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Abstract

Generative probabilistic models of biological
sequences have widespread existing and po-
tential applications in analyzing, predicting
and designing proteins, RNA and genomes.
To test the predictions of such a model exper-
imentally, the standard approach is to draw
samples, and then synthesize each sample in-
dividually in the laboratory. However, of-
ten orders of magnitude more sequences can
be experimentally assayed than can be af-
fordably synthesized individually. In this
article, we propose instead to use stochas-
tic synthesis methods, such as mixed nu-
cleotides or trimers. We describe a black-box
algorithm for optimizing stochastic synthe-
sis protocols to produce approximate sam-
ples from any target generative model. We
establish theoretical bounds on the method’s
performance, and validate it in simulation us-
ing held-out sequence-to-function predictors
trained on real experimental data. We show
that using optimized stochastic synthesis pro-
tocols in place of individual synthesis can in-
crease the number of hits in protein engineer-
ing efforts by orders of magnitude, e.g. from
zero to a thousand.
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1 INTRODUCTION

Large-scale nucleic acid sequencing and synthesis is
integral to modern biology and biomedicine, from
biotechnology to epidemiology to neuroscience to agri-
culture to evolutionary biology and beyond. Genera-
tive probabilistic modeling offers a rigorous framework
for analyzing large scale sequencing data and forming
predictions of new sequences that can be synthesized in
the laboratory. Generative models have been used, for
instance, to infer underlying structural and functional
constraints on protein evolution, to predict pathogen
sequences that may emerge in the future, and to pre-
dict novel enzyme sequences with desired functional
properties (Marks et al., [2011; [Hopf et al., [2017; |We-
instein and Marks, 2021} [Russ et al.| |2020). In order
to assay the properties of predicted sequences and dis-
cover novel functional sequences, samples from gener-
ative models must be synthesized in the laboratory
at scale. Large libraries are particularly important
for protein engineering applications, where they are
screened for hits with rare properties, e.g. a particular
catalytic or binding activity.

Unfortunately, synthesizing large numbers of samples
from generative sequence models is challenging. The
standard approach, which we refer to as “Monte Carlo
(MC) synthesis”, is to (1) sample from the model com-
putationally, and then (2) synthesize each sample in-
dividually (Russ et al., 2020} |Shin et al., 2021; | Madani
et all 2021)). In practice, however, MC synthesis is
limited by cost: despite recent advances in synthesis
technology, gene-length libraries typically do not ex-
ceed 10* unique sequences (Kosuri and Churchl [2014)).
Far larger libraries, on the order of 106 — 10!, can be
screened in many high-throughput assays. The set of
likely sequences predicted by state-of-the-art genera-
tive models is often vastly larger still: a protein model
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Figure 1: The standard synthesis approach for gen-
erative sequence models (Monte Carlo synthesis) is to
sample sequences in silico and synthesize samples indi-
vidually in wvitro. The proposed approach (variational
synthesis) is to optimize the experimental parameters
of a stochastic synthesis protocol in silico and then
run the protocol in vitro or in vivo to produce a larger
number of samples.

with per-residue perplexity of 2 across sequences of
length 100 predicts effectively 219 ~ 1030 sequences.
Thus MC synthesis often will come nowhere near com-
prehensive exploration of a model’s predictions.

In principal, combinatorial and stochastic synthesis
methods — such as error prone PCR and mixed nu-
cleotides — offer an alternative approach capable of
producing much larger numbers of unique sequences
for the same cost. However, the sequences produced
by these methods are random, and so it is unclear how
to use stochastic synthesis to gain insight into the pre-
dictions of a given generative sequence model.

In this article, we describe an experimental design
method — “variational synthesis” — that leverages
stochastic DNA synthesis to overcome the limitations
of MC synthesis. The basic idea is to optimize the pa-
rameters of the laboratory synthesis protocol to pro-
duce samples from a distribution close to the distribu-
tion of the target generative model. Variational syn-
thesis is a rigorous approach to building ultra-large
scale libraries based on generative sequence models,
and can dramatically accelerate the discovery of novel
functional sequences.

2 METHOD

We consider an arbitrary target generative model
that describes a probability distribution p(z) over se-
quences x. We are interested in assaying samples from
the model experimentally. The standard method, MC
synthesis, is to (1) draw samples X1, ..., Xn, ~ p i.i.d.
computationally and then (2) synthesize each sequence

in the laboratory, deterministically. This approach is
limited by the number of sequences Ny that can be
affordably synthesized deterministically, typically on
the order of 10* or less for gene-length sequences.

As an alternative, we propose “variational synthesis”
(Figure[L): (1) write down a probabilistic model gy (z)
of sequences produced by a stochastic synthesis pro-
tocol with experimental parameters 6, (2) minimize a
divergence between gy and p to find g« =~ p and (3)
run the stochastic synthesis protocol in the laboratory,
producing samples Xi,..., Xn, ~ gg~ i.i.d.. This ap-
proach is limited by the number of sequences Ny that
can be affordably screened, where in general N7 can be
orders of magnitude larger than Ny, e.g. 105 — 101
The increase in samples comes at the cost of accuracy,
since gp= may not exactly match p.

2.1 Stochastic Synthesis Models

The first step of variational synthesis is to write down
models gg of stochastic synthesis protocols. We fo-
cus on five key technologies: (1) enzymatic muta-
genesis, e.g. error-prone PCR or Orthorep (Wilson
and Keefel 2001; Ravikumar et al. 2018), (2) mixed
nucleotide synthesis, often referred to as “degenerate
codon libraries” in the context of proteins (Pazdernik
and Bowersox), 2016; [Mena and Daughertyl, [2005)), (3)
mixed trimer synthesis (Kayushin et al., (1996} 2000;
McMahon et al.l [2018), (4) combinatorial variant li-
braries (Twist Bioscience] 2020) and (5) combinatorial
assembly (Gibson et al.) |2009). We focus on models
of protein sequences; models of DNA or RNA are sim-
pler.

We describe stochastic synthesis models gy using a
four-step generative process (Figure : (1) sample
one of M “templates” from each of K “pools”, (2)
join the templates together, (3) sample codons in-
dependently at each position of the combined tem-
plates and (4) translate the DNA sequence into pro-
tein. For example, consider the protocol of combina-
torial assembly plus error prone PCR: we start with
a library of oligos, join (assemble) a random sample
of oligos into a larger sequence, and then mutagenize
the sequence. Abstractly, we refer to the distribu-
tion over codons obtained by mutagenizing a partic-
ular oligo as a “template”. Techniques such as mixed
nucleotides can produce alternative distributions over
codons, described by different “templates”. Mathe-
matically, let ug.; @, p,,0,) denote the probability of
generating codon (b1, b, b3) at the jth position of tem-
plate z in pool k. Let T be the translation matrix, de-
fined as Ty, p,,b5)a = 1 if the codon (b1, ba, bs) codes for
the amino acid d and T4, p,5,)¢ = 0 otherwise. (For
instance, T(g,7,4)y = 1 since the codon GT'A codes for
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Figure 2:  Overview of the synthesis model (Equa-

tion . From each of K pools we draw one of M tem-
plates, ug,, according to the random vector Z;. We
concatenate the templates to form a matrix of codon
probabilities C;. Then codons are sampled at each po-
sition to form H;, which is finally translated into a
protein sequence X;.

the amino acid V.) The complete model (Figure |2)) is

Zi ~ P,

C; := concatenate(uiz,,, - - -, UK Z,x )
H; ~ Categorical(C}),

X;:=H; T,

(1)

where the “concatenate” operation stacks matrices
vertically, and the categorical distribution produces
one-hot encoded samples based on the probabilities in
each row. Here, Z; is the vector of templates used for
sequence %, drawn from an underlying distribution p,,,
while C; is a matrix containing the codon probabilities
for each site along sequence ¢ and H; is a one-hot en-
coding of the codons in sequence ¢ (Table [S1| provides
a complete notation reference).

Different synthesis technologies impose different
constraints on p,,, corresponding to different assembly
methods, and different constraints on u, correspond-
ing to different codon diversification methods. (The
biochemical basis for these different mathematical
constraints is described further in Section ) We
consider two possible constraints on p,,:

1. Fixed assembly Z;; ~ Categorical(w) and
Zig = ...:= Z;ix := Z;1. Here we assume that there
are M templates in each pool, and that the choice
of template from the first pool dictates the choice
from all the others. The experimentalist can choose
the probability vector w € Ajps, where A denotes
the M — 1 simplex; chemically, w is controlled by the
relative concentration of each template. In this case,
the synthesis model (Equation [1)) is a mixture model.
2. Combinatorial assembly: Z; ~
Categorical(wy) for all k& € {1,...,K}. In this

case each template from each pool is drawn in-
dependently. The experimentalist can choose the
probability vectors wy € Ay for each pool.

We describe constraints on the codon probabilities
of each template in terms of spaces U, where the
experimentalist can choose any wuy.; € U for all
k,z,7. We use v ® v’ to denote the outer product of
two vectors v and v’. Overloading notation, for two
sets of vectors S and S’, we use S ® S’ to denote
the set of outer products of their members, that is
S8 ={vev: :veSandv € 5} We consider
the following constraints:

1. Arbitrary codon mixtures: U = Agy. In this
case, the experimentalist can choose any probability
distribution over the 64 codons at each position in
each templateEI Combinatorial variant libraries have
this constraint; it is the most flexible of the codon
probability constraints we consider.

2. Finite codon mixtures: U = {v1,...,v4} where
vy € Agyq for all a. In this case, the experimentalist
must first fix a library of A different codon mixtures,
and then, for each position in each template, choose
one of these mixtures v, to use. Mixed trimer
synthesis protocols often have this constraint; in this
case, v, is determined by the relative concentration of
each trimer in mixture a.

3. Finite nucleotide mixtures: u =
{vi,...,va} @ {v1,...,va} ® {v1,...,v4} where
v, € Ay for all a. In this case, the experimentalist
must first fix a library of A different nucleotide
mixtures, and then, for each position in each codon
in each template, choose one of these mixtures to
use. Mixed nucleotide synthesis protocols often have
this constraint; in this case, v, is determined by the
relative concentration of each nucleotide in mixture a

4. Enzymatic mutagenesis: u =
{S7e1,...,87es} ® {S7e1,...,87es} ®
{S7e1,...,S7es} where S is a substitution ma-

trix, S7 is a matrix exponential, and e; is the length
4 vector of all zeros except a one at position j. The
substitution matrix S is an intrinsic property of
the chosen mutagenic enzyme (i.e. the particular
error prone polymerase); in general, it has positive
non-zero entries, linearly independent columns, and
the sum of each column is 1. The number of rounds
of mutagenesis 7 € {1,2,...} can be controlled
experimentally.

Once an assembly technology (fixed or combinatorial)
and codon diversification technology (arbitrary codon,
finite codon, finite nucleotide or enzymatic) are cho-
sen, the parameters 6 of the synthesis model ¢y (Equa-

"We index the 64 codons either using either tuples
(A, AA), ..., (T,T,T) or integers 1,...,64, depending on

convenience.
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tion that must be optimized consist of: w (the tem-
plate probabilities), u (the codon probabilities), v (if
we are using finite nucleotide or codon mixtures) and
7 (if we are using enzymatic mutagenesis).

2.2 Black-Box Optimization

The second step of variational synthesis is to optimize
the synthesis protocol, such that gg- ~ p. For some
target/synthesis pairs — for instance, when the target
is a regression model with a MuE output and fixed
latent alignment (Weinstein and Marks| 2021)), and
the synthesis method uses fixed assembly and arbi-
trary codon mixtures — we can analytically and exactly
match gg- to p (Supplement. In most cases, how-
ever, an exact match between the target distribution
and the synthesis distribution is impossible, and an
analytic minimum intractable. We therefore propose
an approximate optimization procedure. The primary
desiderata are that it should be (1) black-box, in the
sense that it can be applied to arbitrary target distri-
butions p so long as p can be tractably sampled from,
(2) scalable to large library sizes, since gp may for in-
stance be a mixture model with 1000 or more compo-
nents and (3) able to handle large numbers of discrete
parameters, since U can be finite.

We propose to minimize the Kullback-Leibler (KL) di-
vergence between the target model and the synthe-
sis model, estimating 6* := argminy KL(p||ge) by (1)
drawing samples from the target model Xi,..., X5 ~
p iid. and (2) maximizing the log likelihood of
the samples under gy using a stochastic expectation-
maximization (EM) algorithm (Cappé and Moulines|
2008]). This approach only relies on samples from p, so
can be applied whenever MC synthesis can be applied;
in particular, it does not require access to likelihoods
of p, allowing p to be an implicit model (e.g. a GAN).
EM does not require access to derivatives of g (x) with
respect to 6, and can easily handle categorical param-
eters. Finally, since the stochastic EM algorithm re-
lies only on minibatches of data, the method is highly
scalable. Sections and detail the algorithm
and provide advice on training, including the choice
of N. Code is provided at https://github.com/
debbiemarkslab/variational-synthesis!|

Often the target p describes a distribution over
variable-length sequences. One way to account for
this, in the case of protein sequences, is to compute the
likelihood of each sequence followed by a stop codon,
treating the remainder of the DNA sequence as missing
data when fitting gy (Supplement . Alternatively,
a restriction site could be appended, and the remain-
der of the DNA sequence again treated as missing data;
after synthesis, the sequences could be digested to the
appropriate length. Our optimization procedure can

thus be applied to p that produce variable-length se-
quences, so long as the length distribution is bounded.

3 RELATED WORK

Optimal design methods for stochastic synthesis have
a long history, but existing techniques are in general
non-probabilistic — they do not work with explicit tar-
get distributions p or synthesis distributions gy — and,
practically, cannot be applied to produce samples from
an arbitrary generative model p. Methods such as Lib-
Design (Mena and Daughertyl, 2005) and SwiftLib (Ja-
cobs et al., |2015)) optimize degenerate codon libraries
to match the per-position amino acid frequencies in
a multiple sequence alignment, while limiting the to-
tal size of the library. SwiftLib has for instance been
used to design massive libraries of mini-protein sen-
sors and therapeutics (Chevalier et al., |2017; Klima
et al., [2021). OCoM (Parker et all 2011) applies sim-
ilar ideas to handle pairwise correlations. The recent
DeCoDe method (Shimko et al.l 2020) designs degen-
erate codon libraries to produce as many members of
a set of target sequences as possible, while limiting the
total size of the library; it can be interpreted proba-
bilistically as attempting to maximize the overlap in
support between a synthesis distribution gy and a tar-
get distribution p, while regularizing the size of the
support of gg (Section [S4.1)). Meanwhile, SCHEMA
and RASPP (Voigt et al.|2002; Endelman et al.| 2004)
are used to optimize combinatorial assembly protocols
based on protein structure, and have been applied to
engineer new optogenetic tools (Bedbrook et al., [2017));
when the target model p is a Potts model that ac-
curately reflects protein structure, variational synthe-
sis will prefer similar solutions (Section [S4.2). Note
that these existing non-probabilistic stochastic synthe-
sis design tools are often used to construct libraries of
diversified sequences in the context of directed evolu-
tion experiments, and we expect variational synthesis
to also be applicable in the same context.

Batched stochastic Bayesian optimization (Yang et al.|
2019)) is comparable to variational synthesis in that it
is a rigorous and probabilistic approach to stochastic
synthesis optimization. Unlike variational synthesis, it
is focused on optimizing a reward function, rather than
drawing samples from a generative sequence model. It
is also not black-box, relying on the particular struc-
ture of the reward function (a Gaussian process) and
focusing on just one stochastic synthesis method.

Stochastic synthesis models related to those proposed
in Section have been used in the past for inference
from observational data, rather than experimental de-
sign. For instance, Tomezsko et al.| (2020) use a mix-
ture model of sequences to infer RNA structural diver-
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sity from dimethyl sulfate mutational profiling data.

Variational synthesis is inspired by variational infer-
ence (VI) (Blei et all |2017). Both minimize a di-
vergence between a simple approximating distribution
and a target distribution (a posterior in the case of
VI). Both can take advantage of the expressiveness of
mixture models to achieve close matches to the target
distribution (Miller et al.l 2016; |Guo et al., |2016; |Lo-
catello et al.||2018). Both can be contrasted with older
methods for exact sampling from a target distribution
(Markov chain Monte Carlo in the case of VI, Monte
Carlo synthesis in the case of variational synthesis);
both trade accuracy for scale, enabling large numbers
of approximate samples to be drawn (computationally
in the case of VI, physically in the case of variational
synthesis). Both can be black-box, enabling automatic
sampling for a large class of target distributions (Ran-
ganath et al., 2014; Kucukelbir et al.l [2017]).

4 THEORY

4.1 Approximation Error

In this section, we analyze the downstream conse-
quences of using variational synthesis in place of
MC synthesis.  After synthesizing (approximate)
samples from p, the sequences will be experimen-
tally characterized using a high-throughput assay, de-
scribed by a function f, which provides measurements
f(X1),..., f(XN) of each synthesized sequence. The
assay may measure binding strength, enzymatic activ-
ity, fluorescence, etc.. f is assumed to be unknown
before performing the experiment. We consider two
distinct goals. The first goal is to estimate the average
value Ex.,[f(X)]. For instance, we may want to es-
timate the average drug resistance of future pathogen
sequences predicted by p. Second, we may be inter-
ested in discovering a large number of sequences with a
desired property, i.e. we want to maximize Zf\]:l F(X3)
where f(xz) = 1 if the sequence has the property and
f(x) = 0 otherwise. E.g. if we want to engineer a new
plastic-degrading protein, we want to find as many se-
quences as possible with high degradation rates.

Estimating Ex.,[f(X)]. MC synthesis and vari-
ational synthesis lead to two distinct estimators for
I := Ex,[f(X)], and in this section we compare
their performance theoretically. In particular, the MC
synthesis estimator is 1(®) := N%)Zivzol f(X;) where
Xi,...,XnN, ~ p, while the variational synthesis esti-
mator is () := N%vazll f(X;) where Xq,..., XN, ~
qo~. We have no a priori knowledge of f, so to com-
pare estimators we evaluate worst-case performance
over a family of functions F. In practice, nearly all
experimental assays have limited dynamic range; we

therefore take F to be the set of bounded functions,
F = {f: maxgex |f(x)] < fmax}, where X is the set
of protein sequences of length less than or equal to L.
Proposition 4.1. The worst-case mean absolute de-
viation of the exact synthesis estimator satisfies

1
: (2)
v No
The worst-case mean absolute deviation of the stochas-
tic synthesis estimator satisfies

1 . 1 1
sup B[|I® — I] < —— + 1/ =KL(p||ge~). (3
P 0 | 1 Vo 5KL(Pllge-).  (3)

The proof, which can be found in Section[S5.2] uses the
integral probability metric representation of total vari-
ation along with Pinsker’s inequality. This result de-
scribes a bias-variance tradeoff: using variational syn-
thesis in place of MC synthesis leads to less variance
(since N7 > Nj) but introduces bias if gg« does not
exactly match p. Our optimization procedure (Sec-
tion minimizes bias by minimizing KL(p||gs).

sup E[[/@ — 1] <
fmax feFr

If we have access to paired sequencing data, for in-
stance if the hits of a high-throughput screen are deep-
sequenced, we can remove the bias in the variational
synthesis estimator via importance-weighting. We an-
alyze this approach in Section

Maximizing vazl f(X;). How many more hits can
we expect to discover when using variational synthesis
as opposed to MC synthesis? To address this question,
we take f: X — {0,1}, and compare the total number
of hits when using variational synthesis, N I®) | to the
number of hits when using MC synthesis, Nol@.

Corollary 4.2. The expected increase in hits when
using variational instead of MC synthesis satisfies

E[N,I® — NoI@] >

(I— \/ ;KL(M%*))M — /N — INg — /No. W

See Section for a proof. In general Nj is
much larger than Ny, so the determining factor as to
whether variational synthesis outperforms MC synthe-
sis is whether ¢y~ is a sufficiently close approximation
,/%KL(que*) < I. If so, the payoff
from using variational synthesis can be substantial: to
first order, the number of hits increases linearly with
the number of sequences N;. Our optimization pro-
cedure maximizes the lower bound on the number of
hits by minimizing KL(p||gg)-

to p, i.e. whether

4.2 Performance Limits

We have seen that the success of variational synthesis
is determined by how closely gy can match the target p.
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In this section, we analyze how closely the stochastic
synthesis models described in Section [2.1] can match
arbitrary target distributions p.

Limits on fixed assembly. We start by showing
that synthesis protocols that use fixed assembly, and
do not use enzymatic mutagenesis, can match any tar-
get distribution p arbitrarily well. We use gp(z|z) as
shorthand for gg(z|Z;1 = z), the synthesis model dis-
tribution conditioned on the choice of template (mix-
ture component). Let P(X’) denote the set of proba-
bility distributions over X. Let supp(gy(x|z)) denote
the support of the distribution gg(z|z), i.e. the set of
all z € X such that gg(z|z) > 0.

Proposition 4.3. When wusing either arbitrary
codon mixtures, finite codon miztures (with A >
21), or finite nucleotide mixtures (with A > 4): for
any p € P(X) and n > 0 there exists some M and 0
such that (1) KL(p|lqe) < n and (2) supp(ge(z|2)) = X
forall z € {1,...,M}. When using enzymatic mu-
tagenesis: there exists some p € P(X) and n > 0
such that for all M and 0, we have KL(p||qp) > 7.

See Section for a proof. The result says that as
long as we are not using enzymatic mutagenesis, the
target distribution p can be arbitrarily well approxi-
mated without resorting to individual synthesis (that
is, without setting go(z|z) to be a delta function). Fun-
damentally, the problem with enzymatic mutagenesis
is its discreteness: a sequence can be mutated at min-
imum once, so there is a minimum non-zero codon
probability, given by the properties of the enzyme.
This sets a limit on the “resolution” of p that can be
matched by the synthesis procedure ]

Limits on combinatorial assembly. We next show
that any synthesis protocols using combinatorial as-
sembly cannot closely match arbitrary targets p even
in the limit that the library size M goes to infinity.
The result holds for any choice of U.

Proposition 4.4. When using combinatorial as-
sembly, so long as K > 1, there exists p € P(X) and
n > 0 such that for all M and 6, we have KL(p||qg) > 7.

See Section [S5.6] for a proof. The key problem with
combinatorial assembly is that it forces templates to be
independent of one another; it therefore cannot match
probability distributions p which have correlations be-
tween regions covered by each template.

2In practice, despite the mathematical idealization of
our models, all synthesis technologies have a minimum non-
zero codon probability, set by engineering constraints. The
key question is really how low this number is comparatively.

5 RESULTS

5.1 Matching Evolutionary Enzyme Models

We next evaluated the ability of variational synthe-
sis to produce approximate samples from target pro-
tein models trained on real data. As a first target, we
chose a Potts model trained on dihydrofolate reductase
(DHFR) sequences from across evolution; DHFR is an
enzyme crucial for nucleic acid synthesis. Potts models
of protein sequences have been studied extensively, and
MC synthesis from Potts models can produce func-
tional sequences (Russ et all [2020). We optimized
each of our proposed stochastic synthesis models, set-
ting hyperparameters based on commercially-available
technologies (Section . We compared our pro-
posed variational synthesis approach to a baseline
heuristic library diversification strategy of MC synthe-
sis plus mutagenesis: (1) draw samples from p and then
(2) apply five rounds of mutagenesis with ePCR (Sec-
tion . To evaluate how well each synthesis model
matched the target distribution we estimated its per
residue perplexity (Section. However, perplexity
only provides a measurement of the relative quality of
different synthesis procedures, rather than an absolute
measurement of whether they match the data distribu-
tion. We therefore applied a Bayesian two-sample test
for biological sequences — the BEAR test (Amin et al.|
2021) — to determine whether gy~ in fact matches p,
based on 100,000 samples from each (Section .

All variational synthesis methods dramatically outper-
form the baseline (Figure ), and some are capable of
matching the target p closely, passing the two-sample
test (Figure ) Two key determinants of the per-
formance of the stochastic synthesis model are (1) the
expressivity of the codon diversification method — that
is, the size of the set of allowed U — and (2) the num-
ber of templates M (Section [S6.2). Performance in
terms of perplexity shows an improvement with in-
creasingly large U and increasing M. Note that due to
current technology costs, when using codon mixtures,
M must in general be small (e.g. < 10) as compared to
enzymatic mutagenesis or nucleotide mixtures (where
M can be on the order of 1000). Nonetheless, using
arbitrary codon mixtures with M = 1 templates out-
performs the alternative technologies with M = 1000
templates.

The advantages of combinatorial assembly over fixed
assembly vary depending on the codon diversification
technology. Combinatorial assembly improves per-
plexity when using enzymatic mutagenesis, but has
little effect when using arbitrary codon mixtures (Fig-
ure g] and Figure , while introducing error in the
covariance matrix of go- (Figure [S4).
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Figure 3: Perplexity (A) and two-sample test Bayes

factor (B) of different codon diversification methods,
with fixed assembly, applied to a target Potts DHFR
model. Positive Bayes factors support the hypothe-
sis that the synthesis and target distributions match.
(C) Perplexity of combinatorial versus fixed assembly,
applied to Potts DHFR model. (D) Perplexity of syn-
thesis models with fixed assembly applied to unaligned
DHFR sequences. Error estimates for each plot are de-
scribed in detail in Section

We next explored the application of variational syn-
thesis to target distributions over variable-length se-
quences (the DHFR Potts model was trained on
aligned sequences and generates fixed-length se-
quences). We optimized synthesis models directly on
the same evolutionary data used to train the DHFR
Potts model (with gaps removed); the target here is
the true evolutionary data-generating process, and un-
known (Section . Enzymatic mutagenesis with
large M outperforms arbitrary codon mixtures with
small M in this case (Figures and [S5). The best
synthesis technology can thus depend on the target.

5.2 Synthesizing Fluorescent Proteins

Next we sought to determine if variational synthesis
can increase the number of discoveries in downstream
assays, as compared to MC synthesis. To simulate
the results of realistic experimental assays, we used
sequence-to-function predictors trained on large-scale
experimental studies. We started with green fluores-
cent protein (GFP), predicting fluorescence using a
transformer-based semi-supervised method trained on
a GFP deep mutational scan dataset and evolution-

ary protein data (Sarkisyan et al. 2016} Rao et al.|
2019)). We classified as hits sequences with predicted
fluorescence above the functionality threshold speci-
fied by [Sarkisyan et al| (2016) (Section [S6.6.1). To
construct a target p, we trained an unsupervised se-
quence model — an ICA model with MuE output, pro-
posed in Weinstein and Marks (2021) — on evolution-
arily related GFP sequences, and then fixed the latent
alignment variable of the MuE to generate sequences
(Section . Using a fixed latent alignment en-
sures that the fluorescence predictor, which was only
trained on fixed-length sequences, can be confidently
applied. Note that the fluorescence predictor was not
used to construct p itself, so we can fairly evaluate
variational synthesis in the setting where the experi-
mental results are not known ahead of time. In gen-
eral, the fluorescence predictions are quite sensitive
to the input sequence — a single amino acid change
can abolish fluorescence — so generating new fluores-
cent sequences is nontrivial (Figure . Only 1.3%
of sequences sampled from p are hits, with fluores-
cence above the threshold specified by [Sarkisyan et al.
(2016).

Stochastic synthesis models with arbitrary codon mix-
tures and fixed assembly have low perplexities, and
can pass the two-sample test with large Bayes fac-
tors at M > 10; other methods struggle, including the
baseline method (Figure[JAB). Samples from arbitrary
codon models at M = 10 show average fluorescence
similar to p (Figure , and the fraction of samples
that are hits is only about half that of MC synthesis,
0.5% (Figure [|C). Meanwhile, alternative stochastic
synthesis methods show hit rates below 0.05%.

Variational synthesis leads to a decrease in hit rate
relative to MC synthesis, but this can be more than
compensated for by the increase in the number of
synthesized samples. If, for instance, N; = 10° se-
quences generated via variational synthesis are as-
sayed, as opposed to Ny = 102 sequences generated via
MC synthesis, an estimated 3600 unique functional se-
quences will be discovered using variational synthesis
as opposed to 10 for MC synthesis (Figure ; Sec-
tion . Variational synthesis can thus provide
orders-of-magnitude increases in the number of hits in
protein engineering applications, with the number of
hits increasing with larger values of Ny and/or M.

5.3 Synthesizing Antigen-Binding Proteins

Next we sought to evaluate the advantages of vari-
ational synthesis over MC synthesis in an applica-
tion area important for human health. Understand-
ing T cell receptor (TCR) sequences and their bind-
ing properties is crucial for understanding the immune
response to infection or cancer, and engineering new
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Figure 4: Perplexity (A) and two-sample test Bayes factor (B) for different synthesis methods applied to a target
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library for variational synthesis, as compared to MC synthesis with a Ny = 103 library (Section . (E-H)
Same as (A-D) for a target TCR model. Error estimates for each plot are described in detail in Section

TCRs with desired binding properties is crucial for im-
munotherapies . We trained a model
of TCR sequences from a healthy donor — an ICA
model with MuE output — and fixed the latent align-
ment variable in the MuE to define p (Section [S6.1.3).
As a held-out sequence-to-function predictor, we used
Tcellmatch (Fischer et al.,[2020) to predict binding to
an influenza epitope (Section|S6.6.2)). The predictor is
highly sensitive to the input sequence — a single amino
acid change can abolish binding — making this a chal-
lenging problem for variational synthesis (Figure .
Only 0.6% of samples from the target p are hits.

Synthesis models with arbitrary codon mixtures and
fixed assembly achieve low perplexities and can pass
the two-sample test with large Bayes factors (Fig-
ure [EF). Variational synthesis with this model
achieves hit rates similar to MC synthesis (Figure[4G).
MC synthesis with Ny = 10% generates just 6 hits on
average across independent libraries; given stochastic-
ity, it is not unlikely to see no hits at all in a given
library. Variational synthesis with N; = 10° and
M = 10 generates an expected 2400 unique hits (Fig-
ure ) Similar results hold for additional epitopes,
from other viruses (Section. These results sug-
gest that variational synthesis can dramatically accel-
erate the discovery of new TCRs that bind specific
antigens, relying only on unsupervised sequence mod-
els and not large-scale supervised sequence-to-function

training data.

Close matches between gy« and p turn out to be un-
necessary for reaching high hit rates in this example.
When using arbitrary codon mixtures or finite codon
mixtures with M = 1, or even using finite nucleotide
mixtures with M = 100, the two-sample test detects
significant differences between gy and p (Figure ),
but nonetheless variational synthesis achieves substan-
tially more hits than MC synthesis (Figure )

6 DISCUSSION

Variational synthesis trades accuracy for scale, produc-
ing large numbers of approximate samples from a tar-
get model rather than small numbers of exact samples,
as in MC synthesis. When accuracy is high enough —
when gy« is sufficiently close to p — the payoff can be
enormous, as the number of hits increases linearly with
the number of assayed sequences N;. Given that many
high-throughput screens can reach 10'° sequences or
more, while individual gene synthesis rarely goes be-
yond Ny = 10%, using variational synthesis may make
the difference between zero hits and a million.

We have shown through detailed simulations that
such large payoffs are plausible for real, therapeuti-
cally important protein design targets, using commer-
cially available stochastic synthesis technology. Go-
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ing forward, implementing variational synthesis exper-
imentally is thus a matter of ordering and assaying
commercially-made libraries based on gg-.

The key limitations of our variational synthesis meth-
ods — and opportunities for future work — stem from
the challenges of matching synthesis and target distri-
butions. First, our synthesis models (Section are
idealizations based on manufacturers’ descriptions of
the distribution of sequences their methods produce,
but do not take into account possible errors, biases or
limitations in the real procedure (Section . Devel-
oping more accurate gy models, based on e.g. deep
sequencing data, may be an important area for fu-
ture work. Second, our methods for judging whether
qo~ is sufficiently close to p are limited. Empirically,
while the BEAR two-sample test appears to be ex-
cellent at distinguishing among good and bad fixed
assembly models in the examples we studied, it strug-
gles to detect the errors caused by combinatorial as-
sembly, even when they are large enough to abolish
function (Figure . Theoretically, tighter bounds
than that in Proposition can be proved with to-
tal variation or Wasserstein distance in place of KL,
but optimizing these alternative divergences directly
is a challenge (Section. For sequence-to-function
predictors to be more reliable in evaluating variational
synthesis methods, they must be robust to covariate
shift, since switching from p to gy~ is, precisely, a co-
variate shift. Third, while our black-box optimization
method allows for arbitrary target distributions p, it
may be more effective in many cases to work with p
for which an exactly matching ¢s+« can be found an-
alytically (Section [S3.1). Recent progress on mixture
models as a competitor to deep generative neural net-
work models make this approach especially promis-
ing (Richardson and Weiss| |2018]).

Variational synthesis changes the calculus of what
makes a successful generative sequence model and
what makes a successful synthesis technology. If just
1% of the sequences sampled from an initial model A
were functional, and 50% of sequences sampled from a
proposed model B were functional, model B would be
considered a major advance; however, if we could accu-
rately match a stochastic synthesis protocol to model
A and not to model B, then model A could easily lead
to orders of magnitude more hits in practice. Mean-
while, the traditional goal of the DNA synthesis com-
munity has been large-scale individual synthesis. From
a probabilistic perspective, however, it hardly makes
sense to focus exclusively on methods to sample from
mixtures of point masses. The recent development of
methods to synthesize samples from much more flexi-
ble mixture models represents a major advance outside
the traditional paradigm.

Variational synthesis bridges the gap between gener-
ative sequence models and stochastic synthesis tech-
nologies, providing a rigorous approach to experimen-
tal design. We are optimistic that it will help translate
powerful new generative sequence models into labora-
tory discoveries.
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Supplementary Material:
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Generative Sequence Models

Table S1: Synthesis model notation.

General notation Description
Zy The set of positive non-zero integers.
R, The set of positive non-zero reals.
Ay The M — 1 probability simplex.
(A )P The set of matrices with D rows and each row in A,y,.
€; The length 4 vector of all zeros except a 1 at position j.
Hyperparameter Description
MeZy Number of templates.
KeZy Number of pools.
Ly €eZy Length (in codons) of templates in pool k € {1,...,K}.
L=3, L Total length (in codons) of generated sequences.
AeZy Number of codon or nucleotide mixtures.
S e Ri Substitution matrix. Sy p is the probability of mutating b to b'.

ST € (A4)* where ST is the transpose of S.
The columns of S are linearly independent.
T € {0,1}64x21 Translation matrix, mapping from codons
to the twenty amino acids plus the stop codon.
T(bl,bg,bg)d =1if (bl, bg, bg) codes for d,
and Ty, p,,05)¢ = 0 otherwise.
We assume the standard (universal) codon table.
Note Zbl bo.bs T(bl,bg,bg)d >1forallde {1, . ,21}

Codon diversification model Description
U= Ags Arbitrary codon mixtures.
U=A{v1,...,va} Finite codon miztures.
U={vy,...,vat @ {v1,...,vat @ {v1,...,04} Finite nucleotide miztures.

Nb. in this model, the probability of a codon (by, ba, b3) is
the product of mixture probabilities vq, b, VasbsVasbs
where a1,a9,a3 € {1,..., A}

U={S"e1,...,57es} @{Se1,...,5Tes} Enzymatic mutagenesis.
®{S7ey,...,STes} Nb. in this model, the probability of a codon (b1, ba, b3) is
the product of mixture probabilities Sy , Sy . Sp ..
where a1, a2,a3 € {1,...,4}
Assembly model Description
Zi1 ~ Categorical(w) Fized assembly
Zig = =4 = Zil
Z;i, ~ Categorical(wy) for all k € {1,...,K} Combinatorial assembly

Continued on next page...
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Continued from previous page...
Parameter Description
w Template probabilities.
w € Ay if using fixed assembly.
w € (Ap)¥ if using combinatorial assembly.
v Nucleotide or codon mixture probabilities.
v € (Ags)? if using finite codon mixtures,
v € (A4)? if using finite nucleotide mixtures.

T Number of rounds of mutagenesis. 7 € Z.
U Template defining codon probabilities. uy.; € U
forall ke {1,...,K}, ze€{l,...,.M} and j € {1,..., L}
Latent variable Description
Z; €{1,... ,M}K Templates to generate sequence 1.
Z;1. is the template drawn from pool k.
C; € (Agy)T Codon probabilities to generate sequence 1.

Cij(b1,bs,bs) is the probability of generating codon (b1, ba, b3)

at position j.

H; € {0,1}1x64 Codons of generated sequence 1.

Hij(b, bs,bs) = 1 if the codon (by, b2, b3) is at position j,

and Hijw, b,.,) = 0 otherwise.

Observed variable Description
X; € {0, 1}Ex2 The ith generated protein sequence,
one-hot encoded and including the stop codon.
Xijq = 1 if the amino acid d is at the jth position,
and Xj;;4 = 0 otherwise.

S1 SOCIETAL IMPACT STATEMENT

Variational synthesis accelerates the application of generative sequence models in the laboratory, and is thus a
potentially powerful enabling technology for synthetic biology, and may have a wide range of positive societal
impacts. It can be used to improve the scale and accuracy of protein engineering efforts, opening the door to
new therapeutics, enzymes and materials. It also may be used in concert with pathogen forecasting models to
address problems such as pathogen preparedness, by providing a technique for building large libraries of predicted
future sequences. However, synthetic biology is also a dual use technology, with a range of potentially dangerous
applications as well; for reviews of dual use concerns, see e.g. |El Karoui et al.| (2019)) and National Research
Council et al.| (2007).

S2 MODEL DETAILS AND LIMITATIONS

In this section we explain further the synthesis models proposed in Section [2.1] as well some of the limitations
of our mathematical idealization.

Physically, for the finite codon or nucleotide mixture models, codon diversification happens during chemical
synthesis of oligos (DNA segments). DNA in each well (or isolated reaction volume) is synthesized position by
position, with mixtures of nucleotides or codons (trinucleotides) added in defined ratios one at a time, such
that a large number of different molecules is eventually constructed. Twist Bioscience’s combinatorial variant
libraries, which can achieve arbitrary codon mixtures, rely on proprietary technology; however, it produces
analogous results (Twist Biosciencel 2020). For all of these technologies, what we refer to as a “template”
corresponds physically to a very large number of molecules in an individual well, with independent nucleotide
or codon probabilities at each site. We assume that the number of molecules is effectively infinite in comparison
to Nip, such that we do not need to account for sampling noise at this stage. We ignore the possibility of
skipped positions, where nucleotides or codons randomly fail to add to the growing oligos, a type of error that
is sometimes of particular concern for trimer-based synthesis. We enforce the constraint that the number of
mixtures A is finite and small, since to the best of our knowledge commercially available technologies have this
requirement, but it is not necessarily a fundamental technological constraint (Pazdernik and Bowersox], 2016)).



E. N. Weinstein, A. N. Amin, W. Grathwohl, D. Kassler, J. Disset and D. S. Marks

Physically, for the enzymatic mutagenesis model, template oligos are synthesized deterministically, such that
there is a large population of identical molecules in each well. Codon diversification occurs only after assembly
(i.e. after oligos from different wells are combined) and may take place either in vitro or in vivo. We assume
that there is an error correction mechanism after each round of mutagenesis, such that each strand of each
DNA molecule has effectively gone through the same number of rounds of mutagenesis; in some ePCR protocols
error correction is not used, and so alternative models may be more appropriate (Moore and Maranas|, 2000;
Pritchard et all [2005). We also assume that the mutation probability depends only on individual nucleotides,
and not their sequence context, although empirically dependencies on sequence context (especially the adjacent
two nucleotides) can be found (Alexandrov and Stratton, 2014). Finally, we require that each template undergoes
the same number of rounds of mutagenesis 7, with the same enzyme and thus the same S. For small M, it can
be experimentally tractable in many cases to use different 7, and even different S, for each template, in which
case the model should be adjusted to make 7 and S depend on the template.

Physically, assembly requires joining oligos together using e.g. Gibson assembly (Gibson et al., 2009)). For the
fixed assembly model, the oligos corresponding to the kth template in each pool must be joined in an isolated
reaction, for all £k € {1,..., K}; in combinatorial assembly, the sets of oligos corresponding to each template
in each pool are first mixed, and then oligos from these combined pools are joined. Assembly requires short
overhangs, sequences that closely match one another, at the ends of each oligo that are to be joined. Our
synthesis model ignores any restrictions that come from overhangs needing to match, as well as variation in
assembly probability that depend on overhang mismatch. Our model also assumes full control over the relative
concentration of templates, w. While this is tractable for low M, it may be more challenging for large M,
particularly if technologies like Dropsynth are used for fixed assembly (Plesa et al., 2018]).

S3 OPTIMIZATION DETAILS

S3.1 Exact Solutions

As an example of a target sequence model which we can exactly match, consider a RegressMuE (Weinstein and
Marks,, 2021)), which has been used for forecasting the evolution of influenza. Let B be a covariate vector (e.g. a
future time), let ® be the regression coeflicients, and let W be the latent alignment. The predictive distribution
p(z|B, W, ®) can be written as Categorical(U), where U is a matrix of independent amino acid probabilities
over L positions. We can exactly match this distribution with a synthesis model using M = 1 templates, fixed
assembly and arbitrary codon mixtures.

We can also approximate the posterior predictive distribution. Let p(®|D) be the posterior distribution over
regression parameters given the training data. The posterior predictive distribution can be approximated as
Eff:l ﬁp(aﬂB,W, ©,,) where O1,...,0); ~ p(O|D) are posterior samples. This distribution can be exactly
matched by a stochastic synthesis model using fixed assembly with w = (ﬁ, R ﬁ) and arbitrary codon mix-
tures.

S3.2 Stochastic EM

We used the online EM algorithm proposed by |Cappé and Moulines| (2008), modified to update using minibatches
instead of individual datapoints. Here we derive the algorithm for the stochastic synthesis model (Equation .
Without loss of generality, we focus on combinatorial assembly models; the fixed assembly case can be obtained
by setting K = 1. The local variable of the synthesis model is Z;, which we represent here as a one-hot encoding,
ie. Z; € {0,1}K*M_ At iteration t of the optimization algorithm, given the current parameter estimate
00 = (w® u® v® ") the conditional expectation of Z; can be written as

L
(Zitom] Xi] = ——r exp (30,2, log(ukm; - T) - Xigj1 1)
q,(t ikm |\ =
o St Wit €Xp (075 108 (s - T) - Xij4 1))

Tikm = E

; (S1)
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where Ly = w <k Li- Now we can compute the conditional expectation of the mean log likelihood as

Qg(i)(Xl,--.,XN;a) = [loqu(Xlw">XN7Z1a"'7ZN)]

E
N
| N K
>
i=1 k=
In standard EM, we would optimize this function with respect to #. However, this requires summing over the
whole dataset at each step. To derive the stochastic EM algorithm, we rewrite Q) in terms of summary

statistics of the data that can be estimated from minibatches. In particular, let S C {1,..., N} be a subset of
the data, and define the summary statistics

(S2)
Z {Zlog Ukmyj Xi(j+f,k)Tikm +1og WrmTikm |-

1m= —

50(Xs; 00y = |S| ZX”mm,
€S
(S3)
§(2) (XS H(t) m — Zrzkm
|S| i€ES

Now we can estimate Qg as

Q(5;0) := Z Z {Zlog Uy - _](:71( )+ log wkms( )| (S4)

k=1m=

The complete algorithm alternates between estimating summary statistics from minibatches of data & ®) drawn
at each step and maximizing the estimated expected log likelihood Qgy),

§HHD = 50 4 D (5(X g0y 0D — 5®)

00+ = argmax Q(5+1); 9) (85)
0

where v(*) is the step size. As suggested by |Cappé and Moulines| (2008), we set 4} = ¢=96, We also use Polyak-
Ruppert averaging, as suggested by |Cappé and Moulines| (2008), taking the mean of the summary statistics
3 for the last half of training, i.e. §* = Zz‘“?’t‘max /241) 3, and producing the final parameter estimate

tmax

0% = argmax,Q(5*; 6).

The maximization step (‘1) = argmax Q(é(t); ) can vary depending on the codon diversification technology
used. For all technologies, we have
wltH) = DR, (S6)

For arbitrary codon mixtures and finite codon mixtures, we can without loss of generality pick one codon for
each amino acid and the stop symbol, and work with template probabilities @ directly over amino acids, i.e.
where Uy m j,q is the probability of amino acid d at position j of template m in pool k. Then, for arbitrary codon

mixtures,
_(t+1)(1)
~(t+1) km(j+Ly)d (S?)

kmgjd — t+1)(1) :
Zd’ 1 km(J+Lk)d’
For finite codon mixtures, let Xrm; be a one-hot encoding of the codon mixture used at position j of template

m in pool k, such that Xxm; € {0, l}A. We work directly with mixtures defined over amino acids, with 0,4 the
probability of amino acid d in mixture a. Thus %xmj = Xkm; - U. Then we can use the coordinate-wise update

21
)2,(;1]) = argmax, Zlog Dad)$ ](Ctnt(lj)igk)d
d=1
SN D) (S8)
~(t+1) N Zk 1Zm 12] 1 km J+Lk)dkaja
Vad

St () ~(t+1)
Zd’ 1Ek 1Em 123 1 Skm(j+Li)d' Xkmja
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For finite nucleotide mixtures, we use xxm; 1 to denote a one-hot encoding of the mixture used at the first position
of the codon at position j in template m in pool k, i.e. Xrmj1 € {0, 1}4, and likewise for Xkmge and Xgmj3. We
update x by optimizing over all three positions of each codon jointly, enumerating all combinations of a1, as and
asg,

21
t+1 S+
Xl(cm]) = argmax Zlog( Z Ua1b1va2b2vasb3T(bl=b27b3)d>57(<?m(3?'(~‘£k)d. (Sg)
(a1,a2,a3) ;1 b1,b2,b3

Once x has been updated, we update v. This is harder, as there is no closed form solution. We directly optimize
Q with respect to v by taking gradients and applying 5 steps of the Adam optimizer (Kingma and Baj [2015) with
a learning rate of 0.01 (that is, we take 5 steps of Adam for every 1 EM update). For enzymatic mutagenesis,
we can also apply Equation [S9] to update x, replacing v with S7. To update 7, we directly enumerate all values
of Q for 7 € {1,..., Tmax and choose the maximum.

Code implementing the stochastic EM algorithm for all of the proposed stochastic synthesis models is available
in the Supplementary Material.

S3.3 Choosing N

Recall that our proposed black-box optimization procedure is to draw X1, ..., X5 ~ p computationally and then
maximize the synthesis model parameters,

N
éz\? = argmax Z log qo(X;). (S10)

=1

In this section, we argue that N should be chosen to be either equal to Ny, or, if N is too large to be tractable
computationally, N should be as large as is tractable. In particular, we do not suggest choosing N to be larger
than Ny, nor do we suggest regularizing 6 as one would in a standard inference problem. The reason is that
“overfitting” the synthesis model to the samples X1,..., X g can help rather than hurt.

To be more precise, consider the extreme case where gy can exactly match the empirical distribution of
Xi,..., XN, ~ p but cannot exactly match p itself. For example, this situation can occur when using fixed
assembly and M = Nj, allowing each mixture component be a point mass. If we use N = Ny, we find

G1,) = 57 2 ) s11)

where 0,/ (x) is the Kronecker delta function at z’. In this case, variational synthesis is equivalent to large-scale
MC synthesis, and will produce N7 samples from p On the other hand, if we let N — co, we have éN — 0*. In
this case, variational synthesis will produce N; samples from gg« # p. Thus, it can be preferable to use N=N,
as compared to N > Ny, since using N = N leads to synthesis of N7 exact samples from p instead of Ny samples

from gg« # p.

In practice, of course, gp will rarely be able to exactly match the empirical distribution of samples from p.
Nonetheless, we expect using N =~ N; to be useful, as in this case we avoid trying to match % to components of
p that are too rare to occur in practice, and instead regularize 9 towards the empirical distribution of samples
from p.

S3.4 Variable Length Protein Sequences

To handle variable length protein sequences, we treat everything past the stop codon as missing data which
does not contribute to the likelihood. That is, for a sequence X; with a stop codon at position j, we have
q0(Xi) = qo(Xi15)-

3Technically, variational synthesis in this case produces a size N3 bootstrap of N3 samples from p, rather than directly
producing N; samples from p. Although bootstrapping introduces some additional sampling noise, we expect it is unlikely
in practice to make using 45, worse than using ge=, since the bootstrap directly approximates p. Section ISB_TI discusses

this subtlety further.
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S4 RELATED WORK DETAILS

S4.1 DeCoDe

DeCoDe can be applied to datasets of fixed-length (or aligned) sequences, X71,..., X+, which are assumed to
be unique (i.e. X} # X/, if ¢ # i’). Consider the empirical distribution p(z) = vazll dx:(x) where 0,/(z) is the
Kronecker delta. Take gg to be a stochastic synthesis model using finite nucleotide mixtures and fixed assembly,
with 8 = (w,u,v). Let supp(p) denote the support of p, i.e. the set of all length L sequences with non-zero
probability. Let ( € Z denote the maximum allowed support of gg. Then, we can rewrite the DeCoDe objective
(Section 2.2.2 in |Shimko et al.| (2020))) in terms of the size of the intersection of supports of p and gp,

0" = argmax [supp(p) N supp(qe)|. (S12)
6:supp(qe) <¢

Note that the size of the intersection of supports does not correspond to a valid divergence between p and gy.

S4.2 SCHEMA

RASPP (Endelman et al., |2004) is an algorithm for designing site-directed recombination or combinatorial
assembly libraries based on a crystal structure and a dataset of homologous proteins from the same family. It
chooses a set of template lengths Ly, ..., Lx, where Ly, < Ly < Liax for k € {1,..., K}, in order to minimize
the SCHEMA score, roughly the number of structural contacts between positions of the protein generated by
different template pools. In this section we give a heuristic argument connecting RASPP to variational synthesis,
in the special case where RASPP finds a solution with no structural contacts across regions covered by each pool.

Consider a target model p that consists of a Potts model learned from the same protein family as the dataset of
homologous proteins. In general, the Potts model will infer energetic interactions only between positions of the
alignment that are in structural contact (Marks et al., 2011)). Let Ly, denote the region generated by template
k,ie. L1 ={1,...,L1}, Lo = {L1 +1,...,L; + Ly}, etc. and let p(xp, ) denote the marginal of p over these
positions. For the set of Ly,..., L, chosen by RASPP, we have no structural contacts across regions, and so
no energetic interactions under the Potts model, and thus p(z;,,z; ,) = p(zg, )p(zg ) for k # k. In other
words, there is no correlation between segments under the Potts model p. When using stochastic synthesis with
combinatorial assembly, there is also no correlation between segments under gg. If we try to minimize the KL
divergence between a gy with combinatorial assembly and the Potts model p, and optimize the template lengths
Ly,...,Lg, we can expect in general to find a similar solution to RASPP, where both the SCHEMA score and
the correlation between templates under p is zero.

S5 THEORY DETAILS
Note that the proofs in this section rely on the definitions in Table

S5.1 The MC Synthesis Estimator
In our theoretical analysis we do not treat MC synthesis as variational synthesis with point mass (deterministic)
mixture components. In particular, we analyze the estimator
X17"'5XN0 ~ D,
No (S13)

which comes from measuring each synthesized sequence individually, and not the alternative estimator
Xi,.... X, ~p,

1
Xl,...,XN ~ (5((1,‘,
1 NO; Xl() (814)
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which would come from pooling the synthesized sequences and then measuring a random sample of size N;
(here 8, (x) is the Kronecker delta function at z’). Note this alternative estimator I'®) takes the form of a
bootstrap estimator of size N7, taken from an initial sample of size Ny from p, and thus in general introduces
additional sampling noise as compared to I(@) . There are three reasons for focusing our analysis on 1(@) instead
of I'(a), First, since Ny is low, in practice it is often tractable for experimentalists to measure the Ny sequences
individually (e.g. in 96 well plates), rather than pooling them, making the estimate I@ possible. Second, in
the limit where N; is much greater than Ny, the estimators converge, making 1@ g reasonable approximation
for pooled experiments in practice. Third, we want our analysis to be conservative in measuring the benefits of
variational synthesis vis-a-vis the alternative, MC synthesis, so we use the better estimator I@,

S5.2 Proof of Proposition

Proof. Using Jensen’s inequality,

fmax ;EEEHI Il] S fmax ?gg Ng Ep i—1 (f(Xl) Ep[f(X)]) m"mx ?1612 V \/FO
(S15)

where V,[f(z)] is the variance with respect to p.

We can decompose the error in the () estimate into variance and bias terms, and then apply a similar analysis.

sup E[|I") — 1] < sup E[| 1) —Eq,. [f(X)]|] +

sup [Eq. [£(X)] ~ By f (]| £ —— +TV(p, 0-).

max feF max feF max feF \/71
(S16)
where we have used the integral probability metric representation of the total variation metric TV(-,-) (Sripe-
rumbudur et al}[2009). The result follows from application of Pinsker’s inequality. O

We can see from the proof that the bound in Equation [3| could be tighter if we use total variation in place
of KL. It could also be tighter if we restrict the family of functions F further. In particular, consider the
metric space defined over the set of fixed length discrete sequences X with the Hamming distance ||z — 2/|| g =
Ej 1 Zd L 3lza — 2’| (where x is a one hot encoding of a length L nucleotide sequence). Then, we can
introduce the function family Fy := {f : ||f|lz < Dmax}, that is, the set of functions with bounded Lipschitz
constant || f||z := maxy yrex oz | f(x) — f(2')|/||z — || z. Biologically, the Lipschitz constant is interpretable
as the sensitivity of a sequence’s biological function to single mutations. In particular, if a point mutation can
dramatically change the assayed property of the sequence, then the Lipschitz constant will be large; otherwise it
will be small. If we assume the Lipschitz constant of the experimental assay is bounded by some constant Dyax,
we can find an alternative error bound on the stochastic synthesis estimator:

D
sup E 10 — W (p, go ). S17
fmux feEFNFw H H \/ fmax ( ) ( )

where W(p, q) := inf erp.q) [ |2 —2'[|zy(2, 2) is the first Wasserstein distance, with I'(p, ¢) the set of couplings
of p and ¢g. This result follows from Equation by applying the Kantorovich-Rubinstein duality theorem (e.g.
Dudley| (2002), Theorem 11.8.2), using the fact that the metric space of finite sequences with the Hadamard
distance is a finite discrete space and separable. We see from Equation that the error bound on variational
synthesis can be lower than that in Equation @ so long as D¢ is sufficiently small. In other words, we
can get away with using synthesis models that do not match p closely if the assay is not very sensitive to small
changes in sequence.

S5.3 Importance Sampling Estimates

In some cases we can get access to paired sequence and function data, and in particular the dataset Dy :=
{(f(X:),X:) : f(X;) # 0}. For instance, if we deep sequence the hits of a screen, with f : X — {0,1}, we will
have Dy := {(1,X;) : f(X;) = 1}. We can then construct an importance-sampling estimate of I = E,[f(X)]
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using samples X1, ..., Xn, ~ Go+,
N
. 1 p(X3) 1 p(X;)
19 = —N"f(x; = — X)) ——2
W 2T T W 2 TR

Unlike 7®) this estimator is unbiased: Ey,. [£(X)p(X)/qe-(X)] = I. However, I\ still takes advantage of a
large number of samples, making possible lower variance than 1@, In particular, we have

sup By, [[I9 1] <

cHi(p||ge-) (S18)
fmax feFr

g

Ny

where CHI is the chi divergence, which can be defined as cHI(p||q) = Vq[%]. We can derive this result following

the same analysis as in Equation

sup B, [[1® — I]] < L sup \/qu* [f(X)qf*(i()z)} < L v/ CHI(p||qo~) (519)
fmax feF 9o © Jmax feF Ny T VN o

Note that our suggested black-box optimization procedure for variational synthesis (Section is intended
to help ensure high discovery rates (maximizing 25\21 f(X;)) but not to ensure accurate importance sampling
estimates. In particular, the KL divergence does not provide a particularly tight bound on the CHI divergence
(see e.g. Proposition 2 in [Dragomir| (1999)), so it is likely preferable to (if possible) directly optimize the CHI
divergence (Dieng et al., [2017)).

S5.4 Proof of Corollary

Proof. We have

E[NI® — NoI'®] > (N1 — No)I — Ny sup E[|I®) — I|] — No sup E[|1®) — I|] (520)
ferF feF
Applying Proposition [.1] yields the result. O

S5.5 Proof of Proposition 4.3

Before proving Proposition we first prove a lemma that shows — as long as we are not using enzymatic
mutagenesis — that we can construct templates that are arbitrarily close to a point mass while still having full
support. We use gp(z|c) as shorthand for ¢ (z|C; = ¢), and d,/(x) to denote the Kronecker delta function which
takes value 1 if x = 2/ and 0 otherwise.

Lemma S5.1. Assume we are using arbitrary codon mixtures, finite codon mixtures (with A > 21), or
finite nucleotide mixtures (with A > 4). For any € > 0 sufficiently small, there exists some v such that:
for all & € X there exists a ¢(x) € UL such that

q(z|e(z)) > 1 — pLe (S21)

where p is a positive constant, and supp(q(x|c(z))) = X. In particular, for arbitrary or finite codon miztures,
p =1, while for finite nucleotide mixtures, p = 3.

Proof. We start with the finite codon mixtures case; note that this immediately implies the arbitrary codon
mixture case, since the space U for finite codon mixtures is a subset of the space U for arbitrary codon mixtures.
We choose (arbitrarily) one codon for each amino acid and the stop symbol, and work with mixtures v over these
21 codons (setting the probability of all others to zero). For all d € {1,...,21}, let vg = 12157 + 65121)(1 —€)
where 1p is the length D vector of all ones and eElD) is the length D vector of all zeros except a one at
position d. Let ¢(Z) be the length of a protein sequence 53E| Given T we define the L x 21 matrix &(Z) =
concatenate(vz, , . - -, Uz, V1, - - -,v1). Now note that

q(z|&z) > (1 — )"® > 1 — Le. (S22)

4Length is measured up to (and including) the first stop codon or L, whichever comes first.
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Next we consider the finite nucleotide mixtures case, which works similarly. For all b € {1,...,4}, let v, =
143 + 61(74)(1 — €). Given a protein sequence Z, choose a particular codon for each amino acid and the stop
symbol. This defines a DNA sequence Z, where Z;; is the nucleotide in the first position of the codon for the
amino acid at position j of Z, and likewise for Z;2 and Z;3. We can then choose nucleotide mixtures for each
position of a template to match Z, that is,

¢(Z) = concatenate(vz,, ® Vs, ® Viyys-- -, Vigemys @ Viggayz @ Viggzyzs V1 @ V1 U1, ..., 01 @ V1 @ v1).

Now we have )
q(z|e(z)) > (1 — €)** @ > 1 — 3Le. (S23)

O

We are now ready to prove Part 1 of Proposition [£.:3] The basic idea is to construct a synthesis distribution gg-
that closely approximates p by convolving with p templates that are approximate point masses.

Part 1 of Proposition When using either arbitrary codon mixtures, finite codon mixtures (with
A > 21), or finite nucleotide mixtures (with A > 4): for any p € P(X) and n > 0 there exists some M and
0 such that (1) KL(p||ge) < n and (2) supp(ge(x|z)) = X for all z € {1,...,M}.

Proof. Let M = |X|, that is, set the number of templates equal to the total number of sequences of length less than
or equal to L. Since X is finite, we can construct for any € > 0 the synthesis distribution go(z) = Ex..,[q(z[e(X))].
In this synthesis distribution, the weights w of each mixture component are set by p(z), and supp(gp(z|z)) = X
for all z by the construction of ¢. We now have, applying Lemma [S5.1]

KL(pllg) = Y p(z)logp(z) — Y p(x)log [ Y q(z[e(z))p(z)]

zEX TxEX zeX
< p(a)logp(z) = > p(x)log [q(z]e(x))p(x)]

reX TEX (824)
<> p(a)logp(z) = > p(x)log [(1 — pLe)p()]

TzEX reX

< —log(1 — pLe)

Thus we can choose € sufficiently small that KL(p||gg) < 7. O

One concerning aspect of this proof, practically, is that it requires very large M to form the approximation gg.
How well can we do with smaller M7 Combining Theorem 4.2 of [Zhang| (2003)) with the above result, we can
say that for any 1 > 0 there exists an € > 0 such that KL(p|/ge=) converges to a value less than n at a 1/M
rate. Note also that our setup differs from the more common case where a mixture model is used for density
estimation based on finite data, since we can sample as much as we want from p. We therefore do not analyze
the mismatch between a target p and model go that may be caused by finite data.

Next, we prove the second part of Proposition [{.3] showing that enzymatic mutagenesis can fail to approximate
arbitrary targets p. The basic idea is that when using enzymatic mutagenesis, the probability of a particular
sequence cannot get arbitrarily close to 1, and so the KL divergence between p and gy cannot get arbitrarily
close to 0.

Part 2 of Proposition When using enzymatic mutagenesis: there exists some p € P(X) and n > 0
such that for all M and 6, we have KL(p||qp) > 7.

Proof. Since 7 > 0, and the entries of S are all positive, we can see that we are limited in how much mass an
enzymatic mutagenesis model can concentrate on just one sequence, i.e.

sup sup g(zle,7) < 1. (S25)
7>0,ceUlzeEX

Choose p(z) = d,7(x) for some sequence =’ € X, and let gy be an enzymatic mutagenesis synthesis model with
M templates. Then,

inf KL(p|/ge) > —log sup sup g(x|c,7) > 0. (526)
0 7>0,cEULTEX
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S5.6 Proof of Proposition

Proof. Let Lj, denote the subset of positions generated by template k, i.e. L; = {1,..., L1}, Ly, = {L1 +
L1+ Lo}, ... Let p(x Ek) denote the marginal of p over these positions. We have, since templates are

drawn independently from each pool, gg(x) = Hszl qo(7f, ), and so

KL(pllge) = Zp )log p(x ZZP loggo(zy,)

k= 1mLk
= p(x)log p(x ZZP Jlogp(ry, )+ > Ku(p(er,)lao(zz,)) (527)
T k= 1mL k=1

> ku(p| [ pl=;,))
k=1

There exists p for which KL(p|| Hszl p(zg,)) > 0, in particular any p for which there is correlation between
templates, proving the result. O

S6 RESULTS DETAILS

S6.1 Datasets and Target Models
S6.1.1 DHFR

We used a dataset of 3,629 sequences in the DHFR family collected using jackhmmer (Eddy, [2011) from
the Unirefl00 dataset (Suzek et al. 2015), and available as an example dataset from https://github.com/
debbiemarkslab/plmc/tree/master/example/protein/DHFR.a2m. The multiple sequence alignment has a
width of L = 171 amino acids. We trained a Potts model using pseuodolikelihood maximization as in [Hopf et al.
(2017), using the plmc package with the default hyperparameters https://github.com/debbiemarkslab/plmc.
Gaps in the alignment were treated as missing data (not as separate symbols), following the default settings of
plmc. The trained Potts model was the target p. We sampled sequences from p using Gibbs sampling, drawing
100,000 samples using 10 parallel chains with a burn-in of 200 steps per chain.

For the analysis of unaligned sequences (Figures and , we used the training dataset of 3,629 evolutionary
sequences, with gap symbols excluded and stop symbols appended. We refer to this dataset as “DHFR raw”.

S6.1.2 GFP

We constructed a dataset of 722 sequences in the GFP family using jackhmmer and UniprotKB (07/2021) (Potter
et al.l |2018]), starting from the seed sequence GFP_AEQVI with F64L (a stabilized variant used by [Sarkisyan et al.
(2016))), with a threshold of 0.3 bit score per residue. We trained an ICA model with a MuE output (Weinstein
and Marks, [2021)), which is available as an example in the Pyro probabilistic programming language (Bingham
et al.,|2019)) at https://pyro.ai/examples/mue_factor.html. The ICA model is similar to a probabilistic PCA
model, but uses a Laplace prior on the latent variable instead of a Gaussian; the MuE output uses the default
profile HMM-based architecture described in Weinstein and Marks| (2021). We used 2 latent dimensions in
the ICA model, a latent sequence length of 237 in the MuE, and default priors. The model was trained with
stochastic variational inference, with a learning rate of 0.005 and batch size of 5 over 70 epochs, annealing the
prior KL divergence linearly over 35 epochs. Using 20% of the data as heldout validation, the model achieves a
per residue perplexity on the training set of 3.1 and on the test set of 4.6.

We used the ICA-MuE model to construct a target distribution p. In particular, let ¥ be the latent alignment
variable of the MuE (the state variable of the Markov chain). We estimated the maximum a posteriori value of
1 for the stabilized wild-type GFP (GFP_AEQVI with F64L), and then sampled new sequences conditional on this

value d/;ref — note that this procedure is a very weak form of supervision, since the stabilized wild-type is known


https://github.com/debbiemarkslab/plmc/tree/master/example/protein/DHFR.a2m
https://github.com/debbiemarkslab/plmc/tree/master/example/protein/DHFR.a2m
https://github.com/debbiemarkslab/plmc
https://pyro.ai/examples/mue_factor.html
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to be functional and produce fluorescence. To limit the diversity of the library relative to the training data,
we sampled from the posterior predictive over the latent representation given the observed data, rather than
the prior. Explicitly, let pyur (2|9, k) denote the distribution of the learned ICA-MuE model conditional on the
latent alignment ¢ and latent representation k. Let X7, ..., X}, denote the training data, and let p(x|X’) denote
the posterior over the latent representation of a datapoint X’ (which can be approximated by the encoder/guide
network). The complete generative process p is then defined as

N/
1
Ki~ ~— K| X!
N ;:123( | X3) (528)

X; NpMuE(iUWA)ref; Ki)-

An important feature of this model is that we are not sampling from the conditional distribution of x given
Yret, that is, we are not sampling sequences with similar latent alignments. Unlike autoregressive models, for
example, MuE models allow variation in sequence length and latent alignment to be treated as independent
of variation at conserved sites. Thus, although the sequences generated from p are all of the same length, the
pattern of amino acids at conserved sites reflects the full diversity of the dataset. Finally, note that in the
jackhmmmer constructed-dataset, the first residue (M) of the wild-type sequence GFP_AEQVI was not included
in the profile HMM envelope, but the sequence-to-function predictor expects this position to be included; we
therefore prepended an M to each generated sequence, for a total length of L = 238.

S6.1.3 TCR

We examined a dataset of 22,004 TCRfS sequences measured in [Ramien et al| (2019), taken from CD8+ T
cells from a single healthy control patient (number HC12 in the study) in the 3rd trimester of pregnancy.
We trained a ICA-MuE model as described above (Section , with 5 latent dimensions and a latent
sequence length of 170. We used stochastic variational inference, with a learning rate of 0.01 and batch
size of 5 over 2 epochs, annealing the prior KL divergence linearly over 1 epoch. Using 20% of the data
as heldout validation, the model achieves a per residue perplexity of 2.39 on both the training and test
datasets. We sampled from the model using the same strategy as in Section The reference sequence
used to construct @ref was a randomly selected sequence from the dataset described in Section which
Tcellmatch predicted to bind the influenza epitope; as with the GFP example, conditioning on ¢ is a very
weak form of supervision, learning from only a single functional example. In particular, the reference sequence
was MSNQVLCCVVLCLLGANTV DGGITQSPKY LFRKEGQNVTLSCEQNLNHDAMYWY RQ
DPGQGLRLIYYSQIVNDFQKGDIAEGY SVSREKKESFPLTVTSAQKNPTAFY LCASSIRSAY EQ
YFGPGTRLTVTEDLKNVFPPEVAVFEPSE. The generated sequences had length L = 149.

S6.2 Synthesis Model Hyperparameters

In this section we describe the details of our stochastic synthesis models and optimization procedure. We used
K = 5 pools, with Lj of approximately the same length for each k € {1,..., K} (the last template was shortened
as necessary since L is not always a multiple of 5). This yields templates of length 29 to 48 amino acids across
all the datasets considered, which is consistent with typical oligosynthesis lengths of ~ 150 nucleotides. We used
A = 8 for finite nucleotide mixtures; this value is realistic, as the company IDT, for example, currently offers
four custom mixtures per oligo plus preset mixtures and single nucleotides (Pazdernik and Bowersox, 2016). We
used A = 24 for finite codon mixtures, which is similar to typical trimer-based synthesis projects, which use the
20 amino acids plus a few custom mixtures (McMahon et al., [2018).

We set the mutation matrix S based on the ePCR enzyme Mutazyme II, available as part of Agilent’s Gen-
eMorph II Random Mutagenesis Kit https://www.chem-agilent.com/pdf/strata/200550.pdf. In particular,
we converted the reported mutational spectra (Table II) into a substitution matrix, under the assumption that
the test sequences are 50% A-T base pairs and 50% G-C base pairs: for instance, the probability of a particular
base pair mutating per round of mutagenesis is given as 1% overall (10 bases per kilobase), and 50.7% of mu-
tations happen to A-T base pairs, so the probability of a particular A-T base pair mutating is 0.01 - 0.507/0.5.


https://www.chem-agilent.com/pdf/strata/200550.pdf
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Proceeding in this way, we find
0.990 0.006 0.005 0.003
0.006 0.990 0.003 0.005
5= 0.003 0.001 0.991 0.001 (529)
0.001 0.003 0.001 0.991

where the columns and rows are each in the order A, T', G, C. We also computed a mutation matrix S based on
the Taq error prone polymerase (also in Table IT of the Gene Morph IT Random Mutagenesis Kit manual), but
preliminary experiments suggested worse performance than Mutazyme II at matching the DHFR Potts target
distribution, so we did not pursue it further. We limit the total number of rounds of mutagenesis 7 to be less
than 10, since large numbers of mutagenesis rounds are rarely used in practice.

Note that since we have chosen A > 4, the set of allowed values of U for enzymatic mutagenesis (that is,
for all 7) is a strict subset of the set of allowed values of U for finite nucleotide mixtures (that is, for all v);
thus, synthesis models using enzymatic mutagenesis are strictly less expressive than those using finite nucleotide
mixtures. Meanwhile, & for finite nucleotide or codon mixtures is a strict subset of U for arbitrary codon
mixtures, regardless of the choice of v; so synthesis models using finite mixtures are strictly less expressive than
those using arbitrary codon mixtures.

S6.3 Baseline Synthesis Model

As a baseline stochastic synthesis approach, we considered a method motivated by a common heuristic for
producing diversified libraries, which is to simply perform error prone PCR on an initial set of sequences. In
particular, the baseline approach we consider is to do MC synthesis plus enzymatic mutagenesis: sample initial
protein sequences X1, ..., X}, ~ p, inverse-translate the protein sequences into DNA (sampling uniformly among
all codons for the same amino acid), synthesize the DNA individually, and then mutagenize in the laboratory
using ePCR. The distribution of resulting sequences can be described using a stochastic synthesis model for
which we do not optimize the parameters. In particular, let K =1, and for m € {1,...,M} and j € {1,...,L},
let X;njlb = 1 if the sampled codon for X,’nj has base b at the first position, and xm;1, = 0 otherwise. Likewise
for Xmjop and Xmjsp- Then, we set uim; = S"Xmj1 @ ST Xmj2 @ S"Xmj3. We use fixed assembly, setting
w = (ﬁ, ceey ﬁ) Then, the complete synthesis model (Equation describes the distribution of sequences
produced by the baseline approach.

Note that the baseline is effectively a kernel density estimate of p. It is thus unsurprising that the baseline
underperforms relative to variational synthesis, since kernel density estimates typically underperform compared
to mixture models.

Practically, we use S corresponding to a Mutazyme II enzyme (Section and set 7 = 5 as a typical value for
proteins of the length considered here (Wilson and Keefe, 2001)). The samples from p used as initial sequences,
Xi,..., X}, are subsampled from the same training dataset of 100,000 sequences used for variational synthesis
(Section. We examined the performance of the method averaged over 3 independent sets of initial sequences.

S6.4 Optimization and Perplexity Evaluation

DHFR Potts, GFP, TCR To optimize synthesis models, we drew N = 100,000 samples from each target
distribution p and applied stochastic EM, as described in Section [S3.2] We chose batch sizes to be as large as
possible without running out of memory. In particular, we used batch sizes of 100,000 (the full dataset) with
M =1, M =10 and M = 100, and batch sizes of 10,000 for M = 1000. We trained for 80 epochs with M = 1,
M = 10 and M = 100, and 16 epochs for M = 1000. Training took 2-5 minutes for each target-synthesis pair
using a Tesla V100 GPU. Example training curves are shown in Figure

Each synthesis model was trained on the same set of N = 100,000 samples from each target distribution, and

evaluated based on the average per residue perplexity on the training dataset, exp(f% Zfil ﬁ log g9 (X)),

where ¢(X;) is the length of the sequence X;. Note that we do not perform heldout evaluation, as our goal is
to see how well each synthesis model can match a target library of size 100,000; overfitting the synthesis model
is not a concern, and may even help downstream performance, as described in Section We initialized each
optimization from three random seeds, and chose the result with the lowest perplexity.

DHFR raw For the DHFR raw dataset, we handle variable length sequences as described in Section [S3.4} and
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Figure S1: Illustrative example of training curves for a stochastic synthesis model (enzymatic mutagenesis with
fixed assembly) with different values of M. For each value of M, training is repeated with three initial seeds.
The models are each trained on samples from the DHFR Potts model, as described in Section

optimized each synthesis model using EM with batch size of 3,629 (the full dataset), for 100 epochs. We set L
to be the maximum length of sequences in the dataset including the stop codon, 170. We evaluated using mean
per residue perplexity on the full dataset. We initialized each model from three random seeds, and chose the
result with the lowest perplexity.

S6.5 BEAR Two-Sample Test

We use the vanilla version of the BEAR two-sample test proposed in Section 5 of |Amin et al.| (2021) to compare

the target and the synthesis distributions. The test computes the Bayes factor comparing the hypothesis that

two datasets {Xi,..., Xg} and {X{,..., X% } come from the same underlying distribution versus different

distributions. It uses pppar(X1,..., Xyl|a, A), the probability of the dataset under a Bayesian Markov model

with Dirichlet concentration parameter o and lag A. In particular, the Bayes factor is
pBEAR(Xlw--,XNaXi,“-aX

)
BF = N S30
PBEAR (X1, ..., X§)pBEAR(X], ..., X)) (830)

where
A

1
pBEAR(Xla cee 7XN) = K ZPBEAR(Xla e ,XN|O&, A) (831)
A=1

We used the training dataset of 100,000 samples from p as the first dataset in the two-sample test, and 100,000
independent samples drawn from the optimized synthesis model g5 as the second dataset. (In the case of DHFR
raw, we used the 3,629 sequences as the target sample.) Note that the goal here is to understand whether the
particular set of N samples from p used for training look like a plausible set of samples from > following the
logic of Section so we do not resample from p to compute the test. We use o = 0.5 and A = 8; we found
that in general the posterior over lags concentrated at values of A below 8, suggesting the test has sufficiently
high resolution. Computing the test took about 5-10 minutes for each target-synthesis pair, with 20 cores on an
Intel Xeon E5 v3 CPU.

S6.6 Sequence-to-Function Predictors

S6.6.1 GFP: TAPE

We computed TAPE predictions of GFP fluorescence using the interface in the FLEXS package (Sinai et al.
2020)). Sequences with internal stop codons were assigned the minimum log fluorescence in the [Sarkisyan et al.
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(2016) dataset, 1.2. Variants with predicted log fluorescence above 3 were classified as hits, in line with the
analysis of [Sarkisyan et al. (2016)) who classify variants below 3 as dark.

S6.6.2 TCR: Tcellmatch

We used Tcellmatch, trained on the same single-cell TCR sequencing data as in the original paper (10x Genomics,
2019), with the suggested model architecture (1x1 convolutional embeddings based on BLOSUM50 and biGRU
layers). We used the mean squared logarithmic error to evaluate the model’s ability to predict MHC multimer
binding counts. We trained the Tcellmatch model only on TCR/S sequences, since the target p was trained
only on TCR/S sequences. The Tcellmatch model uses only the CDR3 region to make predictions. In general,
techniques for identifying the CDR3 region in TCRs rely on nucleotide-level information, which is unavailable
for generated amino acid sequences. However, we constructed the target p by conditioning on a latent alignment,
which in turn is based on a reference sequence with nucleotide-level information (Section . We thus use
the positions corresponding to the CDR3 in the reference sequence (109:122, as annotated by the 10x pipeline)
to define the CDR3 for each sampled sequence from p and gg. Although the Tcellmatch model can be used
to predict many different antigens, we focused on predictions of the GILGFV FTL influenza antigen, since the
model had the most accurate predictions for this particular antigen (according to the R? metric used by [Fischer
et al| (2020), in particular R? = 0.70). We conditioned on a single donor (donor 1) when making predictions
with Tcellmatch. Sequences with internal stop codons were assigned zero counts. Variants with predicted counts
above 10 were classified as hits, in line with the analysis of [Fischer et al.| (2020]).

S6.6.3 Estimating Hit Rates

Given a dataset of indicators for whether or not each of 100,000 samples from gy was a hit or not, i.e.
{f(X1),...,f(Xn)} where f : X — {0,1}, we estimated the overall hit rate using a Beta(0.5,0.5) prior (Jeffreys
prior). We report the standard deviation of the posterior in Figure and G.

S6.6.4 Estimating the Number of Unique Hits

Based on the hit rate (Section [S6.6.3)), we can estimate the total number of hits for libraries of any size. However,
we are also interested in the total number of unique hits, since discovering identical sequences is not as useful
as discovering diverse sequences. FEvaluating predictors on very large numbers of samples, though, can be
impractical since predictors (especially TAPE) can be computationally expensive. Instead, we used a Good-
Toulmin estimation strategy: we examined the hits from a sample of 100,000 sequences from ¢y and then
extrapolated to estimate the number of unique hits in a library of 1,000,000 sequences. We used the smoothed
Good-Toulmin estimator proposed by [Orlitsky et al|(2016), with the recommended Binomial model. Note that
the estimator is considered trustworthy for datasets up to a factor of log NV larger than the initial dataset; since
log(10%) = 11.5 > 10, it is applicable here. We estimate the variance of the estimate under resampling using the
jackknife, which can be efficiently computed for the smoothed Good-Toulmin estimator (Efron and Steinl, [1981)).

S6.7 Error Bars

In this section we summarize the calculation of the error bars in Figures [3] and [} For the baseline model, we
show the estimated standard deviation across independent samples of the initial M sequences from p (that is, the
initial sequences that are mutagenized by ePCR). We use three independent samples for each value of M. For
perplexity plots (Figures CD and E) we do not include any error estimates for non-baseline models, since we
have exactly computed the total perplexity across the training dataset, and we are only interested in the match
between the synthesis model and the training dataset, not in the synthesis model’s generalization performance
(as explained in Section . Bayes factors are themselves measurements of statistical significance, so we do
not include any error bars for non-baseline models in Figures and F. For plots of hit rate (Figure G),
error bars show the posterior standard deviation of the hit rate under a Beta(0.5,0.5) prior (the Jeffreys prior)
(Section [S6.6.3)). For plots of estimated unique hits (Figures [dDH), error bars show the jackknife estimate of the
standard deviation (Section For the baseline model, in plots of both hit rate and unique hits, error bars
include the variance across different initial sequences from p, and are computed using the law of total variance.
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Figure S2: (A) Difference in mean between synthesis and target models, for various stochastic synthesis models
with fixed assembly applied to the DHFR Potts target. Mathematically, ||Eq, [X]|—E,[X]||2 where X is represented
as a one-hot encoding and || - ||2 is the Euclidean distance. (B) Difference in position-wise covariance matrices
between synthesis and target models. Mathematically, let C'](p -),7 A = Covp (X4, Xjr.ar) denote the covariance
under p between the dth amino acid at position j and the d'th amino acid at position j’. The magnitude of
the covariance between positions j and j' can be measured as C() := ||C'J(I;), l2. Then we plot the position-wise

covariance error ||C(P) — (@) ||,. In both plots, error bars for the baseline model are the standard deviation over
initial sequences (Section [S6.7]).
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Figure S3: Zoom in of Figure 3(C.

S6.8 Additional results
S6.8.1 DHFR

We further examined the match between stochastic synthesis models and the target DHFR Potts model, ex-
amining the difference in moments of each distribution. In particular, we looked at the difference in the mean
sequence produced by the synthesis and target distributions, and the difference in covariance between positions
of the sequences produced by the synthesis and target distributions (Figure . Comparing different variational
synthesis models, we see improved perplexity (Figure [3|A) corresponds well with lower moment error (Figure [S2)).
Interestingly, the baseline synthesis method (Section [S6.3|) yields comparatively low moment error for large M
despite comparatively poor perplexity.

We further examined the difference in performance between combinatorial and fixed assembly models. For
enzymatic mutagenesis, switching from fixed to combinatorial assembly improves the two-sample test Bayes
factor (Figure [S4A), mean (Figure [S4B) and covariance (Figure [S4C). For arbitrary codon synthesis, switching
from fixed to combinatorial assembly slightly improves the Bayes factor (Figure ), has no effect on the mean
(as we expect mathematically and see in Figure )7 but substantially worsens the covariance (Figure )
These results illustrate how the advantages of using fixed versus combinatorial assembly vary depending on the
codon diversification technology.

We further examined the performance of different stochastic synthesis models applied to the DHFR raw dataset
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Figure S4:  Comparing fixed versus combinatorial assembly for the DHFR Potts target. (The perplexity
comparison can be found in Figure and [S3]) (A) Two-sample test Bayes factor. (B) Difference in mean
between synthesis and target models, as defined in Figure (C) Difference in position-wise covariance matrices
between synthesis and target models, as defined in Figure
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Figure S5: Two-sample test Bayes factor for synthesis models with fixed assembly applied to the DHFR raw
dataset. For perplexity comparison, see Figure 3D.

of unaligned evolutionary sequences. Applying the two-sample test, we find that using large numbers of templates
with any codon diversification technology is better than using small numbers of templates with a very expressive
codon diversification technology (Figure , in line with the perplexity results (Figure ) We also see that
variational synthesis is capable of matching the target closely enough to pass the two-sample test, but so is the
baseline method in this case.

S6.8.2 GFP

We examined the difference in moments between the target GFP distribution and the stochastic synthesis models.
The results (Figure are qualitatively similar to those described for DHFR (Section [S6.8.1] and Figure ,
with the baseline model performing better than its perplexity would suggest.

We examined the difference in average log fluorescence between samples from various stochastic synthesis models,
as compared to exact samples from the target (that is, as compared to the average log fluorescence under MC
synthesis) (Figure . Interestingly, we find that while using finite codon mixtures with M = 1 yields relatively
low hit rates compared to arbitrary codon mixtures with M = 1 (Figure ), it yields nearly equivalent average
log fluorescence (Figure [S8).

We examined the difference in performance between combinatorial and fixed assembly methods applied to the
GFP target distribution. On statistical measures of the difference between the synthesis and target distribu-
tion (Figure [SJABCD), we find broadly similar effects to those observed for DHFR Potts: for instance, we see
moderate improvements in perplexity for enzymatic mutagenesis at large M when switching from fixed to combi-
natorial assembly, but little effect for arbitrary codon mixtures, and substantially worse covariance for arbitrary
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Figure S6: Predicted mutational effects of substituting each position of the stabilized wild-type GFP sequence
with an alanine (i.e. an in silico alanine scan). Dotted line shows the threshold for classifying a variant as
functional.
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Figure S7: (A) Difference in mean between GFP synthesis and target models, as defined in the caption of
Figure (B) Difference in position-wise covariance matrices between GFP synthesis and target models, as
defined in the caption of Figure

codon mixtures. On measures of function, using combinatorial assembly leads to dramatically worse performance
(Figure FG): using arbitrary codon mixtures with combinatorial instead of fixed assembly drops the number
of unique hits by three orders of magnitude. This result suggests that passing the BEAR two-sample test with
large Bayes factors is not enough to ensure high hit rates when using combinatorial assembly; one should also
inspect the covariance error.

S6.8.3 TCR

We examined the difference in moments between the target TCR distribution and the stochastic synthesis models.
The results (Figure [S11]) are qualitatively similar to those described for DHFR (Section [S6.8.1| and Figure [S2)),
with the baseline model performing better than its perplexity would suggest.

We examined the difference in average binding counts between samples from various stochastic synthesis models,
as compared to exact samples from the target TCR model (that is, as compared to MC synthesis) (Figure [S12)).
Unlike for GFP, we find that the average value of the assay output is roughly proportional to the hit rate.

We examined additional viral epitopes, besides the influenza epitope, for which decent Tcellmatch predictions
were available. The second highest quality Tcellmatch predictor (R? = 0.43) was for an Epstein-Barr virus (EBV)
epitope, RAKFKQLL. MC synthesis with Ny = 10% generates just 0.05 hits on average across independent
libraries, while variational synthesis with N; = 10°, using arbitrary codon mixtures and M = 10, generates an
expected 30 unique hits (Figure [S13]). Here, variational synthesis makes the difference between likely failure
and likely success. We also examined two viral epitopes for which the target TCR model had an estimated hit
rate of zero (based on a sample of 10° sequences from the model): a cytomegalovirus epitope (K LGGALQAK,
Tcellmatch R? = 0.40) and another EBV epitope (RLRAEAQV K, Tcellmatch R? = 0.36). Note that a hit rate
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Figure S8: Average log predicted fluorescence of samples from various stochastic synthesis models and from the
GFP target p itself (MC synthesis). Error bars are estimates of the standard deviation of the mean (for the
baseline model, this includes variance across different initial sequences, as described in Section [S6.7} for the rest
of the models, it is just the standard error, and negligible in these plots).

of close to zero is unsurprising, given that the Tcellmatch predictor has low accuracy, and that the individual
patient which the TCR model was trained on may not have TCRs that bind these epitopes. For these two
epitopes, we found that variational synthesis was still able to closely match the average binding counts under
the target TCR model (Figure [S14).
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Figure S9: Fixed versus combinatorial stochastic synthesis applied to the GFP target distribution. (A) per-
plexity, (B) two-sample test Bayes factor, (C) mean error (as defined in Figure [S2)), (D) covariance error (as
defined in Figure , (E) average log fluorescence, (F) hit rate and (G) number of unique hits with Ny = 10°
and Ny = 103. Error bars are as described in Section
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Figure S10: Predicted binding effects of substituting each position of a natural CDR3 sequence
(CASSIRSAY EQY F) with each of 20 amino acids (in silico deep mutational scan). The threshold for func-
tionality (10 counts) is marked by a dotted line in the colorbar.
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Figure S11: (A) Difference in mean between TCR synthesis and target models, as defined in the caption of
Figure (B) Difference in position-wise covariance matrices between TCR, synthesis and target models, as
defined in the caption of Figure
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Figure S12: Average predicted binding counts of samples from various stochastic synthesis models and from p
itself (MC synthesis). Error bars are estimates of the standard deviation of the mean (for the baseline model,
this includes variance across different initial sequences; for the rest of the models, it is just the standard error).
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Figure S13: Same as Figure [{H, but for the EBV epitope RAK FKQLL instead of the influenza epitope.
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Figure S14: Same as Figure|S12| but for the EBV epitope RAKFKQLL (A), the EBV epitope RLRAEAQV K
(B) and the CMV epitope KLGGALQAK (C).
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