of
FJLT is a recursive algorithm. We propose an itera-
tive implementation of FJLT. The iterative algorithm
allows us to access the intermediate results of FJLT.
We find that the intermediate results of FJLT share
certain key properties of SJLT and are highly struc-
tured. This motivates us to adopt the early stopping
strategy to obtain a sparse OSE. While this idea can
not be directly applied, it can indeed work after some
modifications. We investigate the embedding property
of the proposed embedding method. It shows that the
proposed embedding method has an embedding prop-
erty which is similar to that of SJLT. Also, the pro-
posed embedding method is significantly faster than
both FJLT and SJLT.

Our main contributions are as follows:

e We present a general theoretical framework to an-
alyze the subspace embedding property of sparse
OSEs. It generalizes the result of Nelson and
Nguyen (2013) in several ways. This framework is
interesting in its own right. As a special case, our
theorem gives the subspace embedding property
of Allen-Zhu et al. (2014).

e We propose an iterative implementation of FJLT.
This implementation allows us to access the in-
termediate results of FJLT. It turns out that the
intermediate result of FJLT is closely related to
SJLT.

e We consider some theoretically motivated modi-
fications of the iterative implementation of FJLT
and propose a new sparse OSE. We derive the
embedding property of the proposed sparse OSE
via our general framework. For any input data
A € R" 4 the embedding time of the proposed
method is O(nd(log(1/€) + log(log(d/é)))), which
improves the computing time of FJLT and SJLT
significantly.

2 PRELIMINARIES

First we introduce some notations that will be used
throughout the paper. For elements aq,...,a,, we
use {ai,---,a,} to denote the set of ai,...,an,
which is unordered and has distinct elements; we use
(a1, -+ ,a,) to denote the tuple of ay, ..., a,, which is
ordered. For a set A, let Card(A) denote the cardinal-
ity of A. For sets Ay,...,A,, let A; x---x A, denote
their product {(z1,...,2,) 1 @; € A,i=1,...,n}. A
function f is understood as its set-theoretic definition.
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That is, a function f is a subset of A x B for some
sets A and B such that if (x,y1) € f and (x,y2) € f
then y; = y2. The domain and range of f are denoted
as dom(f) and range(f), respectively. The set of all
functions from A to B is denoted as BA. For positive
integer n, let [n] denote the set {1,...,n}. For real
number z, denote by |x] the floor of z. For two non-
negative sequence {a,} and {b,}, we write a,, = O(b,)
if there exists a constant ¢ > 0 such that a,, < ¢b,, for
all n, we write a, = Q(b,) if b, = O(a,), and we
write a, = O(by,) if a, = O(b,) and a, = Q(b,). For
two matrices A, B, let A ® B := (a; ;B) denote their
Kronecker product, and we denote

diag(A, B) := (g g) .

If A and B have the same dimension, let A o B :=
(a;,;b; ;) denote their Hadamard product. Throughout
the paper, we assume that m, n and s are powers of 2.

Following Tropp (2011); Lu et al. (2013); Boutsidis and
Gittens (2013); Lacotte and Pilanci (2020a), FJLT is
defined as

Iy := %PH,ZD,
where D is an n x n diagonal matrix whose diagonal
elements are independent Rademacher random vari-
ables, that is, random variables taking values in —1 an
1 with equal probability 1/2, H,, is Walsh-Hadamard
matrix defined recursively as

H. H.

with Hy = 1, and P is an m X n matrix whose rows
are m uniform samples (without replacement) from the
standard bases of R™, P and D are independent.

Let X € R"*? be a data matrix. Using a recursive al-
gorithm, one can compute IIrX in O(ndlog(n)) time.
This recursive algorithm is similar to Cooley-Tukey al-
gorithm of fast Fourier transform (Cooley and Tukey,
1965), and is summarized in Algorithm 1. The fastest
known algorithm of FJLT is proposed by Ailon and
Liberty (2009), which is based on a careful pruning
of the execution tree of Algorithm 1. The algorithm
of Ailon and Liberty (2009) can compute IIgX in
O(ndlog(m)) time; see Ailon and Liberty (2009), The-
orem 2.1.

Kane and Nelson (2014) proposed SJLT which is de-
fined as
1
O = —
RE
where 3 = (0, ;) and A = (; ;) are independent mxn
random matrices, {0; ;} are independent Rademacher

Aol

Algorithm 1: A recursive implementation of
FJLT
// Compute H,X
[Function RecursiveAlgorithm(n, m, d, X):
X X[1:5,1:d; Xo X[(§+1):n,1:d]
Y: < RecursiveAlgorithm(3, m, d,
X1+ X9)
Y, + RecursiveAlgorithm(
X —X»)

t i
return Y2

// Compute IIpX

[Function FJLT(n, m, d, X):
Generate matrices P and D
Y < RecursiveAlgorithm(n, m, d, DX)
return PY

n

27 m, d;

random variables, the n columns of A are indepen-
dent, 6; ; € {0,1} and Y"1, &; ; = s. Kane and Nelson
(2014) gave two concrete constructions of A. One is
the graph construction, that is, for each column of A,
the positions of nonzeros are uniformly sampled from
[m] without replacement. The other one is the block
construction, that is, the m rows of A are divided into
s blocks with equal numbers and for each column of A,
each block contains exactly one nonzero element whose
position is uniformly selected within the block. Nelson
and Nguyen (2013) investigated the embedding prop-
erty of SJLT with more general A. They considered
the following Oblivious Sparse Norm-Approximating
Projections (OSNAP) properties:

(1) The elements o, ; of 3 are i.i.d. Rademacher ran-
dom variables.

(2) The elements 0; ; of A take value in {0, 1}.
(3) For any j € [n], >.1", 0;; = s.

(4) For any S C [m] x [n],

s \ Card(S)
el I ow)=<(p)

(i,5)€S
(5) The columns of IT are i.i.d.

Nelson and Nguyen (2013) proved that if IIg sat-
isfies OSNAP properties, then Ilg satisfies (d,¢,d)-
OSE property provided that s = ©(e " log®(d/d)) and
m = Qe 2dlog®(d/s)). Later, Cohen (2016) proved
that for SJLT with graph construction, one can take
m = Qe 2dlog(d/d)) and s = O(ellog(d/s)) to
achieve (d,¢€,d)-OSE property, which nearly matches
the lower bound derived in Nelson and Nguyén (2014).
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As Cohen (2016) noted, however, it is not clear if their
analysis can be applied to the general SJLT with OS-
NAP properties.

3 SUBSPACE EMBEDDING
PROPERTY OF GENERAL
SPARSE OSES

While the framework of Nelson and Nguyen (2013) is
fairly general, it does not include our proposed algo-
rithm in Section 5. Also, it does not include some vari-
ants of SJLT, such as sign-consistent SJLT (Allen-Zhu
et al., 2014). In this section, we extend the analysis of
Nelson and Nguyen (2013) to a general setting. Our
general framework will be used to investigate the pro-
posed algorithm. It also gives theoretical properties of
some variants of SJLT.

We make the following assumption which extends OS-
NAP properties.

Assumption 1. Suppose II = s~ /2 AoX, where & =
(0i,) and A = (8;,) are independent m x n random
matrices and satisfy the following conditions:

(1) Suppose the elements o;; of 3 are generated
according to one of the two following schemes:
(a) {o;;} are i.i.d. Rademacher random vari-
ables; or (b) 0;; = o1 and {o1;}7_; are i.i.d.
Rademacher random variables.

(2) The elements 0; ; of A take value in {—1,0,1}.
(3) For any j € [n], >, 8;j = s.

(4) There is an absolute constant ¢ > 0 such that for
any S C [m] x [n],

E ] 16:;

(1,7)€S

- (C s )Card(S) .

m

(5) The distribution of A is invariant under the per-
mutation of columns.

Assumption 1 generalizes OSNAP properties in several
aspects. First, we allow two generation schemes of X.
The first one is the standard scheme used in SJLT.
And the second one uses a single Rademacher random
variable in each column of 3. This scheme is used in
sign-consistent SJLT (Allen-Zhu et al., 2014). Com-
pared with the first scheme, the second one requires
less bits of random seeds. Second, we allow J; ; taking
on three values —1, 0, and 1 while OSNAP property
requires that J; ; takes value in {0, 1}. Third, we only
require that the columns of A are exchangeable while
OSNAP property requires that the columns of IT are
independent. Hence Assumption 1 greatly generalizes
OSNAP. We have the following theorem.

Theorem 1. Let IT be an m X n random matriz sat-

isfying Assumption 1. Suppose €,6 € (0,1) and
log?(d/é

s>C og”(d/ )7 (2)

€

m > C'log?(d/d)s*d,

where C' is an absolute constant. Then II is (d,€,d)-
OSE.

To meet the condition (2), we can take m =
Q(dlog®(d/s)/e®) and s = O(log*(d/d)/e). There-
fore, compared with Theorem 5 of Nelson and Nguyen
(2013), our result improves the order of s by a log-
arithm factor. In the meanwhile, the conditions of
Theorem 1 is much weaker than theirs. For example,
while sign-consistent SJLT of Allen-Zhu et al. (2014)
does not satisfy OSNAP properties, it satisfies the con-
dition of Theorem 1. Hence Theorem 1 gives the sub-
space embedding property of sign-consistent SJLT.

Following Kane and Nelson (2014); Nelson and Nguyen
(2013); Allen-Zhu et al. (2014), we use the moment
method to prove Theorem 1. The basic idea of this
approach is to use the Markov’s inequality to obtain
the bound

Pr([UTTITIIU — 1| > €)
1
<7 Etr(U'TI'TIU — I,)%),

where ¢ > 0 is an even integer. We give a fine-grained
analysis to bound the moment in the right hand side.
This fine-grained analysis is based on graph theory.

4 AN ITERATIVE
IMPLEMENTATION OF FJLT

In this section, we present a new algorithm of FJLT.
The proposed algorithm can be regarded as an itera-
tive version of Algorithm 1. While the proposed al-
gorithm has the same order of computing time as Al-
gorithm 1, it provides an insight on the connection
between FJLT and SJLT, and will motivate a new al-
gorithm which is faster than both FJLT and SJLT.

We note that Algorithm 1 is a recursive algorithm.
It is also possible to use iterative algorithm to im-
plement FJLT; see Yarlagadda and Hershey (1997),
Chapter 7. Now we present a simple iterative algo-
rithm of FJLT with computing time O(nlog(n)). For
any k € [log,(n)], define

B = IQk—l ® Hoy ®I2Lk

Since Kronecker product is associative, By is well-
defined. We have the following lemma.

Lemma 1. For k € [logy(n)], we have

BiBi_1---Bi=Hor ®1In.
2k
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Algorithm 2: An iterative implementation of
FJLT
[Function IterativeFJLT(n, m, d, X):
Generate matrices P and D
Y\ « DX
for k =1 to logy(n) do
for p=1to 2*~! do
k k—1
YiL e (Tx Iy) v

k k—1
Y& (I# —Iﬁ)Y,(, )

2p
Yglogg (n))
Y :
y(loEa ()
return PY

From Lemma 1, we have
H, = Blogz(n)Blogz(n)fl -+ By.

Based on the above expression, the matrix multipli-
cation by H,, can be decomposed into log,(n) subse-
quent multiplications. Note that for any & € [log,(n)],
each column of By contains exactly two nonzero ele-
ments. Hence By, allows for fast matrix multiplication.
This allows us to use an iterative algorithm to compute
FJLT. Below we give an explicit form of this iteration
algorithm.

Let C¥ .= I,,. For k € [logy(n)] and p € 271, we
define

k _
cy) | = (IT IT> cl-n,

k —
c) .= (L —12%) cl,
For k € {0,1,...,logy(n)}, define
k
c
C(k) — :
cly

From the above definition, we have C(®) = C§°) and
Ck) = B,C*=D k€ [log,(n)]. It follows that C*) =
BiBi_1---B1, k € [logy(n)]. In particular, we have
Clog2(n)) — H,,. Based on the above derivations, we
can formulate an iterative implementation of FJLT,
as summarized in Algorithm 2. In Algorithm 2, the
matrix Y,(,k) is equal to Cz(,k)DX. Hence Algorithm 2
returns PC1°2:(M)DX which is exactly ITpX.

Now we consider the computing time of Algorithm

2. In Algorithm 2, YI(,k) is a (27%n) x d matrix.

(k) (K)
p

Hence given Y™, the computation of Y5’ ; and Yé’;)

costs O(27%nd) time. Hence for each iteration of
k € [logy(n)], the computation costs O(nd) time. Con-
sequently, the total computing time of Algorithm 2 is
O(ndlog(n)), which equals the computing time of Al-
gorithm 1.

While Algorithm 2 is not faster than Algorithm 1, it
is an iterative algorithm and hence allows us to ac-
cess intermediate results of FJLT. Initially, C(© is
the identity matrix which has exactly one nonzero el-
ement in each column. In general, it can be proved
by mathematical induction that for any k € [logy(n)]
and p € [2¥], Cék) has exactly one nonzero element
in each column. Consequently, C*) has exactly 2~
nonzero element in each column. Thus, although
H, = C(8:(") ig a dense matrix, the intermediate
matrices {C(k)}z;é are sparse and satisfy the proper-
ties (2) and (3) in Assumption 1.

We have presented an evolution process which starts
with the identity matrix which is a very sparse matrix,
and gradually processes sparse operations and finally
reaches the dense matrix of FJLT. This evolution pro-
cess reveals an interesting connection between FJLT
and SJLT. In view of the theory of SJLT, one may
expect that the intermediate matrices of FJLT are
enough to yield a good OSE method. We note that
for SJLT matrix ITg with sparsity parameter s, the
computation of IIgX requires O(sNd) time. On the
other hand, for the iterative implementation of FJLT,
the matrix C1°82(5)) has s nonzero elements in each
column and the computation of C1°22(s)DX only re-
quires O(log(s)Nd) time. This advantage of FJLT in
computing time implies that it may be possible to uti-
lize the structural property of FJLT to obtain a faster
sparse OSE method.

5 A FASTER SPARSE OSE
METHOD

In this section, we propose a faster sparse OSE method
with good subspace embedding property. Based on
our previous analysis, a natural idea to obtain a faster
OSE method is to adopt the early stopping strategy in
Algorithm 2 and use the intermediate matrix C(°g2(5))
instead of H,, in the definition of FJLT to obtain a
sparse embedding:

1
—pPClee))p, 3
However, the direct application of this idea meets some

difficulties.

First, the expression (3) involves a sampling matrix P.
While CUo82(5)) satisfies the condition (3) in Assump-
tion 1, after the action of P, the columns of the matrix
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PC(°2:(5)) are not guaranteed to have constant num-
bers of nonzero elements. We note that for FJLT, the
sampling matrix P is used to reduce the row number
of data from n to m. To avoid the difficulty caused
by P, we use another matrix to reduce the row num-
ber. For k € [s], let Py € RU™/$)x("/5) he a ran-
dom matrix whose columns are independent and are
uniformly sampled from the standard basis of R™/%.
Then for k € [logy(s)], the matrix f’kCSO&(S)) has
exactly one nonzero element in each column. Define

P = diag(Py,...,P,). Then P is an m x n matrix and
we have
Plcglogz(S))
P log(s)) — :
BB ()

Thus, PCU%2(5)) has exactly s nonzero elements in
each column and satisfies the condition (3) in Assump-
tion 1.

Before we proceed, we would like to give a further
understanding of the structure of PCU°82(5))  From
Lemma 1, we have C1°8:(5) = H, ® I,./s. Therefore,

the matrix PC1°22(5)) has the following form:

+P, +P,
+P, +P,
+P, +P,

From the above expression, we can see that the matrix
PCoga(5)) g highly structured with some repeated
blocks. We note that such a structured matrix can
not satisfy the condition (4) in Assumption 1. To see
this, consider the index set

S={(1,1),(L,n/s+1),...,(1n(s—1)/s +1)}.

For this S, we have

D 1 s 5 (1 ( S
E H ‘(PC(OgQ( )))Lj‘ - F ’(PC(OgQ(s)))Ll _ =,

(i,5)€S
which violates the condition (4) in Assumption 1.

The above difficulty is caused by the repeated blocks
in the matrix PC(°%2(5))  To ease this difficulty, we
resort to an additional random permutation. Specifi-
cally, let G € R™*" be a uniformly distributed permu-
tation matrix. We define

A = pClog09)) 3.

The columns of A are permuted, and hence does not
have repeated blocks. It can be expected that A is
more likely to satisfy the condition (4) in Assumption

Algorithm 3: Faster sparse OSE method

[Function IterativeF:TLT(n, m, d, s, X):
Generate matrices Py, ..., Py, G and D
Y\ « GDX
for k =1 to log,(s) do

for p=1to 2*~! do
k k-1
Y (I7 17) Yy
Ly )Yy

2

k
vy, (L
PlYgng (s)

return

By lozs(s)

1. On the other hand, we note that the columns of
the original matrix PCog2(5) are not exchangeable
which violates the condition (5) of Assumption 1. In
comparison, for the permuted matrix A, the distribu-
tion of its columns is invariant under the permutation
of columns, which satisfies the condition (5) of As-
sumption 1. Here we should emphsis that the above
permutation technique is not new. In fact, Lacotte
et al. (2020) considered a similar permutation trick
for FJLT to break the non-uniformity in the data.

Having introduced the above modifications of (3), now
we are ready to define the proposed subspace embed-
ding method:

HNEW = 8_1/2AD.

We summarize the fast computation algorithm of
HNEW in Algorithm 3.

Now we analyze the randomness of A. Let ]5§-k) de-
note the position of the nonzero element in the jth
column of Pj. That is, the (ﬁ;k),j)th element of Py,
is 1. Then by the construction of P, the random vari-
ables {ﬁgk)}ke[s] j€[n/s] are ii.d. uniformly distributed
on [m/s]. For j € [n], let 7(j) € [n] denote the index
such that G,(;); = 1. Then 7 is a uniform permuta-
tion of [n]. For j € [n], the jth column of A has s
nonzeros, and the positions of these s nonzeros are

B o™ L
’LUJ : ( ) 5 +p7(i)—[l(fﬁJ%7 € [5]
For any j € [n], the s positions wﬁl), . ,wj(-s) are inde-

pendent. However, we emphasis that different columns
of A may not be independent. In fact, if two column
indices j and j’ satisfy

r6) - | 22| 2 =y - | 22| 2,
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then the jth column and j'th column of A share the
same positions of nonzeros.

With careful analysis, we can prove that the condition
(4) in Assumption 1 holds under certain conditions.
Formally, we have the following proposition.

Proposition 1. The m x n embedding matriz TINngw

is (d,€,0)-OSE for

m =6(dlog’ (d/5)/€*),
s =0(log(d/5)/e),
n = exp {92 {log(d/6) {log(d/e) + | log(log(d/6))|}}} .

In Proposition 1, the choice of m and s achieves the
same order as Theorem 1, and the choice of s improves
Theorem 5 of Nelson and Nguyen (2013) by a loga-
rithm factor. However, in Proposition 1, we make an
additional assumption on n. Intuitively, this assump-
tion avoids the case that n is small where the permuta-
tion of n rows of data matrix may not provide sufficient
randomness for our purpose. In practice, subspace em-
bedding is often applied when n is extremely large. In
this view, this condition on n is reasonable. Moreover,
we conjecture that this condition on n can be relaxed.
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Figure 1: Error and computing time for various meth-
ods. Dense case. n =210, d = 2% m = 28.
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Figure 2: Error and computing time for various meth-
ods. Sparse case. n =20, d =25 m = 28,

Now we consider the computing time of the proposed
OSE method. Suppose X € R**¢. The permutation of
the data costs O(nd) time. The log,(s) iterations costs
O(ndlog(s)) time. Finally, the action of P costs O(nd)
time. Hence the total computing time is O(ndlog(s)).
We note that s = O(log?(d/8)/e¢). In summary, the
computation of IIygwX can be completed in time

(ol () b ()

This computing time is very close to O(nd), and is
faster than FJLT and SJLT for dense input matrice.

6 NUMERICAL EXPERIMENTS

In this section, we examine the performance of the
proposed OSE method and compare it with FJLT,
SJLT and sign-consistent SJLT. These methods are
implemented in Python and run on a CPU with 3.00
GHz. For FJLT, Algorithm 2 is used. For SJLT and
sign-consistent SJLT, we adopt the graph construction
of A. For SJLT and sign-consistent SJLT, if s = 1,
then they are equivalent to CountSketch in Clarkson
and Woodruff (2013). For comparison, we also report
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Figure 3: Error and computing time for various meth-
ods. Dense case. n = 2'2, d =26 m =2°.

the performance of CountSketch implemented in the
library SciPy (Virtanen et al., 2020).

First we consider experiments for synthetic data. We
consider two different U. In the first case, we first
generate an n X d random matrix whose elements are
i.i.d. standard normal random variables. And we take
U to be the left singular vector of this random matrix.
We refer to this case the dense case. In the second
case, we take U = (Id,OdX(n_d))T. We refer to this
case the sparse case.

We use |[UTII'TIU — I4|| to measure the errors of
OSE methods. We illustrate the performance of vari-
ous methods in Figures 1-4. The reported results are
the average result of 200 replications. When s = 1, the
proposed OSE method have similar error performance
as SJLT, sign-consistent SJLT and CountSketch. As s
increases, the proposed OSE can achieve smaller error
than sign-consistent SJLT and CountSketch. Also, as
s increases, the proposed OSE has a slowly increas-
ing computing time and tends to be much faster than
SJLT and sign-consistent SJLT. This phenomenon is
well predicted by our theory. In fact, our theory im-
plies that the computing time of the proposed OSE re-
lies on s with the order log(s). In some cases, FJLT has
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Figure 4: Error and computing time for various meth-
ods. Sparse case. n =212, d =26 m = 2°.

smaller error than the proposed OSE method. Never-
theless, the proposed OSE is much faster than FJLT.
In summary, the proposed method has attractive per-
formance in both error and computing time.

Now we consider the experimental results on the Mini-
BooNE particle identification dataset in UCI Machine
Learning Repository (Dua and Graff, 2017). This
dataset contains n = 130,064 instances and d = 50
attributes. We add zero rows to this dataset such that
n = 27 is a power of 2. Then we standardize each
attribute to form the standardized data matrix A. Fi-
nally we take the matrix U € R27%50 a5 the left sin-
gular vectors of A. We take m = 2!°. The results are
reported in Figure 5. For this dataset, the proposed
OSE method has similar error performance as that of
the FJLT and SJLT, but is much faster than these two
methods.

7 DISCUSSIONS

In this work, we investigated the connection between
FJLT and SJLT. We proposed an iterative algorithm
for FJLT. This reveals an interesting connection be-
tween FJLT and SJLT. We modified this algorithm
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Figure 5: Error and computing time for various meth-
ods for MiniBooNE particle identification dataset.

and obtain a new subspace embedding method. The
new subspace embedding method takes both advan-
tages of FJLT and SJLT and is faster to apply than
both FJLT and SJLT. We investigated the subspace
embedding property of the proposed method. It shows
that the proposed subspace embedding method is OSE
with the same sparsity parameter as SJLT.

In the theoretical analysis of the OSE property of
the proposed method, we impose the condition n =
exp {2 {log(d/0){log(d/e) + log(log(d/d))[}}}.  We
conjecture that this condition can be relaxed. We leave
open the problem of establishing a better dependence
on n.
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Supplementary Material:
On a Connection Between Fast and Sparse Oblivious Subspace
Embeddings

A PROOF OF THEOREM 1

Let U € R"*? be a column orthogonal matrix. Let u; € R? be the ith row of U, j = 1,...,n. We need to prove
that

Pr(|UTI'TIU — I > €) < 0.

From Markov’s inequality, we have

Pr(|UTT'U -1y > e) =Pr(JUI'IU - Li||* > ¢) < S Etr((U'II'TIU — 1,)"),

1
o
where /£ is a positive even integer that will be specified latter. Hence to prove the conclusion, a major task is to

derive a good upper bound of Etr((UTIITIIU — I,)?). To compute this expectation, we need some notations.
Define the index set

U= {(i,j,l‘) :ila"'ail € [n}vjla“'?jl € [n}’ it #jtv te [‘g]v Tl,...,7¢ € [Tn]}v

where i:= (i1,...,4¢), j = (J1,-..,je) and r := (rq1,...,7¢) are vectors of indices. For (i,j,r) € ¥, define

h’l(ivjvr) = H 6Tt,itéTt,thT't7iga7'g7jt? h2(i7jvr) = H <ujuuit+1>'
tele] tele]

In the above expression, i,41 is understood as i;. This convention will be used throughout our proof. Here we
emphasis that ha(i,j,r) does not rely on r. We add r as an argument of hy just for convenience.

Lemma 2. For any positive integer £, we have

1 . . . .
(U U - L)) == > ha(i,j,r)ha(ij,r).

(i.jr)ev

Proof. We have
tr(U'II'IU - L)) =tr {(UT (M - 1,)U)"} = tr {(IT'II - I,)UUT )"}
It can be seen that

1 ep s .
T o1, | 5 e Oribrjoriorn; i,
(IITI - 1,,); { 5 if = .

On the other hand, (UUT); ; = (u;,u;). Thus,
1
(M'O-L)UU )= Y (I -1,);;(UUT )0 == > 6,0 j0ri0m5(u;, up).
s
J€n] J€[n]

J#i
re[m]
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It follows that

m(Un'mu -1, = Y J@m-r,)uu’), ;.
i1,...,i0€[n] tE[(]

1
§ : I | Tty TtJta-'f'tﬂ/tUT’tJt<u]t’u2t+1>)

8@
i1,..,00E€[n] tE[L]
J1,--sde€n]
Je i, te[l]
T1yee,T0€[m]

Z hl(iaja I’)hg(i,j, I').

(i,jr)e¥

This completes the proof. O

The behavior of E(hy(i,j,r)hsa(i,j,r)) is determined by certain graph structures of (i,j,r). We collect essential
definitions and results in graph theory in Section B. For any (i,j,r) € ¥, we associate a bipartite multigraph
with labeled edges, denoted as Gj ;.. The vertex numbers of the two parts of G; ;. are

v1(Gijr) =Card({i1, ..., %, j1,- .-, Je}), v2(Gijr):= Card({r1,...,7¢}).

The two vertex sets are defined as

Vi(Gije) =={(1,9) i € [1(Gije)l},  Va(Gijr) = {(2,7) 10 € [v2(Gijr)]}

The above definitions make sure that the elements of V;i(Gi;r) and Va(Gijr) have different first coordinates
and consequently V1 (Gijr) N Va(Gijr) = 0. The edge set E(Gijr) of Gijr is defined by Algorithm 4. Roughly
speaking, es;_1 connecting the vertices corresponding to i; and r¢, and ey; connecting the vertices corresponding
to j; and r;. Here we note that by definition in Algorithm 4, the ¢th edge e; is a function with domain {1,2},
and e;(1) and e4(2) are its endvertices in V1(Gij.r) and Vo(Gijr), respectively. Algorithm 4 also returns two
functions f; and fo. The function f; records the correspondence between the vertex set V(G ) and the index
set {i1,...,%0,J1,-.., e}, and the function fo records the correspondence between the vertex set V(G ;) and
the index set {ry,...,7}.

We emphasis that the function (i,j,r) +— Gi;, is not injective. Nevertheless, the function A, : (i,j,r) —
(Gijr, f1, f2) defined in Algorithm 4 is injective. In fact, the function A, defined in Algorithm 5 is the inverse
of A;. Precisely, if (i,j,r) € U, then As(A;1(i,j,r)) = (i,j,r). It follows that A; is injective on ¥. Let ¢ denote
the range of the function (i,j,r) — G;jr with domain ¥. Furthermore, it follows from Algorithms 4 and 5 that
for any G € ¥4,

{i,j,r) eV : G =G} = {Ag(g, flT,fQT) : f{r € [n][vl(g)], ff is injective, f2T € [m][”2(g)], f2T is injective}. (4)

Let ¢ be the collection of graph G in ¢ such that each vetex in V1(G) has even edge-degree. Using (4), we can
derive the following proposition.

Proposition 2. For any positive integer £, we have

1
Tl Y a(b)
Etr((U'II'TIU — 1) )S? Z Z E H 5f2(b(2)) b(1) Z H Ut (e2e(1)) uf1(€2t+1(1))> )
GE€D | fre[m]lv2(D]  beB(9) fr€ln 019 tell]
f2 s injective f1 is injective

where e; is the abbreviation of (E(G))(t) and relies on G.
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Algorithm 4: Construction of Gj j »

[Function A; (i,j,r):
V1 O, f1 — @
Vo < 0, f2 — (Z)
for t <+ 1 to / do
if i; ¢ range(f1) then
v v +1
f1 = fru{(v,ie)}
if r; ¢ range(f2) then
Vg < vg + 1
f2 < faU{(va,70)}
if j; ¢ range(f;) then
v v +1
fi < fru{(vi, i)}
fort+ 1to ¢ do
esv 1 AL £ 00), 20 f M)
e {(1, £ (), (2, f5  (r))}
Vi(Gijr) < {(1,4) 1 € [n]}
Va(Gijr) < {(2,4) i € [vo]}
V(Gijr) < Vi(Gijr) U Va(Gijr)
E(gidal‘) — {(17 el)a ) (267 626)}
Gijr < (V(Gijr) E(Gijir))
return (G, f1, f2)

Proof. We have
Etr((U'II HU—Id)[) ———1 g {Ehi(i,j,r)}ha(i,j, 1)
S[ 1d) 1d)

(ijr)ev

:% Z Z {Ehl(i,j,r)}hQ(iajar)

G€Y (1,j,r):Gijr=G

LS Y EMA(G i ) a(AG i o)) 5)
ge¥v f16[n][“1(g)]
fa€[m]v2(9]

f1,f2 are injective

where the first equality follows from Lemma 2 and the last equality follows from (4). We have

Eni(A2(G, 1. £2) =B []  (Orae@).s )@ rae@).i 1))

(i,e)€E(G)
E I %%eynoa | |B 11 oheennom
beB(G) beB(G)
We have assumed that the distribution of the n columns (61,1, ,0m.1) s -+, (61,ms--+,0m.n) | of A is invariant

under permutation. It follows that

E [T e noan=E II II eernm =2 II 11 60, =B II 500w

bEB(G) pElv1(G)] bEB(G) pE[v1 ()] bEB(G) bEB(G)
b(1)=p b(1)=p

Similarly, since the columns of 3 are independent, we have

E I o7Gennoay =E II ohteeo
beB(G) beB(G)
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Algorithm 5: Converse of Algorithm 4

Function A3 (G, f1, f2):

for t < 1 to / do
ear—1 < (E(G))(2t — 1)
ear < (E£(G))(21)
iy + fi(ear—1(1))
T < fa(ear—1(2))
Jt f1(€2t( )

i(-(ll,.. )
jF(Jl,-n,Jé)
r< (r,...,70)

return (i,j,r)

Therefore, hi(A2(G, f1, f2)) does not rely on the function f;. We claim that if some vertex in V;(G) has odd

edge-degree, then E(HbeB(g) 0?2((}’13(2)))]01(17(1))) = 0. To prove this claim, first we consider the case that {o; ;} are

sign-consistent. In this case, we have

a(b) B(v)
E H ‘7 2))f1 b1y = B H 1,/ (b(1)) H Eoy fiwy
beB(G) beB(G) veVi(G)

where 8(v) is the edge-degree of the vertex v. If 8(v) is odd for some v € V1 (G), then Eai(fvl)(v) =Eoyf) =0,
and the claim holds. Now we consider the case that o; ; are i.i.d. If some vertex in Vi(G) has odd edge-degree,
then there exists a bond b incident on this vertex that has odd multiplicity. Then we have E 0?2((12(2)), Ab) = 0,
and the claim holds.

It follows from (5) and the above arguments that

Etr(U'TI'TIU — I,)")

1 (b) (b)
5t Z Z (E H 5?2 (b(2)) b(l)( H ‘7?2 b(2)), b(l)) Z H<uf1(e2t(1))’ufl(e2t+1(1))>

GEDs fye[m)(v2(9)] beB(G) bEB(Q) Fre[n)1@) te[l]
f2 is injective f1 is injective
1 a(b)
<z 20 2 EID Seeen|l 2 0oy v
GED: | fyeimlP2(9)]  bEB(G) fre[n)P1@) tell]
f2 is injective f1 is injective

This completes the proof.

Now we deal with the quantity

Z H Ut (e ( uf1(€2t+1(1))>

fi€n ]01(9) tell]
f1 is injective

For any G € % with edges (1,e1),...,(2¢, ea), we define a multigraph G with labeled edges as follows:
V(G) i=range(V1(G)) = [v1(9)],
E(G) :={(1, {e2(1),es(1)}), (2, {ea(1), e5(1)}), - ., (€, {eae(1), e (D]}

We have the following lemma.

Lemma 3. Suppose G € 9. Then every vertex in G has even edge-degree.
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Proof. By construction of G and G, for any v € V1(G), the edge-degree of v in G is equal to the edge-degree of v
in G. The conclusion follows. O

It can be seen that

4
[Ty unenan) =TI @aasung)-
t=1 (pie)€E()
e={ij}

With the above graph representation, we have the following proposition.

Proposition 3. Suppose G is a multigraph with labeled edges whose vertex set is V(G) = [v(G)]. Suppose
E(G) # 0 and every vertex of G has even edge-degree. Then

’ > [T (e us)| < 0(@)a@.
el (p{iTDEBE)

f s injective

Remark 1. The proof of Proposition 3 is similar to the proof of Lemma 7 in Nelson and Nguyen (2013). For
completeness, we provide its proof in Section A.1. Compared with the proof of Nelson and Nguyen (2013), our
proof is a little simplified and some small gaps are fixed.

From Propositions 2, 3 and Lemma 3, we have

1 N
Etr(UTHTIU — 1)) <5 3 m™ @y ()d"©) o o F IT 18rme)sol
2€[m

GeDs f2 is injective beB(9)
By assumption, we have
5\ 0(9)
0<E H 16, (b(2)).6(1) | < (CE> .
beB(9)
It follows that
Etr(UTII'IIU — 1,)") <L > m?2 @y (G)1d¥9) (ci)b(g) (6)
<2 ! — .

GeYs

Lemma 4. Suppose G € 9. Then w(G) < b(G) —v2(G) + 1.

Proof. Note that GU G is connected. Hence G must have at least w(G) — 1 bonds to connect the wgg) connected
components of G. These w(G) — 1 bonds each reduces the number of connected component of G by 1. Thus,

w(G) < v1(G) —w(G) + 1. Note that for G € 4, we have v1(G) + v2(G) < b(G) + w(G). Summing the above two
inequalities yields the conclusion. O

From (6) and Lemma 4, we have

1 d b(g)—Uz(g) 1
Bu(UTITIU - 1)) < 3 0@k (1) e
GeY,
1 d )\ 29029
§d? Z vl(g)!(cs)b(g) <m) . (7)
GEY

Now we consider some basic combinatorics. Since each vertex in V5(G) associates with at least two distinct
bonds, we have b(G) > 2v3(G). Also, we have v1(G) < b(G) < e(G) = 2¢.
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Lemma 5. The number of different G € ¥ with given bond number b, left vertex number v and right vertex
number vy is no more than (eve)*b%*/(v1!).

Proof. Each bond has vyvs choices. Hence there are at most (”1“2) choices of b bonds. After we choose the bonds,
the 2¢ edges are all picked from these b bonds, and there are at most b* choices of edges. The above choice
method can pick all G with given vy, vo and b. However, as illustrated in Algorithms 4 and 5, this procedure
counts each G in % such graph for at least v1lvg! times. In summary, the number of different G € 4, with given
v1, vo and b is at most

(v1bv2)b2Z (Ulvg)bb% (U1v2)bb2€ (vlvg)bb% - (evg)bb%
vilvg! T bluglug! T bluq! - /Ul!\/Zﬂ'b(b/e)b - v! ’
where the second last inequality follows from Stirling’s formula. This completes the proof.
O
From (7) and Lemma 5, we have
d b—’U2
Bu(UTITIU - L)) <al 3 3 enn) (e ()
be[20] vi€[20] vo€[L]
ST e (L)
be[%] v1 €[20] va€[L]
2025%d
LYy oy (2Rt
be[20] vi €[20] vo €[]
Pick m such that (c?e2¢?s%d)/m < 1. Then we have
Adr3(2 20
Etr(UTII'IIU — 1)) < %/)
Then for s > e~1(2¢)%e, we have
¢
Etr(UTII IIU — 1)) < 4d¢® (z) .
Then by Markov’s inequality,
TyT 1 TrT CM
Pr(|UTII'HU - I > ¢) <5 Etr(UTII'TIU - 1)) < —
€ e
The above probability is bounded by § if we pick ¢ = ©(log(d/d)). This completes the proof.
A.1 Proof of Proposition 3
We would like to prove a more general conclusion. For an edge (p,{i,j}) € we associate two matrices
M, j, My ;i € R4 such that M, ; j = M) ;; and [[M,,; ;|| < 1. We shall prove that
‘ > I e Myijugg)| < o(@)d@. (8)

PP @) (p{igHEEQ)

f is injective

It can be seen that the original conclusion corresponds to the case My,; j = Iq. The condition My, ; ; = M), ;
implies that

.
(uriy Mpagurg)) = (api), My i) = (Upg), My jiaga))-

That is, the term (uy;y, My ; ju;)) does not rely on the order of i and j. Thus, the left hand side of (8) is
well-defined.
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Lemma 6. Let G be a multigraph with labeled edges whose vertex set is a finite subset of {1,2,...}. Suppose G
is connected, E(G) # 0. Let v be any fized vertex of G, k be any fized integer in [n], and ¢ be any fized vector in
R with ||c|| < 1. For f € [n]V(OM} et v, = uyy, i € V(G\{0} and vy =c € RY Then we have

> I ~vraMpive)? <llel®

JEMVONDY (p{i,j})EE(G)

Proof. We have assumed that G is connected. From Lemma 10, there is a bijection 7 from [v(G)] onto V(G) such
that 7(v(G)) = © and for any i € [v(G) — 1], the edge set

B, = {(p, {n(i), 7(7)}) € B(G) : j € {i+1,...,v(G)}}

is not empty. For ¢ € [v(G) — 1], we pick a 7(i) > 4 such that (p;, {w (i), 7(7(¢))}) € E;. Note that 7(v(G) — 1) >
v(G). Hence 7(v(G) — 1) = v(G) and 7(7(v(G) — 1)) = 9. For any f € [n]V (M} we have

v(G)—1
H (Vi My vy )? < H (Vi) Mp, n(i) i (r (i)Y fom(r(2)))
(p,{i,5})EE(G) i=1
It follows that
v(G)—1
> I oMoy 3 TT 7 Mam(o )V i)
FEMVONEY (p{ii}H)EE(G) F(m(1))€[n] i=1

F(m(v(9)-1))€n]
For i € [v(G) — 1], we have

2
> Vil M, (i) n (e () Vfor ()
Fr(eln)

T T
=V () Mpi i (r(0)) 7 (3) Z Via@ V(i) | Mpin()n(z@)Vin(r@)
f(m(i))€[n]
=My, (i) (i) Ve i) 1
<l1.

Applying the above inequality recursively yields

v(G)—1
> T ) My, w(iymr@n) Y £amri)
Fr()em]  i=1
Fr(o(G)=1))eln]
v(G)—1
2 2
= > > Vra My r ) Vi) | T (Vi) Mooy m(r) Y £ae(ri)))
f@@)em]  \s()en] i=2
Fr(@)=1))eln]
v(G)—1
2
< > [T Vrmy: My, i)V sne (i)
fr@)en] =2

f(r(v(9)—1))€(n]

2
< > (Vim(0(9)-1) Mp, gy 1, m(0(0)~1),0V £,5)
F(r(v(@)—1))En]

<[lvsall*

This completes the proof. O
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Lemma 7. Suppose G is a multigraph with labeled edges whose vertex set is a finite subset of {1,2,...}. Suppose
G is Eulerian and E(G) # (0. Then

’ ) 11 <uf(i)’Mp,i,juf(j)>‘Sd.

fEMV@ (p.{i,iHEE(9)

Proof. We prove the conclusion by induction on v(G). If v(G) = 1, then

Y I e M| < S Il = Ul =
femVo (p.{isEE9) i=1
And the conclusion holds. Below we consider the general case of v(G) > 2.

First we consider the case that G has two edge-disjoint spanning trees, denoted as 7; and 72. Then the graph
(V(G),E(T1)) is connected. On the other hand, since E(7z) C E(G)\E(T:1), the graph (V(G), E(G)\E(T1)) is
also connected. We have

‘ I e Mp,zyjuf(m’
(p. (3.7 EE(G)

=TT e Myaur)|| II {us(iy, Myp,ijus())
(b {idDEB(T) (r{idDEEON\E(TL)
1 1
<5 I (e Myijupg)® +5 11 (i), Mp,i jup )™
(p. {3 NEB(TD) (r {1 DEB@\E(T:)

Applying Lemma 6 to the graphs (V(G), E(7T1)) and (V(G), E(G)\E(T1)) leads to

> T e Myaupg)| < S llwl? = U3 = d.
=1

FemIV©@ (p,{i,5})€E(G)
Hence the conclusion holds.

Now we consider the case that G does not have two edge-disjoint spanning trees. Suppose S* C V(G) satisfies the
two properties of Lemma 12. Let (p, {g,h}) and (p’,{¢’,h'}) be the only two edges connecting S* and V(G)\S*
where g,¢' € V(G)\S* and h,h' € S*. Then

> I (e Myajuggy)

eV (p.{i,s})€E(9)

- ) 11 (up@y Mpijugg)) 1T (up(iy, Mpijugrc))
FemV® \(p{i.iDEBGV(O\S™) (i DEBG(S™))
(Uy(g)s Mp g ntp(m)) (Wr(gry, Mpr g7 g ()

- > II (i) My 5)) ) () Mt 1),

JeMVONST  (p{i,iHEE(G(V(9\S™))

where

M = Z Mp,g,n0f(h) H (upiy, Mp,ijug)) u}(h’)Mﬁﬂh’,g"
fem)s* (p.{3,5})€E(G(S™))

If |[M]|| < 1, then we add an edge (p,{g,g'}) to the graph V(G)\S* and define M, , := M. Then the above
sum reduces to the sum for this new graph. Note that this new graph has fewer vertices than G and is still
Eulerian. Then the conclusion follows from the induction hypothesis.
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It remains to prove that |[M| < 1. The matrix M is associated with the graph G(S*). Let 7; and T3 be
edge-disjoint spanning trees of S*. For any x;,x2 € R? such that ||x;|| =[xz = 1, we have

x| Mx; = Z (x1, Mjp g n0sn)) H (s, My juriy)(Ugny, My pr g X2)
femn]s” (p,{i,3})EE(G(S™))

= > (<X1,Mﬁ,g,th(h)> 1T <Uf<z')’Mp,z‘,jUf<j>>>
fen]s* ({3 EE(T1)

: (<uf(h/)’ M .9 X2) II {us), Mp,i,juf(j>>)
({1 NEE(G(SD\E(T?)

1
<5 D0 uMgnug)® [T (g Mpajug)

fem)s* (p.{i,3HEE(TL)

1

tg D (e My gx2)? 11 (us(), My, ()
fems* (b 413D EE(G(S)\E(T)

1 1
§§||X1H2 + §HX2||2
:]\7
where the second last line follows from Lemma 6. This completes the proof.

O

Lemma 8. Suppose G is a multigraph with labeled edges whose vertex set is a finite subset of {1,2,...}. Suppose
E(G) # 0 and every vertex has even edge-degree. Then

> I o). Myjupg)| < d@.

eV (p,{i,j})€E(9)

Proof. Since every vertex of G has even edge-degree, we can decompose G into w(G) disjoint Eulerian subgraphs.
Then the conclusion follows by applying Lemma 7 to each of the subgraphs. O

We are now ready to prove (8). For 1 < j <i <w(G), let s;; = 1{fu)=f(;)}- Then

v(G) i1 v(G)
Lt fo(@) are distinety = || [ 1= 2 Liro=ron | = > D" ] Liro=raeny
=2 j=1 qelv(G)](9)] i=1
q(1)<1
q(2)<2
a(v(9))<v(9)

where ~(q) = Y019 144(i)<i}- Hence we have

11 <Uf(z‘)vMp,i,juf(j)>’
FelnP© (p.{i,i})EE(Q)
f is injective
v(9)

:) > Yo 90 1g0=reen I (e Mpagusg)
=1

Fem™ 9N gefv(g)] ) (p.{i.7})€E(9)

q(1)<1
q(2)<2
a(v(6))<v(9)
()
< Y > ST vro=rwon T e Myajupg)|

€@ | fe[n)lv @] | =1 (p.{i.})€E(G)
a(1)€1]
a(2)€l2]

a(v(9))E[W(G)]
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Given a function g, we can obtain an induced graph of G by combining the vertices £ and ¢(¢) as a single vertex,
i € [v(G)]. For the induced graph, every vertex also has even edge-degree. We apply Lemma 8 to the induced
graph. Then

()
> I tro=raon T (wreMyisugg)
fen)lr@? | =1 (p,{3,H)EE(G)

is upper bounded by d* where w is the number of connected components of the graph induced by ¢. But the
number of connected components of the induced graph is smaller than that of the original graph G. Consequently,
the above quantity is also upper bounded by d*(9). Tt follows that

H <Uf(i),Mp71'7jllf(j)>’ < Z dw9) — v(g)'dw(g)

Fem @ (bl DEEQ) a()e(1]
f is injective q(2)€[2]

a(v(9))E[W(9)]

This completes the proof.

B RESULTS IN GRAPH THEORY

Our proofs of main results involve some arguments of graph theory. In order for our proofs of main results to
be understood correctly, we collect definitions and results in graph theory that are used in our proofs of main
results. Throughout our proofs, graphs are understood as multigraph with labeled edges whose rigorous definition
is as follows.

Definition 1. A multigraph G with labeled edges is an ordered pair (V(G), E(G)) where V(G) is the finite set
of vertices and E(G) is a function from a finite subset of {1,2,...} to the set

{{v1,v2} 1 v1,v2 € V(G)}.

Suppose G = (V(G), E(G)) is a multigraph with labeled edges. Let v(G) := Card(V(G)) denote the vertex number
of G. By definition, E(G) is a function. Recall that a function is understood as its set-theoretic definition. That
is, the function E(G) is a set, and its elements are something like (1, {v1,v2}), (2, {vs,v4}), etc. We call E(G)
the edge set of G. Let e(G) := Card(E(G)) denote the edge number of G. The domain of E(G) is the set of
labels of edges. From the property of function, different edges in E(G) have different labels. We note that
range(FE(G)) C V(G) x V(G) is the unlabeled edges. Define the bond set of G as

B(G) := range(E(G)\{{i} : i € V(9)}.

That is, the bond set of G contains unlabeled edges and excludes self loops. The elements in B(G) are called
bonds. Let b(G) := Card(B(G)) denote the number of bonds of G. For b € B(G), let a(b) denote the multiplicity
of b. It can be seen that (V(G), B(G)) is a simple graph in the usual sense. We refer to the number of bonds
a vertex is incident upon as its bond-degree, and the number of edges it is incident upon as its edge-degree. Let
w(G) be the number of connected components in the simple graph (V(G), B(G)).

Lemma 9. For any multigraph G with labeled edges,

0(G) < b(G) +w(G).

Proof. For each of w connected components, the vertex number is not larger than the bond number plus 1.
Summing w such inequalities yields the conclusion. O

Definition 2. A multigraph G with labeled edges is bipartite if there are disjoint sets of vertices V;(G) and
V2(G) such that V(G) = Vi(G) U V5(G) and every edge joins a vertex of V1(G) to a vertex of Vo(G). Let
v;(G) := Card(V;(G)) denote the vertex number of V;(G), i = 1, 2.
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A multigraph G with labeled edges is Fulerian if the edges of G can be rearranged to a closed trail (p1, {i1,i2}),
(P2, {i2,43}), ..., (Pe(g)s {le(g),i1}). It is known that G is Eulerian if and only if every vertex of G has even
edge-degree.

Suppose G is a multigraph with labeled edges. A subgraph GT = (VT E') of G is a multigraph with labeled edges
such that VT C V(G) and ET C E(G). If ET contains all edges in F(G) that join two vertices in VT, then G' is
said to be the subgraph induced by V1 and is denoted by G(VT). A set of subgraphs of G are called edge-disjoint
if no two of them have an edge in common. A tree is a minimal connected graph. A spanning tree of G is a
subgraph of G which includes all vertices of G and is a tree.

Lemma 10. Let G be a connected graph. Let v* be any vertex of G. Then there is a bijection w from [v(G)] onto
V(G) such that m(v(G)) = v* and for any i € [v(G) — 1], the edge set

{(p {7 (), 7()}) € B(@) :j € {i +1,...,0(G)}}
18 not empty.
Proof. We prove the conclusion by induction on v(G). If v(G) = 1, the conclusion holds trivially. Now we
consider the general case. Let 7 be a spanning tree of G. Note that any tree with at least two vertices must have
at least 2 leaves, that is, vertices with edge-degree 1. Hence T has a leaf other than v*. We denote this leaf by
v1. We remove vy from 7. After removing v1, G is still a connected graph, but only has v(G) — 1 vertices. By

induction hypothesis, there is a bijection 7* from [v(G) — 1] onto V(G)\{v1} such that 7*(v(G) — 1) = v* and for
any 7 € [v(G) — 2], the edge set

{(oAx"(0), 7" (5)}) € B(G) :j €{i+1,...,0(G) —1}}
is not empty. Define w(1) = vy and 7w(i) = 7*(i — 1), ¢ = 2,...,v(G). It can be seen that the function 7 satisfies

our requirement. This completes the proof. O

For a partition & of V(G), we use E%(G) to denote the set of edges of G which join vertices belonging to different
members of &. The following result was proved by Tutte (1961) and Nash-Williams (1961).

Lemma 11 (Tutte (1961) and Nash-Williams (1961)). Suppose G is a multigraph with labeled edges and k is a
positive integer. Then G has k edge-disjoint spanning trees if and only if

Card(E#(G)) > k(Card(Z) — 1)
for every partition & of V(G).

Lemma 11 can be used to prove the following result.

Lemma 12. Suppose G is a multigraph with labeled edges. Suppose G is Fulerian and E(G) # (). Then either G
itself has 2 edge-disjoint spanning trees or V(G) has a nonempty subset S* satisfying the following conditions:

o There are exact two edges in E(G) joining the induced subgraphs G(S*) and G(V(G)\S™).

o The induced subgraph G(S*) has 2 edge-disjoint spanning trees.

Proof. Suppose that G itself does not have 2 edge-disjoint spanning trees. By Lemma 11, there is a partition &
of V(G) such that Card(F#(G)) < 2(Card(#?) — 1). Note that

2Card(E»(9)) = Z Card({Edges in E(G) joining S and V(G)\S}).
SeZ?

Hence the collection
{8§CV(G):S#0,5#V(G), and there are less than 4 edges in F(G) joining S and V(G)\S}

is not empty. Let S* be a vertex set in the above collection with minimum vertex number. Since G is Eulerian,
there are even edges connecting S* and V(G)\S*. Hence there are exactly two edges connecting S* and V(G)\S*.
Suppose these two edges are (p,{g,h}) and (p',{g’,'}) where g,¢' € V(G)\S* and h,h' € S*. Let C be the
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induced subgraph G(S*) with an additional edge joining h and h’. Then all vertices of C have even edge-degrees
and hence C is Eulerian.

We claim that for any nonempty proper subset S’ of S*, there are at least 4 edges in C joining S’ and S*\S’.

To prove the above claim, we decompose the vertex set V(G) into three vertex sets S’, S*\S’" and V(G)\S*. By
the mininum property of S*, there are at least 4 edges in E(G) joining S” and V(G)\S" = (V(G)\S*) U (S*\9").
If SN {h,h'} =0, then there is no edge in F(G) joining S’ and V(G)\S*, and hence there are at least 4 edges
in F(G) joining S’ and S*\S’. If exactly one of h and k' belongs to S’ and the other one belong to S*\&’, then
there is exactly one edge in F(G) joining S’ and V(G)\S*, and hence there are at least 3 edges in F(G) joining
S" and S*\S’. Also, the additional edge in E(C) joining h and h’ also joins S” and S*\S’. Hence in this case,
there are at least 4 edges in E(C) joining S’ and S*\S’. If h and h’ are both in ', then there is no edge in E(G)
joining S*\\S” and V(G)\S*. Hence the number of edges in E(G) joining S*\S" and S’ is equal to the number of
edges in E(G) joining S*\S" and V(G)\(S*\S") which, by the minimality of S*, is at least 4. Hence our claim
holds.

Let & be any partition of V(S*). Then the above claim implies that
Card(E»(C)) = % Z Card({Edges of C joining S’ and S*\S'}) > 2Card(2?).
S'ex
Compared with G(S*), the graph C has only one additional edge. Consequently,
Card(E»(G(S*))) > Card(E»(C)) — 1 > 2Card(£?) — 1.

Hence from Lemma 11, the graph G(5*) has 2 edge-disjoint spanning trees. This completes the proof.

C PROOF OF PROPOSITION 1

We claim that for S C [m] x [n] such that Card(S) = O(log(d/d)), there exists an absolute constant ¢ > 1 such
that

BT ol < (e2)™ (9

For the kth row block of A, its each column contains exactly one nonzero element. Consequently, if there are
two indices (i1,j1) and (ig,j2) in S with iy # iz, j1 = j2 such that they are in the same row block, that is,
Lir/(m/s)] = [i2/(m/s)], then we have []; ;s 1di,;| = 0. Hence to prove (9), we can without loss of generality
and assume that for each j € [n], the indices ¢ such that (i,j) € S are in distinct row blocks.

Define
t :=max{j € [n]: there exists ¢ € [m] such that (i, j) € S}.

We prove (9) by induction on t. First we consider the case of ¢ = 1. In this case, suppose S = {(i1, 1), ..., (ic, 1)}.

From the independence of wgl), . ,w§s), we have

E [ 1551 =Pr (|SZ-,1| =1forall (i,1) € s)
(i,7)€S
=Pr (w:(LerbSJ+1) = for all (i,1) € S)

- H Pr (witml/sjﬂ) :i>

(i,1)es

_ (i)Card(S)
- .
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Suppose the conclusion holds for ¢t < T. We consider the case of t = T'. Define
t':==max{j € [T — 1] : there exists i € [m] such that (i,j) € S}.

If the above set is empty, then the indices of S are all in one column and we can prove the conclusion in a similar
way as in the case of ¢ = 1. Below we assume the above set is not empty. Then ¢’ is well defined. Define

Sr={(i,)) €8 :j =T},
Sp={(i,j) €S:j<t'},

Ly ={i: (i,7) € S},

Iy ={i: (1,T) €S, i ¢ Iv},
T ={j: (i,7) € Sp}.

(s )
J

s < (e

E ] 16l fE{( IT 16 50) Pr(wp ™7 =i, (.)€ Sr | ]-'t/)}. (10)
(i,§)ES (it, 1) eSSy

We define the event A as

_ @ n N |G

A{T(T) LH/SJSE{TQ) {n/s S.]Ejt/ .

Conditioning on Fy, the randomness of the event A comes entirely from 7(7"). Hence we have

Let F; denote the o-algebra generated by the random variables 7(j) and w , (i,7) € Spr. Then we have

3

sCard(S)
P Fi) < ————~—, 11
AT < () (D
Conditioning on F3 and the event AC, the random variables w(T1 ), . ,w$’ ) are independent of F;.. Hence
i Card(Sr)
Pr(ws ™ =i, (,T) € S | Fur, A®) = () (12)
Now we consider the case of conditioning on Fy and the event A. We have
(l=%=D . . (I N X
Pr (wy, =14, (i,T) € Sp | Fo, A, 7(T)) <Pr(wy =i, i€y | Fy, A 7(T))
=TT Pr(wy™" =i | Fu, A, (1)), (13)
icTs

Let ¢* be any index in the set Z7.. Then there are two possibilities. The first possibility is that there exists an
index (if, jT) € Sy such that

sk ‘T T ‘.I.
L T A O [ S A VAP U
m/s m/s n/s | s n/s | s
In this case, by the first condition, if falls in the same row block as i*. By the second condition, we have

|05- 7| = |5i*_’j1\. But by the definition of i*, we must have if # i*. Hence it must be that |51]¢\ + |gi1"jt|.
Consequently, [0;- 7| # [0;+ j+|. That is, these two quantities can not be nonzero simultaneously. It follows that

(T Besh) TT Pr(wy™™ =i | Fu, A r(D) =00 (14)

(iT,5T)ESy €1y

The second possibility is that for any index (if,j7) € Sy,

R IR e bR ok
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In this case, we have

i Card(Z7)
I] P (w<TLm/sn =i | Fo, A T(T)) = (i) 2 (15)
, m
i€L],
It follows from (13), (14) and (15) that
< (A < s\ Card(Z7)
C TT 18 TT Prwr ™ =i Fod) < TT 1 (=) (16)
(iT,jT)ESt/ €L}, (iT,jT)ESt/
Combining (11), (12) and (16) leads to
z e
IT 15l Pr(wi ™™ =i, 1) € Sr | o)
(7,51 ESy
~ s \ Card(Z7) SC&I‘d(S) s \ Card(Sr)
< Ss1 l stardo) L (5 .
S\ H it 511 ((m) n — Card(S) * (m) )
(it,j1)es,

It follows from the condition Card(S) = O(log(d/d)) and the choice of s, m and n that

sCard(S) 0 (M)
n— Card(S)  exp {Q(log(d/d)(log(d/e) + |log(log(d/5))[))}
1
~ exp {Q(log(d/6) (log(d/<) + [log(log(d/3))]))}

1 Card(Sr)
- (eXP {Q(log(d/e) + | log(log(d/5)))}>

0 <(;)Card(51)) .

Hence there exists an absolute constant ¢ > 1 such that

< (=i ~ s \ Card(St)
T 16l | Pr(wp™ =i D eSr | Fo) < | ] 1801 (CE) .

(if,51)eSy (it,51)eSy

Then from (10),

- . s \ Card(Sr)
E ] Bul<B( TI l6sl] () .

(i,7)€S (it,j1)eSy

Then by induction, (9) holds. Thus, Assumption 1 holds when Card(S) = O(log(d/d)). Note that in the proof
of Theorem 1, we take £ = O(log(d/d)). Hence the restriction Card(S) = O(log(d/J)) does not cause problems.
Then the conclusion follows from Theorem 1.

D PROOF OF LEMMA 1

Lemma 13. Suppose n,m,k are powers of 2 satisfying n = mk. Then we have
H, =H,, ® H.
Proof. We prove the conclusion by induction on nn. The conclusion clearly holds for n = 1. Suppose the conclusion

holds for any n* such that n* is a power of 2 and n* < n. We prove that the conclusion holds for n. By the
definition of H,,, we have H,, = Hy ® Hz. Hence we only consider the case that m > 2. In this case, we have

Hn:H2®H% :H2®H% QR H, = H,, ® Hy,

where the second equality follows from the induction hypothesis. This completes the proof. O
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Now we prove Lemma 1 by induction on k. The claim clearly holds for £ = 1. Now suppose the claim holds for
k — 1. Then by the definition of By and the induction hypothesis, we have

BiBg-1---B1 = (Izkfl ® <H2 ®12Lk>) (szfl ® Ian_l)

=Hyr-1 @ Hs ® Ilk
2
:sz ® Izlk’

where the last equality follows from Lemma 13. This completes the proof of Lemma 1.



